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Convexity 

MARCEL BERGER, IHES, Bures-sur-Yvette, France 
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the universities of Strasbourg, Nice and Paris 1955-1974. From 1974-1985 
Director of Research with the CNRS (Centre National de la Recherche 
Scientifique). Since 1985, Director of the IHES (Institut des Hautes Etudes 
Scientifiques). Visited a full year MIT 1956-57 and University of California, - 

Berkeley 1961-62. President of the French Mathematical Society 1979-81. - 

Corresponding member of the French Academy of Sciences since 1982. 
Rademacher lecturer (Univ. of Pennsylvania) 1981. Editor and managing 
editor of various mathematical journals, managing editor of the yellow 
Springer Gnmdlehren des Mathematischen Wssenschaften. Published around 
45 papers on Riemannian geometry and three books (all with Springer): 
Geometry I and II, (with Gostiaux) Differential Geometry: Manifolds, Curves 
and Surfaces, and (with Berry, Pansu and St. Raymond) Problems in 
Geometry. 

Convexity, as we shall see, is a very old topic which can be traced at very least to 
Archimedes. It has more or less always been in favor, and now it is making a very 
strong comeback. This can be attributed in part to the rise of linear programming 
and the computer era starting from the '60s. But the geometric method in analysis 
has come up with wonderful results including some spectacular ones on convex 
bodies. 

At the same time, convexity is an extremely simple and natural notion. So we 
think the reader will readily appreciate what follows. Interesting in itself, it will 
also illustrate some facts about mathematics, facts that are more or less classical, 
but always important to realize, paradoxical though they may be. First, questions 
or problems arise that are very simple to formulate (as in number theory) but to 
which the answers are either still unknown or have been found only very recently, 
often using very hard techniques from other parts of mathematics. The second fact 
is that for elementary geometric problems formulated in our ordinary 2 or 
3-dimensional space, one is forced to use abstraction and, among other things, to 
"go to the infinite" or to higher dimensional spaces. Finally, intuition is sometimes 
quite misleading. 

Because of the restricted length of this article, I cannot be exhaustive. Indeed I 
had to select only a few topics. Selection was based on naturalness and simplicity, 
my own taste, and illustration of the facts I have just mentioned. Standard topics 
which really could not be included receive a passing mention in the last section. 
The material has been organized as follows. 

1. Convexity is a natural notion; historical examples 
2. Rigorous definitions; examples 
3. The John-Loewner ellipsoid; applications 
4. Convex functions; examples and applications 
5. Polytopes: four "elementary" problems 
6. Two algebraic operations on the set of all convex bodies: duality and addition 

650 
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7. Topology in the set of all convex bodies: intuition is dangerous 
8. A brief look at some topics in convexity 

To prepare the present text I received help from, among others, Peter Gruber 
and Vitali Milman. It is a pleasure for me to thank them here. 

1. Convexity is a natural notion; historical examples 

In art, the words concave and convex are commonly used, as shown in the 
following comment on a modern sculpture: 

This sculpture reflects the influence of Cubism in its optical juxtaposition of 
interchangeable concave and convex forms, and in its use of a void to express 
a mass (from Treasures of the Israel Museum, Jerusalem, Geneva, 1985). 

* 
I l | 
- 4 Z Z l | I I _ I _ 

Woman Combing Hair (Bronze)-Alexander Archipenko (1887 1964) 
(Courtesy the Israel Museum Jerusalem) 

The same applies to anatomy textbooks: 

Menisci or half-moon fibro-cartilages. Arranged in this manner, the glenoid 
cavities do not adapt to the femur condyles. They fit together by means of menisci 
or half-moon fibro-cartilages placed between the tibia and the femur. 
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Fibro-cartilages, like glenoid cavities, are extemal or intemal. Each is a 
triangular prismatic blade curved into a crescent. 

They are seen to possess: a concave upper face, connected with the femur 
condyles; an underside, in contact with the periphery of the corresponding glenoid 
cavity; an outer or peripheral face (the base of the prism), which is convex, very 
thick, adhering to the articular capsule; an inner or central edge, which is 
concave, trenchant, and whose concavity faces the centre of the glenoid cavity. 
... (translation from a classic French book on anatomy by Rouviere). 

Note that convexity and concavity appear to be such commonsense notions that 
neither is defined in texts on art or anatomy! 

Archimedes (circa 250 B.C.) explicitly stated that the inner curve of the figure 
below is shorter than the outer one, if the inner one is convex. This is obviously 
false if it is not. 

Poinsot (circa 1800) looked into convexity when he studied statics, stating, for 
example, that to ensure stability for the table below one needs the vertical line 
through the center of gravity to intersect the supporting plane inside the convex 
envelope (see section 2) of the set made up by the legs of the table. 

Fourier also studied statics around the same time and was led to study 
simultaneous linear inequalities like these: 

a'x + b'y + c' SO ax + by + c > O 

a"x + b"y + c" < 

useless 

He was smart enough to realize the need to determine which ones were really 
relevant (see section 5). This was the origin of linear programming which began to 
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develop in the '60s. It consists for example in asking: 
Find the maximum of y = x1 - X2 + 2X3 if 

X1 + X2 + 3x3 + X4 < 5 

X + X3 -4X4 < 2 

xV ? 0. 

A large variety of computer programs are available to solve such problems. The 
remark announced above is that most of the interest in linear programming 
(through computers) lies in working with very large numbers of inequalities and 
variables. Hence the need (by no means a mathematician's luxury) to work and 
develop intuition in high-dimensional spaces. 

Back in the 1720s Newton was already using convexity in a basic manner to 
solve the problem of finding the local shape of a real algebraic plane curve at a 
singular point, however complicated. His solution was quite complete, as the 
following example shows: 

2y5 +y4x3 -7y4X5+ 3y3x2 - y2x4-5y2X + yx4 + X5 = 0. 

The singularity to be studied is at the origin (0, 0). If this is not the case adjust it by 
suitable translation of coordinates. Now put a dot at (m, n) in the lattice N x N of 
integral points in the plane R2 for every am nxmy' in the equation defining the 
curve, for which am n 0: 

y 

5 

y2 ____ 

X5 X 

Then draw the convex envelope (paying attention only to the west and south parts) 
of this set of dots, thereby obtaining a number of segments. For each segment, 
extract the two terms that correspond to the end points of that segment from the 
original equatio'n of the curve. Draw each of these two-term curves locally. 
Newton's theorem is that, whatever the other dots, the union of the preceding 
curves drawn gives the local shape of the total curve. See [14], [36] for more details 
and the general theory. 

