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We consider Hamiltonian systems with two degrees of freedom. We suppose
the existence of a saddle-center equilibrium in a strictly convex component S
of its energy level. Moser’s normal form for such equilibriums and a theorem of
Hofer, Wysocki and Zehnder are used to establish the existence of a periodic
orbit in S with several topological properties. We also prove the explosion
of the Conley-Zehnder index of any periodic orbit that passes close to the
saddle-center equilibrium.
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1. INTRODUCTION

We consider Hamiltonian systems associated to a real-analytic function
H : R4 → R. We assume the existence of an invariant component S ⊂
H−1(0) of the Hamiltonian vector field

·
x= J0Hx(x), satisfying the following

hypotheses:
(H1) S is ambient homeomorphic to S3, i.e., there is a homeomorphism

h : R4 → R4 such that h(S) = S3;
(H2) pc ∈ S is a saddle-center equilibrium (See Section 2 for definitions);
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(H3) if q ∈ S0
def
= S\{pc}, then q is a regular point of H and 〈Hxx(q)v, v〉 >

0 for all v ∈ TqS;
There are several Hamiltonians satisfying these properties. See [Sal] for

examples of Hamiltonians of type ”kinetic plus potential energy”.
Let N : S0 → S3 be the Gauss map defined by N(p)

def
= Hx(p)

‖Hx(p)‖ and
let dN(p) : TpS → TpS be its differential at p ∈ S0. As dN(p) is a linear
self-adjoint operator, there exists an orthonormal basis {e1(p), e2(p), e3(p)}
of TpS such that dN(p)ei(p) = −ki(p)ei(p), i = 1, 2, 3, where ki are the
principal curvatures of S at p. We say that a hypersurface S has positive
curvature at p ∈ S if ki(p)kj(p) > 0 for all 1 ≤ i, j ≤ 3.

It is imediate that if v ∈ TpS then

〈dN(p)v, v〉 =
1

‖Hx(p)‖ 〈Hxx(p)v, v〉

and, therefore, hypothesis (H3) implies that S0 has positive curvature. In
[Sal], it is proved that S is indeed a strictly convex hypersurface, i.e., it is
the boundary of a convex set in R4.

When an energy level is regular and strictly convex, then a remarkable
theorem of H. Hofer, E. Zehnder and K. Wysocki ([HWZ]) states that

Theorem 1. Every strictly convex hypersurface
∼
S ⊂ H−1(0), diffeomor-

phic to the sphere S3, has an embedded disk
∑

with the following properties:
(i) ∂

∑
is an unknotted periodic orbit P with Conley-Zehnder index 3

and self-linking number −1;
(ii) for all points in the interior of

∑
, the Hamiltonian vector field XH

is transversal to
∑

;
(iii) every orbit through x ∈∼S \P hits

∑
forward and backward in time;

The disk
∑

is called a global surface of section. In fact there is a S1-
family of such disks foliating

∼
S \P called open book decomposition. The

dynamics in
∼
S is, therefore, described by the diffeomorphism ϕ :

∑ → ∑
which is given by the first return map, providing an important simpli-
fication of the analysis of the flow in that energy level. An immediate
consequence of this result and a theorem of J. Franks [Fr], is the existence
of 2 or infinitely many periodic orbits in

∼
S.

In this paper we give a first step in the direction of extending Theorem
1 for a non-regular hypersurface S satisfying hypothesis (H1)-(H3).

First, we use a normal form for a saddle-center equilibrium to estimate
the Conley-Zehnder index µCZ(P ) of a periodic orbit P near pc. More
precisely, we prove that the Conley-Zehnder index of P tends to +∞ as
the distance between P and pc goes to zero. It is stated in the following
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Theorem 2. Let H : R4 → R be a real-analytic function and S ⊂
H−1(0) be a hypersurface satisfying hypotheses (H1)-(H3). Then, given
K ∈ N, there exists a neighborhood W of pc in S such that if a periodic
orbit P of the Hamiltonian flow in S intersects W , then µCZ(P ) > K.

Then we prove the existence of a periodic orbit in S with properties
(i). Our method consists in regularizing S in a small neighborhood of
pc preserving convexity (See [Gho]). The hypothesis of real-analyticity
comes only from the use of Moser’s normal form, which is stated in the
real-analytic case, but which may hold under less regularity. Then, as a
corollary of theorems 1 and 2 we obtain the following

Corollary 3. Let H : R4 → R be a real-analytic function and S ⊂
H−1(0) be a hypersurface satisfying hypotheses (H1)-(H3). Then there
exists an unknotted periodic orbit P of the Hamiltonian flow in S with
Conley-Zehnder index 3 and self-linking-number −1.

Remark 4. We point out that the existence of a periodic orbit with
properties (i) implies, in the regular case, the existence of the open book
decomposition (See [HWZ]).

2. SADDLE-CENTER EQUILIBRIUMS

A point p ∈ R4 is an equilibrium point of the Hamiltonian flow of H :
R4 → R if Hx(p) = 0, i.e, if the solution starting at p is constant1. We say
that p is a saddle-center equilibrium point of XH if J0Hxx(p) has two real
eigenvalues ±α (α > 0) and two pure imaginary eigenvalues ±ωi (ω > 0).

