LISTA DE EXERCÍCIOS 1 CÁLCULO V - MAP 0217 - MAT 0311

PROF: PEDRO T. P. LOPES WWW.IME.USP.BR/~PPLOPES/EDO2

Os exercícios a seguir foram selecionados do livro do autor Elon Lages Lima: Espaços Métricos, Terceira Edição. (E.M.X.Y) indica exercício Y do capítulo X deste livro.

Exercício 1 (E.M.1.1)

Seja $d: M \times M \to [0, \infty[$ uma função tal que

- a) $d(x,y) = 0 \iff x = y$.
- b) $d(x, z) \le d(x, y) + d(z, y)$

Prove que d é uma métrica.

Exercício 2 (E.M.1.2)

Mostre que $d: \mathbb{R} \times \mathbb{R} \to [0, \infty[$ definida por $d(x, y) = (x - y)^2$ não é uma métrica.

Exercício 3 (E.M.1.4)

Seja (M,d) um espaço métrico. Mostre que $d_1: M \times M \to [0,\infty[,d_2:M\times M \to [0,\infty[$ e $d_3:M\times M \to [0,\infty[$ são métricas de M, em que

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)},$$
$$d_2(x,y) = \sqrt{d(x,y)},$$
$$d_3(x,y) = \min\{1, d(x,y)\}.$$

Exercício 4 (E.M.1.6)

Seja E um espaço vetorial real e $d: E \times E \to [0, \infty[$ uma métrica de E. Mostre que existe uma norma $\|.\|: E \to [0, \infty[$ tal que $d(x,y) = \|x-y\|$ se, e somente se, d(x+a,y+a) = d(x,y), para todo a, x e y em E e $d(\lambda x, \lambda y) = |\lambda| d(x,y)$, para todo $\lambda \in \mathbb{R}$, x e y em E.

Exercício 5 (E.M.1.12)

Mostre que em todo espaço métrico M temos

$$B_{R}[x] = \bigcap_{n=1}^{\infty} B_{R+\frac{1}{n}}[x] = \bigcap_{s>R} B_{s}[x],$$

$$\{x\} = \bigcap_{r>0} B_{r}(x) = \bigcap_{n=1}^{\infty} B_{\frac{1}{n}}(x).$$

Analogamente, exprima cada bola aberta de M como união de bolas fechadas de M.

Lembremos que $B_R[x] := \{ y \in M; d(y, x) \le R \}$ e $B_R(x) := \{ y \in M; d(y, x) < R \}$

Exercício 6 (E.M.1.17)

Seja (M,d) um espaço métrico. Mostre que se $y \notin B_R[x]$, então existe s > 0 tal que $B_R[x] \cap B_s[y] = \emptyset$.

Exercício 7 (E.M.1.29)

Seja $F := B_r(x)^c$ o complementar de uma bola aberta em um espaço métrico (M, d), em que $x \in M$ e r > 0. Mostre que se d(x, F) = 0, então $x \in F$.

Exercício 8 (E.M.3.1)

Mostre que a fronteira de um conjunto aberto tem interior vazio. Reciprocamente, todo subconjunto fechado $X \subset M$ com interior vazio é fronteira de algum aberto em M.

Exercício 9 (E.M.3.6)

Seja E um espaço vetorial normado. Se $X \subset E$ é convexo, então int (X) é convexo.

Observação: Dizemos que um subconjunto X de um espaço vetorial é convexo se para todo $x, y \in X$ e $t \in [0, 1]$, temos $tx + (1 - t)y \in X$.

EXERCÍCIO 10 (E.M.3.16)

Mostre que não é verdade que $X \subset Y$ implica que $\partial X \subset \partial Y$. Entretanto, mostre que ∂ (int (X)) $\subset \partial X$.

Exercício 11 (E.M.3.34)

Seja (M,d) um espaço métrico e $X,Y\subset M$. Mostre que int $(X\cap Y)=$ int $(X)\cap$ int (Y) e que int $(X\cup Y)\supset$ int $(X)\cup$ int (Y). Dê um exemplo mostrando que int $(X\cup Y)=$ int $(X)\cup$ int (Y) não vale em geral.

Exercício 12 (E.M.3.43)

Seja (M,d) um espaço métrico e $X,Y\subset M$. Mostre que $\overline{X\cup Y}=\overline{X}\cup\overline{Y}$ e que $\overline{X\cap Y}\subset\overline{X}\cap\overline{Y}$. Dê um exemplo mostrando que $\overline{X\cap Y}=\overline{X}\cap\overline{Y}$ não vale em geral.

EXERCÍCIO 13 (E.M.3.55)

Seja (M,d) um espaço métrico e $A\subset M$ um conjunto aberto. Se $X\subset M$ é um conjunto denso em M, então $X\cap A$ é um conjunto denso em A.

EXERCÍCIO 14 (E.M.3.57)

Seja (M,d) um espaço métrico. Prove que $A\subset M$ é um conjunto aberto se, e somente se, $A\cap \overline{X}\subset \overline{A\cap X}$ para todo $X\subset M$.

EXERCÍCIO 15 (E.M.3.58)

Dê um exemplo na reta em que A seja aberto e os três conjuntos $A \cap \overline{B}$, $\overline{A} \cap \overline{B}$ e $\overline{A \cap B}$ sejam distintos.

Exercício 16 (E.M.4.1)

Seja (M,d) um espaço métrico. Sejam $X,Y\subset M$ tais que $M=X\cup Y$ e $X\cap Y=\emptyset$. Mostre que $M=X\cup Y$ é uma cisão se, e somente se, $X\cap \overline{Y}=\overline{X}\cap Y=\emptyset$, ou seja, se $x\in X$, então d(x,Y)>0 e se $y\in Y$, então d(y,X)>0.

Exercício 17 (E.M.4.5)

Seja (M,d) um espaço métrico. Sejam $X,Y\subset M$ conjuntos conexos. Se $\partial X\subset Y$, então $X\cup Y$ é conexo.

EXERCÍCIO 18 (E.M.4.10)

Seja (M,d) um espaço métrico, x e $y \in M$. Suponha que exista um subconjunto aberto e fechado em M tal que $x \in X$ e $y \in X^c$. Mostre que nenhum subconjunto conexo de M pode conter x e y simultaneamente.

EXERCÍCIO 19 (E.M.4.39)

Um espaço métrico diz-se localmente conexo quando, para todo $x \in M$ e todo aberto $U \ni x$, existe um aberto conexo V, tal que $x \in V \subset U$. Prove que M é localmente conexo se, e somente se, para todo aberto $A \subset M$, as componentes conexas de A são subconjuntos abertos.

EXERCÍCIO 20 (E.M.4.43)

Seja (M,d) um espaço métrico desconexo e localmente conexo. Se A,B são conexos, disjuntos, não vazios e tais que $M=A\cup B$, então A e B são abertos em M.