A y Y 2y5- 5y2x= 0 x5 - 5xy2= O 

2y3 - 5x= 0 x4 - 5y2 =O 

x 
5x =2y3 x2 =f y and x2v= 5 y 

(x5 - 5Xy2 + 2y5 = 0) 

three branches 
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2. Rigorous definitions; examples 

In chapters 2 to 6 we will work exclusively in the linear space Rd- 

{x = (x1, ..., Xd): xi E RI. According to the nature of the problem that we will be 
studying, we consider it as endowed or not with its canonical Euclidean metric 

d(x,y) = (xl Yl)2 + ?. +(Xd - Yd)2. 

A subset K of Rd is said to be convex if for every x and y in K the segment 
[x, y] of Rd whose ends are x and y is all contained in K: [x, y] c K. The pictures 
below show convex and nonconvex sets. Because the open disk X2 + y2 < 1, plus 

any part of its boundary (the circle X2 + y2 = 1) is convex, we will always work 
with open or closed convex sets. Note that things are different for the square. 
Recall, if need be, that a subset K of Rd is said to be open if any of its points x is 
the center of an open ball B(x, r) = {y: d(x, y) < r) (r > 0) entirely contained in 
K. It is said to be closed if its complement Rd \ K is open. It is equivalent to say 
that the limit x of every convergent sequence {xi} is still in K. 

nonconvex convex nonconvex 

Three immediate properties of convex sets are the following: 
The first was already known to Archimedes: if K is a plate in R2 or a body in 

R3, of some material, then it contains its center of mass (center of gravity). Note 
that constant density is not required. 

The second property: look at the two following metrics on a subset K of Rd. 
The first, dR is the so-called induced one (from the Euclidean structure of Rd) 

dRd(x, y) = d(x, y) for any x, y E K and the Euclidean metric d on Rd. The 
second, called intrinsic, denoted by dK, is defined as the infimum dK(x, y) of the 
length in Rd of all curves from x to y which lie entirely within K. Then it is easy 
to see that K is convex if and only if dK is identical with dR. 

The third property belongs to the realm of algebraic topology, which studies the 
properties of objects that depend only on maps preserving the topology, in 
particular those properties that are invariant by continuous deformation. The fact 
is that all open convex sets are equivalent, in particular equivalent to Rd itself. So 
for an algebraic topologist convex sets are of no interest. The proof is simple: build 
a continuous map K -* Rd by picking any x E K and stretching any non-infinite 
ray from x in K to the infinite associated ray in Rd. 
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The following explicit examples of convex sets are basic: 
(i) Each of the two half-spaces (open or closed) defined by an affine hyperplane 

(namely the set given by an equation like 
d 

Z aixi = b, 
i=lI 

where the ai's are not all 0) is convex. Half-spaces are the building blocks of 
convexity, since it is classical and not hard to prove that every closed convex set is 
the intersection of the closed half-spaces which contain it (see section 6). Moreover 
one can always achieve it with a denumerable family. 

(ii) The full (closed) ellipsoids 
d X2 

i-I a, 

It is very important to remark that-when no Euclidean structure is imposed on 
Rd-all ellipsoids are equivalent (affinely). They are equivalent, in particular, to 
the standard closed ball Ed= lx7 ? 1. 

(iii) A closed parallelepiped is a set which can be written (after translation) as 
{(X1 ..., Xd): Ixil < 1 Vi = 1, . . ., d} in a suitable basis of Rd. They are all equiva- 
lent-affinely-to the standard cube lxil < 1 (i = 1,..., d) (the coordinates are 
the standard ones of Rd). But as soon as metric considerations are imposed, then 
parallelepipeds can be very different. 

(iv) Any intersection (not even necessarily countable) of convex sets is convex. 
Hence, it makes sense to speak of the smallest convex set containing a given set 
A c Rd and to call it the convex hull of A. It will be denoted by conv(A) in the 
sequel. Polytopes are the convex hulls of finite sets. Note that not all points are 
necessary; the really necessary ones are called the vertices, or extreme points, of 
the polytope. 
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(v) The sets IxlA + jylA < 1 in R2 are convex for every real number A ? 1. The 
proof is not obvious, but see section 4. 

Y 

3. The John-Loewner ellipsoid; applications 

We present here a result that is both simple-though nontrivial-and extremely 
powerful. It was found independently by F. John (studying mechanics) and 
C. Loewner (studying complex variable maps), both in the '40s. (The case of d = 2 
goes back to Behrend in the '30s.) It says that given any bounded set A (with 
nonvoid interior) in Rd, there exists one and only one ellipsoid E of minimal 
volume containing A (recall that ellipsoids are centered at the origin). 

z3 
The volume of an ellipsoid ELd= I(x2/a 2) < 1 is to be understood in the elementary 
sense, namely as the canonical measure on Rd (with the Euclidean standard 
metric). It is given by 

Vo(l t I) < (d) Vol( x2< 1) 

This will follow for example from the determinant change of variable rule in 
integration theory. We denote by f(d) the volume of the standard ball E d1X72 < 1. 
The value of this important function can be found in some calculus books (see [6]) 
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namely 

13(d = 2k) = k! 

2k?+ l,rk 

,3(d = 2k + 1) = 13 .5 ... = (2k + 1) 

or in one shot 
d/2 

if you know the F-function. 
If you have never thought about it, study the behavior of ,B(d) as d increases. 

Compute in particular the first value of d for which j3(d) < 1 (the volume of the 
cube of side equal to 1). An asymptotic evaluation of 83(d) is important (see 
section 6). From Stirling's formula one gets 

/ 2-re \(d+2)/2 

,/3(d) constantl d ) as d oo 

It also permits one to compare /3(d) with the volume, equal to 2", of the cube 
circumscribed by the unit ball. See an interesting application at the end of 
section 5.A. 

