
A Proofs for Section 3 (Cn* kernel
pseudo-contraction)

Theorem 5 (Cn* kernel pseudo-contraction: representation
theorem). If Cn* satisfies monotonicity, then an operation
is a Cn* kernel pseudo-contraction if and only if it satisfies
success, inclusion*, core-retainment* and uniformity*.

Proof. Construction-to-postulates:

• Success: We prove by contradiction. Assume that α ∈
Cn(kcCn*

f (B,α)). Since Cn is compact, there is some
non-empty X ∈ Ker[Cn*(B) \ f(Ker[Cn*(B), α]), α].
Such X is also an inclusion-minimal subset of Cn*(B)
implying α, i.e., X must be in Ker[Cn*(B), α]. More-
over, as X ⊆ Cn*(B) \ f(Ker[Cn*(B), α]), we have
f(Ker[Cn*(B), α]) ∩ X = ∅, which violates the defini-
tion of incision function.

• Inclusion*: Follows directly from the definition.
• Core-retainment*: If the sentence β is such that β ∈

Cn*(B) \ kcCn*
f (B,α), then this implies that β ∈

Cn*(B) \
(
Cn*(B) \ f(Ker[Cn*(B), α])

)
, then β ∈

f(Ker[Cn*(B), α]). Hence, β is an element of some
X ∈ Ker[Cn*(B), α]. The setB′ := X \{β} is such that
B′ ⊆ Cn*(B), and sinceX is an α-kernel of Cn*(B), we
have that α ∈ Cn(B′ ∪ {β}) \ Cn(B′).

• Uniformity*: Suppose that, for all B′ ⊆ Cn*(B),
α ∈ Cn(B′) if and only if β ∈ Cn(B′). We want to
prove that kcCn*

f (B,α) = kcCn*
f (B, β). It is enough

to show that Ker[Cn*(B), α] = Ker[Cn*(B), β], from
which the result follows due to the definition of kcCn*

f .
We prove by contradiction. Assume that there is some
X ∈ Ker[Cn*(B), α] \ Ker[Cn*(B), β] (for the oppo-
site case, the proof works by exchanging α and β). Since
X ⊆ Cn*(B) and X is not a β-kernel of Cn*(B), then
either β /∈ Cn(X) or there is someX ′ ( X such that β ∈
Cn(X ′). The first case implies that α /∈ Cn(X), which
is not possible because X is an α-kernel of Cn*(B). The
second case is also impossible: since X ′ ⊆ Cn*(B) and
β ∈ Cn(X ′), we have that α ∈ Cn(X ′), which cannot
hold because X is an inclusion-minimal α-implying sub-
set of Cn*(B).

Postulates-to-construction: This part of the proof is sim-
ilar to the proof of the corresponding theorem in (Hansson
1994). We need to show that an operation cCn* that satisfies
success, inclusion*, core-retainment* and uniformity* is a
Cn* kernel pseudo-contraction. Let us define f as

f(Ker[Cn*(B), α]) := Cn*(B) \ cCn*(B,α).

We shall prove that (i) f is well defined, (ii) f is an incision
function for Cn*(B) and (iii) the operation kcCn*

f is equiv-
alent to cCn*:

(i) We have to show that the result of f is always the same
for a fixed input. Suppose that α1 and α2 are such that
Ker[Cn*(B), α1] = Ker[Cn*(B), α2]. Consider any
B′ ∈ Cn*(B). If α1 ∈ Cn(B′), from compactness of Cn
we can consider a finite inclusion-minimal α1-implying

set B′′ ⊆ B′, i.e. B′′ ∈ Ker[Cn*(B), α1], thus B′′ ∈
Ker[Cn*(B), α2] and α2 ∈ Cn(B′′), which implies (due
to monotonicity of Cn) that α2 ∈ Cn(B′). Similarly,
α2 ∈ Cn(B′) implies α1 ∈ Cn(B′). Hence, we have
that α1 ∈ Cn(B′) if and only if α2 ∈ Cn(B′). By
uniformity*, cCn*(B,α1) = cCn*(B,α2), and from the
definition of f we conclude that f(Ker[Cn*(B), α1]) =
f(Ker[Cn*(B), α1]).

