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On the course

Our goal: Prove the existence of multiple orthogonal
geodesic chords in a class of compact Riemannian
manifolds with boundary
Method: develop a non smooth Ljusternik–Schnirelmann
theory
Applications: Prove the existence of:

multiple brake orbits for a class of Hamiltonian
problems

multiple homoclinic orbits for a class of Lagrangian
systems
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Riemannian geometry

M smooth manifold
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Riemannian geometry

M smooth manifold

g symmetric, positive definite (2, 0)-tensor on M

∇ Levi–Civita connection of g

Σ ⊂M hypersurface
Sn : TxΣ× TxΣ→ R second fundamental form of Σ

Sn(v, w) = g
(
∇vW,nx

)
symmetric bilinear form

W extension of w, nx normal vector to Σ at x.
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∇ Levi–Civita connection of g

Σ ⊂M hypersurface
Sn : TxΣ× TxΣ→ R second fundamental form of Σ
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(
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W extension of w, nx normal vector to Σ at x.

Obs.: Sn is the Hessian of the map p 7→ dist∗(p,Σ).
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Riemannian geometry

M smooth manifold

g symmetric, positive definite (2, 0)-tensor on M

∇ Levi–Civita connection of g

Σ ⊂M hypersurface
Sn : TxΣ× TxΣ→ R second fundamental form of Σ

Sn(v, w) = g
(
∇vW,nx

)
symmetric bilinear form

W extension of w, nx normal vector to Σ at x. “signed distance”

Obs.: Sn is the Hessian of the map p 7→ dist∗(p,Σ).
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Convex and Concave domains

(M, g) Riemannian manifold
Ω ⊂M open subset, Ω = Ω

⋃
∂Ω

Ω
γ
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Convex and Concave domains

(M, g) Riemannian manifold
Ω ⊂M open subset, Ω = Ω

⋃
∂Ω

Definition. Ω is said to be convex if for all geodesic
γ : [a, b]→ Ω with γ(a), γ(b) ∈ Ω, then γ

(
[a, b]

)
⊂ Ω.

Ω is concave if M \ Ω is convex.

Ω is strongly concave if Sn is positive definite, where n is
inward pointing.

C2-open condition

Ω
γ
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Convex and Concave domains

(M, g) Riemannian manifold
Ω ⊂M open subset, Ω = Ω

⋃
∂Ω

Definition. Ω is said to be convex if for all geodesic
γ : [a, b]→ Ω with γ(a), γ(b) ∈ Ω, then γ

(
[a, b]

)
⊂ Ω.

Ω is concave if M \ Ω is convex.

Ω is strongly concave if Sn is positive definite, where n is
inward pointing.

Lemma. Ω strongly concave =⇒ Ω concave.

Ω
γ
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Convex and Concave domains

(M, g) Riemannian manifold
Ω ⊂M open subset, Ω = Ω

⋃
∂Ω

Definition. Ω is said to be convex if for all geodesic
γ : [a, b]→ Ω with γ(a), γ(b) ∈ Ω, then γ

(
[a, b]

)
⊂ Ω.

Ω is concave if M \ Ω is convex.

Ω is strongly concave if Sn is positive definite, where n is
inward pointing.

Ω
γ

geodesics starting
tangentially to ∂Ω
move inside Ω
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Assume ∂Ω is smooth

School in Nonlinear Analysis and Calculus of Variations – p. 5/68



The boundary of Ω

Assume ∂Ω is smooth
∃ a smooth map φ : M → R with:

School in Nonlinear Analysis and Calculus of Variations – p. 5/68



The boundary of Ω

Assume ∂Ω is smooth
∃ a smooth map φ : M → R with:

Ω = φ−1
(
]−∞, 0[

)

School in Nonlinear Analysis and Calculus of Variations – p. 5/68



The boundary of Ω

Assume ∂Ω is smooth
∃ a smooth map φ : M → R with:

Ω = φ−1
(
]−∞, 0[

)

∂Ω = φ−1(0)

School in Nonlinear Analysis and Calculus of Variations – p. 5/68



The boundary of Ω

Assume ∂Ω is smooth
∃ a smooth map φ : M → R with:

Ω = φ−1
(
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)

∂Ω = φ−1(0)

dφ 6= 0 on ∂Ω
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The boundary of Ω

Assume ∂Ω is smooth
∃ a smooth map φ : M → R with:

Ω = φ−1
(
]−∞, 0[

)

∂Ω = φ−1(0)

dφ 6= 0 on ∂Ω

|φ(q)| = dist
(
q, ∂Ω

)
for q near ∂Ω.
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The boundary of Ω

Assume ∂Ω is smooth
∃ a smooth map φ : M → R with:

Ω = φ−1
(
]−∞, 0[

)

∂Ω = φ−1(0)

dφ 6= 0 on ∂Ω

|φ(q)| = dist
(
q, ∂Ω

)
for q near ∂Ω.

Observe: Hess(φ) = −S∇φ on T
(
∂Ω

)
.

School in Nonlinear Analysis and Calculus of Variations – p. 5/68



The boundary of Ω

Assume ∂Ω is smooth
∃ a smooth map φ : M → R with:

Ω = φ−1
(
]−∞, 0[

)

∂Ω = φ−1(0)

dφ 6= 0 on ∂Ω

|φ(q)| = dist
(
q, ∂Ω

)
for q near ∂Ω.

Observe: Hess(φ) = −S∇φ on T
(
∂Ω

)
.

Back to proof
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Orthogonal geodesic chords

Def.: An orthogonal
geodesic chord (OGC)
in Ω is a non constant
geodesic γ : [a, b] → Ω

with γ(a), γ(b) ∈ ∂Ω and

γ̇(a), γ̇(b) ∈ T
(
∂Ω

)⊥
.

Ω
γ

Ω
γ
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Orthogonal geodesic chords

Def.: An orthogonal
geodesic chord (OGC)
in Ω is a non constant
geodesic γ : [a, b] → Ω

with γ(a), γ(b) ∈ ∂Ω and

γ̇(a), γ̇(b) ∈ T
(
∂Ω

)⊥
.

Ω
γ

Ω
γ

A weak orthogonal
geodesic chord
(WOCG).
WOGC’s do not exist
in the convex case.
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Some examples – 1

Ω

Ω ∼= annulus: Sm−1 × [0, 1]

An OGC is crossing if its endpoints are in distinct con-

nected components of ∂Ω. It is easy to prove the ex-

istence of one crossing OGC whose length equals the

distance between the two connected components of

∂Ω.

g

W
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Some examples – 1

Ω

Ω ∼= annulus: Sm−1 × [0, 1]

An OGC is crossing if its endpoints are in distinct con-

nected components of ∂Ω. It is easy to prove the ex-

istence of one crossing OGC whose length equals the

distance between the two connected components of

∂Ω.

There may be only one OGC:
g

W
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Some examples – 2

If Ω is convex, then it is proven the existence of at least two
crossing OGC’s (Giannoni-Majer, DGA 1997).

e

D

g

g
2

1 We

1

D2
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Some examples – 2

If Ω is convex, then it is proven the existence of at least two
crossing OGC’s (Giannoni-Majer, DGA 1997).

This is an optimal result
(in all dimensions): Euclidean metric

g(x) = ψ
(
|x|

)
· g0(x), ψ : R+ → R

+

convexity of the annulus

1

2
ψ′(1) + ψ(1)≥0, ψ′(2) + ψ(2)≤0.

Ωε =
{
x ∈ R

m : 1 < |x|, |x− ε| < 2
}

.

(Back to the central result)

e

D

g

g
2

1 We

1

D2
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Getting rid of WOGC’s

Proposition: Assume:

1. ∂Ω compact and Ω strongly concave.
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Then ∃ Ω′ ⊂ Ω open with:

Ω′ diffeomorphic to Ω, ∂Ω′ smooth;

Ω′ strongly concave;
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Getting rid of WOGC’s

Proposition: Assume:

1. ∂Ω compact and Ω strongly concave.

2. ∃ only a finite number of (crossing) OGC’s in Ω.

Then ∃ Ω′ ⊂ Ω open with:

Ω′ diffeomorphic to Ω, ∂Ω′ smooth;

Ω′ strongly concave;

the number of (crossing) OGC’s in Ω′ is ≤ number of
(crossing) OGC’s in Ω;

there is no WOGC in Ω′.

It suffices to consider the case that there is no WOGC!
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Proof

Ω′ = φ−1
(
]−∞,−δ[

)
, with δ > 0 small. (recall φ)

Observe:
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by continuity, dφ 6= 0 in φ−1
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, so ∂Ω′ is smooth;

School in Nonlinear Analysis and Calculus of Variations – p. 10/68



Proof

Ω′ = φ−1
(
]−∞,−δ[

)
, with δ > 0 small. (recall φ)

Observe:

by continuity, dφ 6= 0 in φ−1
(
[−δ, 0]

)
, so ∂Ω′ is smooth;

Ω′ is strongly concave, by continuity of Hess(φ) and
compactness of ∂Ω;
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Proof

Ω′ = φ−1
(
]−∞,−δ[

)
, with δ > 0 small. (recall φ)

Observe:

by continuity, dφ 6= 0 in φ−1
(
[−δ, 0]

)
, so ∂Ω′ is smooth;

Ω′ is strongly concave, by continuity of Hess(φ) and
compactness of ∂Ω;

if δ < foc(∂Ω), every OGC in Ω′ can be extended to an
OGC in Ω
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Proof

Ω′ = φ−1
(
]−∞,−δ[

)
, with δ > 0 small. (recall φ)

Observe:

by continuity, dφ 6= 0 in φ−1
(
[−δ, 0]

)
, so ∂Ω′ is smooth;

Ω′ is strongly concave, by continuity of Hess(φ) and
compactness of ∂Ω; focal radius

if δ < foc(∂Ω), every OGC in Ω′ can be extended to an
OGC in Ω
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Proof

Ω′ = φ−1
(
]−∞,−δ[

)
, with δ > 0 small. (recall φ)

Observe:

by continuity, dφ 6= 0 in φ−1
(
[−δ, 0]

)
, so ∂Ω′ is smooth;

Ω′ is strongly concave, by continuity of Hess(φ) and
compactness of ∂Ω;

if δ < foc(∂Ω), every OGC in Ω′ can be extended to an
OGC in Ω

if by absurd ∃δn → 0 and a sequence γn of WOGC’s in
φ−1

(
]−∞,−δn[

)
, then one would get infinitely many

OGC’s in Ω. QED
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The main geometrical result

Theorem. (Giambò, Giannoni, Piccione)
Let (M, g) be a Riemannian manifold. Assume:
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Ω ⊂M open;
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The main geometrical result

Theorem. (Giambò, Giannoni, Piccione)
Let (M, g) be a Riemannian manifold. Assume:

Ω ⊂M open;

Ω homeomorphic to Sm−1 × [0, 1];

Ω strongly concave.

