LISTA DE EXERCÍCIOS 1 - TEORIA DAS DISTRIBUIÇÕES E ANÁLISE DE FOURIER (MAP 5722-4)

PROF: PEDRO T. P. LOPES WWW.IME.USP.BR/~PPLOPES/DISTRIBUICOES

Os exercícios a seguir foram selecionados do livro do Duistermaat e Kolk (denotado por D.K.), do J. Hounie, do M. W. Wong (An Introduction to Pseudo-Differential Operators) e da Gerd Grubb.

Exercício 1. (Wong ex. 1.1) Ache os símbolos de cada um dos operadores diferenciais abaixo:

- a) $\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2}$. b) $\frac{\partial^2}{\partial x_1^2} \frac{\partial^2}{\partial x_2^2}$. c) $\frac{\partial}{\partial x_1} + \frac{\partial^2}{\partial x_2^2}$. d) $\frac{\partial}{\partial x_1} + i\frac{\partial^2}{\partial x_2^2}$. e) $\frac{\partial}{\partial x_1} + i\frac{\partial}{\partial x_2}$. f) $\frac{\partial^2}{\partial x_1^2} + x_1^2\frac{\partial^2}{\partial x_2^2}$.

Exercício 2. (Wong ex. 1.5 e 7.2) Seja $x \in \mathbb{R}^n$. Definamos $||x|| = \sqrt{x_1^2 + ... + x_n^2}$. Prove que

- a) $|x^{\alpha}| \leq ||x||^{|\alpha|}$, para todo $\alpha \in \mathbb{N}_0^n$. b) $||x||^{2N} \leq n^N \sum_{|\gamma|=N} |x^{\gamma}|^2$, para todo $N \in \mathbb{N}_0$.

Exercício 3. (Wong ex. 7.3) Seja $f \in C^{\infty}(\mathbb{R}^n)$. Usando a fórmula de Taylor com resto integral, mostre que se

$$\sup_{x \in \mathbb{R}^n} |\partial^{\alpha} f(x)| < \infty, \, \forall \alpha \in \mathbb{N}_0^n,$$

então para todo $N \in \mathbb{N}_0$, existe uma constante positiva $C_N > 0$ tal que

$$\left| f(x) - \sum_{|\alpha| < N} \frac{\partial^{\alpha} f(0)}{\alpha!} x^{\alpha} \right| \le C_N \|x\|^N, \, \forall x \in \mathbb{R}^n.$$

Exercício 4. (Hounie capítulo 1 ex. 1) Determine quais das funções abaixo são funções teste (elementos de

- a) $f(x) = \begin{cases} e^{\frac{1}{x(x-1)}}, & 0 < x < 1 \\ 0, & x \le 0 \text{ ou } x \ge 1 \end{cases}$ b) $f(x) = \begin{cases} \cos(x), & |x| < \frac{\pi}{2} \\ 0, & |x| \ge \frac{\pi}{2} \end{cases}$ c) $f(x) = \begin{cases} \cos(x)e^{\frac{1}{(4\pi^2 x^2)}}, & |x| < \frac{\pi}{2} \\ 0, & |x| \ge \frac{\pi}{2} \end{cases}$

Exercício 5. (Hounie capítulo 1 ex. 2) Quais das funções abaixo são funções localmente integráveis?

- a) $f(x) = \frac{1}{x}$ em \mathbb{R} .
- b) $f(x,y) = \frac{1}{x+iy}$ em \mathbb{R}^2 . c) $f(x) = \frac{1}{\|x\|^{n-\frac{1}{2}}}$ em \mathbb{R}^n .

(Dica: Use coordenadas polares).

