THE UNITY OF MATHEMATICS

M. F. ATIYAH?t

1. Introduction

There are several views on the function of a presidential address. There is the
view, put forward so ably by my predecessor David Kendall, that the president has
to fill the awkward gap between the AGM and the annual dinner and so he should be
brief and entertaining. Another rather lofty view is that a presidential address is a
unique event (for the speaker if not the audience) and that it should be used to present
a grand survey of mathematics, or of some major branch of it. I confess that I was
tempted by this second view, particularly after re-reading Hermann Weyl’s article in
the AMS monthly entitled ““ A half-century of mathematics ”’. Bearing in mind the
increasing pace of our subject and the fact that no one can hope to emulate Weyl
either in mathematical scope or in literary style, I would have been conteat with a
more modest quarter-century. Even this I found daunting and there was in addition
the danger of flying at such high altitude that nothing would be visible except cloud.
Because of this and bearing in mind Kendall’s dictum, I have decided to stay closer
to earth.

I want therefore to use this occasion to express my personal attitude to mathe-
matics, but to do this by way of simple example rather than by philosophical generali-
ties. The aspect of mathematics which fascinates me most is the rich interaction
between its different branches, the unexpected links, the surprises, and my aim will be
to illustrate this by considering some simple problems.

The lecture will be divided into two halves, like some examinations, with an easy
compulsory first half followed by an optional second half for more advanced candi-
dates. In the first part I will list three simple items from three different branches of
mathematics and proceed to show how they are related to one another. Although
simple they contain germs of ideas which have been extensively developed over the
past twenty years, and in the second part I will mention some of the striking results
that have emerged as the end-product of this development. So if the first part appears
too easy just wait for the end, while if the second part is too difficult, remember that
the essential ideas are all contained in the simple examples!

2. Three examples

I begin with the well-known fact of Number T heory that unique factorization fails
for the ring Z[./ —5] consisting of elements a+b./—5 with a, b ordinary integers.
Specifically we have two different factorizations:

9=32=(2-J=-5Q2+J/-9. 2.1
Unique factorization is restored if we introduce the ideal elements

4= 2+y~5)

tPresidential address delivered to the London Mathematical Society on 19 November 1976.
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whose products are given by

pg=(3),p’ = 2=V ~5),9> = 2+J-5).
The unpleasant property of 9 is then explained by the identity:
(pg)* = p’q>.
Next I remind you of a famous object from Geometry, namely the Mébius band.

This is most conveniently described by identifying one pair of opposite sides of a
rectangle, but putting in a twist:

Without a twist we would get a cylinder, and the interest of the Mdbius band is
precisely that it is qualitatively quite different from the cylinder.
Finally I will take an equation from Analysis of the form:

fx)+fax, y)f (y)dy = 0.

This is a linear integro-differential equation, which depends of course on the kernel
function a(x, y), whose precise nature will be stipulated later.

In the succeeding sections I will show how these three examples from Number
Theory, Geometry and Analysis all link up quite naturally.

3. The circle

In order to make the connection from our Number Theory example to the Mbius
band it is natural to consider, as an intermediate object, the circle (the axis of the
Mobius band) given by the usual equation:

x*+y?=1. (3.1

We consider the ring R[x] of real polynomials in x as analogous to the ring Z of
ordinary integers. This is reasonable since unique factorization holds in both. The
irrationality y = /(1 —x?) we regard as analogous to ./ —5. Then in the ring R[x, y),
modulo the relation (3.1), we have

2= (1=y)(1+y), (3.2)

which like (2.1) says that unique factorization fails.
Proceeding as in §2 we introduce ideal elements

p=(x1-y)
q=(x1+y)
whose products are given by
pa = (x), p* = (1-y), ¢* = (1+)). (3.3)
The advantage of the ring R[x, /(1 —x?)] over Z[/—5] is that we have the
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geometry of the circle at our disposal. The ideal elements p and g are represented by
the points p and q in the figure
» y

In fact p is the unique point on the circle satisfying both equations x = 0and 1—y = 0,
while g is similarly given by x = 0 and 1+y = 0. The identities (3.3) can then be
interpreted geometrically as saying that x = 0 cuts the circle in the points p and g,
while 1 —y = 0 is the tangent at p and 1+y = 0 is the tangent at g. The failure of
unique factorization in R[x, /(1 —x?)] is thus tied to the fact that a single point on the
circle cannot be given by a single extra polynomial equation f (x, y) = 0.