(ii) To prove that f is an incision function, we must show
that (1) f(Ker[Cn*(B), α]) ⊆

⋃
Ker[Cn*(B), α] and

(2) f(Ker[B,α])∩X 6= ∅ for everyX ∈ Ker[B,α]\{∅}.
(1) Consider any β ∈ f(Ker[Cn*(B), α]). We will show

that β ∈
⋃

Ker[Cn*(B), α]. From the definition of
f , we have that β ∈ Cn*(B) \ cCn*(B,α). Since
cCn* satisfies core-retainment*, there must be some
B′ ⊆ Cn*(B) such that α ∈ Cn(B′ ∪ {β}) \ Cn(B′).
By compactness of Cn, there is some (finite) inclusion-
minimal α-implying subset B′′ ⊆ B′ ∪ {β} such that
α ∈ Cn(B′′), and β must be in B′′ because Cn is
monotonic and α /∈ Cn(B′). As B′ ⊆ Cn*(B) and
β ∈ Cn*(B), the set B′′ is a also subset of Cn*(B).
Hence, B′′ ∈ Ker[Cn*(B), α], and since β ∈ B′′, we
conclude that β ∈

⋃
Ker[Cn*(B), α].

(2) Take any non-empty X ∈ Ker[Cn*(B), α]. By the
definition of kernel, it must be the case that α /∈ Cn(∅)
and α ∈ Cn(X). From success, we have that α /∈
Cn(cCn*(B,α)), which implies (due to inclusion of
Cn) that α /∈ cCn*(B,α). Then, X 6⊆ cCn*(B,α),
and there must be some sentence β ∈ X \ cCn*(B,α).
Since X ⊆ Cn*(B), we have that β ∈ Cn*(B) \
cCn*(B,α), that is, β ∈ f(Ker[Cn*(B), α]). This
concludes the proof that f(Ker[Cn*(B), α])∩X 6= ∅.

(iii) We can rewrite kcCn*
f (B,α) as:

kcCn*
f (B,α) = Cn*(B) \ f(Ker[Cn*(B), α])

= Cn*(B) \
(
Cn*(B) \ cCn*(B,α)

)
= Cn*(B) ∩ cCn*(B,α)

= cCn*(B,α).

Observation 9. If Cn* satisfies subclassicality and inclu-
sion, then any operation that satisfies core-retainment* also
satisfies logical core-retainment.

Proof. Assuming that Cn* satisfies inclusion and subclassi-
cality, if cCn* satisfies core-retainment*, then for every β ∈
B\cCn*(B,α), we have β ∈ Cn*(B)\cCn*(B,α) (from in-
clusion of Cn*). Because of core-retainment*, there must be
some B′ ⊆ Cn*(B) such that α ∈ Cn(B′∪{β})\Cn(B′).
Since Cn* is subclassical, suchB′ is also a subset of Cn(B).
Hence, cCn* satisfies logical core-retainment.

Proposition 11. If f is smooth and Cn* satisfies inclusion,
then the Cn* kernel pseudo-contraction cCn*

f satisfies rela-
tive closure.



Proof. Let cCn*
f be a Cn* kernel pseudo-contraction, where

f is smooth. We will prove, by contradiction, that cCn*
f

satisfies relative closure. Assuming that this does not hold,
there must be some sentence β ∈

(
B ∩ Cn(cCn*

f (B,α))
)
\

cCn*
f (B,α). Then, β ∈ B \ cCn*

f (B,α), i.e., β ∈ B

but β /∈ Cn*(B) \ f(Ker[Cn*(B), α]). Since Cn* sat-
isfies inclusion, β must be in Cn*(B), so β must be in
f(Ker[Cn*(B), α]). Let B′ := B \ f(Ker[Cn*(B), α]).
From the definition of β, we know that β ∈ Cn(B′). As β is
in both Cn(B′) and f(Ker[Cn*(B), α]), the set Cn(B′) ∩
f(Ker[Cn*(B), α]) is non-empty. From the smoothness of
f , the set B′∩f(Ker[Cn*(B), α]) must not be empty. This
is a contradiction, because the definition of B′ implies that
it cannot contain any element of f(Ker[Cn*(B), α]).

Proposition 12. If Cn* satisfies subclassicality, an opera-
tion that satisfies inclusion* and core-retainment* also sat-
isfies vacuity*.

Proof. Let c be an operation satisfying inclusion* and core-
retainment*, and assume that Cn* is subclassical. LetB be a
set of sentences and α be any sentence such that α /∈ Cn(B).
We want to prove that c(B,α) = Cn*(B). Inclusion*
gives us c(B,α) ⊆ Cn*(B), so we only have to show that
c(B,α) ⊇ Cn*(B), i.e. the set Cn*(B) \ c(B,α) is empty.
We will prove by contradiction. Assume that there is some
β ∈ Cn*(B) \ c(B,α). As c satisfies core-retainment*,
there must be some B′ ⊆ Cn*(B) such that α ∈ Cn(B′ ∪
{β}) \ Cn(B′). Since B′ ⊆ Cn*(B) and β ∈ Cn*(B),
we have B′ ∪ {β} ⊆ Cn*(B), and from subclassicality of
Cn*, this implies that B′ ∪ {β} ⊆ Cn(B). Because Cn sat-
isfies monotonicity, we have Cn(B′ ∪ {β}) ⊆ Cn(Cn(B)),
and using idempotence of Cn, we obtain Cn(B′ ∪ {β}) ⊆
Cn(B). This is a contradiction, because α ∈ Cn(B′ ∪ {β})
but α /∈ Cn(B).