A normal form for such equilibriums is given by J. Moser [Mo] (see also
[Russ], [Hen] and [Rag]) and it states that it is possible to find a change
of coordinates ϕ : 0 ∈ V ⊂ R4 → U where U is a neighborhood of pc

in R4, such that if z = (q1, q2, p1, p2) are the coordinates in V , then the
Hamiltonian flow in U is conjugate to the Hamiltonian flow in V (maybe
reversing time parametrization) associated to the function K : V → R
given by

K(q1, q2, p1, p2) = −αI1 + ωI2 + O(I2
1 + I2

2 ) (1)

1The equations of a Hamiltonian system associated to the function H are given by
·
x= J0Hx(x), where J0 =

�
0 I2×2

−I2×2 0

�
and Hx(x) is the gradient of H at x.
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where I1 = q1p1 and I2 = q2
2+p2

2
2 are first integrals of the flow. In V , the

equations of motion are given by

·
q1 =

∂K(I1, I2)
∂I1

q1

·
p1 = −∂K(I1, I2)

∂I1
p1

·
q2 =

∂K(I1, I2)
∂I2

p2

·
p2 = −∂K(I1, I2)

∂I2
q2

The flow projected in the plane (q1, p1) has a hyperbolic saddle behavior

and in the plane (q2, p2) it is similar to a center. Let V0
def
= V ∩ {K = 0}.

Then, in local coordinates, the energy level of the saddle-center is given by
two connected components C1 and C2, each one projecting onto the first
and third quadrants of (q1, p1). These components have the origin as the
unique point in common. We also have:

(i) 0 ∈ V0 is a saddle-center equilibrium of the Hamiltonian flow associ-
ated to K and ϕ(0) = pc;

(ii) The sets W s(0)
def
= {z ∈ V0 : p1 = 0} and Wu(0)

def
= {z ∈ V0 :

q1 = 0} are, respectively, the local stable and unstable manifolds of 0 in V ,
which are one-dimensional;

2.1. Vector Bundle Trivialization of Hypersurfaces in R4

Let H : R4 → R be a C∞ function and c ∈ Im(H) a regular value of H.

Let FS be a C∞ vector bundle over the hypersurface S
def
= H−1(c), such

that the fiber ξx at x ∈ S is a n-dimensional subspace of TxS (n = 1, 2
or 3). We say that FS is trivial if there exists a homeomorphism βFS

: FS

→ S×Rn such that pr1◦βFS
= πFS

where pr1 is the projection on the first
component of S×Rn and πFS

is the projection of FS onto the basis S. The
homeomorphism βFS is called a trivialization of FS . We will introduce a
trivialization of TS presented in [CPR] and give a natural trivialization of
two-dimensional vector bundles transversal to the Hamiltonian vector field
XH in S.

Let I =
(

1 0
0 1

)
, J =

(
0 1
−1 0

)
and 0′ =

(
0 0
0 0

)
be 2 × 2 matrices.

Now define the 4× 4 matrices by:

A0 =
(

I 0′

0′ I

)
A1 =

(
0′ J
J 0′

)
A2 =

(
J 0′

0′ −J

)
A3 =

(
0′ I
−I 0′

)
(2)
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The following properties of these orthogonal matrices will be useful:

A1A2 = A3 A2A3 = A1 A3A1 = A2 A2
i = −I4×4 (3)

For each p ∈ S, let

X0(p)
def
=

Hx(p)
‖Hx(p)‖ (4)

where Hx(p) ∈ TpR4 ' R4 is the gradient vector of H at x, which is normal
to TxS. Let

Xi(p)
def
= AiX0(p), i = 1, 2, 3 (5)

Then 〈Xi(p), Xj(p)〉 = δij for all 0 ≤ i, j ≤ 3. It follows that the vectors
X1(p), X2(p) and X3(p) give an orthonormal basis of TpS. As Xi(p) 6= 0
for all p ∈ S, we can trivialize TS using the vector fields X1, X2 and X3

by the following way: for v ∈ TpS, we have v =
3∑

i=1α
iXi(p) and the

trivialization βTS : TS → S × R3 is given by

βTS(p, v) = (p, α1, α2, α3) (6)

The Hamiltonian vector field associated to the function H is given by
XH(p) = A3Hx(p) and, therefore, XH(p) = ‖Hx(p)‖X3(p). Considering
the vector bundle F2 over S with fibers generated by X1 and X2, its trivi-
alization is given in the same way as βTS , omitting the component α3.

Let us consider now another two-dimensional vector bundle ξ over S,
ξ ⊂ TS, such that the fiber ξp at p ∈ S is transversal to X3(p). There
exists a natural trivialization of ξ using the vector fields X1 and X2 as
follows: as ξp is transversal to X3(p), then for each v ∈ ξp, v 6= 0, we have
v = α1X1(p) + α2X2(p) + α3X3(p) where

(
α1

)2 +
(
α2

)2 6= 0.
Let πξp : ξp → {X1, X2} be the canonical projection given by πξp(v) =

α1X1(p) + α2X2(p). Then πξp is an isomorphism and, therefore, we can

define a basis for ξp given by {∼X1 (p),
∼
X2 (p)} where

∼
Xi (p) = π−1

ξp
(Xi(p)), i = 1, 2 (7)

Then we have

v = α1
∼
X1 (p) + α2

∼
X2 (p) (8)

and the trivialization βξ : ξ → S × R2 of ξ, is given by

βξ(p, v) = (p, α1, α2) (9)
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Let φt be the Hamiltonian flow of H restricted to the hypersurface S,
i.e., dφt(x)

dt = XH(x)|S . Linearizing the equations along a solution x(t) ⊂ S,
we get the flow Tφt : TS → TS which satisfies the following equation

·
y= A3Hxx(x(t))y (10)

where y(t) ∈ Tx(t)S. Denoting y(t) =
3∑

i=1α
i(t)Xi(x(t)) and α =

(
α1

α2

)

then, by (10) and relations (3), we obtain

·
α= −J

∼
S α (11)

where
∼
S is given by

∼
S=

( 〈HxxX1, X1〉 〈HxxX1, X2〉
〈HxxX1, X2〉 〈HxxX2, X2〉

)
+ 〈HxxX3, X3〉 I (12)

Assume now that the Hessian of H is positive-definite when restricted
to TS, i.e., S has positive curvature. Then we have the following

Theorem 5. The vector α(t) = (α1(t), α2(t)) ⊂ R2, α(0) 6= (0, 0), turns
around the origin always counter-clockwise.