Exercício 6. (Hounie capítulo 1 ex. 3) Dizemos que uma sequência de funções $(\phi_j)_j$ em $L^1_{loc}(\Omega)$, em que $\Omega \subset \mathbb{R}^n$ é um aberto, converge para $\phi \in L^1_{loc}(\Omega)$ se, para todo compacto $K \subset \Omega$, temos

$$\lim_{j \to \infty} \int_{K} |\phi(x) - \phi_{j}(x)| dx = 0.$$

Mostre que se $f \in L^1_{loc}(\Omega)$, então existem uma sequência de funções teste $(\phi_j)_j$ em $C_c^{\infty}(\Omega)$ tais que $\lim_{j\to\infty}\phi_j=0$ $f \text{ em } L^1_{loc}(\Omega).$

Exercício 7. (Hounie capítulo 1 ex. 6) Prove que $T: C_c^{\infty}(\mathbb{R}) \to \mathbb{C}$ dada como $T(\phi) = \int_{-\infty}^{\infty} \phi'(t) dt$ é a distribuição

Exercício 8. (Hounie capítulo 1 ex. 7) Quais das funções $T: C_c^{\infty}(\mathbb{R}) \to \mathbb{C}$ abaixo definem distribuições?

- a) $T(\phi) = \int_{-\infty}^{\infty} e^{t^2} \phi(t) dt$. b) $T(\phi) = \int_{-\infty}^{\infty} \left| \frac{d\phi}{dt}(t) \right| dt$.
- c) $T(\phi) = \lim_{n \to \infty} n \left[\phi \left(1 + \frac{1}{n} \right) \phi \left(1 \right) \right].$

Exercício 9. (Hounie capítulo 1 ex. 8) Prove que não existe $f \in L^1_{loc}(\mathbb{R})$ tal que $\int f(x) \phi(x) dx = \phi(0)$ para todo $\phi \in C_c^{\infty}(\mathbb{R})$. (Dica: observe que se isto fosse verdade, teríamos $\int f(x) \phi(x) dx = 0$ para $\phi \in C_c^{\infty}(\mathbb{R} \setminus \{0\})$. Isto implicaria que f = 0 q.t.p em $\mathbb{R} \setminus \{0\}$, e, portanto, também em \mathbb{R} , já que $\{0\}$ tem medida nula. De fato, basta usar os resultados vistos em sala de aula. Detalhe o argumento)

Exercício 10. (Hounie capítulo 2 ex. 2 e 5) Calcule as seguintes derivadas no sentido das distribuições:

- a) $\left(\frac{d}{dx} a\right) (H(x)e^{ax})$.
- b) $\frac{d^k}{dx^k} |x|$. (Dica: Tente fazer os exercícios 20 a) e b) antes) c) $\left(\frac{d}{dx} + a^2\right) \left(\frac{H(x)\cos(ax)}{a}\right)$.
- d) $\frac{\partial^2}{\partial x \partial y} (H(x) H(y)).$

Acima usamos que $H\left(x\right)=\left\{ egin{array}{ll} 1,\,x\geq0 \\ 0,\,x<0 \end{array}
ight.$ é a função de Heaviside.

Exercício 11. (Hounie capítulo 2 ex. 7) Mostre que se $u \in \mathcal{D}'(\mathbb{R})$ satisfaz $\frac{du}{dx} = \delta_0$, então existe uma constante $c \in \mathbb{C}$ tal que u(x) = H(x) + c.

Exercício 12. (Grubb ex. 2.1) Seja $I \subset \mathbb{R}$ um intervalo aberto. Seja $\varphi: I \to \mathbb{C}$ uma função analítica. Mostre que se $\varphi \in C_c^{\infty}(I)$, então $\varphi = 0$.

Exercício 13. (Grubb ex. 2.5) Mostre que se $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ e supp $(\varphi) \subset B_R(0)$, então

$$\sup_{x \in \mathbb{R}^n} |\varphi(x)| \le 2R \sup_{x \in \mathbb{R}^n} |\partial_{x_1} \varphi(x)|.$$

Dica: Expresse φ como uma integral de $\partial_{x_1}\varphi$.