B Proofs for Section 6 (Correspondence
between Belief Revision and Repairs in

Description Logics)
Remark 21 ((Matos et al. 2019)). If Φ ⊆ B, then the
maximal α-non-implying subsets of B with respect to Φ
contain all of the elements of Φ, i.e., X ⊇ Φ for every
X ∈ MaxNon(B,α,Φ).

Proof. If there is some X ∈ MaxNon(B,α,Φ) such that
X 6⊇ Φ, then the set Y = X ∪ Φ is such that X ⊂ Y ⊆ B,
and since Φ ∪ Y = Φ ∪X , we have that α /∈ Cn(Φ ∪ Y ) =
Cn(Φ ∪X), violating the definition of MaxNon.

Remark 23 ((Matos et al. 2019)). The minimal α-implying
subsets of B with respect to Φ do not contain elements of Φ,
i.e., X ∩ Φ = ∅ for every X ∈ MinImp(B,α,Φ).

Proof. If there is some X ∈ MinImp(B,α,Φ) such that
X ∩ Φ 6= ∅, then the set Y = X \ Φ is such that Y ⊂ X ,
and since Φ ∪ Y = Φ ∪X , we have that α ∈ Cn(Φ ∪ Y ) =
Cn(Φ ∪ X), which contradicts the definition of MinImp.

Theorem 27 (Partial meet base contraction =⇒ Clas-
sical repair (Matos et al. 2019)). Under the conditions
of Proposition 26, if g is such that Os ⊆ X for every
X ∈ g(Rem[O, α]), then the operation Repg defined as
Repg(O, α) = pmcg(O, α) \ Os yields a classical repair.

Proof. Let O′ = Repg(O, α). Since g only selects α-
remainders including Os, we have that Os ⊆ pmcg(O, α),
which implies thatOs∪O′ = pmcg(O, α). Hence, from the
inclusion postulate, we have that Os ∪ O′ ⊆ O, and mono-
tonicity of Cn gives Cn(Os ∪ O′) ⊆ Cn(O). This is suf-
ficient to show that the result of Repg is a repair. From the
inclusion postulate, we have that pmcg(O, α) ⊆ O, which
proves thatO′ = pmcg(O, α) \Os ⊆ Or. Therefore, Repg
yields a classical repair.

Lemma 35. Consider a general partial meet pseudo-con-
traction defined as in Definition 31. For every sentence ϕ in
B \

⋂
g(MaxNon(B,α)), there is a set X such that X ∈

g′(MaxNon(Cn**(B,α), α)) and ϕ /∈ X .

Proof. Assume that ϕ ∈ B \
⋂

g(MaxNon(B,α)). We
need to show that there is some set X such that in X ∈
g′(MaxNon(Cn**(B,α), α)) and ϕ /∈ X . Since ϕ /∈⋂

g(MaxNon(B,α)), there is a Y ∈ g(MaxNon(B,α))
such that ϕ /∈ Y . We have Y ⊆ B, α /∈ Cn(Y ) and
α ∈ Cn(Y ′) for any Y ′ ⊆ B such that Y ⊂ Y ′. So,
since g′ is an extension of g to Cn**(B,α), there is an
X ∈ g′(MaxNon(Cn**(B,α), α)) such that Y ⊆ X . And
since ϕ /∈ Y , ϕ ∈ B and for any Y ′ ⊆ B such that Y ⊂ Y ′

we have α ∈ Cn(Y ′), we conclude that ϕ /∈ X (otherwise,
X would be a such Y ′ and α would be in Cn(X)).

Lemma 37. Let c be a contraction operation for a set of
sentences B. Let cCn** be a pseudo-contraction operation
such that cCn**(B, β) ⊆ Cn**(B), where (B \ c(B, β)) ∩
cCn**(B, β) = ∅ and Cn**(B) := B∪Cn’(B\c(B, β)) for
all sentences β and the consequence relation Cn’ is mono-
tonic, subclassical and strictly weakening. If the ontology
O := 〈Os,Or〉 is such thatOs ⊆ c(O, β)∩cCn**(O, β) for
all sentences β and α is a sentence such that α /∈ Cn(Os),
then the set O′ := cCn**(O, α) \ Os is a gentle repair of O
with respect to α.