Then, there are at least two (geometrically distinct)
crossing OCG’s in Ω.
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Ω ⊂M open;

Ω homeomorphic to Sm−1 × [0, 1];

Ω strongly concave.

Then, there are at least two (geometrically distinct)
crossing OCG’s in Ω.

Obs.: Recall that it suffices to consider the case that there
are no WOGC’s.

School in Nonlinear Analysis and Calculus of Variations – p. 11/68



The main geometrical result

Theorem. (Giambò, Giannoni, Piccione)
Let (M, g) be a Riemannian manifold. Assume:

Ω ⊂M open;

Ω homeomorphic to Sm−1 × [0, 1];

Ω strongly concave.

Then, there are at least two (geometrically distinct)
crossing OCG’s in Ω.

Obs.: Recall that it suffices to consider the case that there
are no WOGC’s.
Obs.: Again, the result is optimal. Recall
example above (with opposite strict inequalities!)).
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Central symmetry

Def.: (M, g) Riemannian man., A ⊂M is centrally
symmetric around x0 ∈M if exists an isometry I : M →M ,
with I2 = I, whose unique fixed pt is x0, and such that
I(A) = A.
A function f : M → R is centrally symmetric if f ◦ I = f .
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Def.: (M, g) Riemannian man., A ⊂M is centrally
symmetric around x0 ∈M if exists an isometry I : M →M ,
with I2 = I, whose unique fixed pt is x0, and such that
I(A) = A.
A function f : M → R is centrally symmetric if f ◦ I = f .

If γ is a geodesic (orthogonal to Σ), then I ◦ γ is a geodesic
(orthogonal to I(Σ))
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Central symmetry

Def.: (M, g) Riemannian man., A ⊂M is centrally
symmetric around x0 ∈M if exists an isometry I : M →M ,
with I2 = I, whose unique fixed pt is x0, and such that
I(A) = A.
A function f : M → R is centrally symmetric if f ◦ I = f .

If γ is a geodesic (orthogonal to Σ), then I ◦ γ is a geodesic
(orthogonal to I(Σ))

Theorem. Under the assumptions of the above theorem, if
Ω is centrally symmetric around some x0, then there are at
least m = dim(M) geometrically distinct OGC’s γ1, . . . , γm
in Ω.

School in Nonlinear Analysis and Calculus of Variations – p. 12/68



A short history of the problem

Two classical results:

Ljusternik and Schnirelmann, 1932:
there are at least n principal chords in a compact
convex subset of the n-dimensional Euclidean space
having C2 boundary
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A short history of the problem

Two classical results:

Ljusternik and Schnirelmann, 1932:
there are at least n principal chords in a compact
convex subset of the n-dimensional Euclidean space
having C2 boundary

W. Bos, Kritische Sehenen auf Riemannischen
Elementarraumstücken, Math. Ann. 1963
at least n OGC’s in convex Riemannian manifolds
homeomorphic to an n-disk.
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A short history of the problem

Two classical results:

Ljusternik and Schnirelmann, 1932:
there are at least n principal chords in a compact
convex subset of the n-dimensional Euclidean space
having C2 boundary

W. Bos, Kritische Sehenen auf Riemannischen
Elementarraumstücken, Math. Ann. 1963
at least n OGC’s in convex Riemannian manifolds
homeomorphic to an n-disk.

F. Giannoni, P. Majer, On the effect of the domain about
the multiplicity of the orthogonal geodesic chords,
Diff. Geom. Appl. 1997
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The topology of the manifold

G & M’s result:

if the manifold is homeomorphic to an annulus and it
is convex, then there are at least two OGC’s;

if the manifold has compact and convex boundary,
and if the LS-category of the space of paths with
endpoints on the boundary is infinite, then there are
infinitely many OGC’s.
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The topology of the manifold

G & M’s result:

if the manifold is homeomorphic to an annulus and it
is convex, then there are at least two OGC’s;

if the manifold has compact and convex boundary,
and if the LS-category of the space of paths with
endpoints on the boundary is infinite, then there are
infinitely many OGC’s.

←− Example
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Geodesics chords, homoclinics and
brake orbits: a short bibliography

H. Seifert, Periodische Bewegungen Machanischer
Systeme, Math. Z. 1948.
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Geodesics chords, homoclinics and
brake orbits: a short bibliography

H. Seifert, Periodische Bewegungen Machanischer
Systeme, Math. Z. 1948.

H. Gluck, W. Ziller, Existence of Periodic Motions of
Conservative Systems, in “Seminar on Minimal
Surfaces” (E. Bombieri Ed.), 1983. (picture)
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A. Weinstein, Periodic orbits for convex Hamiltonian
systems, Ann. of Math. 1978.
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Geodesics chords, homoclinics and
brake orbits: a short bibliography

H. Seifert, Periodische Bewegungen Machanischer
Systeme, Math. Z. 1948.

H. Gluck, W. Ziller, Existence of Periodic Motions of
Conservative Systems, in “Seminar on Minimal
Surfaces” (E. Bombieri Ed.), 1983. (picture)

A. Weinstein, Periodic orbits for convex Hamiltonian
systems, Ann. of Math. 1978.

These results will be reviewed later.
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More bibliography

P. H. Rabinowitz, Periodic and Eteroclinic Orbits for a
Periodic Hamiltonian System, Ann. Inst. H. Poincaré
1989.
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Orbits for a Class of Conservative Systems, Rend.
Sem. Mat. Univ. Padova, 1993.

School in Nonlinear Analysis and Calculus of Variations – p. 16/68



More bibliography

P. H. Rabinowitz, Periodic and Eteroclinic Orbits for a
Periodic Hamiltonian System, Ann. Inst. H. Poincaré
1989.

A. Ambrosetti, V. Coti Zelati, Multiple Homoclinic
Orbits for a Class of Conservative Systems, Rend.
Sem. Mat. Univ. Padova, 1993.

K. Tanaka, A Note on the Existence of Multiple
Homoclinic Orbits for a Perturbed Radial Potential,
No. D. E. A. 1994.

School in Nonlinear Analysis and Calculus of Variations – p. 16/68



More bibliography

P. H. Rabinowitz, Periodic and Eteroclinic Orbits for a
Periodic Hamiltonian System, Ann. Inst. H. Poincaré
1989.

A. Ambrosetti, V. Coti Zelati, Multiple Homoclinic
Orbits for a Class of Conservative Systems, Rend.
Sem. Mat. Univ. Padova, 1993.

K. Tanaka, A Note on the Existence of Multiple
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E. Paturel, Multiple homoclinic orbits for a class of
Hamiltonian systems, Calc. Var. & PDE’s 2001.
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Ljusternik–Schnirelman category

Def.: X top. space, Y ⊂ X is contractible in X if i : Y → X is homotopic to a constant.
LS-category

catX (Y) = min

�
n : ∃C1, . . . , Cn ⊂ X open and contractible,

Y ⊂
n[

k=1

Ck

	
∈ {0, 1, . . . ,+∞}.
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flow on the space of curves lying inside the manifold, and whose endpoints are on the
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Classical result. If X is a complete Banach manifold and f : X → R is C1, bounded
from below, and satisfies (PS), then f has at least cat(X ) critical points.

More generally, cat gives a lower estimate on the number of fixed points of flows.
(fixed pts of the gradient flow of f=critical pts. of f )

In the case of Riemannian manifolds with convex boundary, one can use the shortening
flow on the space of curves lying inside the manifold, and whose endpoints are on the
boundary.

In the concave case, the shortening flow is not well defined on such space.
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Abstract LS theory

We will reproduce the “ingredients” of the classical LS theory in a nonsmooth context:

e e
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We will reproduce the “ingredients” of the classical LS theory in a nonsmooth context:

a metric space M. consists of curves having image in an open neighborhood of
Ω ∼= Sm−1 × [0, 1], whose endpoints remain near ∂Ω.

a compact subset C ⊂ M, homeomorphic to the sphere Sm−1.

a family eH consisting of pairs (D, h), where D ⊂ C is compact and
h : [0, 1] ×D → M is a continuous map with h(0, x) = x for all x, and satisfying
other properties that will be discussed ahead.

a functional F , that associates to each pair (D, h) ∈ eH a real number F(D, h).

We define a suitable notion of critical pt for F , in such a way that distinct critical values of
F correspond to geometrically distinct OGC’s in Ω.

We prove two deformation lemmas for the sublevels of F , and we prove a (PS) condition

for F , obtaining the existence of cat(C) = cat(Sm−1) = 2 distinct critical values of F .

For the symmetric case, a lower estimate is given by cat(RPm−1) = m.
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Deformation Lemmas and critical pts

1DL: noncritical levels of F can be deformed by
homotopies in H̃ into lower levels;

e
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Deformation Lemmas and critical pts

1DL: noncritical levels of F can be deformed by
homotopies in H̃ into lower levels;

2DL: a similar deformation exists also for critical levels of
F , provided that suitable neighborhoods of the critical pts
are removed.

i = 1, 2: Γi =
{
D ∈ C : cat(D) ≥ i

}
, ci = inf

D∈Γi

(D,h)∈ eHF(D, h)

One then proves:
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2DL: a similar deformation exists also for critical levels of
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are removed.
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}
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(D,h)∈ eHF(D, h)

One then proves:

ci > 0 and ci < +∞;
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Deformation Lemmas and critical pts

1DL: noncritical levels of F can be deformed by
homotopies in H̃ into lower levels;

2DL: a similar deformation exists also for critical levels of
F , provided that suitable neighborhoods of the critical pts
are removed.

i = 1, 2: Γi =
{
D ∈ C : cat(D) ≥ i

}
, ci = inf

D∈Γi

(D,h)∈ eHF(D, h)

One then proves:

ci > 0 and ci < +∞;

c1 ≤ c2;

each ci is a critical value, by 1DL;
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Deformation Lemmas and critical pts

1DL: noncritical levels of F can be deformed by
homotopies in H̃ into lower levels;

2DL: a similar deformation exists also for critical levels of
F , provided that suitable neighborhoods of the critical pts
are removed.

i = 1, 2: Γi =
{
D ∈ C : cat(D) ≥ i

}
, ci = inf

D∈Γi

(D,h)∈ eHF(D, h)

One then proves:

ci > 0 and ci < +∞;

c1 ≤ c2;

each ci is a critical value, by 1DL; c1 < c2 by 2DL.
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Basic notations

Ω ∼= Sm−1 × [0, 1] strongly concave, Ω ⊂ R
m, D1, D2

∼= Sm−1 conn. comp. of ∂Ω.