Proof. Consider the vector α(t)∧ ·
α (t) ∈ R3 and

→
k a unitary vector in

R3 orthogonal to the plane of α(t). Then

α(t)∧ ·
α (t) =

(
α1α2

) ∼
S

(
α1

α2

)
→
k

As the Hessian of H restricted to TS is positive-definite, we obtain that
∼
S

is a positive-definite matrix. It follows that the component
→
k of α(t)∧ ·

α (t)
is always positive which proves that α(t) turns around the origin always
counter-clockwise.

3. THE GENERALIZED CONLEY-ZEHNDER INDEX OF
PERIODIC ORBITS

The Conley-Zehnder index was first introduced in [CZ] and, roughly
speaking, it measures how the orbits near a periodic orbit turn around it
after choosing a referential. We will denote by P a periodic orbit, given by
x : [0, T ] → S where T is its minimum period and x([0, T ]) = P .

We suppose that the hypersurface S ⊂ H−1(0) is diffeomorphic to S3

and strictly convex. We assume that the origin is in its interior. The same
thing can be done for a hypersurface satisfying hypothesis (H1)-(H3).
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We consider the 1−form λS
0 = λ0 |TS where λ0(x)(v)

def
= 1

2

2∑
j=1[

xj(x)dyj(v)− yj(x)dxj(v)] and (x1, x2, y1, y2) are the coordinates in R4.
It is easy to see that dλS

0 ∧ λS
0 is non-degenerate in TS, i.e., it defines

a volume form in S (λ0 is called a contact form in S). Now we define the
contact structure ξ ⊂ TS by

ξ = kerλS
0 (13)

The contact structure has the following properties:
(i) ξ is a two-dimensional vector bundle over S;
(ii) ξp is transversal to the Hamiltonian vector field XH(p) for all p ∈ S;
(iii) the 2−form dλS

0 is non-degenerate in ξ;
(iv) it is always possible to find H : R4 → R such that S = H−1(0) and

the linearized flow preserves the 1-form λS
0 . In this section we assume that

H has this property. See also [HWZ].
The following explanation of the Conley-Zehnder index of a periodic orbit

is based on [HK] and [HWZ], where the reader can find more details.
Let vD : D → M be an embedding of the compact disk D = {z ∈ C :

|z| ≤ 1} in S such that vD(e2πit) = x(tT ). Let β : v∗Dξ → D × R2 be a
trivialization of v∗Dξ. We define now the arc of 2 × 2 symplectic matrices,
Φ : [0, T ] → Sp(1) along the periodic orbit x(t) = φt(x(0)) by

Φ(t) = β(e2πit/T ) ◦Dφt|ξx(0) ◦ β(1)−1, 0 ≤ t ≤ T

This arc satisfies the following properties:
(i) Φ(0) = I;
(ii) the periodic orbit P is non-degenerate if and only if the integer 1 is

not an eigenvalue of Φ(T );
(iii) Φ(t + T ) = Φ(t)Φ(T );
We give now an spectral definition of the generalized Conley-Zehnder

index of the periodic orbit P .
Defining the symmetric matrix A(t)

def
= −J0

·
Φ (t)Φ−1(t) it is easy to see

that A(t) = A(t + T ).
Therefore, we can define the self-adjoint linear operator LA : H1,2(R/TZ,R2) →

L2(R/TZ,R2) given by LA
def
= −J0

d
dt −A(t). The spectrum σ(LA) of this

operator has the following properties:
(i) σ(LA) is real and countable;
(ii) σ(LA) has no upper or lower bounds;
(iii) ker LA = {0} if and only if 1 is not an eigenvalue of Φ(T ).
Let v 6= 0 be an eigenvector in L2(R/TZ,R2) associated to λ ∈ σ(LA).

Then

−J0
·
v (t)−A(t)v(t) = λv(t), v(0) = v(T ) (14)
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It follows that v(t) 6= 0 for t ∈ [0, T ] and, as v is periodic, we can associate
to v a winding number ω(λ, v,A). It is possible to show that

(i) if v1 and v2 are two eigenvectors of LA associated to the the same
eigenvalue λ, then ω(λ, v1, A) = ω(λ, v2, A). It follows that the winding
number can be denoted by ω(λ, A);

(ii) for each k ∈ Z, there are exactly two eigenvalues λ1 and λ2, counting
its multiplicity such that k = ω(λ1, A) = ω(λ2, A);

(iii) the map ωA : σ(LA) → Z given by ωA(λ) = ω(λ, A) is monotone
increasing;

Let α(A) and p(A) be the integers given by

α(A) = max{ω(λ,A)|λ ∈ σ(LA) ∩ (−∞, 0)}

p(A) =
{

0, ∃λ ∈ σ(LA) ∩ [0,∞) | ω(λ,A) = α(A)
1, otherwise

Defining µ(A) = 2α(A) + p(A), it is possible to show that it does not
depend on the trivialization β. Moreover, as S is diffeomorphic to S3, µ(A)
also does not depend on the embedding vD. Finally, the generalized Conley-
Zehnder index of the periodic orbit P is defined by µCZ(P )

def
= µ(A).