Proof. We will start by proving that Cn(Os ∪ O′) ⊆
Cn(O) \ {α}. By subclassicality of Cn’, it follows that
cCn**(O, α) ⊆ O ∪ Cn(O \ c(O, α)), and by monoton-
icity, inclusion and idempotence of Cn we conclude that
Cn(cCn**(O, α)) ⊆ Cn(O). Since Os ⊆ cCn**(O, α), we
have Os ∪O′ = Os ∪ (cCn**(O, α)) \Os) = cCn**(O, α),
so Cn(Os∪O′) ⊆ Cn(O). To show that α /∈ Cn(Os∪O′),
since we have just shown thatOs∪O′ = cCn**(O, α), from
success of cCn** we have that α /∈ Cn(cCn**(O, α)), and
the result follows.

Now we have to prove that, for all ϕ ∈ O′, either ϕ ∈ Or

or Cn({ϕ}) ⊂ Cn({ψ}) for some ψ ∈ Or \ O′. Take some
ϕ ∈ O′. If ϕ ∈ Or, this part of the proof is done. Assume
that ϕ /∈ Or. As ϕ ∈ O′, we have ϕ ∈ cCn**(O, α), but



cCn**(O, α) ⊆ Cn**(O, α) = Cn’(O\c(O, α))∪O. It was
assumed that ϕ /∈ Or, so ϕ /∈ O (because ϕ ∈ O′ implies
that ϕ /∈ Os), and thus ϕmust be in Cn’(O\c(O, α)). Since
Cn’ is strictly weakening, either ϕ ∈ O \ c(O, α) or there
is a ψ ∈ O \ c(O, α) such that Cn({ϕ}) ⊂ Cn({ψ}). The
first case is not possible: since Os ⊆ c(O, α), we have O \
c(O, α) ⊆ Or; hence, ϕ cannot be in O \ c(O, α) because
we assumed that ϕ /∈ Or. Take some ψ ∈ O \ c(O, α) such
that Cn({ϕ}) ⊂ Cn({ψ}). Since O \ c(O, α) ⊆ Or, we
know that ψ ∈ Or. Now it is left to show that ψ /∈ O′, i.e.,
ψ /∈ cCn**(O, α) or ψ ∈ Os. Since ψ ∈ Or and Os and
Or are assumed to be disjoint, ψ /∈ Os. So we only have to
show that ψ /∈ cCn**(O, α). We know that ψ ∈ O\c(O, α),
and the fact that (O \ c(O, α)) ∩ cCn**(O, α) = ∅ implies
that ψ is not in cCn**(O, α), finishing the proof.

Theorem 38 (When a general partial meet pseudo-contrac-
tion is a gentle repair (Matos et al. 2019, adapted)). Let
gpmcCn**

g,g′ and Cn** be as in Definition 31, Cn** based
on a consequence relation Cn’ that satisfies subclassical-
ity, g and g′ satisfy Os-inclusion, Cn’ be monotonic and
strictly weakening, and O = 〈Os,Or〉. If α /∈ Cn(Os),
then O′ := gpmcCn**

g,g′ (O, α) \ Os is a gentle repair of O
w.r.t. α.

Proof. The result follows from Lemma 37 by taking pmcg
as c and gpmcCn**

g,g′ as cCn**. Lemma 35 shows that the
assumption (B \ c(B, β)) ∩ cCn**(B, β) = ∅ holds, and
the assumption that Os ⊆ c(O, β) ∩ cCn**(O, β) for all
sentences β derives from Os-inclusion of g and g′.

Theorem 39 (When a general kernel pseudo-contraction is
a gentle repair). Let gkcCn**

f ,f ′ and Cn** be as in Defini-
tion 32, Cn** based on a consequence relation Cn’ that
satisfies subclassicality, f and f ′ satisfy Os-exclusion, Cn’
be monotonic and strictly weakening, and O = 〈Os,Or〉. If
α /∈ Cn(Os), then O′ := gkcCn**

f ,f ′ (O, α) \ Os is a gentle
repair of O w.r.t. α.

Proof. The result follows from Lemma 37 by taking kcf as
c and gkcCn**

f ,f ′ as cCn**. The definition of extension of an
incision function is enough to conclude that the assumption
(B \ c(B, β))∩cCn**(B, β) = ∅ holds, and the assumption
thatOs ⊆ c(O, β)∩ cCn**(O, β) for all sentences β derives
from Os-exclusion of f and f ′.