� � � � Z ��� � � �� �

(s)

(a)γ

(b)γ

γ
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m, D1, D2

∼= Sm−1 conn. comp. of ∂Ω.

x ∈ H1

�

[a, b],Rm

�
, ‖x‖a,b =

�
1
2

�
‖x(a)‖ +

Z b

a
‖ẋ(s)‖2 ds

�� 1

2

, ‖x‖L∞ ≤ ‖x‖a,b .

� � � �� �

(s)

(a)γ

(b)γ

γ
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‖ẋ(s)‖2 ds

�� 1

2

, ‖x‖L∞ ≤ ‖x‖a,b .

φ : Rm → R, Ω = φ−1

�
]−∞, 0[

�
, ∂Ω = φ−(0), dφ 6= 0 on ∂Ω and

Hess(φ)[v, v] < 0 for v ∈ T (∂Ω) \ {0}.

� �� �

(s)

(a)γ

(b)γ

γ

School in Nonlinear Analysis and Calculus of Variations – p. 21/68



Basic notations

Ω ∼= Sm−1 × [0, 1] strongly concave, Ω ⊂ R
m, D1, D2

∼= Sm−1 conn. comp. of ∂Ω.

x ∈ H1

�

[a, b],Rm

�
, ‖x‖a,b =

�
1
2

�
‖x(a)‖ +

Z b

a
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and all v 6= 0

with dφx[v] = 0.

ρ0 = min
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dist(x, y), K0 = max
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]−∞,δ0]
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(s)

(a)γ

(b)γ

γ
Prop.: If γ : [a, b] → Ω is a geo with
γ(a), γ(b) ∈ ∂Ω, then ∃s̄ ∈ ]a, b[

with φ(γ(s̄)) < −δ0.
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The path spaces

Define Ci = connected components of φ−1

�
[0, δ0]

�
containing Di, i = 1, 2.

M =

n

x ∈ H1

�

[0, 1],Rm

�
: φ(x(s)) < δ0, x(0) ∈ C1, x(1) ∈ C2

o

n o Rn � � on o R �R �
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[0, 1],Rm
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x =
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⊂ Ω, x(a) ∈ D1, x(b) ∈ D2
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Jx =
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x : [a, b] maximal

o
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The path spaces

Define Ci = connected components of φ−1
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[0, δ0]

�
containing Di, i = 1, 2.

M =

n

x ∈ H1
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[0, 1],Rm
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: φ(x(s)) < δ0, x(0) ∈ C1, x(1) ∈ C2
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C ∼=
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orthogonal segments from D1 to D2

o
M0 = sup
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R 1
0 g(ẋ, ẋ) ds.

x ∈ M, J 0
x =

n
[a, b] ⊂ [0, 1] : x

�
[a, b]

�
⊂ Ω, x(a) ∈ D1, x(b) ∈ D2

o
crossing intervals

Jx =

n
[a, b] ∈ J 0

x : [a, b] maximal

o
Def.: [a, b] ∈ J 0

x is an M0-interval if 1
2

R b
a g(ẋ, ẋ) ds < M0.

Obs.: x ∈ M =⇒ |Jx| < +∞: [a, b] ∈ J 0
x , b− a ≥ ρ20

�R b
a g(ẋ, ẋ) ds

�−1
.
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Geometrically and variationally
critical points

Def.: c ∈ ]0,M0[ is a geometrically critical value if ∃ a crossing OGC γ : [0, 1] → Ω with
1
2

R 1
0 g(γ̇, γ̇) dt = c. A geometrically regular value is a number c which is not

geometrically critical.

n � � � � on � � o

School in Nonlinear Analysis and Calculus of Variations – p. 23/68



Geometrically and variationally
critical points

Def.: c ∈ ]0,M0[ is a geometrically critical value if ∃ a crossing OGC γ : [0, 1] → Ω with
1
2

R 1
0 g(γ̇, γ̇) dt = c. A geometrically regular value is a number c which is not

geometrically critical.

Prop.: If c1 6= c2 are GCV’s, then they correspond to geometrically distinct OGC’s.

n � � � � on � � o
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Geometrically and variationally
critical points

Def.: c ∈ ]0,M0[ is a geometrically critical value if ∃ a crossing OGC γ : [0, 1] → Ω with
1
2

R 1
0 g(γ̇, γ̇) dt = c. A geometrically regular value is a number c which is not

geometrically critical.

Prop.: If c1 6= c2 are GCV’s, then they correspond to geometrically distinct OGC’s.

V+(x) =

n
V vector field along x : g

�
V (s),∇φ(x(s))

�
≥ 0 when x(s) ∈ φ−1

�
[0, δ0

2
]

� o

n � � o
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Geometrically and variationally
critical points

Def.: c ∈ ]0,M0[ is a geometrically critical value if ∃ a crossing OGC γ : [0, 1] → Ω with
1
2

R 1
0 g(γ̇, γ̇) dt = c. A geometrically regular value is a number c which is not

geometrically critical.

Prop.: If c1 6= c2 are GCV’s, then they correspond to geometrically distinct OGC’s.

V+(x) =

n
V vector field along x : g

�
V (s),∇φ(x(s))

�
≥ 0 when x(s) ∈ φ−1

�
[0, δ0

2
]

� o

V−(x) =

n
V vector field along x : g

�
V (s),∇φ(x(s))

�
≤ 0 when x(s) ∈ φ−1(0)

o

School in Nonlinear Analysis and Calculus of Variations – p. 23/68



Geometrically and variationally
critical points

Def.: c ∈ ]0,M0[ is a geometrically critical value if ∃ a crossing OGC γ : [0, 1] → Ω with
1
2

R 1
0 g(γ̇, γ̇) dt = c. A geometrically regular value is a number c which is not

geometrically critical.

Prop.: If c1 6= c2 are GCV’s, then they correspond to geometrically distinct OGC’s.

V+(x) =

n
V vector field along x : g

�
V (s),∇φ(x(s))

�
≥ 0 when x(s) ∈ φ−1

�
[0, δ0

2
]

� o

V−(x) =

n
V vector field along x : g

�
V (s),∇φ(x(s))

�
≤ 0 when x(s) ∈ φ−1(0)

o

Def.: x ∈ M, [a, b] ⊂ [0, 1]; then x|[a,b] is a variationally critical portion of x if x|[a,b] is

not constant and if

R b
a g

�
ẋ, D

dt
V

�
dt ≥ 0 for all V ∈ V+(x).
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Geometrically and variationally
critical points

Def.: c ∈ ]0,M0[ is a geometrically critical value if ∃ a crossing OGC γ : [0, 1] → Ω with
1
2

R 1
0 g(γ̇, γ̇) dt = c. A geometrically regular value is a number c which is not

geometrically critical.

Prop.: If c1 6= c2 are GCV’s, then they correspond to geometrically distinct OGC’s.

V+(x) =

n
V vector field along x : g

�
V (s),∇φ(x(s))

�
≥ 0 when x(s) ∈ φ−1

�
[0, δ0

2
]

� o

V−(x) =

n
V vector field along x : g

�
V (s),∇φ(x(s))

�
≤ 0 when x(s) ∈ φ−1(0)

o

Def.: x ∈ M, [a, b] ⊂ [0, 1]; then x|[a,b] is a variationally critical portion of x if x|[a,b] is

not constant and if

R b
a g

�
ẋ, D

dt
V

�
dt ≥ 0 for all V ∈ V+(x).

Variationally critical portions of x are curves
whose geodesic energy is not decreased
by “infinitesimal variations” with curves
stretching outwards from Ω.

first variation of the geodesic action functional
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Classification of variationally critical
portions

Lem.: x ∈ M, [α, β] ⊂ 0, 1] and t̄ ∈ ]α, β[ such that x(α), x(β) ∈ ∂Ω, φ

�
x(t̄)

�
≤ −δ0.

Then β − α ≥ δ2

0

K2

0

�R β
α g(ẋ, ẋ) dt

�−1
.

� �� � � �n � � o
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Classification of variationally critical
portions

Lem.: x ∈ M, [α, β] ⊂ 0, 1] and t̄ ∈ ]α, β[ such that x(α), x(β) ∈ ∂Ω, φ

�
x(t̄)

�
≤ −δ0.

Then β − α ≥ δ2

0

K2

0

�R β
α g(ẋ, ẋ) dt

�−1
.

Prop.: x ∈ M, x|[a,b] var. critical portion of x with x(a), x(b) ∈ ∂Ω, x

�
[a, b]

�
⊂ Ω. Then:

� � � �n � � o
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Classification of variationally critical
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x(t̄)

�
≤ −δ0.

Then β − α ≥ δ2

0

K2

0

�R β
α g(ẋ, ẋ) dt

�−1
.

Prop.: x ∈ M, x|[a,b] var. critical portion of x with x(a), x(b) ∈ ∂Ω, x

�
[a, b]

�
⊂ Ω. Then:

x−1

�
∂Ω

�
consists of a finite number of closed intervals and isolated pts;

� �n � � o
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Prop.: x ∈ M, x|[a,b] var. critical portion of x with x(a), x(b) ∈ ∂Ω, x

�
[a, b]

�
⊂ Ω. Then:

x−1

�
∂Ω

�
consists of a finite number of closed intervals and isolated pts;

x is constant on each connected component of x−1

�
∂Ω

�
;

n � � o
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Classification of variationally critical
portions
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x(t̄)
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Prop.: x ∈ M, x|[a,b] var. critical portion of x with x(a), x(b) ∈ ∂Ω, x

�
[a, b]

�
⊂ Ω. Then:

x−1

�
∂Ω

�
consists of a finite number of closed intervals and isolated pts;

x is constant on each connected component of x−1

�
∂Ω

�
;

x|[a,b] is piecewise C2; the discontinuities of ẋ may occur on ∂Ω;

n � � o
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0
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α g(ẋ, ẋ) dt
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.

Prop.: x ∈ M, x|[a,b] var. critical portion of x with x(a), x(b) ∈ ∂Ω, x

�
[a, b]

�
⊂ Ω. Then:

x−1

�
∂Ω

�
consists of a finite number of closed intervals and isolated pts;

x is constant on each connected component of x−1

�
∂Ω

�
;

x|[a,b] is piecewise C2; the discontinuities of ẋ may occur on ∂Ω;

each C2 portion of x is a geodesic in Ω;

n � � o
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Classification of variationally critical
portions

Lem.: x ∈ M, [α, β] ⊂ 0, 1] and t̄ ∈ ]α, β[ such that x(α), x(β) ∈ ∂Ω, φ

�
x(t̄)

�
≤ −δ0.

Then β − α ≥ δ2

0

K2

0

�R β
α g(ẋ, ẋ) dt

�−1
.