Now we give the geometric definition of the Conley-Zehnder index, which
only works for non-degenerate periodic orbits. Consider the arc of symplec-
tic matrixes Φ : [0, T ] → Sp(1) given as above. Let z ∈ C\{0} and ρ(t) be a
continuous argument of the solution z(t) = Φ(t)z, i.e., ρ(t) is a continuous

real function in [0, T ] such that e2πiρ(t) = z(t)
|z(t)| . Let ∆(z)

def
= ρ(T ) − ρ(0)

and I(Φ)
def
= {∆(z) : z ∈ C\{0}}. The set I(Φ) is an interval satisfying

|I(Φ)| < 1/2 and, therefore, we can define

∼
µ (Φ) =

{
2k + 1 I(Φ) ⊂ (k, k + 1)
2k k ∈ I(Φ)

By the same reasons as before
∼
µ (Φ) does not depend on the trivialization

β and on the embedding vD (see [HWZ] and [HK]). We can, therefore,
define a new index

∼
µ2 (P ) of the non-degenerate periodic orbit P by

∼
µ2

(P )
def
=
∼
µ (Φ). From [HK] we have the following

Proposition 6. If P is a non-degenerate periodic orbit then µCZ(P ) =
∼
µ2

(P ).

We can calculate
∼
µ2 (P ) also for degenerate periodic orbits giving a good

estimate of the Conley-Zehnder index µCZ(P ) as the following proposition
shows
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Proposition 7. If P is a degenerate periodic orbit then either
∼
µCZ

(P ) =
∼
µ2 (P ) or

∼
µCZ (P ) =

∼
µ2 (P )− 1.

Proof. We know that there is an eigenvector v 6= 0 in ker LA. By
(14) v satisfies

·
v (t) =

·
Φ (t)Φ−1(t)v(t) and, therefore, by unicity of so-

lutions of O.D.E., we have v(t) = Φ(t)v(0). As v is periodic, we have
∼
µ2 (P ) = 2ω(0, A). By the properties of ω(λ,A) and the definition of
α(A) we conclude that either α(A) = ω(0, A) (in this case p(A) = 0) or
α(A) = ω(0, A) − 1 (p(A) = 1). It follows that either

∼
µCZ (P ) =

∼
µ (A) =

2ω(0, A) =
∼
µ2 (P ) or

∼
µCZ (P ) =

∼
µ (A) = 2ω(0, A)− 1 =

∼
µ2 (P )− 1.

4. EQUIVALENCE OF THE HAMILTONIAN FLOW

In this section, we show that some of the properties of the Hamiltonian
flow in S do not depend on the choice of the Hamiltonian function.

Let S be a Ck≥2 connected and orientable hypersurface in R4. Let H, G :
R4 → R be two Ck≥2 functions such that S ⊂ H−1(c1) and S ⊂ G−1(c2)
and, for all p ∈ S, p is a regular point of H and G. Let x : 0 ∈ I ⊂ R→ S
be the solution of

dx(t)
dt

= J0Hx(x(t)), x(0) = x0 ∈ S (15)

and let
∼
x: 0 ∈ I0 ⊂ R→ S be the solution of

d
∼
x (t)
dt

= J0Gx(
∼
x (t)) (16)

with the same initial conditions of x, i.e.,
∼
x (0) = x0.

Proposition 8. There exists a time reparametrization k : 0 ∈∼I⊂ I0 →
I, k(0) = 0 such that

∼
x (t) = x(k(t)) for all t ∈∼I .

Proof. As Gx(p) and Hx(p) are non-zero and normal to S, there exists
a non-zero C1 function f : S → R such that Gx(p) = f(p)Hx(p). Let
k : 0 ∈∼I⊂ R→ I be the solution of

·
k= f(x(k(t))), k(0) = 0 (17)

Let
∼
r (t)

def
= x(k(t)). Then

∼
r (0) = x0 and

d
∼
r (t)
dt

=
dx(k(t))

dt

·
k= f(x(k(t)))J0Hx(x(k(t))) = J0Gx(

∼
r (t))
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By unicity of solutions, we have
∼
x (t) =

∼
r (t) for all t ∈∼I .

The linearized flow of XH restricted to TS, along a solution x(t), is given
by

·
y= J0Hxx(x(t))y (18)

where y(t) ∈ Tx(t)S for all t ∈ I. By the same meanings, the linearized
flow of XG restricted to TS along a solution

∼
x (t) is given by

·∼
y= J0Gxx(

∼
x (t))

∼
y (19)

where
∼
y (t) ∈ T∼

x(t)
S. Using the trivialization given by (6), we have the

following proposition

Proposition 9. Considering the same hypotheses and notations of Propo-
sition 8, if y(t) = (α1(t), α2(t), α3(t)) ∈ Tx(t)S is a solution of (18) and
∼
y (t) = (

∼
α1 (t),

∼
α2 (t),

∼
α3 (t)) ∈ T∼

x(t)
S is a solution of (19) with

∼
y (0) =

y(0), then
∼
α1 (t) = α1(k(t)) and

∼
α2 (t) = α2(k(t)) for all t ∈∼I , where k is

defined by (17).