Let us come back to the John-Loewner assertion. Existence is an easy compact- 
ness argument. Just be careful to avoid the degeneracy of ellipsoids. This is 
guaranteed precisely by the non-void interior condition. To prove uniqueness 
argue by contradiction. Show that, given two distinct ellipsoids of the same volume, 
there exists a third one of smaller volume which contains their intersection. 
Simplify the computation by using the reduction of positive quadratic forms to 
simultaneous diagonal forms. Another proof is given in the next section. 

The John-Loewner ellipsoid is widely used nowadays in the study of convex sets, 
for both pure and applied mathematics, see [19]. For our purpose let us mention 
three applications to various fields. 

The first application is to the theory of quadrics (conics for the plane). An 
ellipsoid E has the property (called diametrical) of admitting an affine hyperplane 
symmetry for any direction 8 of lines in Rd. That is to say there exists a hyperplane 
Ha associated to 8 such that the hyperplane symmetry defined by the pair (8, H6) 
leaves E invariant. Are the ellipsoids the only subsets A of Rd enjoying this 
property for any direction of line? The answer is easily seen to be yes if we use the 
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John-Loewner ellipsoid E of the set A. A bare-handed proof-you should try 
it-is already extremely involved (and not very enlightening) when d = 2. For 
d = 3, it was done by Bertrand and by Brunn. 

The second application is in geometric-group theory: it states that every compact 
subgroup G of the full linear group GL(d; R) of Rd leaves invariant some 
Euclidean structure on Rd. Take any point x * 0 in Rd and introduce the John 
ellipsoid of its orbit G(x). This ellipsoid yields the desired quadratic form; the 
uniqueness is of course basic. Note more generally that the compact group we are 
studying can be taken in the full group Aff(d; R) of all affine transformations of Rd 
(we permit translations). For by the Archimedes result of our introduction, the 
center of mass of the orbit G(x) is invariant under G so we can take it to be the 
origin 0. Properly rephrased, the above existence result is group theoretical: two 
maximal compact subgroups G, G' of GL(d; R) are necessarily conjugate, i.e., 
there exists g in GL(d; R) such that G' = gGg 1. This is actually a special case of 
a general result of Elie Cartan to the effect that this conjugacy of compact maximal 
subgroups is valid in any Lie group. 

The third application is in fact what F. John had in mind. Call a convex body a 
non-void-interior compact set of Rd. Then for every convex body K of Rd which is 
symmetric around the origin (Vx E K then -x c K) there exists an ellipso'id E 
such that E c K c AK and A < d. The bound is clearly optimal as shown by the 
cube. 

0 0 

Again the proof works by contradiction. Using duality (see section 6 if necessary) 
introduce the ellipsoid of maximal volume contained in K and think of it (after a 
suitable linear transformation-remember (ii) in section 2) as the unit sphere 
in Rd. 

x K0 
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Assume there exists an x E K with llxll > 2. By the symmetry assumption K 
will contain the domain shaded above. Elementary calculus (again use a reduction 
to the standard cube) shows that the sphere inscribed in that cube is contained in 
K and has a larger volume than that of any inscribed ellipsoid. 

It is worth mentioning the &-squeezing property for two reasons. 
The first is the Banach-Mazur metric structure on the set of all symmetric convex 

bodies in Rd which is defined as follows: for two convex bodies K, H (symmetric in 
the origin) call A the smallest number for which there exists a linear transforma- 
tion f of Rd such that f(H) c K c f(AH). Then d(K, H) = A is called the 
Banach-Mazur distance (it is in fact a so-called multiplicative distance and strictly 
speaking after dividing the set of convex bodies by the set of linear isomorphisms). 
John's result is now simply that the distance between any symmetric convex body 
and the unit ball is always < logxd. It says that a Banach space structure on Rd is 
never too far from a Euclidean structure! 

f(AH) 

f(H) 

0.* 

The second reason has to do with the very simple question: what is the greatest 
Banach-Mazur distance to the unit cube? This is a case (see the introduction) 
where the answer is not known today. The aim is to squeeze a symmetric convex 
body between two homothetic parallelepipeds as close together as possible. The 
value xd is wrong. Szarek proved in 1987 that one needs at least v/d log d. The 
optimal bounds are still unknown. Two more comments. First, Szarek's construc- 
tion of examples is not really explicit but based on probability theory. This 
technique is now widely used in convexity theory. The idea is that for a "general" 
convex body K the points of contact of K with the optimal cube are far from an 
orthonormal basis. On the contrary the angles are quite small. Second-a very 
general remark-for practical applications to theoretical harmonic analysis or to 
numerical analysis, it is more important to have asymptotic estimation when the 
dimension d goes to infinity than explicit values. In that direction, Szarek and 
Talagrand proved in 1988 that asymptotically the Banach-Mazur distance between 
the cube and any symmetric convex body is always of the order of d7/8. The 
conjectured order is vd/ log d (up to some universal constant). See [33]. 

4. Convex functions; examples and applications 

The simplest notion to start with is that of a convex real valued function defined 
on an interval-say closed [a, b]-of the real line: 

f: [a, b] -* R is said to be convex (resp. strictly convex) if: 

f(Ax + (1 - A)y) < Af(x) + (1 - A)f(y) (resp., <) 
Va <x <y <b, 0 <A < 1. 
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R 

/ ~~ ~ ~~~a C b R 

Ax + (1 - A)y 

Otherwise stated: the graph of f is always below the chord segment joining every 
pair of its points. More simply: f convex is equivalent to requiring that the epigraph 
of f (namely the set {(x, y): x E [a, b], y > f(x)} c R2) is convex. A trivial 
induction yields 

n n n 

E Aixi < Aif(xi) Vn Vxi E [a,b] VAi > 0 with EAi = 1. 
i=l i=l ~~~~~~~~~~~~~i=l 

Convex functions are necessarily quite regular: they everywhere admit a right and a 
left derivative which need not coincide, though the set at which they do not 
coincide can be at most countable. In particular they are almost everywhere (i.e., 
up to a set of measure 0) differentiable, in fact continuously differentiable. They 
also admit almost everywhere a second derivative f' 2 0. Most important is the 
converse: if f" exists and is non-negative (resp., positive) everywhere then f is 
convex (resp. strictly convex). This easy result is tremendously powerful. Two 
standard and basic examples are 

(i) f(x)- logx on [1, oo[ yields the inequality 
n n nt 

E A1ai > Ha', Ai > 0 Ai= 

i=1 Q i=1 in particular a? + +an 
a,~ ~ a .. 

an- an 

This is easy for n = 2, but from n = 3 on it is not so obvious. 
(ii) f(x) = xP, p 2 1. After tricky (but not deep) manipulations, one gets the 

Holder inequality: 
1 l/p llq 1 1 

EXiYi < ExP ) (EY with - +-= 1 

and the Minkowski inequality: 

(ElXi + YiI)" < (EIx.IP) + ()lyIP 

The latter says that the set IxIA + I yA ? 1 is convex in R2. This is not obvious, 
even for A = 4. 