Prop.: x ∈ M, x|[a,b] var. critical portion of x with x(a), x(b) ∈ ∂Ω, x

�
[a, b]

�
⊂ Ω. Then:

x−1

�
∂Ω

�
consists of a finite number of closed intervals and isolated pts;

x is constant on each connected component of x−1

�
∂Ω

�
;

x|[a,b] is piecewise C2; the discontinuities of ẋ may occur on ∂Ω;

each C2 portion of x is a geodesic in Ω;

min

n
φ

�
x(s)

�
: s ∈ [a, b]

o
< −δ0.
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Classification of variationally critical
portions

Lem.: x ∈ M, [α, β] ⊂ 0, 1] and t̄ ∈ ]α, β[ such that x(α), x(β) ∈ ∂Ω, φ

�
x(t̄)

�
≤ −δ0.

Then β − α ≥ δ2

0

K2

0

�R β
α g(ẋ, ẋ) dt

�−1
.

Prop.: x ∈ M, x|[a,b] var. critical portion of x with x(a), x(b) ∈ ∂Ω, x

�
[a, b]

�
⊂ Ω. Then:

x−1

�
∂Ω

�
consists of a finite number of closed intervals and isolated pts;

x is constant on each connected component of x−1

�
∂Ω

�
;

x|[a,b] is piecewise C2; the discontinuities of ẋ may occur on ∂Ω;

each C2 portion of x is a geodesic in Ω;

min

n
φ

�
x(s)

�
: s ∈ [a, b]

o
< −δ0.

x(a)

x(b)

x
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Regular and irregular variationally
critical portions

Def.: A VCP of x ∈ M is regular if it is C1, irregular otherwise.

� �

x( )

 

x( )
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Regular and irregular variationally
critical portions

Def.: A VCP of x ∈ M is regular if it is C1, irregular otherwise.

Prop.: x ∈ M, [a, b] ∈ J 0
x such that x|[a,b] is an irregular VCP.

� �

x( )

 

x( )
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Regular and irregular variationally
critical portions

Def.: A VCP of x ∈ M is regular if it is C1, irregular otherwise.

Prop.: x ∈ M, [a, b] ∈ J 0
x such that x|[a,b] is an irregular VCP. Then, ∃ [α, β] ⊂ [a, b]

s.t. x|[α,a] and x|[b,β] are constant in ∂Ω, ẋ(α+), ẋ(β−) ∈ T (∂Ω)⊥, and one of the two
occurs:

� �

x( )

 

x( )
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Regular and irregular variationally
critical portions

Def.: A VCP of x ∈ M is regular if it is C1, irregular otherwise.

Prop.: x ∈ M, [a, b] ∈ J 0
x such that x|[a,b] is an irregular VCP. Then, ∃ [α, β] ⊂ [a, b]

s.t. x|[α,a] and x|[b,β] are constant in ∂Ω, ẋ(α+), ẋ(β−) ∈ T (∂Ω)⊥, and one of the two
occurs:

∃ a finite number of intervals [t1, t2] ⊂ [α, β] s.t. x

�
[t1, t2]

�
⊂ ∂Ω that are

maximal w.r. to this property; moreover, x|[t1,t2] is constant, and ẋ(t−1 ) 6= ẋ(t+2 ).

x( )

 

x( )
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Regular and irregular variationally
critical portions

Def.: A VCP of x ∈ M is regular if it is C1, irregular otherwise.

Prop.: x ∈ M, [a, b] ∈ J 0
x such that x|[a,b] is an irregular VCP. Then, ∃ [α, β] ⊂ [a, b]

s.t. x|[α,a] and x|[b,β] are constant in ∂Ω, ẋ(α+), ẋ(β−) ∈ T (∂Ω)⊥, and one of the two
occurs:

∃ a finite number of intervals [t1, t2] ⊂ [α, β] s.t. x

�
[t1, t2]

�
⊂ ∂Ω that are

maximal w.r. to this property; moreover, x|[t1,t2] is constant, and ẋ(t−1 ) 6= ẋ(t+2 ).

x|[α,β] is a crossing OGC in Ω. second type first type

x( )

 

x( )
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Regular and irregular variationally
critical portions

Def.: A VCP of x ∈ M is regular if it is C1, irregular otherwise.

Prop.: x ∈ M, [a, b] ∈ J 0
x such that x|[a,b] is an irregular VCP. Then, ∃ [α, β] ⊂ [a, b]

s.t. x|[α,a] and x|[b,β] are constant in ∂Ω, ẋ(α+), ẋ(β−) ∈ T (∂Ω)⊥, and one of the two
occurs:

∃ a finite number of intervals [t1, t2] ⊂ [α, β] s.t. x

�
[t1, t2]

�
⊂ ∂Ω that are

maximal w.r. to this property; moreover, x|[t1,t2] is constant, and ẋ(t−1 ) 6= ẋ(t+2 ).

x|[α,β] is a crossing OGC in Ω. second type first type

Note: if x|[a,b] is a regular VCP, with [a, b] ∈ J 0
x , then x|[a,b] is a crossing OGC.

x( )

 

x( )
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Regular and irregular variationally
critical portions

Def.: A VCP of x ∈ M is regular if it is C1, irregular otherwise.

Prop.: x ∈ M, [a, b] ∈ J 0
x such that x|[a,b] is an irregular VCP. Then, ∃ [α, β] ⊂ [a, b]

s.t. x|[α,a] and x|[b,β] are constant in ∂Ω, ẋ(α+), ẋ(β−) ∈ T (∂Ω)⊥, and one of the two
occurs:

∃ a finite number of intervals [t1, t2] ⊂ [α, β] s.t. x

�
[t1, t2]

�
⊂ ∂Ω that are

maximal w.r. to this property; moreover, x|[t1,t2] is constant, and ẋ(t−1 ) 6= ẋ(t+2 ).

x|[α,β] is a crossing OGC in Ω. second type first type

Note: if x|[a,b] is a regular VCP, with [a, b] ∈ J 0
x , then x|[a,b] is a crossing OGC.

[t1, t2] cusp interval of the irregular variation-
ally critical portion of x

W

x(a)

 x([t  , t  ])     
 

x(b)

 x([t  , t  ])     1     2

3 4
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More on irregular VCP’s

Obs.: strong concavity =⇒ number of cusp intervals on an M0-int. is unif. bounded.
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More on irregular VCP’s

Obs.: strong concavity =⇒ number of cusp intervals on an M0-int. is unif. bounded.

[t1, t2] cusp interval of x|[a,b], Θx(t1, t2) = angle between ẋ(t−1 ) and ẋ(t+2 ).

Obs.: the tangential components along ∂Ω of ẋ(t−1 ) and ẋ(t+2 ) are equal, hence, if
Θx(t1, t2) > 0, x is not tangent to ∂Ω at t1.
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More on irregular VCP’s

Obs.: strong concavity =⇒ number of cusp intervals on an M0-int. is unif. bounded.

[t1, t2] cusp interval of x|[a,b], Θx(t1, t2) = angle between ẋ(t−1 ) and ẋ(t+2 ).

Obs.: the tangential components along ∂Ω of ẋ(t−1 ) and ẋ(t+2 ) are equal, hence, if
Θx(t1, t2) > 0, x is not tangent to ∂Ω at t1.

Prop.: If (xn) ⊂ M, [an, bn] ∈ J 0
xn

are M0-intervals s.t. xn|[an,bn] is a VCP of xn, then

(up to subsequences) an → a, bn → b, xn|[an,bn] → x[a,b], where x|[a,b] is a VCP of
x.

School in Nonlinear Analysis and Calculus of Variations – p. 26/68



More on irregular VCP’s

Obs.: strong concavity =⇒ number of cusp intervals on an M0-int. is unif. bounded.

[t1, t2] cusp interval of x|[a,b], Θx(t1, t2) = angle between ẋ(t−1 ) and ẋ(t+2 ).

Obs.: the tangential components along ∂Ω of ẋ(t−1 ) and ẋ(t+2 ) are equal, hence, if
Θx(t1, t2) > 0, x is not tangent to ∂Ω at t1.

Prop.: If (xn) ⊂ M, [an, bn] ∈ J 0
xn

are M0-intervals s.t. xn|[an,bn] is a VCP of xn, then

(up to subsequences) an → a, bn → b, xn|[an,bn] → x[a,b], where x|[a,b] is a VCP of
x.

Cor.: ∃ d0 > 0 such that maxΘx(t1, t2) ≥ d0, the max being taken over all x ∈ M, all

M0-intervals [a, b] ∈ J 0
x s.t. x|[a,b] is an irregular VCP of x, and all [t1, t2] ⊂ [a, b] cusp

interval.
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More on irregular VCP’s

Obs.: strong concavity =⇒ number of cusp intervals on an M0-int. is unif. bounded.

[t1, t2] cusp interval of x|[a,b], Θx(t1, t2) = angle between ẋ(t−1 ) and ẋ(t+2 ).

Obs.: the tangential components along ∂Ω of ẋ(t−1 ) and ẋ(t+2 ) are equal, hence, if
Θx(t1, t2) > 0, x is not tangent to ∂Ω at t1.

Prop.: If (xn) ⊂ M, [an, bn] ∈ J 0
xn

are M0-intervals s.t. xn|[an,bn] is a VCP of xn, then

(up to subsequences) an → a, bn → b, xn|[an,bn] → x[a,b], where x|[a,b] is a VCP of
x.

Cor.: ∃ d0 > 0 such that maxΘx(t1, t2) ≥ d0, the max being taken over all x ∈ M, all

M0-intervals [a, b] ∈ J 0
x s.t. x|[a,b] is an irregular VCP of x, and all [t1, t2] ⊂ [a, b] cusp

interval.

Proof. Uses in a crucial way the fact that there is no WOGC.
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More on irregular VCP’s

Obs.: strong concavity =⇒ number of cusp intervals on an M0-int. is unif. bounded.

[t1, t2] cusp interval of x|[a,b], Θx(t1, t2) = angle between ẋ(t−1 ) and ẋ(t+2 ).

Obs.: the tangential components along ∂Ω of ẋ(t−1 ) and ẋ(t+2 ) are equal, hence, if
Θx(t1, t2) > 0, x is not tangent to ∂Ω at t1.

Prop.: If (xn) ⊂ M, [an, bn] ∈ J 0
xn

are M0-intervals s.t. xn|[an,bn] is a VCP of xn, then

(up to subsequences) an → a, bn → b, xn|[an,bn] → x[a,b], where x|[a,b] is a VCP of
x.

Cor.: ∃ d0 > 0 such that maxΘx(t1, t2) ≥ d0, the max being taken over all x ∈ M, all

M0-intervals [a, b] ∈ J 0
x s.t. x|[a,b] is an irregular VCP of x, and all [t1, t2] ⊂ [a, b] cusp

interval.