Proof. Let

M(x)
def
= −J

( 〈HxxX1, X1〉+ 〈HxxX3, X3〉 〈HxxX1, X2〉
〈HxxX1, X2〉 〈HxxX2, X2〉+ 〈HxxX3, X3〉

)
(x)

(20)

and

∼
M (x)

def
= −J

( 〈GxxX1, X1〉+ 〈GxxX3, X3〉 〈GxxX1, X2〉
〈GxxX1, X2〉 〈GxxX2, X2〉+ 〈GxxX3, X3〉

)
(x)

(21)

As Gx(x) = f(x)Hx(x), we have Gxx(x)v = f(x)Hxx(x)v for all v ∈ TxS.
It follows that

∼
M (x) = f(x)M(x). By (11), we obtain

( ·
α1 (t)
·
α2 (t)

)
= M(x(t))

(
α1(t)
α2(t)

)
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and if β1(t)
def
= α1(k(t)) and β2(t)

def
= α2(k(t)) then β1(0) = α1(0), β2(0) =

α2(0) and



·
β1 (t)
·
β2 (t)


 =

·
k

( ·
α1 (k(t))
·
α2 (k(t))

)
=
·
k M(x(k(t)))

(
α1(k(t))
α2(k(t))

)

= f(
∼
x (t))M(

∼
x (t))

(
β1(t)
β2(t)

)
=




·∼
α1 (t)
·∼
α2 (t)




By unicity of solutions,
∼
αi (t) = βi(t), i = 1, 2.

The expression ”Hamiltonian flow in S” will be used whenever it is not
necessary to mention the Hamiltonian function which defines the hypersur-
face S.

4.1. Geometric estimate of the Conley-Zehnder index
The geometric method to calculate the Conley-Zehnder index of a peri-

odic orbit depends on the linearized flow restricted to the contact structure
ξ. The trivialization of ξ, given by (7), implies that the rotation angle ρ(t)
of the geometric definition of the Conley-Zehnder index can be calculated
using equation (11). Proposition 9 shows that this angle is unchanged by
the choice of the Hamiltonian function.

For instance, consider the irrational ellipsoid E = H−1(1) where H =
x2

1 + p2
1 + x2

2+p2
2

r2 and r2 is an irrational number greater than 1. The
Hamiltonian vector field XH in E has exactly 2 periodic orbits given by
P1 = {x2

1 + p2
1 = 1, x2 = p2 = 0} and P2 = {x2

2 + p2
2 = r2, x1 = p1 = 0}.

Both of them are non-degenerate and, therefore, we can calculate µCZ(P1)
and µCZ(P2) using the geometric method described above. The projec-
tion of the linearized flow on the plane generated by X1 and X2 along the
periodic orbits P1 and P2 is given by equation (11), i.e.,

( ·
α1
·
α2

)
=

(
0 −(2 + 2

r2 )
2 + 2

r2 0

)(
α1

α2

)

The minimum period of P1 is π . The change of the argument of a solution
in this period is (1 + 1

r2 )2π. As 1 < (1 + 1
r2 ) < 2, we have µCZ(P1) = 3.

The minimum period of P2 is πr2 and the change of argument of a solution
in this period is (1 + r2)2π. We conclude that µCZ(P2) = 2k + 1, where k
is the integer that satisfies k < 1 + r2 < k + 1.

When r = 1 we get the sphere S3. All of its orbits are periodic and
degenerate. By symmetry, the Conley-Zehnder index µCZ(P ) does not
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depend on the choice of the periodic orbit P and, as they are degenerate,
we cannot use the geometric method to calculate it. However, we can
estimate it using Proposition 7. In this case, we get

∼
µ2 (P ) = 4 and,

therefore, µCZ(P ) = 3 or µCZ(P ) = 4. But a strictly convex hypersurface,
like the ellipsoid, and in particular the sphere, always has a periodic orbit
with Conley-Zehnder index equal to 3 (See [HWZ]). So µCZ(P ) = 3 for all
periodic orbits of S3.

5. INVARIANT SETS OF HYPERSURFACES IN R4

In this section we present a sufficient condition for the non-existence of
periodic orbits in some subsets of a hypersurface in R4.

Let S ⊂ H−1(0) be a Ck≥1 connected and orientable hypersurface where
H : R4 → R is a smooth function. We assume that S is invariant by the
Hamiltonian flow associated to H.

Theorem 10. Let K ⊂ S be a proper compact subset of S. Suppose that
there exists a vector N ∈ R4, such that for all x ∈ K, we have 〈X0(x), N〉 >
0, where X0(x) is given by (4). Then every solution of the Hamiltonian flow
in S through a point p ∈ K has points in S\K both forward and backward
in time. In particular, there is no periodic orbits totally inside K.

Proof. Let Xi = AiN , i = 1, 2, 3 where Ai are defined by (2). The set

X
def
= {X1, X2, X3, N} defines an orthonormal basis for R4. If x ∈ S, then

x = x1X1 + x2X2 + x3X3 + x4N . Let x(t) = (x1(t), x2(t), x3(t), x4(t)) ∈ S
be a solution of the Hamiltonian flow in this basis such that x(0) = p ∈ K.
We have

·
x (t) =

·
x1 (t)X1+

·
x2 (t)X2+

·
x3 (t)X3+

·
x4 (t)N

·
x3 (t) =

〈 ·
x (t), X3

〉

By hypothesis, we have that 〈X0(x), N〉 > 0 for all x ∈ UK , where UK

is a neighborhood of K in S. Using At
3 = −A3, A3A3 = −I4×4 and that

K is compact, we obtain the existence of a constant ε > 0 such that

·
x3 (t) =

〈 ·
x (t), X3

〉
= 〈A3Hx(x(t)), X3〉 =

〈
Hx(x(t)), At

3A3N
〉

= ‖Hx(x(t))‖
〈

Hx(x(t))
‖Hx(x(t))‖ , N

〉
= ‖Hx(x(t))‖ 〈X0(x), N〉 > ε

It follows that the boundedness of K implies that x(t) cannot stay inside
K for |t| arbitrarily large and the theorem is proved.