Exercício 14. (D.K. ex. 2.2) Seja $\phi \in C_c^{\infty}(\mathbb{R}), \phi \neq 0$ e $0 \notin \text{supp}\phi$. Consideremos as seguintes sequências:

- i) $\phi_j(x) = \frac{1}{i}\phi(x-j)$.
- ii) $\phi_j(x) = \frac{1}{j^p}\phi(jx)$, em que $p \in \mathbb{N}$.
- iii) $\phi_j(x) = e^{-j}\phi(jx)$.
- a) Para cada uma das sequências acima, mostre que, para cada $x \in \mathbb{R}$ e para cada $k \in \mathbb{N}_0$, a sequência $\left(\frac{d^k \phi_j}{dx^k}(x)\right)$. converge para zero. Mostre que a convergência é uniforme no item iii).
 - b) Determine quais das sequências acima convergem a zero em $C_c^{\infty}(\mathbb{R})$.

Exercício 15. (D.K. ex. 2.3) Seja $\phi \in C_c^{\infty}(\mathbb{R}^n)$ uma função tal que $\phi \geq 0$, supp $\phi \subset B_1(0)$ e $\int_{-\infty}^{\infty} \phi(x) dx = 1$. Definamos $\phi_{\epsilon}(x) = \frac{1}{\epsilon^n} \phi\left(\frac{x}{\epsilon}\right)$. Dado $\psi \in C_c^k(\Omega), k \in \mathbb{N}_0$, mostre que:

- a) $\partial_x^{\alpha} (\psi * \phi_{\epsilon}) = (\partial_x^{\alpha} \psi) * \phi_{\epsilon}$, para todo $|\alpha| \leq k$.
- b) $\lim_{\epsilon \to 0} \psi * \phi_{\epsilon} = \psi \text{ em } C_c^k(\Omega).$
- c) Conclua que $C_c^{\infty}(\Omega)$ é denso em $C_c^k(\Omega)$ no seguinte sentido: Dado $\varphi \in C_c^k(\Omega)$, existe uma sequência $(\varphi_j)_i \subset C_c^k(\Omega)$ $C_c^{\infty}(\Omega)$ tal que $\lim_{j\to\infty}\varphi_j=\varphi$ em $C_c^k(\Omega)$.

Exercício 16. (D.K. ex. 3.1 e 3.2) Considere a distribuição $u \in \mathcal{D}'(\mathbb{R})$ definida abaixo:

$$u\left(\phi\right) = \frac{d^{k}\phi}{dx^{k}}\left(0\right).$$

- a) Mostre que a ordem de u é menor ou igual a $k \in \mathbb{N}_0$.
- b) Prove que a distribuição acima é de ordem exatamente igual a $k \in \mathbb{N}_0$.

(Dica: Seja $\psi \in C_c^{\infty}(\mathbb{R})$ tal que $\psi(0) = 1$. Definimos $\phi_{\delta}(x) = x^k \psi(\frac{x}{\delta})$. Suponha que a ordem de u seja menor do que k. Use as funções ϕ_{δ} para obter uma contradição. O argumento completo pode ser encontrado no exemplo 2.1.2 do livro do Hörmander)

Exercício 17. (D.K. ex. 3.4) Verifique que $u, v \in w$ definidas abaixo são distribuições em \mathbb{R}^2 :

- i) $u(\phi) = \partial_{x_1} \partial_{x_2} \phi(1, 1)$.
- ii) $v(\phi) = \int_{\mathbb{R}} \phi(t,0) dt$.
- iii) $w(\phi) = \int_{\mathbb{D}^2} e^{\|x\|^2} \phi(x) dx$, em que $\|x\|^2 = x_1^2 + x_2^2$.