Proof. Uses in a crucial way the fact that there is no WOGC.

The corollary tells us, in particular, that the (VCP)’s of first and of second type are far

from each other.
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The classical Palais–Smale condition

Let X be a smooth Banach manifold, and let f : X → R be
a C1-map.

f satisfies the (classical) Palais–Smale condition if every
sequence (xn) ⊂ X such that:

f(xn) is bounded;

df(xn)→ 0 as n→∞,

admits a converging subsequence in X .
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The Palais–Smale condition

For [a, b] ⊂ [0, 1], consider the set Za,b of curves in M s.t. x|[a,b] is a VCP, not

necessarily contained in Ω:

Za,b =

n
y : [a, b] → φ−1

�
]−∞, δ0[

�
:

Z b

a
g

�
ẏ, D

dt
V

�
dt ≥ 0 ∀V ∈ V+(y)

o

R� �R � �
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The Palais–Smale condition

For [a, b] ⊂ [0, 1], consider the set Za,b of curves in M s.t. x|[a,b] is a VCP, not

necessarily contained in Ω:

Za,b =

n
y : [a, b] → φ−1

�
]−∞, δ0[

�
:

Z b

a
g

�
ẏ, D

dt
V

�
dt ≥ 0 ∀V ∈ V+(y)

o
The following result plays the role of the classical Palais–Smale condition in our context:

Proposition (PS): For all r > 0, ∃ θ(r), µ(r) > 0 with the following properties: for all
x ∈ M and all [a, b] ∈ J 0

x s.t.

(a) 1
2

R b
a g(ẋ, ẋ) dt ≤M0,

(b) ‖x|[a,b] − y‖a,b ≥ r for all y ∈ Za,b,

there exists a vector field Vx : [a, b] → R
m such that:

� �R � �
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dt ≥ 0 ∀V ∈ V+(y)

o
The following result plays the role of the classical Palais–Smale condition in our context:

Proposition (PS): For all r > 0, ∃ θ(r), µ(r) > 0 with the following properties: for all
x ∈ M and all [a, b] ∈ J 0

x s.t.

(a) 1
2

R b
a g(ẋ, ẋ) dt ≤M0,

(b) ‖x|[a,b] − y‖a,b ≥ r for all y ∈ Za,b,

there exists a vector field Vx : [a, b] → R
m such that:

g

�
∇φ(x(s)), Vx(s)

�
≥ θ(r)‖Vx‖a,b for all s ∈ [a, b] with φ(x(s)) = 0;

R � �
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The Palais–Smale condition

For [a, b] ⊂ [0, 1], consider the set Za,b of curves in M s.t. x|[a,b] is a VCP, not

necessarily contained in Ω:

Za,b =

n
y : [a, b] → φ−1

�
]−∞, δ0[
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:

Z b

a
g

�
ẏ, D

dt
V

�
dt ≥ 0 ∀V ∈ V+(y)

o
The following result plays the role of the classical Palais–Smale condition in our context:

Proposition (PS): For all r > 0, ∃ θ(r), µ(r) > 0 with the following properties: for all
x ∈ M and all [a, b] ∈ J 0

x s.t.

(a) 1
2

R b
a g(ẋ, ẋ) dt ≤M0,

(b) ‖x|[a,b] − y‖a,b ≥ r for all y ∈ Za,b,

there exists a vector field Vx : [a, b] → R
m such that:

g

�
∇φ(x(s)), Vx(s)

�
≥ θ(r)‖Vx‖a,b for all s ∈ [a, b] with φ(x(s)) = 0;R b

a g

�
ẋ, D

dt
Vx

�
dt ≤ −µ(r)‖Vx‖a,b.
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Preparation for the Deformation
Lemmas 1

By the compactness of φ−1(]−∞, δ0]), ∃ ℓ0, L0 > 0 s.t., denoting by ‖ · ‖E the
Euclidean norm and by ‖ · ‖ the g-norm,

ℓ0‖v‖2
E ≤ ‖v‖2 ≤ L0‖v‖2

E , ∀x ∈ φ−1(]−∞, δ0]), ∀v ∈ R
m.

�Z �R
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Preparation for the Deformation
Lemmas 1

By the compactness of φ−1(]−∞, δ0]), ∃ ℓ0, L0 > 0 s.t., denoting by ‖ · ‖E the
Euclidean norm and by ‖ · ‖ the g-norm,

ℓ0‖v‖2
E ≤ ‖v‖2 ≤ L0‖v‖2

E , ∀x ∈ φ−1(]−∞, δ0]), ∀v ∈ R
m.

Moreover, ∃G0, L1 = L1(M0) > 0 s.t.

|gx(v1, v) − gz(v2, v)| ≤ G0 (‖v1 − v2‖E ‖v‖E + ‖x− z‖E ‖v1‖E ‖v‖E) ,

for all x, z ∈ φ−1(]−∞, δ0]) and for any v1, v2, v ∈ R
m, and�Z b

a
‖ D

ds
V ‖2

E ds

�1/2

≤ L1‖V ‖a,b

for all x ∈ M s.t. 1
2

R b
a g(ẋ, ẋ) ds ≤M0, for all V ∈ H1([a, b],RN ) along x, and for any

[a, b] ⊂ [0, 1].
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Preparation for the Deformation
Lemmas 2

For a, b ∈ [0, 1], denote by Ia,b the interval [a, b] if b ≥ a and the interval [b, a] if b < a;
set:

D(x, α, β, a, b) =
1

2

Z
Ia,α∪Ib,β

g(ẋ, ẋ) dt.

R����Z � � Z � ���� p  s !!
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Preparation for the Deformation
Lemmas 2

For a, b ∈ [0, 1], denote by Ia,b the interval [a, b] if b ≥ a and the interval [b, a] if b < a;
set:

D(x, α, β, a, b) =
1

2

Z
Ia,α∪Ib,β

g(ẋ, ẋ) dt.

Lem.: Fix K > 0. For any x, z ∈ M, [a, b] ⊂ [0, 1], [az , bz ] ⊂ [0, 1], and
V ∈ H1([0, 1],RN ), then if 1

2

R b
a g(ẋ, ẋ) dt ≤M0 and D(x, az , bz , a, b) ≤ K, it is����Z b

a
gx

�
ẋ, D

dt
V

�
dt−

Z bz

az

gz

�
ż, D

dt
V ) dt

���� ≤
√

2

 p
L0K +G0‖x− z‖az,bz

 
1 +

s
M0 +K

ℓ0

!!

L1‖V ‖0,1,
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Preparation for the Deformation
Lemmas 2

For a, b ∈ [0, 1], denote by Ia,b the interval [a, b] if b ≥ a and the interval [b, a] if b < a;
set:

D(x, α, β, a, b) =
1

2

Z
Ia,α∪Ib,β

g(ẋ, ẋ) dt.

Lem.: Fix K > 0. For any x, z ∈ M, [a, b] ⊂ [0, 1], [az , bz ] ⊂ [0, 1], and
V ∈ H1([0, 1],RN ), then if 1

2

R b
a g(ẋ, ẋ) dt ≤M0 and D(x, az , bz , a, b) ≤ K, it is����Z b

a
gx

�
ẋ, D

dt
V

�
dt−

Z bz

az

gz

�
ż, D

dt
V ) dt

���� ≤
√

2

 p
L0K +G0‖x− z‖az,bz

 
1 +

s
M0 +K

ℓ0

!!

L1‖V ‖0,1,

Define: E(r) =
µ(r)2

32L2
1L0

.
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Construction of local vector fields

Prop.: For r > 0, let θ(r), µ(r) > 0 be as in PS. For all x ∈ M and for all [a, b] ∈ J 0
x for

which (a) and (b) of PS hold, let Vx be the vector field in PS.
Extend Vx to [0, 1] making it constant outside [a, b].

R� �
Z � �
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Construction of local vector fields

Prop.: For r > 0, let θ(r), µ(r) > 0 be as in PS. For all x ∈ M and for all [a, b] ∈ J 0
x for

which (a) and (b) of PS hold, let Vx be the vector field in PS.
Extend Vx to [0, 1] making it constant outside [a, b].
Then, ∃[αx, βx] ⊃ [a, b] and ρ(x) > 0 such that:

R� �
Z � �
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Construction of local vector fields

Prop.: For r > 0, let θ(r), µ(r) > 0 be as in PS. For all x ∈ M and for all [a, b] ∈ J 0
x for

which (a) and (b) of PS hold, let Vx be the vector field in PS.
Extend Vx to [0, 1] making it constant outside [a, b].
Then, ∃[αx, βx] ⊃ [a, b] and ρ(x) > 0 such that:

αx < a if a > 0 and βx > b if b < 1, 1
2

R βx

αx
g(ẋ, ẋ) dt ≤M0 + 1;

� �
Z � �
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Construction of local vector fields

Prop.: For r > 0, let θ(r), µ(r) > 0 be as in PS. For all x ∈ M and for all [a, b] ∈ J 0
x for

which (a) and (b) of PS hold, let Vx be the vector field in PS.
Extend Vx to [0, 1] making it constant outside [a, b].
Then, ∃[αx, βx] ⊃ [a, b] and ρ(x) > 0 such that:

αx < a if a > 0 and βx > b if b < 1, 1
2

R βx

αx
g(ẋ, ẋ) dt ≤M0 + 1;

sups∈[αx,βx] φ(x(s)) ≤ 1
4
δ0;

� �
Z � �
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Construction of local vector fields

Prop.: For r > 0, let θ(r), µ(r) > 0 be as in PS. For all x ∈ M and for all [a, b] ∈ J 0
x for

which (a) and (b) of PS hold, let Vx be the vector field in PS.
Extend Vx to [0, 1] making it constant outside [a, b].
Then, ∃[αx, βx] ⊃ [a, b] and ρ(x) > 0 such that:

αx < a if a > 0 and βx > b if b < 1, 1
2

R βx

αx
g(ẋ, ẋ) dt ≤M0 + 1;

sups∈[αx,βx] φ(x(s)) ≤ 1
4
δ0;

z ∈ M and ‖x− z‖L∞ < ρ(x) imply the following:

(i) g

�
∇φ(z(s)), Vx(s)

�
≥ 1

2
θ(r)‖Vx‖αx,βx

for all s ∈ [αx, βx] with
0 ≤ φ(z(s)) ≤ 1

2
δ0;

(ii) sups∈[αx,βx] φ(z(s)) ≤ 1
2
δ0;

Z � �
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Construction of local vector fields

Prop.: For r > 0, let θ(r), µ(r) > 0 be as in PS. For all x ∈ M and for all [a, b] ∈ J 0
x for

which (a) and (b) of PS hold, let Vx be the vector field in PS.
Extend Vx to [0, 1] making it constant outside [a, b].
Then, ∃[αx, βx] ⊃ [a, b] and ρ(x) > 0 such that:

αx < a if a > 0 and βx > b if b < 1, 1
2

R βx

αx
g(ẋ, ẋ) dt ≤M0 + 1;

sups∈[αx,βx] φ(x(s)) ≤ 1
4
δ0;

z ∈ M and ‖x− z‖L∞ < ρ(x) imply the following:

(i) g

�
∇φ(z(s)), Vx(s)

�
≥ 1

2
θ(r)‖Vx‖αx,βx

for all s ∈ [αx, βx] with
0 ≤ φ(z(s)) ≤ 1

2
δ0;

(ii) sups∈[αx,βx] φ(z(s)) ≤ 1
2
δ0;

for all z ∈ M, for all [az , bz ] ∈ Jz with [az , bz ] ⊂ [αx, βx], with
‖x− z‖az,bz

< ρ(x) and with D(x, az , bz , a, b) < E(r), then:Z bz

az

g

�
ż, D

dt
Vx

�
dt ≤ − 1

2
µ(r)‖Vx‖αx,βx

.
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Interpretation of the constant E(r)

By the definition of D(x, az, bz, a, b), the number E(r) gives
a bound on the admissible difference between the energy
of x|[a,b] and x|[az ,bz ], to obtain a rate of decrease µ(r)/2 for

the quantity 1
2

∫ bz
az
g(ż, ż)ds, when ‖x− z‖az ,bz < ρ(x).
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“Genuine” crossing intervals

Def.: D ⊂ C, h : [0, 1] × D C0

−→ M, γ ∈ D, τ ∈
[0, 1]. An interval [aτ , bτ ] ∈ Jh(τ,γ) is h-genuine
if for all τ ′ ∈ [0, τ ] there exists [aτ ′ , bτ ′ ] ∈
Jh(τ ′,γ) such that [aτ , bτ ] ⊂ [aτ ′ , bτ ′ ].

For (D, h) ∈ eH and z ∈ h(1,D), set:

J h
z =

�
[a, b] ∈ Jz : [a, b] is h-genuine

	
This portion corresponds

to a non genuine h-inter

b n ob b
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“Genuine” crossing intervals

Def.: D ⊂ C, h : [0, 1] × D C0

−→ M, γ ∈ D, τ ∈
[0, 1]. An interval [aτ , bτ ] ∈ Jh(τ,γ) is h-genuine
if for all τ ′ ∈ [0, τ ] there exists [aτ ′ , bτ ′ ] ∈
Jh(τ ′,γ) such that [aτ , bτ ] ⊂ [aτ ′ , bτ ′ ].

For (D, h) ∈ eH and z ∈ h(1,D), set:

J h
z =

�
[a, b] ∈ Jz : [a, b] is h-genuine

	
This portion corresponds

to a non genuine h-interbJ h
z (D) =

n
[a, b] ⊂ [0, 1] : ∀ s ∈ [a, b] ∃[α, β] ⊂ [a, b] such that s ∈ [α, β]

and there exists (zn) ⊂ h(1,D) and [αn, βn] ∈ J h
zn

such that

zn|[αn,βn] → z|[α,β], and [a, b] is maximal w.r. to such property

o

b b
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“Genuine” crossing intervals

Def.: D ⊂ C, h : [0, 1] × D C0

−→ M, γ ∈ D, τ ∈
[0, 1]. An interval [aτ , bτ ] ∈ Jh(τ,γ) is h-genuine
if for all τ ′ ∈ [0, τ ] there exists [aτ ′ , bτ ′ ] ∈
Jh(τ ′,γ) such that [aτ , bτ ] ⊂ [aτ ′ , bτ ′ ].

For (D, h) ∈ eH and z ∈ h(1,D), set:

J h
z =

�
[a, b] ∈ Jz : [a, b] is h-genuine

	
This portion corresponds

to a non genuine h-interbJ h
z (D) =

n
[a, b] ⊂ [0, 1] : ∀ s ∈ [a, b] ∃[α, β] ⊂ [a, b] such that s ∈ [α, β]

and there exists (zn) ⊂ h(1,D) and [αn, βn] ∈ J h
zn

such that

zn|[αn,βn] → z|[α,β], and [a, b] is maximal w.r. to such property

o

Obs.: bJ h
z (D) is always non empty. If z ∈ h(1,D) and [a, b] ∈ J h

z , then [a, b] ∈ bJ h
z (D).
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Admissible homotopies

Def.: A set of admissible homotopies H of our variational problem (that will be used in a
crucial preparatory deformation result) consists of all continuous maps
h : [0, 1] ×D → M, with D closed subset of C, such that:

bR n ob
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Admissible homotopies

Def.: A set of admissible homotopies H of our variational problem (that will be used in a
crucial preparatory deformation result) consists of all continuous maps
h : [0, 1] ×D → M, with D closed subset of C, such that:

1. h(0, ·) is the inclusion of D into M;

bR n ob
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Admissible homotopies

Def.: A set of admissible homotopies H of our variational problem (that will be used in a
crucial preparatory deformation result) consists of all continuous maps
h : [0, 1] ×D → M, with D closed subset of C, such that:

1. h(0, ·) is the inclusion of D into M;

2. if h(τ0, γ)(s) 6∈ Ω, then h(τ, γ)(s) 6∈ Ω for all τ ≥ τ0;

bR n ob
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Admissible homotopies

Def.: A set of admissible homotopies H of our variational problem (that will be used in a
crucial preparatory deformation result) consists of all continuous maps
h : [0, 1] ×D → M, with D closed subset of C, such that:

1. h(0, ·) is the inclusion of D into M;

2. if h(τ0, γ)(s) 6∈ Ω, then h(τ, γ)(s) 6∈ Ω for all τ ≥ τ0;

3. for all x ∈ h(1,D), every [a, b] ∈ bJ h
z (D) is an M0-interval, i.e.,

1
2

R b
a g(ẋ, ẋ) dt < M0.

n ob
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Admissible homotopies

Def.: A set of admissible homotopies H of our variational problem (that will be used in a
crucial preparatory deformation result) consists of all continuous maps
h : [0, 1] ×D → M, with D closed subset of C, such that:

1. h(0, ·) is the inclusion of D into M;

2. if h(τ0, γ)(s) 6∈ Ω, then h(τ, γ)(s) 6∈ Ω for all τ ≥ τ0;

3. for all x ∈ h(1,D), every [a, b] ∈ bJ h
z (D) is an M0-interval, i.e.,

1
2

R b
a g(ẋ, ẋ) dt < M0.

H =

n
(D, h) :D is a closed subset of C, and h : [0, 1] ×D → M

is a continuous homotopy satisfying (1), (2), (3) above.

o

b
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Admissible homotopies

Def.: A set of admissible homotopies H of our variational problem (that will be used in a
crucial preparatory deformation result) consists of all continuous maps
h : [0, 1] ×D → M, with D closed subset of C, such that:

1. h(0, ·) is the inclusion of D into M;

2. if h(τ0, γ)(s) 6∈ Ω, then h(τ, γ)(s) 6∈ Ω for all τ ≥ τ0;

3. for all x ∈ h(1,D), every [a, b] ∈ bJ h
z (D) is an M0-interval, i.e.,

1
2

R b
a g(ẋ, ẋ) dt < M0.

H =

n
(D, h) :D is a closed subset of C, and h : [0, 1] ×D → M

is a continuous homotopy satisfying (1), (2), (3) above.

o

Obs. 1: Defining the constant homotopy : h0(τ, x) ≡ x for all x ∈ C, H contains (C, h0).

b
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Admissible homotopies

Def.: A set of admissible homotopies H of our variational problem (that will be used in a
crucial preparatory deformation result) consists of all continuous maps
h : [0, 1] ×D → M, with D closed subset of C, such that:

1. h(0, ·) is the inclusion of D into M;

2. if h(τ0, γ)(s) 6∈ Ω, then h(τ, γ)(s) 6∈ Ω for all τ ≥ τ0;

3. for all x ∈ h(1,D), every [a, b] ∈ bJ h
z (D) is an M0-interval, i.e.,

1
2

R b
a g(ẋ, ẋ) dt < M0.

H =

n
(D, h) :D is a closed subset of C, and h : [0, 1] ×D → M

is a continuous homotopy satisfying (1), (2), (3) above.

o

Obs. 1: Defining the constant homotopy : h0(τ, x) ≡ x for all x ∈ C, H contains (C, h0).

Obs. 2: There exists N > 0 (independent of x, D and h) such that | bJ h
z (D)| ≤ N .
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Concatenation of homotopies

F1, F2 ⊂M closed sets

hi : [0, 1]× Fi
C0

−→M, i = 1, 2

If h1(1, F1) ⊂ F2, then one defines the concatenation:
h1 ⋆ h2 : [0, 1]× F1 −→M

h1 ⋆ h2(t, x) =





h1(2t, x), if t ∈ [0, 1
2
];

h2

(
2t− 1, h1(1, x)

)
, if t ∈

]
1
2
, 1

]
.
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The functional F

Consider the following functional F : H → R
+:

F(D, h)=sup
{
b−a
2

∫ b

a

g(ẋ, ẋ) dt : x ∈ h(1,D), [a, b] ∈ Ĵ h
x (D)

}
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The functional F

Consider the following functional F : H → R
+:

F(D, h)=sup
{
b−a
2

∫ b

a

g(ẋ, ẋ) dt : x ∈ h(1,D), [a, b] ∈ Ĵ h
x (D)

}

Obs. 1: b−a
2

∫ b

a
g(ẏ, ẏ) dt = 1

2

∫ 1

0
g(ẏa,b, ẏa,b) ds, where ya,b is

the affine reparameterization of y|[a,b] on the interval [0, 1].
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The functional F

Consider the following functional F : H → R
+:

F(D, h)=sup
{
b−a
2

∫ b

a

g(ẋ, ẋ) dt : x ∈ h(1,D), [a, b] ∈ Ĵ h
x (D)

}

Obs. 1: b−a
2

∫ b

a
g(ẏ, ẏ) dt = 1

2

∫ 1

0
g(ẏa,b, ẏa,b) ds, where ya,b is

the affine reparameterization of y|[a,b] on the interval [0, 1].