THE CONLEY-ZEHNDER INDEX AND THE SADDLE-CENTER 13

Now let E ⊂ R4 be a hyperplane tangent to S and consider an orthonor-
mal coordinate system (x1, x2, x3, x4) of R4 such that E = {x4 = 0}.
Let W ⊂ S be the graph of a Ck≥1 function f : U ⊂ E → R, i.e.,
W = {(x1, x2, x3, x4) ∈ R4|(x1, x2, x3) ∈ U, x4 = f(x1, x2, x3)} where U
is an open connected subset of E.

Corollary 11. Let K ⊂ W be a compact subset of W . Then the thesis
of Theorem 10 holds for K.

Proof. Consider the coordinates (x1, x2, x3, x4) as before. Then we have

X0(x) = ± 1
‖(−fx1(x),−fx2(x),−fx3(x), 1)‖ (−fx1(x),−fx2(x),−fx3(x), 1)

It follows that 〈X0(x), N〉 > 0 for all x ∈ S where N = ±(0, 0, 0, 1). Here
the symbol ± means the appropriate choice of + or −. The compact K
satisfies the hypothesis of Theorem 10 finishing the proof of the corollary.

Consider now φ(t, x) the Hamiltonian flow associated to H in S. Let
K ⊂ S be a compact subset with the following properties:

(i) K is diffeomorphic to B3, the 3-dimensional unit ball;
(ii) ∂K = A+ ∪A− ∪ γ, where A+ and A− are diffeomorphic to D2 and

γ is diffeomorphic to S1 (∂A+ = ∂A− = γ). The vector field XH(x) is
transversal to ∂K for all x ∈ A+ ∪ A−. If x ∈ A+ then φ(t, x) ∈ K for
t > 0 small and φ(t, x) /∈ K for t < 0 small. If x ∈ A− then φ(t, x) /∈ K for
t > 0 small and φ(t, x) ∈ K for t < 0 small. The vector field is tangent to
K in γ and φ(t, x) /∈ K if x ∈ γ and t 6= 0 is small;

(iii) There exists a vector N ∈ R4 such that 〈X0(x), N〉 > 0 for all x ∈ K;

Proposition 12. Under hypotheses (i), (ii) and (iii), there exists a dif-
feomorphism φK : A+ → A− which describes the flow φ(t, x) in K, i.e.,
if x ∈ A+, then there exists tx > 0 such that φK(x) = φ(tx, x) ∈ A− and

φ(t, x) ∈ ◦
K for all 0 < t < tx.

Proof. By Theorem 10, we know that every solution through a point in
K exits K both forward and backward in time. It follows that a solution
x(t) satisfying x(0) ∈ A+ must hit A−, i.e., there exists tx > 0 such that

x(tx) ∈ A− and x(t) ∈ ◦
K for all 0 < t < tx. Let φK : A+ → A− be

defined by φK(x)
def
= x(tx) = φ(tx, x). The function φK is well-defined

and, considering the vector field −XH , we see that φK is bijective. The
transversality of the vector field in A+∪A− and the regularity of ∂K implies
that φK is a local diffeomorphism and, therefore, φK is a diffeomorphism.
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6. ESTIMATES OF THE CONLEY-ZEHNDER INDEX OF
PERIODIC ORBITS NEAR THE SADDLE-CENTER

EQUILIBRIUM

Let H : R4 → R be a real-analytic function. Let S ⊂ H−1(0) be a
hypersurface satisfying hypotheses (H1)-(H3).

As mentioned before, by Moser’s normal form for a saddle-center equi-
librium, we can find coordinates in a neighborhood of pc such that the flow
can be represented in a very simple form. We will use these coordinates to
estimate the Conley-Zehnder index of periodic orbits in S with points near
pc.

We know that Hx(pc) = 0 and, therefore, in a neighborhood of pc, the
function H is given by

H(x) =
1
2
〈B(x− pc), (x− pc)〉+ R0(x− pc) (22)

where x = (x1, x2, x3, x4) and ‖R0(x)‖ ≤ r0 ‖x‖3. The matrix B is the

Hessian of H at pc and J0B has a pair of real eigenvalues ± −
α (

−
α> 0), and

a pair of pure imaginary eigenvalues ± −
ω i (

−
ω> 0).

Let U be a neighborhood of pc in R4 where Moser ’s normal form is
valid. Let φ : V → U be the change of coordinates which conjugates the
flow generated by H in U (maybe after changing the sign of H, see [Rag])
with the flow generated by the Hamiltonian K : V → R given by

K(I1, I2) = − −
α I1+

−
ω I2 +O(I2

1 + I2
2 ) (23)

where I1 = q1p1, I2 = q2
2+p2

2
2 and the coordinates in V are y = (q1, q2, p1, p2).

The set S0
def
= S\{pc} is a regular hypersurface in R4, invariant by

the flow of XH . The vector fields Xi, i = 1, 2, 3, given by (5) provide a
trivialization of TS0 as defined in (6). We will start estimating Xi over the
stable manifold of pc.