Exercício 18. (D.K. ex. 3.5) Consideremos funções e distribuições em \mathbb{R}^2 :

- a) Seja $r: \mathbb{R}^2 \to \mathbb{R}$ dada por $r(x) = ||x|| = \sqrt{x_1^2 + \ldots + x_n^2}$. Mostre que $\frac{1}{r}$ e $\ln(r)$ definem distribuições em \mathbb{R}^2 . Qual é a ordem destas distribuições?
- b) Definimos $u(\phi) = \int_0^{\pi} (\cos(t) \partial_{x_1} + \sin(t) \partial_{x_2}) \phi(\cos(t), \sin(t)) dt$. Mostre que u define uma distribuição em \mathbb{R}^2 . Qual é a sua ordem?
- c) Definimos $u\left(\phi\right)=\int_{0}^{\pi}\left(-sen\left(t\right)\partial_{x_{1}}+cos\left(t\right)\partial_{x_{2}}\right)\phi\left(\cos\left(t\right),\sin\left(t\right)\right)dt$. Mostre que u define uma distribuição em \mathbb{R}^2 . Qual é a sua ordem?

Exercício 19. (D.K. ex. 3.6) Mostre que se f é uma função contínua e T_f é a distribuição que corresponde a f, então $T_f \geq 0$ se, e somente se, $f \geq 0$.

Exercício 20. (D.K. ex. 4.1 e 4.2) Prove que:

- a) $\frac{d}{dx}\left|x\right|=\mathrm{sign}\left(x\right),$ em que $\mathrm{sign}\left(x\right)$ é a função igual a 1 se $x\geq0$ e a -1 se x<0.
- b) $\frac{d^2}{dx^2} |x| = 2\delta_0$. c) $\frac{d}{dx} \ln(x) = PV\left(\frac{1}{x}\right)$.

Exercício 21. (D.K ex. 4.4) Seja $\lambda \in \mathbb{C}$ e $f : \mathbb{R} \to \mathbb{C}$ a função definida como

$$f(x) = \begin{cases} e^{\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}.$$

Prove que as derivadas de f satisfazem:

$$\frac{d^k}{dx^k}f = \lambda^k f + \sum_{i=0}^{k-1} \lambda^{k-1-i} \frac{d^i}{dx^i} \left(\delta_0\right), \ k \in \mathbb{N}_0.$$

Seja p um polinômio de grau m>0 tal que $p(\lambda)=0$. É verdade que $p(\partial) f=0$? Calcule a ordem de f.

Exercício 22. (D.K. ex. 4.6) Seja $p \in \mathbb{R}^n$ e $v_j(x) = \frac{x_j - p_j}{\|x - p\|^n}$, $1 \le j \le n$. Verifique que v_j são localmente integráveis em \mathbb{R}^n e que, portanto, definem distribuições em \mathbb{R}^n . Prove que

$$\operatorname{div}(v) = \sum_{j=1}^{n} \partial_{x_j} v_j = c_n \delta_p,$$

em que c_n denota o volume da esfera \mathbb{S}^{n-1} .

Exercício 23. (D.K. ex. 4.7) Para $x \in \mathbb{R}^n \setminus \{0\}$. Definamos

$$E(x) = \begin{cases} \frac{1}{(2-n)c_n \|x\|^{n-2}}, & \text{se } n \neq 2\\ \frac{1}{2\pi} \ln \|x\|, & \text{se } n = 2 \end{cases}.$$

- a) Mostre que existe uma constante $c \in \mathbb{C}$ tal que $\partial_{x_i} E = cv_i$.
- b) Mostre que $\Delta E = \delta$, em que

$$\Delta = \sum_{j=1}^{n} \partial_{x_j}^2.$$

Exercício 24. (D.K. ex. 4.8) Seja $I \subset \mathbb{R}$ um intervalo aberto. Suponha que $c_1, ..., c_q \in \mathbb{C}$ e $a_1 < ... < a_q \in \mathbb{R}$. Ache as soluções $u \in \mathcal{D}'(I)$ de $\frac{du}{dx} = \sum_{j=1}^{q} c_j \delta_{a_j}$.