The notion of convexity can be extended to numerical functions defined on a 
subset K of Rd: 

f( + (1 - l)y) < lf(x) + (1 - )(y) 

so that an obvious necessary condition for this condition to make sense is that K 
should be a convex subset of Rd. General convex functions are also quite regular. 
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They always admit a differential almost everywhere, in fact they are almost 
everywhere of class Cl. More: almost everywhere of class C2, i.e., they admit a 
second differential f"(x): Rd X Rd -> R which is there a positive quadratic form. 
The converse-analogous to the interval case-is also true. 

Convex functions have two basic properties, widely used in theoretical and 
applied mathematics. Their maximum is attained only at the boundary of their 
domain of definition, A strictly convex function admits at most one minimum. 
John-Loewner ellipsoid uniqueness might also be proved using the latter property. 
Identify ellipsoids in Rd with quadratic forms (positive definite) and consider the 
set of all of them whose seat is in Rd(d+ 1)/2 This is done, for example, with the 
map 

E aijxixj ,(( a,j)) E- R+ ), 

i,i 11 

aii 

It is typical of how mathematicians build up successive levels of abstraction. The 
volume Vol(E(q)) of the ellipsoid associated with q is equal to det(q)- 1/2 * [(d), 
where det stands for determinant. Then check that the function q -* det(q)- 1/2 iS 

strictly convex. 
We will give ample consideration to the regularity of convex functions in section 

7. A basic example is given in sections 5 and 6, the Brunn-Minkowski inequality. 

5. Polytopes: Four "elementary" problems 

Recall that a polytope is the convex hull of finite points in some R4; if d = 2 we 
call it a polygon (convex), and if d = 3 a polyhedron (convex). Its vertices are the 
really necessary points; any that are not useful should be thrown out. It is not hard 
to see (in section 6, for example) that a polytope is also a finite intersection of 
half-spaces, Conversely, one should add compactness. The faces ((d 1)- 
dimensional faces, to be exact) are the intersections of the polytope with the really 
necessary hyperplanes which define it. Such a face is a polytope in its hyperplane. 

By induction one defines the i-faces of a polytope (i 0, 1, ... , d - .1). The 
(d - 1)-faces are the faces, the 0-faces are the vertices, the 1-faces are the edges. 
In dimension 3 this exhausts them. 

"the most popular 
polyhedron" 
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Examples of polytopes are parallelepipeds. The simplest are the simplices. A 
simplex is a polytope generated by the minimum number of points in Rd for it to be 
a convex body (in particular not contained in some hyperplane). This number is 
d + 1. All simplices are affinely the same. Thus, not surprisingly, simplices are of 
basic utility (e.g., the simplex method of Dantzig in linear analysis). 

d = 2: triangle d = 3: tetrahedron 

Because of their simple definition and the everyday look they have about them, 
it is natural to expect that: 

a) everything about polytopes has been known for a long time 
b) everything about polytopes is easy to prove. 

In the light of our introduction, the reader will already have guessed that both 
statements are false. We will illustrate this with four topics. 

A. Hyperplane sections of the cube 

Consider the unit cube C = [- 1, d in Rd and cut it by hyperplanes. Which 
hyperplane cuts C with maximum volume ((d - 1)-dimensional measure, that is to 
say its volume for standard measure in the hyperplane where it stands, for the 
natural Euclidean structure)? 

,,'X1 @ 

For d = 2 the answer is x11, attained by either of the two diagonals. For d = 3 the 
smart reader will guess that the most wonderful section of the cube is the regular 
hexagon obtained by cutting it through the origin by a hyperplane orthogonal to a 
diagonal. But he will be wrong because its area is equal to 30/-/4, whereas the 
section through two opposite diagonals of parallel faces has area x2- > 30/-/4. It 
was conjectured for quite a while that / is the optimum (clearly attained) for any 
d. This was proved by K. Ball only in 1986, see [2]. The proof is by no means 
elementary. It is based on probability theory and, at the root of it lies the Fourier 
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transform, applied twice to get estimates of the volume of sections by hyperplanes. 
One then gets the following beautiful formula for the section of C by the 
hyperplane H given by the equation E' a x, = 0 (Ed2 a = 1): 

1 sin at sin a t 
volume(C n H) = 1 i .ina- *dt. 

7T J-o alt adt 

Then one finishes the proof with Holder inequality (under the integral form of the 
finite form given in section 4) and the fact that 

1 - sint p 2 
_I dt if p 2 
17r oo t 

and equality only if p = 2. This latter inequality is quite subtle to prove. 
An interesting consequence of Ball's result is the very easy disproof of a (quite 

intuitive) conjecture of Herbert Busemann: if two convex bodies K and H (say 
symmetric in the origin) are such that the volume of the section of K by any 
hyperplane P through the origin is always smaller than the volume of the section 
of H by P, then the volume of K is smaller than the volume of H. This is trivially 
true when d = 2; it is open for d = 3,.. ., 7. A quite involved counterexample was 
given by Larman and Rogers in 1975 for d = 12. But from Ball's result it follows 
immediately that the conjecture is false for any d 2 10 when K is the unit cube in 
Rd and H the sphere in Rd of radius so adjusted that its volume is equal to one. 

:1 ; 

Here is a small remark in the same spirit. Cut any symmetric convex body by 
parallel hyperplanes. You expect the volumes of these sections to be a monotone 
function, starting at a minimum when the hyperplane just touches the body and 
reaching a maximum through the origin. This is easy to prove with the Brunn- 
Minkowski inequality (see section 6), but however obvious it may seem, no 
elementary proof is known. Further: the Brunn-Minkowski inequality is equivalent 
to the fact that the 1/(d - 1) power of the volume of the parallel hyperplane 
sections of any convex body (symmetric or not) in Rd is a concave function. It is 
only in dimension two that this is completely elementary. 