We know that in V , the local stable manifold of the saddle-center is given
by

∼
W

s

V = {q1 ∈ R|(q1, 0, 0, 0) ∈ V }, i.e., it is a line segment r in V generated
by v1 = (1, 0, 0, 0). We can assume, without losing generality, that the
stable manifold of pc in S0 corresponds in the local coordinates to the
points in

∼
W

s

V which satisfy q1 > 0, i.e., S0 corresponds to a component in
V which projects in the first quadrant of the (q1, p1) plane. The case q1 < 0
is identical. Then, by the diffeomorphism φ, the local stable manifold of pc

in S0 can be approximated by the line segment s through pc in the direction
of the vector u1

def
= Dφ(0)v1. We know that φ(y) = pc + Dφ(0)y + L0(y),

where ‖L0(y)‖ ≤ l0 ‖y‖2, l0 > 0, and in S0, the stable manifold of pc is
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locally given by W s
S0

def
= φ(W s

V ) = {pc + q1u1 + Z0(q1), 0 < q1 ≤ δ} where
‖Z0(x)‖ ≤ z0x

2 with z0 > 0. Let X0(x) = Hx(x)
‖Hx(x)‖ be the normal vector to

S0 at x ∈ S0 and Xi(x), i = 1, 2, 3, be the vectors given by (5).

Lemma 13. If x ∈ W s
S0

, then X0(x)
x→pc−→ Bu1

‖Bu1‖ and, therefore, Xi(x)
x→pc−→

AiBu1
‖Bu1‖ , i = 1, 2, 3.

Proof. By (22) we have Hx(x) = B(x−pc)+R1(x−pc) where ‖R1(x)‖ ≤
r1 ‖x‖2. Let x(q1)

def
= φ(q1, 0, 0, 0) ∈ W s

S0
, we have

Hx(x(q1)) = q1Bu1 + BZ0(q1) + R1(q1u1 + Z0(q1)) (24)

Moreover

‖BZ0(q1)‖ ≤ ‖B‖ ‖Z0(q1)‖ ≤∼
z0 q2

1 (25)

‖R1(q1u1 + Z0(q1))‖ ≤ r1 ‖q1u1 + Z0(q1)‖2

‖q1u1 + Z0(q1)‖ ≤ ||u1||q1 + z0q
2
1 ≤

∧
r0 q1

Using (24) and (25) we have Hx(x(q1)) = q1Bu1+R2(q1) where ‖R2(q1)‖ ≤
r2q

2
1 and r2 = r1

∧
r
2

0 +
∼
z0> 0. It follows that

X0(x(q1)) =
Bu1 + R2(q1)/q1

‖Bu1 + R2(q1)/q1‖
q1→0−→ Bu1

‖Bu1‖ (26)

In W s
S0

, q1 → 0 if and only if x → pc.

Let m(t, x) be the Hamiltonian flow in U generated by the function (22).
Let n(t, y) be the Hamiltonian flow in V associated to the function (23) and

let mt(x)
def
= m(t, x) and nt(y)

def
= n(t, y). These local flows are conjugated

by the diffeomorphism φ : V → U , i.e.,

φ ◦ nt = mt ◦ φ (27)

which implies

DyφDynt = DxmtDyφ (28)

Let x : [0,∞) → U be a solution of

·
x= J0Hx(x)
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which satisfies limt→∞x(t) = pc, x(0) ∈ S0. Let Xi : [0,∞) → TS0,
i = 1, 2, 3, be the orthonormal vectors defined in (5) such that {Xi(t)}i=1,2,3

generate Tx(t)S0. We know that the solution y : [0,∞) → V given by
y(t) = nt(φ−1(x(0))) is conjugated to x(t) by φ and corresponds to a local
branch of the stable manifold of 0 in V . The solution y(t) satisfies

·
y= J0Ky(y)

where Ky(y) is the gradient vector of K at y. Then y(t) = (q10e
−−αt, 0, 0, 0).

Let V0
def
= V \{0} and consider the orthonormal vectors {Yi(t)}i=1,2,3

given by (5) which generate Ty(t)V0. In the coordinates y = (q1, q2, p1, p2)
in V , we have

Y1(t) = Y1 = (0, 1, 0, 0) (29)
Y2(t) = Y2 = (0, 0, 0,−1)
Y3(t) = Y3 = (−1, 0, 0, 0)

for all t ∈ [0,∞).
Let v : [0,∞) → TS0 be a solution of the linearized flow over x(t)

·
v= J0Hxx(x(t))v

such that α1(t)2 + α2(t)2 6= 0 where v(t) = α1(t)X1(t) + α2(t)X2(t) +
α3(t)X3(t).

We want to estimate the number of turns around the origin of the
projection of v(t) into the plane generated by X1(t) and X2(t), i.e., the
number of laps of the vector (α1(t), α2(t)) ∈ R2 around the origin. Let
∼
Xi (t)

def
= Dxφ−1(x(t))Xi(t), i = 1, 2, 3 and

∼
T (t) be the plane generated

by the vectors
∼
X1 (t) and

∼
X2 (t).

As XH(x(t)) is transversal to the plane generated by X1(t) and X2(t), we
have that

∼
T (t) is transversal to XK(y(t)), i.e.,

∼
T (t) is transversal to Y3(t).