Obs. 2: for all (D, h) ∈ H, 1
2
ρ2

0 ≤ F(D, h) ≤ 1
2
M0.
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An “outward pushing” deformation
Lemma

Z1
a,b =

n

y ∈ H1

�

[a, b], φ−1

�
]−∞, δ0[

��
: y|[a,b] is an OGC,

or y|[a,b] is an irregular variational portion of first type

o

n o R b
b
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An “outward pushing” deformation
Lemma

n � � �� o

Prop.: Let r > 0 and 0 < c1 < c < c2 be fixed. Then there exists ε0 = ε0(r, c) > 0 such
that, for all (D, h) ∈ H satisfying:

n o R b
b
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An “outward pushing” deformation
Lemma

n � � �� o

Prop.: Let r > 0 and 0 < c1 < c < c2 be fixed. Then there exists ε0 = ε0(r, c) > 0 such
that, for all (D, h) ∈ H satisfying:

F(D, h) ≤ c2;

n o R b
b
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An “outward pushing” deformation
Lemma

n � � �� o

Prop.: Let r > 0 and 0 < c1 < c < c2 be fixed. Then there exists ε0 = ε0(r, c) > 0 such
that, for all (D, h) ∈ H satisfying:

F(D, h) ≤ c2;

inf

n
‖x|[a,b] − y‖a,b

o
≥ r, x = h(1, γ),γ ∈ D, b−a

2

R b
a g(ẋ, ẋ) dt ∈ [c1, c2],

[a, b] ∈ bJ h
x (D), y ∈ Z1

a,b

b
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An “outward pushing” deformation
Lemma

n � � �� o

Prop.: Let r > 0 and 0 < c1 < c < c2 be fixed. Then there exists ε0 = ε0(r, c) > 0 such
that, for all (D, h) ∈ H satisfying:

F(D, h) ≤ c2;

inf

n
‖x|[a,b] − y‖a,b

o
≥ r, x = h(1, γ),γ ∈ D, b−a

2

R b
a g(ẋ, ẋ) dt ∈ [c1, c2],

[a, b] ∈ bJ h
x (D), y ∈ Z1

a,b

and for all ε ∈ ]0, ε0[ there exists a continuous map Hε : [0, 1] × h(1,D) → M with the
following properties:

b
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An “outward pushing” deformation
Lemma

n � � �� o

Prop.: Let r > 0 and 0 < c1 < c < c2 be fixed. Then there exists ε0 = ε0(r, c) > 0 such
that, for all (D, h) ∈ H satisfying:

F(D, h) ≤ c2;

inf

n
‖x|[a,b] − y‖a,b

o
≥ r, x = h(1, γ),γ ∈ D, b−a

2

R b
a g(ẋ, ẋ) dt ∈ [c1, c2],

[a, b] ∈ bJ h
x (D), y ∈ Z1

a,b

and for all ε ∈ ]0, ε0[ there exists a continuous map Hε : [0, 1] × h(1,D) → M with the
following properties:

1. (D, Hε ⋆ h) ∈ H;

b
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An “outward pushing” deformation
Lemma

n � � �� o

Prop.: Let r > 0 and 0 < c1 < c < c2 be fixed. Then there exists ε0 = ε0(r, c) > 0 such
that, for all (D, h) ∈ H satisfying:

F(D, h) ≤ c2;

inf

n
‖x|[a,b] − y‖a,b

o
≥ r, x = h(1, γ),γ ∈ D, b−a

2

R b
a g(ẋ, ẋ) dt ∈ [c1, c2],

[a, b] ∈ bJ h
x (D), y ∈ Z1

a,b

and for all ε ∈ ]0, ε0[ there exists a continuous map Hε : [0, 1] × h(1,D) → M with the
following properties:

1. (D, Hε ⋆ h) ∈ H;

2. if c ≤ F(D, h) ≤ c2 then F(D, Hε ⋆ h) ≤ F(D, h) − ε;

b
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An “outward pushing” deformation
Lemma

n � � �� o

Prop.: Let r > 0 and 0 < c1 < c < c2 be fixed. Then there exists ε0 = ε0(r, c) > 0 such
that, for all (D, h) ∈ H satisfying:

F(D, h) ≤ c2;

inf

n
‖x|[a,b] − y‖a,b

o
≥ r, x = h(1, γ),γ ∈ D, b−a

2

R b
a g(ẋ, ẋ) dt ∈ [c1, c2],

[a, b] ∈ bJ h
x (D), y ∈ Z1

a,b

and for all ε ∈ ]0, ε0[ there exists a continuous map Hε : [0, 1] × h(1,D) → M with the
following properties:

1. (D, Hε ⋆ h) ∈ H;

2. if c ≤ F(D, h) ≤ c2 then F(D, Hε ⋆ h) ≤ F(D, h) − ε;

3. there exists Tε > 0, with Tε → 0 as ε→ 0, such that for all z ∈ h(1,D),
‖Hε(τ, z) − z‖a,b ≤ τTε for all τ ∈ [0, 1], for all [a, b] ∈ bJ h

z (D).

School in Nonlinear Analysis and Calculus of Variations – p. 37/68



An “outward pushing” deformation
Lemma

n � � �� o
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that, for all (D, h) ∈ H satisfying:

F(D, h) ≤ c2;

inf
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a g(ẋ, ẋ) dt ∈ [c1, c2],
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x (D), y ∈ Z1

a,b

and for all ε ∈ ]0, ε0[ there exists a continuous map Hε : [0, 1] × h(1,D) → M with the
following properties:

1. (D, Hε ⋆ h) ∈ H;

2. if c ≤ F(D, h) ≤ c2 then F(D, Hε ⋆ h) ≤ F(D, h) − ε;

3. there exists Tε > 0, with Tε → 0 as ε→ 0, such that for all z ∈ h(1,D),
‖Hε(τ, z) − z‖a,b ≤ τTε for all τ ∈ [0, 1], for all [a, b] ∈ bJ h

z (D).

Interpretation : far from crossing OGC’s and irregular VCP, the functional F decreases

along homotopies of H.
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On the proof of the outward pushing
deformation Lemma

in a small neighborhood of portions of curves that are
far from VCP, one uses integral curves of vector fields
in V+, discussed above;
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On the proof of the outward pushing
deformation Lemma

in a small neighborhood of portions of curves that are
far from VCP, one uses integral curves of vector fields
in V+, discussed above;

in a small neighborhood of irregular VCP’s of second
type, one uses suitable reparameterization flows;
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On the proof of the outward pushing
deformation Lemma

in a small neighborhood of portions of curves that are
far from VCP, one uses integral curves of vector fields
in V+, discussed above;

in a small neighborhood of irregular VCP’s of second
type, one uses suitable reparameterization flows;

one uses the methods of Degiovanni–Marzocchi
(AMPA 1994) to build a global flow using local flows.

School in Nonlinear Analysis and Calculus of Variations – p. 38/68



Flows far from VCP of first type

In order to obtain existence and multiplicity results for
crossing OGC’s in the strictly concave case, we must
construct nonincreasing flows that fasten from the irregular
VCP of first type.
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Flows far from VCP of first type

In order to obtain existence and multiplicity results for
crossing OGC’s in the strictly concave case, we must
construct nonincreasing flows that fasten from the irregular
VCP of first type.

This can be done thanks to the following crucial regularity
result, due to Marino and Scolozzi (Boll. UMI 1982):
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Flows far from VCP of first type

In order to obtain existence and multiplicity results for
crossing OGC’s in the strictly concave case, we must
construct nonincreasing flows that fasten from the irregular
VCP of first type.

This can be done thanks to the following crucial regularity
result, due to Marino and Scolozzi (Boll. UMI 1982):

THM.: Let y ∈ H1
(
[a, b],Ω

)
be such that

∫ b

a

g
(
ẏ, D

dt
V

)
dt ≥ 0, ∀V ∈ V−(y) with V (a) = V (b) = 0.

Then y ∈ H2,∞(
[a, b],Ω

)
, and in particular y is of class C1.
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On the class H̃

Irregular VCP’s of first type are not C1, thus if a
portion of curve is close to one of them it is far to VCP
w.r. to V−.
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On the class H̃

Irregular VCP’s of first type are not C1, thus if a
portion of curve is close to one of them it is far to VCP
w.r. to V−.

H̃ consists of pairs (D, h), where D ⊂ C is closed, and
h : D × [0, 1]→ C is such that portions of curves near
cusps of amplitude Θ ≥ d0 are deformed into curves
that remains inside Ω.
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On the class H̃

Irregular VCP’s of first type are not C1, thus if a
portion of curve is close to one of them it is far to VCP
w.r. to V−.

H̃ consists of pairs (D, h), where D ⊂ C is closed, and
h : D × [0, 1]→ C is such that portions of curves near
cusps of amplitude Θ ≥ d0 are deformed into curves
that remains inside Ω.

Such homotopies h are constructed using vector
fields in V−: they deform into curves far from irregular
VCP’s of first type, and the functional is not increasing
by concatenation.
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Moving away from irregular VCP’s of
first type.

Prop.: There exist T̄ and r̄ > 0 with the following property:

School in Nonlinear Analysis and Calculus of Variations – p. 41/68



Moving away from irregular VCP’s of
first type.

Prop.: There exist T̄ and r̄ > 0 with the following property:
for all (D, h) ∈ H̃ there exists a continuous homotopy
H0 : [0, 1]× h(1,D)→M such that:
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Moving away from irregular VCP’s of
first type.

Prop.: There exist T̄ and r̄ > 0 with the following property:
for all (D, h) ∈ H̃ there exists a continuous homotopy
H0 : [0, 1]× h(1,D)→M such that:

1. (D, H0 ⋆ h) ∈ H̃;
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Moving away from irregular VCP’s of
first type.

Prop.: There exist T̄ and r̄ > 0 with the following property:
for all (D, h) ∈ H̃ there exists a continuous homotopy
H0 : [0, 1]× h(1,D)→M such that:

1. (D, H0 ⋆ h) ∈ H̃;

2. F(D, H0 ⋆ h) ≤ F(D, h);
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Moving away from irregular VCP’s of
first type.

Prop.: There exist T̄ and r̄ > 0 with the following property:
for all (D, h) ∈ H̃ there exists a continuous homotopy
H0 : [0, 1]× h(1,D)→M such that:

1. (D, H0 ⋆ h) ∈ H̃;

2. F(D, H0 ⋆ h) ≤ F(D, h);

3. ‖H0(τ, x)− x‖0,1 ≤ τ T̄ , for all x ∈ h(1,D);
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Moving away from irregular VCP’s of
first type.