Note also that, although apparently obvious, it is not easy to prove that any 
hyperplane section through the center of a unit cube has a volume greater than or 
equal to one. It was proven by Vaaler only in 1979! 
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B. Combinatorics 
.~~~~~~~~~~~~~~~~~~~~ 

Let us denote by f, the number of the i-dimensional faces of a polytope F of Rd. 
Here i runs from 0 to d - 1. Are there necessary (and sufficient) conditions for a 
given sequence (f(, fl,. ,fd- f) of integers to be that of some polytope in Rd? 
The case d = 2 is trivial: f( = f1 is both necessary and sufficient. When d = 3 
Euler found in 1750 the famous necessary condition fo - f1 + f2 = 2 (which seems 
also to have been found-though none too explicitly-by Descartes). It is not hard 
to extend this relation to any d in the form fo - f1 + * ?( 1)dlfd1 = ( -)dv 

It was only in the 1920's that Steinitz found the set of necessary and sufficient 
conditions when d = 3. It reads: 

f( - f1 + f2= 2 and 4 < fo < 2f2- 4 < 4fo - 12. 

The inequalities were known to Descartes and Euler as necessary ones. For d 2 4 
such a set is unknown. But in the 1980's two basic results were obtained. They 
concern generic polytopes, namely the so-called simplicial polytopes. These are 
polytopes (in Rd) all of whose (d - 1)-faces are ((d - 1) - 1) simplices. Equiva- 
lently, their vertices are in general position, that is to say that there are never more 
than d of them belonging to the one affine hyperplane. They are completely 
fle.xible in the sense that every vertex can be moved a little bit when all the others 
are kept fixed. 

For simplicial polytopes a necessary and sufficient set of conditions is known, 
though only since 1980. It is quite complicated. The set of conjectured necessary 
and sufficient conditions was discovered by McMullen. The way the proofs go is 
most interesting. The sufficiency-due to Billera and Lee-is obtained by exhibit- 
ing the desired polytope from the very involved commutative algebra construction 
of a Cohen-Macaulay ring. The proof of the necessity, due to Stanley, is even more 
surprising. It is obtained (following an initial idea of Demazure) by associating with 
a convex polytope a complex projective algebraic variety and applying to it the 
so-called "hard Lefschetz theorem." This story again illustrates the need to use 
complex number geometry even in order to solve real number problems. See 
[29], [32]. 

C. Can you move a polytope? Can you put it into a computer? 

Consider a polyhedron in R3 and try to move (slightly) its vertices under the 
condition that the polyhedron remains of the same combinatorial type, i.e. it keeps 
the same number of faces, each face keeping the same number of vertices. More 
algebraically, during the move you want to respect the linear relation which exists 
between the vertices of the initial polytope. Of course you discard the trivial 
solutions such as an affine linear transformation of the whole space. The end of 
the last section shows that, for a simplicial polyhedron (i.e., one of which all the 
faces are triangles) the movability is maximum, every vertex can be moved (slightly) 
independently of the others. The problem begins to be interesting when one has 
faces with four or more vertices. In the figures below it will be seen that you 
cannot move only one vertex, like a, because this will force new faces into 
existence. For the dodecahedron, one way is to move the plane of a face slightly. 
But this is possible only because a dodecahedron is cosimplicial (see section 7), 
that is that when considered as intersection of half-spaces, only three planes meet 
at one vertex. But this trick does not work for polyhedron No. 3. It can be done by 
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turning the plane of the face abcd around a and c. Then the general situation 
seems a very complicated problem for a general polyhedron. In 1920 Steinitz 
proved a more general theorem about the general polyhedron, to the effect that 
some graphs can always be realized in R3 by a convex polyhedron. As a corollary, 
any convex polyhedron has sufficient freedom of movement to be approximated as 
well as required by a polyhedron all of whose vertices have rational number 
coordinates (call it a rational polyhedron). 

#1 

#3 #4 

This is important because, once a coordinate system is fixed, a computer can 
recognize only rational polyhedrons when they are entered by giving the three 
coordinates of the vertices. This means that, for example, the affine linear 
relations between vertices have to be truly respected, not only approximated. To 
end with dimension 3, let us mention that we still do not know how to compute the 
effective degree of freedom when the combinatorial type is given. 

How about higher dimensions? The situation here is dramatically different 
because in 1967 Perles found a polytope in R8 with twelve vertices which cannot be 
approximated by a rational one. The idea is roughly as follows. The arrangement 
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of faces will force, in the diagram below, 

the dotted points to be on lines as indicated. Now an elementary computation in 
the projective plane (using, if you know it, the notion of cross-ratio) shows that 
whatever the Euclidean metric is, we should have 

EA FB 3-A 3 + A 
equal to or 

EB FA eu 2 2 

But neither of these numbers is rational! See [22]. 
In 1987 Sturmfels found a polytope in R6 with the non-rational approximation 

property. Whether this can be done in Rs or even R4 is still an open question. The 
above shows, in particular, that you cannot implement in a computer every 
diagram exactly respecting the alignments. For the aficionados, a computer expert 
will tell you that there are other "theoretical" ways to enter such a diagram into a 
computer. 

A comment on rigidity is in order. For the above, the movability was combinato- 
rial, not metric. It was permitted to change the lengths of the edges (and the 
congruence of the faces). If, moreover, we insist, when moving a polyhedron in R3, 
that all the faces remain equal polygons (this is automatically true if all faces are 
triangles and if the edges are kept at fixed lengths) then Cauchy proved rigidity 
back in 1812, namely that only a global Euclidean displacement can achieve it. In 
fact there was a small gap in Cauchy's proof that Hadamard and Steinitz filled in 
independently. Note that it is false for plane polygons as soon as they have at least 
four vertices. 

With a little bit of spherical geometry and induction on dimension, Cauchy's 
theorem implies rigidity in any dimension larger than three. Cauchy's proof is very 
subtle. See, for example [6]. 

D. Fillers 

Call a polygon P a filler of the Euclidean plane R2 if the whole plane can be 
filled up ("tiled") with congruent (equal) copies of P; the copies should moreover 
meet edge to edge. 