We can, therefore, consider the isomorphism πt :
∼
T (t) → span{Y1(t), Y2(t)}

given by the projection along Y3(t). Then we define another basis for
∼
T (t),

∼
Y

def
= { ∼Y 1 (t),

∼
Y 2 (t)} given by

∼
Y i (t) = π−1

t (Yi), i = 1, 2

Defining w(t)
def
= Dxφ−1(x(t))v(t), we have

w(t) = β1(t)Y1(t) + β2(t)Y2(t) + β3(t)Y3(t) (30)



THE CONLEY-ZEHNDER INDEX AND THE SADDLE-CENTER 17

= α1(t)
∼
X1 (t) + α2(t)

∼
X2 (t) + α3(t)

∼
X3 (t)

= β1(t)
∼
Y 1 (t) + β2(t)

∼
Y 2 (t) + α3(t)

∼
X3 (t)

which implies

α1(t)
∼
X1 (t) + α2(t)

∼
X2 (t) = β1(t)

∼
Y 1 (t) + β2(t)

∼
Y 2 (t) (31)

By (28), we know that w(t) is solution of

·
w (t) = J0Kyy(y(t))w(t)

where Kyy(y(t)) is the Hessian Matrix of K in y(t). It is easy to see that

Kyy(y(t)) =




0 0 − −
α 0

0
−
ω 0 0

− −
α 0 c1e

−2
−
αt 0

0 0 0
−
ω




(32)

We claim that

(
β1(t)
β2(t)

)
=

(
cos

−
ω t − sin

−
ω t

sin
−
ω t cos

−
ω t

)(
β1(0)
β2(0)

)

for all t ≥ 0.

To see this, let β(t) =
(

β1(t)
β2(t)

)
. We know from (11) that

·
β= −JSβ

where, by (12),

S =
( 〈Kyy(y(t))Y1(t), Y1(t)〉 〈Kyy(y(t))Y1(t), Y2(t)〉
〈Kyy(y(t))Y1(t), Y2(t)〉 〈Kyy(y(t))Y2(t), Y2(t)〉

)
+〈KyyY3(t), Y3(t)〉 I

Then, by (29) and (32), we have

〈Kyy(y(t))Y1(t), Y1(t)〉 =
−
ω

〈Kyy(y(t))Y1(t), Y2(t)〉 = 0

〈Kyy(y(t))Y2(t), Y2(t)〉 =
−
ω

〈KyyY3(t), Y3(t)〉 = 0
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We conclude that

S(t) =

( −
ω 0

0
−
ω

)

and, therefore,

·
β=

(
0 − −

ω
−
ω 0

)
β

proving the claim.
The solution (β1(t), β2(t)) corresponds, therefore, to a circular orbit

around the origin with constant angular velocity. It follows that the pro-
jection of w(t) in

∼
T (t) turns around the origin counter-clockwise infinitely

many times in the basis
∼
Y .

By Lemma 13, we know that the vectors Xi(t), i = 1, 2 and 3, converge
as t → ∞. It follows that

∼
Xi (t) and

∼
Y i (t) also converge. The vector

(β1(t), β2(t)) turns around the origin infinitely many times and, therefore,
by (31), the vector β1(t)

∼
Y 1 (t) + β2(t)

∼
Y 2 (t) also turns around the

origin infinitely many times in
∼
X. We conclude, finally, that the vector

(α1(t), α2(t)) also turns around the origin counter-clockwise infinitely many
times.

This means that the linearized flow over a branch of the stable manifold
of the saddle-center has an oscillatory behavior when projected in the plane
generated by the vectors X1 and X2. Now we are able to prove Theorem
2.

7. PROOF OF THEOREM 2

We know that the equations used to estimate the Conley-Zehnder index
of a periodic orbit are

·
x= J0Hx(x) (33)

( ·
α1
·
α2

)
= M(x(t))

(
α1

α2

)
(34)

where M(x) is defined in (20).
Let xs(t) be a solution in S which converges to pc as t → ∞. From

the results in the previous section we know that a solution (α1(t), α2(t)) of
the linearized equation (34) over xs(t) turns counter-clockwise around the
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origin infinitely many times as t → ∞. We can choose T0 > 0 such that
(α1(t), α2(t)) turns K+1 times around the origin between t = 0 and t = T0.
We can also find a neighborhood W1 of xs(0) such that any periodic orbit
which crosses W1 has period greater than T0.

By continuous dependence of the solutions of (33) and (34) with respect
to the initial conditions, there exists a neighborhood W0 ⊂ W1 of xs(0)
such that the solution α(t) over any solution x(t) which starts in W0 turns
around the origin at least K many times in the time interval [0, T0].

By Theorem 5, we know that the solution (α1(t), α2(t)) always rotate
counter-clockwise and, therefore, after completing the minimum period of
a periodic orbit which intersects W0, the solution (α1(t), α2(t)) will have
turned around the origin at least K many times. By Propositions 6 and
7, the Conley-Zehnder index of a periodic orbit can be estimated by the
number of total laps of (α1(t), α2(t)) using the geometric method and,
therefore, µCZ(P ) > K for all periodic orbits crossing W0. By Moser´s
normal form, it is easy to see that it is possible to find a neighborhood W
of pc such that if a periodic orbit P intersects W then P intersects W0. It
follows that µCZ(P ) > K for all periodic orbits P intersecting W .

8. PROOF OF COROLLARY 3

By Theorem 2 we can find a small neighborhood W of pc in S such
that Moser’s normal form is valid and all periodic orbits intersecting W

have Conley-Zehnder index greater than 3. Let SW
def
= S0\W . By a

Theorem of M. Ghomi [Gho], it is possible to extend SW to a strictly
convex hypersurface

∼
S which is diffeomorphic to S3. Applying Theorem 1

for
∼
S, we have a periodic orbit P ⊂∼S with the desired properties. Now we

show that P ⊂ SW ⊂ S0. Using normal form of pc, it is easy to see that
we can choose W such that the regularized part RW

def
=
∼
S \SW satisfies the

hypotheses of Proposition 12. It follows that P cannot be totally inside
RW . Also P cannot intersect RW because µCZ(P ) = 3 and, as in the
proof of Theorem 2, all periodic orbits intersecting RW must have Conley-
Zehnder index greater than 3. This implies that P ⊂ S0, finishing the proof
of Corollary 3.
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