EXERCÍCIOS DA QUINTA QUINZENA

Escolha um (apenas um) dos três exercícios abaixo para entregar até dia 9 de novembro.

Problema 1. Fórmula de Taylor, Máximos e Mínimos e Funções Convexas

Sejam $f: \mathbb{R}^2 \to \mathbb{R}$ e $g: \mathbb{R}^2 \to \mathbb{R}$ duas funções de classe C^2 .

- i) Mostre que, se existe $a \in \mathbb{R}^2$ tal que f(a) = g(a) = 0 e df(a) = dg(a) = 0, e se $d^2f(x) = d^2g(x)$ para todo $x \in \mathbb{R}^2$, então f = g.
- ii) Suponha que f seja a função $f(x,y) = \int_x^y (3t^2 1) dt$. Ache os pontos críticos de f e diga se são máximos locais, mínimos locais ou nem máximo e nem mínimo local.
- iii) Mostre que, se f é côncava (isto significa, por definição, que -f é convexa), e se $x_0 \in \mathbb{R}$ é um ponto crítico de f, então f tem um máximo global em x_0 .

Problema 2. Máximos e Mínimos

Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função de classe C^1 e seja $c \in \mathbb{R}$ tal que $f^{-1}(c)$ é compacto e não vazio.

- i) Mostre que, se $n \geq 2$, então um dos conjuntos $F := \{x \in \mathbb{R}^n, f(x) \geq c\}$ ou $G := \{x \in \mathbb{R}^n, f(x) \leq c\}$ é compacto.
 - ii) Mostre que f assume um máximo ou um mínimo em \mathbb{R}^n .
 - iii) Podemos concluir a mesma coisa se n = 1?
- iv) Ache $f:\Omega\subset\mathbb{R}^n\to\mathbb{R}$ de classe C^1 , com $n\geq 2$, definido num aberto Ω com a seguinte propriedade: Existe $c\in\mathbb{R}$ tal que f^{-1} (c) é compacto e não vazio, mas f não tem máximo nem mínimo em Ω .

Problema 3. Multiplicadores de Lagrange

O objetivo aqui é demonstrar a desigualdade de Hölder usando multiplicadores de Lagrange.

- i) Mostre que $M := \{(x,y); x > 0, y > 0, xy = 1\}$ é uma hiperfície de \mathbb{R}^2 .
- ii) Ache o ponto de mínimo da função $f: \mathbb{R}^2 \to \mathbb{R}$ restrita a M, em que f é dada por $f(x,y) = \frac{1}{p}x^p + \frac{1}{q}y^q$, p > 0, q > 0 e $\frac{1}{p} + \frac{1}{q} = 1$. Conclua que, se xy = 1 e x e y são positivos, então $1 \le \frac{1}{p}x^p + \frac{1}{q}y^q$.
 - iii) Use o resultado do item ii) para provar que $xy \leq \frac{1}{p}x^p + \frac{1}{q}y^q$ se x > 0 e y > 0.
 - iv) Use o resultado do item iii) e mostre que, se $u=(u_1,...,u_n)\in\mathbb{R}^n$ e $v=(v_1,...,v_n)\in\mathbb{R}^n$, então

$$\left| \sum_{j=1}^{n} u_{j} v_{j} \right| \leq \left(\sum_{j=1}^{n} |u_{j}|^{p} \right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |v_{j}|^{q} \right)^{\frac{1}{q}}.$$