We first want to find the shape of all possible fillers. Any triangle and any 
quadrilateral will do. Then there are examples with pentagons and hexagons. The 
hexagonal case is completely understood, the pentagonal one not yet ([24]). 
Geometers (in fact crystallographers) have known since the end of the 19th century 
that no convex k-gon with k 2 7 can be a filler. Convexity is of course required. It 
would seem that there is no completely elementary proof. The known proofs use 
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not only Euler's formula but also a "going to infinity" argument. For fillers of the 
plane see Thurston's text in the present issue, and the basic reference [24]. 

for triangles use symmetries 

same for 
quadrilaterals 

no limit on the 
number of edges! 

3 4 

5 / / 

7 but not congruent tiles 
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We now look at R3. Call a filler a polytope P such that the whole space R3 can 
be filled with congruent copies of P, still matching face to face. 

Here two surprises await us. The first is that there do exist extremely compli- 
cated fillers. Engel found one in 1980 with 38 faces and 70 vertices. Some faces are 
extremely small. This is surprising at first: any filler is surrounded by 38 others and 
some of the contacts are very tiny. The construction used a computer because of 
these small faces. It is based on the classical and important notion of what is 
known as the Dirichlet-Voronoi domains. We start with a lattice A in R3 and 
define P by P = {x E R3: VA E A: d(x, 0) < d(x, A)}. Then, by the very construc- 
tion, the polytopes (P + A: A E Al fill R3. Now Engel's example is obtained by 
extending the Dirichlet-Voronoi technique as follows. We consider discrete groups 
G of isometries of R3 which contain a lattice of translations, but in fact G can also 
contain rotations and be much bigger than only a lattice group. Then the Engel 
filler P is of the type 

P = {x E R3: Vg E G: d(x, 0) < d(x, g(0))}. 

This P is in general called the fundamental domain of the group G. 

But there is another surprise: there is no known bound for the number of 
vertices or faces of an R3 filler when it is not obtained by a discrete group of 
isometries techniques. We do not even know that it is bounded! See [23]. 

66 18 
17 

67 - 37 
19 

10 
20 

26 ~~~~~~~57 
1 5~~~~~6 

8 38 

26~~~~~~ 

35 5 57 
36 49~~58 

37 

Two views of a 38-faced polytope with 70 vertices, discovered by Engel (1980) 
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6. Two algebraic operations on the set of all convex bodies: 
Duality and addition 

The typical evolution of mathematical understanding consists in reaching higher 
and higher levels of abstraction, by the building of structures. In order to study 
individual convex bodies, we are going, here and in the next section, to study the 
set of all of them (in a given dimension, say d) and to introduce algebraic and 
topological structures on this set. 

The duality notion, a very useful one in mathematics (think of the Fourier 
transform analysis, homology-cohomology,...), will be introduced through the 
expedient of a practical problem, that of calculating the volume of a convex body 
by computer. Looking at polygons for curves in the plane it looks simple: 

Archimedes on 7r 

But in large dimensions we will meet surprises. 

A. Evaluating the volume of a convex body by computer 

Let us assume that a convex body K is described, in the computer, by a 
membership oracle: input a point x, and the oracle announces whether or not 
x E K. 

Lovasz found, in 1985, a polynomial time algorithm that will give for vol(K) a 
lower bound denoted by vol(K). The crucial problem lies in how good that 
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approximation is. Barany and Fulredi, in 1987, show it to be a complete disaster. 
They prove that for an input which is polynomial in d, say of n = da points, one 
cannot in general do better than 

vol(K) ( d d/2 

vol(K) <2aclogd) 

For the proof we consider the simplest convex body, the unit ball Bd. It can be 
proved that the maximal volume of a polytope with n = da points contained in Bd, 

if denoted by V(d, n), obeys 

V(d,n) /2aclogdd d/2 

vol( Bd) - d 

The idea is roughly as follows. By Caratheodory's theorem (see section 8.E) 
every point of the convex hull of n = da points belongs to a simplex of Rd. If the 
points are within distance 1 from the origin, subtle estimates can be obtained for 
the volume of such a simplex from some of its k-faces. Then one will have at most 
(n) such situations to fill out the polytope and a 1/k! factor coming from the 
volume of a k-dimensional simplex. The subtlety now lies in a smart choice for k. 
The answer is to take k as the integral part of d/2 log n. Then, because of the 
formulas given at the beginning of section 3 for the volume of the unit ball Bd and 
(n) = n!/k!(n - k)!, one concludes, after computations using the Stirling formula 
for evaluating p! when p is large, which asserts that 

-*),1. 
p p p -> 1o 

(e) 

A comment: ellipsoids are really the worst convex sets for the above inequality. 
This was proved in 1951 by Macbeath. When the number of points n is given, for 
convex bodies K in a given R , the bound 

Sup(Volume of a polytope contained in K with n vertices) 

vol(K) 

is minimum for ellipsoids. 
There is still one hope. Try to estimate vol(K) from below by vol(K) with a 

membership oracle, and try to get an upper bound vol(K) with a membership and 
a separation oracle together, which are easy to implement. When the computer 
answers x e K it will at the same time give you a half-space containing K: 
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Still according to Lova'sz, there is also a polynomial algorithm giving vol(K) > 
vol(K). Moreover, 

vol(K) 

vol(K) ?d. 

This is bad for large ds. But one might hope to be smart enough in choosing points 
to get a good 

vol(K) 

vol(K) 

This amounts to being able to play with points and half-spaces (or, say, affine 
hyperplanes). This is precisely what the classical duality in Euclidean spaces 
achieves for us. The final result will be given in C below (after this duality has 
been explained in B). 

But before we end with a great classic of convexity, let us recall that Minkowski 
showed just before 1900 that any convex body admits at least one supporting 
hyperplane H (affine here) for any point x of its boundary: 

,~~ 

namely, K lies entirely in one of the two closed half-spaces determined by H. In 
most books this is called the Hahn-Banach theorem because Hahn and Banach 
proved it, much later, in the infinite-dimensional case. This basic result for the 
study of convex sets shows in particular what we announced in section 2: a closed 
convex set is the intersection of the closed half-spaces which contain it. 