If we put x = cos 8, y = sin § then any polynomial f (x, y) becomes in particular
a continuous function f(6) = f(cos,sin) which is periodic: f(8+2n) = f(0).
The graph of f can be drawn in the usual way in the plane

0/(“\ /_/\2n
v

or better still, by identifying 8§ = 0 with # = 2x, we can draw the graph of f on the
cylinder

It is now intuitively clear that the graph of f must cross the § = 0 circle an even number
of times. Thus the fact that a point cannot be given by one equation is essentially a
topological fact.

If, instead of a periodic function, we consider an antiperiodic function, i.e. a
function f (8) with f(8+2n) = —f (0), then its graph is naturally drawn on a M&bius
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band. Moreover such an f can very well have a single zero in the interval [0, 2x]:
take for example f(6) = 6—n with graph

0 2n

To sum up we see that the existence of the Mébius band is intimately related to the
non-uniqueness of factorization in R[x, \/(1 —x2)] which is formally similar to that
in Z[./-5].

4. Parity

I'shall now connect the Mébius band (via anti-periodic functions) with our integro-
differential equation. To make this precise we define the linear operator A by
2r

(Af) () = f'(x)+ f a(x, y)f (9)dy,

0

where we now assume that a is real, continuous and skew, i.e. a(x, y) = —a(y, x).
We will further assume either,

(i) a(x, y) is periodic in each variable (with period 2m) or
(i) a(x, y) is anti-periodic in each variable. '
In case (i) A acts on periodic functions f, while in case (ii) it acts on anti-periodic
functions. In both cases it'is a skew-adjoint operator, i.e: f(4f)g = —~ff(Ag).
Consider first the trivial case a = 0 (which is common to both (i) and (ii)). Then

Af =0 implies that f is a constant. Hence in case (i) Af = 0 has a 1-dimensional
solution space while in case (ii) it consists only of 0. In general we have the following

THEOREM. The dimension of the space of solutions of Af = 0 is odd in the periodic
case and even in the anti-periodic case.

Proof. Since A is skew-adjoint its eigenvalues are purely imaginary. Since A is
also real the non-zero eigenvalues occur in complex conjugate pairs. Hence the
multiplicity of the O-eigenvalue of A, taken modulo 2, is invariant under continuous
change of a. Replacing a by ta and making ¢ — 0 reduces us to the trivial case of
a = 0 which we noted above.

Remarks. (1) This proof uses basic continuity properties of the eigenvalues of 4
which are easy to establish.
(2) Taking
N nsinn(x—y) Lo
a(x,y) = Y, —————= (periodic case)
T

n=1

(n—=)sin[(n—H(x-y)]

1 I

(anti-periodic case)

. N
=n§
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gives examples in which the dimension of the null space of 4 is 2N +1 (or 2N), showing
that all possibilities actually occur.

The theorem shows that the topological difference between the Mébius band and
the cylinder is reflected in an analytical parity for our operator A.

5. Modules and Bundles

From a modern point of view the lack of unique factorization in our examples is
expressed by saying that the ideals are not all principal. An alternative statement
can be made in terms of modules which is somewhat more geometrical. 1 shall
illustrate this by our examples, beginning with the Mobius band M.