B. The Euclidean duality 

We consider Rd with its standard Euclidean structure. The duality between 
points of Rd and its affine hyperplanes is geometrically defined as follows: 

H(x) 

'0 H(x) 

To x 0 0 associate the line Ox and call the dual of x the hyperplane H(x) which 
is orthogonal to Ox and cut it at the point x' such that Ox * Ox' = 1. Conversely, x, 
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clearly unique for any hyperplane H not containing 0, is called the dual (the pole) 
of H. Check for yourself in the plane what the dual of the intersection of two lines 
is in R2. Algebraically, things are much simpler: 

H(x) = {y E Rd: (xly) = 11 

where (* ) denotes the usual scalar product. 
The polar (reciprocal) convex body K* of a given convex body K is either the 

convex hull of the poles of the supporting hyperplanes of H or the intersection of 
the half spaces bounded by the hyperplanes which are the dual of the points of K 
(of course you need to use the boundary points of K). This duality is excellent if K 
is a convex body that contains 0 in its interior. From now on only such K's will be 
considered. Then (K*)* = K. 

Examples are: 

(i) the unit ball Bd is its own dual 
(ii) ellipsoids have ellipsoids as duals; check that then 

vol(E)vol(E*) = (vol(Bd))2 = 32(d) 

x(D) 

x 

W E . <~~~E 

(iii) the dual of a cube is called a cross polytope. Precisely the dual of [-1, 1]d - 

K is K* = convex hull of the point +ej (where {ei1 is the standard base). 
Note that a cube has 2d vertices, the cross polytope only 2d. Note here 

2d 4d 
vol(K)vol(K*) = 2d = 

d! d! 

. 5 

(iv) more generally the dual of a polytope is a polytope, the duality exchanging 
vertices of one with faces of the other. 
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C. Back to estimating volumes: the invariant vol( K) vol( K*) 

Here we work with convex sets K symmetric in the origin. The picture and the 
way Lova'sz obtains vol(K) and vol(K) show that if we want to compute vol(Bd) by 
his method, we have to estimate 

vol(Bd) vol(K*) 

vol(Bd) vol(K) 

where K is one of the polytopes contained in Bd as in the figure in subsection A. 
We rewrite the right-hand quotient of 1 as 

vol(K)vol(K*) vol(BK)) (vol(1 d)) 

The last two terms are estimated above. The plan is to work with a smart K, that is 
to approximate Bd by K such that vol(K)vol(K*) is very small. 

Note that vol(K)vol(K*) is an invariant of the linear shape of K only because 
linear transformations will affect vol(K) by det f when it affects vol(K*) by 
(det fV -. It was conjectured by Mahler that for any d and any K: 

4d 
/32(d) > vol(K)vol(K*) > - 

the left inequality being characteristic of ellipsoids and the right one of cubes or 
cross polytopes. 

Assume Mahler's conjecture on the right side. Then the hopes mentioned above 
are dashed. Because then always 

vol(K*) ( d 
vol(K) Vae log d) 

using the above results. 
As to Mahler's double conjecture, the situation today is the following. The left 

bound is true and characterizes the ellipsoid. The bound was proved by Blaschke 
for d = 2, 3 and by L. Santalo (with some restrictions) for any d. The fact that 
equality characterizes the ellipsoid for any d was settled only by Saint Raymond in 
1981. The exact right-hand bound is unknown today even for d = 3. It is known 
only for d = 2 (try it yourself to feel the difficulty there already is for d = 2). In 
1985, J. Bourgain and V. Milman showed that the order of magnitude conjectured 
by Mahler is the right one. There exists c > 0 

cd 
vol(K)vol(K*) > V VK Vd. 

So the error on computing volumes will have to be as bad as 

dd 

C 
log d) 

Thus "it is impossible to compute the volume with a decent error in polynomial 
time." In other words a computation of volume applicable to any convex body 
should be of another type. 



674 MARCEL BERGER [October 

The Bourgain-Milman proof is quite involved. It uses probability theory and fine 
estimates, see [8], [5]. 

Note that the Mahler conjecture is useful in a completely different context, that 
of simultaneous approximations of real numbers by rationals, see [17], page 31. 

D. The Minkowski addition 

For K, H convex sets of Rd, the set defined as 

K+H= {x +y: x E K, y eH} 

is still convex. 

A + 2B 

disk K 
A A + K = {x: d(x, A) < e} 
radius E 

Note that if you change the origin in Rd the new K + H will differ from the old 
one by only a translation, so it can be considered as well-defined in shape. The 
notion is then affine. More generally, AK + ,tH = {Ax + ,ty: x E K, y E H} is 
still convex for any A,btL > 0. The picture below shows 

A+2B 1 2 
= -A + -B 

3 3 3 

for two simplices in R3 and also that the sum of some K with a ball of radius e is 
nothing but the set of points within a distance e of K. We have no time to 
elaborate on this. Suffice it to note that it is the starting point of one of the first 
rigorous proofs of the standard isoperimetric inequality in Rd which states that 
among all convex bodies of given volume, balls are those with the smallest 
boundary volume (here (d - 1)-volume which is length when d = 2 and area when 
d = 3), see section 8. Let us mention here the basic Brunn-Minkowski inequality 

(vol(A + B))l/d ? (vol(A))l/d + (vol(B))l/d. 

This was essentially discovered by Brunn in 1888. The reader will easily see that 
this is exactly equivalent to the claim that the (d - 1) -1th power of the (d - 1)- 
dimensional volume of the sections of a given convex body in Rd is a concave 
function when the cutting hyperplane moves from the left to the right: see sec- 
tion 5.A. 
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In both of the above figures, the Minkowski addition has a regularization effect; 
in both cases K + H has a smoother boundary than K, H. This is naive for the 
general case but was discovered only in 1988 by Kieselman. Even when K and H 
have the most regular boundary possible-namely, Cm, or real analytic or even 
more: algebraic-the boundary of K + H can be non-smooth. The results are of 
local nature. The negative one consists simply of the epigraphs K, H (see section 
4) of x4/4 and x6/6 for which 

x 6 3 
K + H is the epigraph of - - - x12013 + something of class C7. 

6 4 

So it is only six times differentiable. But it is the worst possible. The positive result 
is: if the boundary of K and the boundary of H are of class C?, then the boundary 
of K + H is always of class C20/3 = C6+(2/3). See [26]. 

K 
H ~ ~ ~ + 

twx 
x4 xx _x <x6W 
4 6 X6 31xl20/3 + (e C7). 