Let us consider M as a band of infinite width (analogue of an infinite cylinder).
Then M can be described as a family of lines M, parametrized by a point 6 on the
circle. Each line is a real vector space of dimension one but there is no preferred basis.
The normals to M form another such “line bundle > M* over the circle. The direct
sum M @ M*' is a 2-dimensional vector bundle over the circle (fibre at 6 being
My ® M,'). We can regard this as the normal bundle to the central axis of the
Mobius band in R3. Since this axis is a standard flat circle its normal bundle is trivial,
i.e. it has a global basis. Thus the line-bundle M (which is not trivial) appears as a
direct summand of a trivial bundle.

~Now let us consider the ring Z[./—5] and the ideal p = (3, 2—./~5) as before.
Computing its inverse we find

1 1-y=5
1 _p2 g - =5 =1 — .
p 'p p 2—J=s (3,2—-5) ( 3 )

Since the determinant of the matrix

1—y—5
, d=vS
3
3. 2—y-=5

is equal to 1 it follows that the module p @ p~* is free of rank 2 (over Z[/—5)),
while p is not free of rank 1 (not being principal).

In matrix terms, having a non-trivial summand of a free module of rank 2 is
equivalent to having a 2x 2 matrix T (with coefficients in the given ring) such that
T? = Tbut with Tnot conjugate to the standard idempotent matrix, i.e. T cannot be
put in the form

r-of; 5o

with Q and Q™! being matrices with coefficients in our ring.

The two rings we have considered explicitly are Z[/—5] and R[x, /(1 —x?)].
The latter relates to the circle as the real algebraic curve x2+y? = 1, but we can also
consider the circle simply as a topological space in which case the appropriate ring
Z (circle) consists of all continuous real-valued functions on the circle. For all three
rings we have an “ interesting ” 2 x 2 matrix T as above.

The analogy between vector bundles and projective modules (direct summands of
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free modules) which I have been exemplifying has proved very fruitful. The basic
ideas are due to Serre [6] who in particular was led to conjecture that projective
modules over a polynomial ring (over a field) are necessarily free. Since a polynomial
ring corresponds geometrically to a linear space, which is contractible when the field
is R, this conjecture is what one would expect from the topological analogue. Serre’s
conjecture was a major outstanding problem for many years but it has recently been
settled affirmatively in a brilliant short proof by Quillen [7].

Vector bundles in topology, differential and algebraic geometry have been ex-
tensively studied in recent years with a wealth of interesting results and applications.
Perhaps it is sufficient to recall the solution by Adams [1] of the famous vector-field
problem on spheres, which asks for the maximum number of linearly independent
tangent vector fields on the n-sphere (as a function of n).

6. Bundles and Operators

The Mdbius band owes its existence to the fact that R*, the multiplication group
of the real field, is not connected. More generally vector bundles of dimension n over
general topological spaces depend on the topological properties of GL(n, R). For
various purposes it is convenient to stabilize by increasing n, using the natural embedd-

A O
ing GL(n, R) =« GL(n+1, R) given by A+ (0 1). We put GL,, = | GL(n, R).

This space figures in the famous Bott periodicity theorems [4] which are the basis of
K-theory [2). On the other hand it is essentially equivalent to a certain space of
operators which turns up naturally in functional analysis, and this equivalence lies
behind the parity discussion of §3.

To explain this let us consider a real Hilbert space H (for example the space of
real I? functions on the circle). We consider all bounded linear operators 4 : H - H
with the usual operator norm |4] = sup |Ax|. An operator A is skew-adjoint if

(Ax,y) = —{x, Ay) forall x, ye H. It then has a spectrum on the imaginary axis.
We now assume in addition that A = 0 is an eigenvalue of finite multiplicity and is
isolated in the spectrum of A. Equivalently A is invertible on the orthogonal comple-
ment of the (finite-dimensional) null-space. Let &/ denote the space of all such 4: it
has a metric space topology induced by the norm. Then we have the following [3]:

THEOREM. GL,, is homotopically equivalent to .

In particular both spaces have the same number (namely 2) of components. In
GL , the components correspond to the sign of the determinant, while in & they are
determined by the parity of the dimension of the null-space.

1. Functional Analysis

The Theorem in the previous section has an analogue when the real field is re-
placed by the complex field and this in turn has had a remarkable application to a
theorem of pure functional analysis which I shall now describe.
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We consider now a complex Hilbert space H and recall that a bounded linear
operator A on H is said to be Fredholm if its range is closed and both A4 and its adjoint
A* have finite-dimensional null spaces A4'(4) and A" (A*). We then define

index A = dim 4" (4)—dim A (4*).

Note that an operator with A* = + A4 has index zero. In §6 our operators (besides
being real) were skew-adjoint Fredholm operators and so had index zero: however
dim A4'(4) mod 2 was then a mod 2 analogue.

The standard example of a Fredholm operator with non-zero index is the k-shift
A, defined in terms of an orthonormal base {e;} by Ae; = e, for an integer k > 0.
Clearly A*e; = e;_,, where ¢; = 0 if i < 0, and A'(4*) is spanned by ey, ..., ¢, while
A(A) = 0. Thus index A = —k, and this result holds also for negative k if we again
interpret e; as zero for negative i. Note that

A*A = 1 +(finite rank operator)
and so in particular
A*A = 1 +compact operator.

If we now perturb A by a compact operator K, putting B = A+ K, then we find
(1)index B =—k

B*B = 1+ compact operator
(2)

B B*=14compact operator.

Property (1) is a consequence of the general fact that the index of any Fredholm
operator is invariant under compact perturbation, while (2) follows from the fact that
the compact operators form a 2-sided ideal in the algebra of all bounded operators.
Note also that property (2) implies that B is Fredholm.

We can now ask the converse question, namely is every solution of (1) and (2) a
compact perturbation of a k-shift? This is answered by the following:

THEOREM. If B is a bounded operator satisfying (1) and (2) with k # 0 then, with
respect to a suitable orthonormal basis of H, B = A+ K where K is compact and A is

the k-shift.

This theorem is a very special case of the deep results of Brown, Douglas and
Fillmore [S]. It is clearly a theorem of pure Hilbert space analysis and it answers a
simple natural question. However its proof rests on the important link with topology
on the lines of §6. The excluded case k = 0 is also covered by the resuits of [5], but
the conclusion is then different. The point is that the essential spectrum of B is the
whole unit circle if £ # 0, but can be any closed subset T if kK = 0. Clearly X is an
additional invariant for B and the general result is that two B with k = 0 and the same
X are unitarily equivalent modulo compact operators.

8. Concluding Remarks

The main theme of my lecture has been to illustrate the unity of mathematics by
discussing a few examples that range from Number Theory through Algebra, Geo-
metry, Topology and Analysis. This interaction is, in my view, not simply an occasional
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interesting accident, but rather it is of the essence of mathematics. Finding analogies
between different phenomena and developing techniques to exploit these analogies
is the basic mathematical approach to the physical world. It is therefore hardly
surprising that it should also figure prominently internally within mathematics
itself. I feel that this needs to be emphasized because the axiomatic era has tended to
divide mathematics into specialist branches, each restricted to developing the con-
sequences of a given set of axioms. Now I am not entirely against the axiomatic
approach so long as it is regarded as a convenient temporary device to concentrate
the mind, but it should not be given too high a status.

A secondary theme implicit in my lecture has been the importance of simplicity
in mathematics. The most useful piece of advice I would give to a mathematics
student is always to suspect an impressive sounding Theorem if it does not have a
special case which is both simple and non-trivial. I have tried to select examples which
satisfy these conditions.

Both unity and simplicity are essential, since the aim of mathematics is to explain
as much as possible in simple basic terms. Mathematics is still after all a human
activity, not a computer programme, and if our accumulated experience is to be
passed on from generation to generation we must continually strive to simplify and
unify.
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