So the Minkowski addition has no regularizing effect when regularity means local 
smoothness (differentiability properties). But it does have a global regularizing 
effect when regularity means being close to ellipsoids. It was indeed proved by 
Vitali Milman that for any convex body in Rd there exist two affine isomorphisms 
A and B of Rd such that if one sets T = K + A(K) then the dual T* of T has the 
advantage that T* + B(T*) has a Banach-Mazur distance to the sphere always 
bounded by a number independent of the dimension d. 

7. Topology on the set of all convex bodies: intuition is dangerous 

A. Topology 

We are going to see with the help of topology that intuition can again be 
misleading. Namely that if any convex body has a boundary which is almost 
everywhere C' and C2 differentiable, in the set of all convex bodies almost every 
convex body has a b,undary which is never everywhere C2. For even worse, see 
below. Topology is needed to give a precise meaning to "almost every convex 
body." 

For the sake of simplicity we work in the set X of all convex bodies symmetric 
in the origin of a given Rd. We recall that these are convex sets which are also 
compact and with a non-void interior. We specify X in Rd only when needed. 
Topology on the convex body set is best given by the Banach-Mazur metric. 

We have already seen in section 3 the Banach-Mazur distance on X'. It has the 
advantage of being linear-invariant. But, stricto sensu, it is a distance in fact only 
when convex sets which differ by some linear transformation are identified. A 
non-linear-invariant distance is the Hausdorff one. Fix on Rd some Euclidean 
metric. Then d(K, H) is defined by the smallest e such that K c H + eBd and 
H c K + 8Bd, i.e., K is within distance e from H and conversely. It is easy to 
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prove that the Hausdorff distance gives the same topology on A' as the Banach- 
Mazur one (just beware of the quotient to be done). 

Remark that no reasonable measure on X is known. To define the analogue of 
"almost every" without measure but when one has a topology, we use Baire's idea: 
negligible sets will be by definition those which are a denumerable union of sets 
with void interior (these latter are also called meager). 

B. Probable regularity of the boundary of a convex set 

Consider a convex body K and its boundary dK. We want to study the regularity 
of this set which is a curve when d = 2 and a surface when d = 3. In general a 
hypersurface. This is a local question. In particular, taking x E dK and a support- 
ing hyperplane H at x we can locally consider K as the epigraph of a convex 
numerical function f: U -* R where U is a neighborhood of x in H. Then dK will 
locally coincide with the graph of f. 

We can apply the results quoted in section 4. So if we build the totality of dK 
with such graphs we know that dK is almost everywhere (this for the natural 
measure on dK obtained from the Lebesgue measures on the H's through the f's) 
a differentiable manifold of class C2 (in particular almost everywhere of class C1). 
The question we address now is: what are the chances for dK to be everywhere of 
class C1 when we pick K at random in X. A nice answer was provided by Klee in 
1959. He proved that, up to a negligible set in K, dK is always C1 everywhere, 
hence a nice C0-submanifold of Rd (of codimension one). 

In contrast to this the C2 situation is dramatically different: Gruber in 1977 
proved that the set of K in A' whose dK is almost everywhere C2 is negligible. 
Worse: Zamfirescu in 1980 proved that, except in a negligible set, dK has horrible 
curvature properties: curvature does not exist on a non-denumerable set and 
where it does exist it is equal to zero! The reason is that that is exactly how the 
curvature of a polytope behaves and it so happens that in X polytopes are dense. 
See [20], [37]. 

8. Brief survey of other important topics in convexity 

For lack of space we cannot treat these in detail but only briefly mention what 
they are about and provide some references. 

A. Inequalities 

The most important one is Brunn-Minkowski's mention in section 6. It yields 
the classical isoperimetric inequality in Rd. For other proofs, other inequalities, 
especially the mixed volume inequalities, which are quite deep and hard to prove, 
see [11], [27]. 

B. Almost spherical sections, concentration phenomena, applications 

The isoperimetric inequality on spheres was used by Paul Levy back in the '30s 
to prove concentration properties for functions. It was used by Milman in 1971 to 
prove the inspiring theorem of Dvoretsky (1961) that any convex body admits 
almost ellipsoidal sections for suitable codimension. This was the starting point of 
a whole series of recent works in the same vein. Its importance lies, besides its 
strong geometrical appeal, in its application (through the so-called asymptotic 
methods) to Banach spaces of infinite dimension. For this see [28]. 
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C. Convexity in analysis 

Recently discoveries have been made of various functions which are log-con- 
cave, like voll/d in the Brunn-Minkowski inequality. It seems to have started with 
the important Brascamp-Lieb inequality which solved, in particular, the long-stand- 
ing conjecture: the level lines of the first eigenfunction of the Dirichlet problem of 
a convex domain are convex hypersurfaces. In fact the complete heat kernel has a 
convexity property. See [3], [9]. 

D. Packing and covering 

These two notions are very important. They have been connected, since 
Minkowski, with number geometry, rational approximations. But also with error 
detecting codes. Interesting references are [13], [17]. 

They are also connected with notions of entropy and infinite-dimensional 
Banach geometry: see [28]. 

E. Caratheodory, Helly, Radon 

Three elementary (and very visualizable) statements are: 

the Caratheodory theorem: the convex hull of a set in Rd is generated by the 
positive barycenters of its (d + 1)-uples 

the Helly theorem: a family of compact convex sets has a non-void 
intersection as soon as any d + 1 of its sets has a 
non-void intersection 

the Radon theorem: let T be a subset of at least d + 2 points in Rd. 
Then there always exists a disjoint decomposition 
T= T1 U T2 such that conv(Tl) n conv(T2) = 0. 

None of these theorems are very hard to prove. Nor are they too elementary. The 
very interesting fact is that any one of them easily implies the two others, 
Moreover they have an enormous number of applications and are linked a great 
deal with combinatorics. See, for example [15], [18]. 

F. Convexity in other spaces 

Convexity can be defined in more general spaces than the Euclidean ones. In 
particular, it is widely used nowadays in Riemannian Geometry. See [4], [31]. 

G. Last but not least: The moment map 

This map was introduced very recently. The fact that it is convex in certain cases 
is very powerful and turns out to be a surprising link between mechanics, Kahler 
geometry, Lie group theory and eigenvalues of matrices, See [1], [25]. 
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