Prop.: There exist T̄ and r̄ > 0 with the following property:
for all (D, h) ∈ H̃ there exists a continuous homotopy
H0 : [0, 1]× h(1,D)→M such that:

1. (D, H0 ⋆ h) ∈ H̃;

2. F(D, H0 ⋆ h) ≤ F(D, h);

3. ‖H0(τ, x)− x‖0,1 ≤ τ T̄ , for all x ∈ h(1,D);

4. for every x ∈ h(1,D), and for every [a, b] ∈ Ĵ h
x , it is

‖H0(1, x)|[a,b] − y|[a,b]‖ ≥ r̄ for any y ∈M such that
y|[a,b] is an irregular VCP of first type.
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1st Deformation Lemma

Combining the previous deformation Lemmas, one obtains:

1st Deformation Lemma: Let c be geometrically regular
value. There exists ε = ε(c) > 0 such that, for all (D, h) ∈ H̃

with F(D, h) ≤ c+ ε , there exists a continuous map

η : [0, 1]× h(1,D)→M such that (D, η ⋆ h) ∈ H̃ and

F(D, η ⋆ h) ≤ c− ε .

e
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1st Deformation Lemma

Combining the previous deformation Lemmas, one obtains:

1st Deformation Lemma: Let c be geometrically regular
value. There exists ε = ε(c) > 0 such that, for all (D, h) ∈ H̃

with F(D, h) ≤ c+ ε , there exists a continuous map

η : [0, 1]× h(1,D)→M such that (D, η ⋆ h) ∈ H̃ and

F(D, η ⋆ h) ≤ c− ε .

Γi =
{
D ⊂ C closed : catC(D) ≥ i

}
6= ∅ i = 1, 2

e
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1st Deformation Lemma

Combining the previous deformation Lemmas, one obtains:

1st Deformation Lemma: Let c be geometrically regular
value. There exists ε = ε(c) > 0 such that, for all (D, h) ∈ H̃

with F(D, h) ≤ c+ ε , there exists a continuous map

η : [0, 1]× h(1,D)→M such that (D, η ⋆ h) ∈ H̃ and

F(D, η ⋆ h) ≤ c− ε .

Γi =
{
D ⊂ C closed : catC(D) ≥ i

}
6= ∅ i = 1, 2

ci = inf
D∈Γi

(D,h)∈ eH F(D, h)
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1st Deformation Lemma

Combining the previous deformation Lemmas, one obtains:

1st Deformation Lemma: Let c be geometrically regular
value. There exists ε = ε(c) > 0 such that, for all (D, h) ∈ H̃

with F(D, h) ≤ c+ ε , there exists a continuous map

η : [0, 1]× h(1,D)→M such that (D, η ⋆ h) ∈ H̃ and

F(D, η ⋆ h) ≤ c− ε .

Γi =
{
D ⊂ C closed : catC(D) ≥ i

}
6= ∅ i = 1, 2

ci = inf
D∈Γi

(D,h)∈ eH F(D, h)

Corollary: Each ci is a geometrically critical value.
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Preparation for the 2nd Def. Lemma

Let r∗ > 0 be fixed and (D, h) ∈ eH; consider the set:

W = W(D, h, r∗) =

n
x ∈ M : ∃ [a, b] ∈ bJ h

x (D) and a crossing OGC γ : [a, b] → Ω

s.t. max
s∈[a,b]

dist

�
x(s),γ([a, b])

�
≤ r∗

o

n o
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Preparation for the 2nd Def. Lemma

Let r∗ > 0 be fixed and (D, h) ∈ eH; consider the set:

W = W(D, h, r∗) =

n
x ∈ M : ∃ [a, b] ∈ bJ h

x (D) and a crossing OGC γ : [a, b] → Ω

s.t. max
s∈[a,b]

dist

�
x(s),γ([a, b])

�
≤ r∗

o
W is closed in M.

n o
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Preparation for the 2nd Def. Lemma

Let r∗ > 0 be fixed and (D, h) ∈ eH; consider the set:

W = W(D, h, r∗) =

n
x ∈ M : ∃ [a, b] ∈ bJ h

x (D) and a crossing OGC γ : [a, b] → Ω

s.t. max
s∈[a,b]

dist

�
x(s),γ([a, b])

�
≤ r∗

o
W is closed in M. Assume that the number of crossing OGC’s is finite; then r∗ > 0 can
be chosen small so that the following hold:

n o
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Preparation for the 2nd Def. Lemma

Let r∗ > 0 be fixed and (D, h) ∈ eH; consider the set:

W = W(D, h, r∗) =

n
x ∈ M : ∃ [a, b] ∈ bJ h

x (D) and a crossing OGC γ : [a, b] → Ω

s.t. max
s∈[a,b]

dist

�
x(s),γ([a, b])

�
≤ r∗

o
W is closed in M. Assume that the number of crossing OGC’s is finite; then r∗ > 0 can
be chosen small so that the following hold:

1. for all x ∈ W, for all [a, b] ∈ J 0
x there exists at most one OGC γ satisfying

n o
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Preparation for the 2nd Def. Lemma

Let r∗ > 0 be fixed and (D, h) ∈ eH; consider the set:

W = W(D, h, r∗) =

n
x ∈ M : ∃ [a, b] ∈ bJ h

x (D) and a crossing OGC γ : [a, b] → Ω

s.t. max
s∈[a,b]

dist

�
x(s),γ([a, b])

�
≤ r∗

o
W is closed in M. Assume that the number of crossing OGC’s is finite; then r∗ > 0 can
be chosen small so that the following hold:

1. for all x ∈ W, for all [a, b] ∈ J 0
x there exists at most one OGC γ satisfying

2. the set

n
A ∈ D1 : ‖A− γ(0)‖ < 2r∗ for some OGC γ from D1 to D2

o
is

contractible in D1.

(back to 2DL)
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The 2nd Deformation Lemma

Prop. 1: Let c be a geometrically critical value. Then, there exists ε∗ = ε∗(c) > 0 such
that, for all (D, h) ∈ eH with F(D, h) ≤ c+ ε∗, there exists a continuous map
η : [0, 1] × h(1,D) → M such that (D, η ⋆ h) ∈ eH and

F

�
D \ h(1, ·)−1(W), η ⋆ h

�
≤ c− ε∗.

e
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The 2nd Deformation Lemma

Prop. 1: Let c be a geometrically critical value. Then, there exists ε∗ = ε∗(c) > 0 such
that, for all (D, h) ∈ eH with F(D, h) ≤ c+ ε∗, there exists a continuous map
η : [0, 1] × h(1,D) → M such that (D, η ⋆ h) ∈ eH and

F

�
D \ h(1, ·)−1(W), η ⋆ h

�
≤ c− ε∗.

Using the transversality of the OGC’s, and the fact that Ω can be retracted onto one of
the connected components of its boundary, one proves the following:

e
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The 2nd Deformation Lemma

Prop. 1: Let c be a geometrically critical value. Then, there exists ε∗ = ε∗(c) > 0 such
that, for all (D, h) ∈ eH with F(D, h) ≤ c+ ε∗, there exists a continuous map
η : [0, 1] × h(1,D) → M such that (D, η ⋆ h) ∈ eH and

F

�
D \ h(1, ·)−1(W), η ⋆ h

�
≤ c− ε∗.

Using the transversality of the OGC’s, and the fact that Ω can be retracted onto one of
the connected components of its boundary, one proves the following:

Prop. 2: Assume that there are only a finite number of crossing OGC’s from D1 to D2,
and assume that r∗ > 0 is so small so that properties (1) and (2) in the page above are

satisfied. Then, for all (D, h) ∈ eH there exists an open set A of C, with
h(1, ·)−1(W) ⊂ A, that is contractible in D1.
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The 2nd Deformation Lemma

Prop. 1: Let c be a geometrically critical value. Then, there exists ε∗ = ε∗(c) > 0 such
that, for all (D, h) ∈ eH with F(D, h) ≤ c+ ε∗, there exists a continuous map
η : [0, 1] × h(1,D) → M such that (D, η ⋆ h) ∈ eH and

F

�
D \ h(1, ·)−1(W), η ⋆ h

�
≤ c− ε∗.

Using the transversality of the OGC’s, and the fact that Ω can be retracted onto one of
the connected components of its boundary, one proves the following:

Prop. 2: Assume that there are only a finite number of crossing OGC’s from D1 to D2,
and assume that r∗ > 0 is so small so that properties (1) and (2) in the page above are

satisfied. Then, for all (D, h) ∈ eH there exists an open set A of C, with
h(1, ·)−1(W) ⊂ A, that is contractible in D1.

Corollary: Assume that there is only a finite number of crossing OGC’s from D1 to D2.

Then c1 < c2.
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Some old and new results

We will now review some old and new results on periodic
solutions of conservative dynamical systems.
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Principle of least action

Euler, Maupertuis, Jacobi , XVIII century:
consider the conservative system:

D
dt
ẋ = ∇V (x)

� 	 � �
8<:
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Principle of least action

Euler, Maupertuis, Jacobi , XVIII century:
consider the conservative system:

D
dt
ẋ = ∇V (x)

If x is a solution, then E = 1
2
g(ẋ, ẋ) + V (x) is constant: energy of the solution

� 	 � �
8<:
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Principle of least action

Euler, Maupertuis, Jacobi , XVIII century:
consider the conservative system:

D
dt
ẋ = ∇V (x)

If x is a solution, then E = 1
2
g(ẋ, ẋ) + V (x) is constant: energy of the solution Fix E

and set: ΩE =

�
q ∈M : V (q) < E

	
, and gE =

�
E − V (q)

�
g.

Variational principle: Orbits of the conservative system having energy E are
gE -geodesics in ΩE (up to reparameterization).

8<:
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Principle of least action

Euler, Maupertuis, Jacobi , XVIII century:
consider the conservative system:

D
dt
ẋ = ∇V (x)

If x is a solution, then E = 1
2
g(ẋ, ẋ) + V (x) is constant: energy of the solution Fix E

and set: ΩE =

�
q ∈M : V (q) < E

	
, and gE =

�
E − V (q)

�
g.

Variational principle: Orbits of the conservative system having energy E are
gE -geodesics in ΩE (up to reparameterization).

Obs.: gE degenerate on ∂ΩE = V −1(E).

8<:
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Principle of least action

Euler, Maupertuis, Jacobi , XVIII century:
consider the conservative system:

D
dt
ẋ = ∇V (x)

If x is a solution, then E = 1
2
g(ẋ, ẋ) + V (x) is constant: energy of the solution Fix E

and set: ΩE =

�
q ∈M : V (q) < E

	
, and gE =

�
E − V (q)

�
g.

Variational principle: Orbits of the conservative system having energy E are
gE -geodesics in ΩE (up to reparameterization).

Obs.: gE degenerate on ∂ΩE = V −1(E).

Periodic solutions ⇐⇒
8<: closed geodesics in (ΩE , gE), or

orthogonal geodesic chords in ΩE .
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Principle of least action

Euler, Maupertuis, Jacobi , XVIII century:
consider the conservative system:

D
dt
ẋ = ∇V (x)

If x is a solution, then E = 1
2
g(ẋ, ẋ) + V (x) is constant: energy of the solution Fix E

and set: ΩE =

�
q ∈M : V (q) < E

	
, and gE =

�
E − V (q)

�
g.

Variational principle: Orbits of the conservative system having energy E are
gE -geodesics in ΩE (up to reparameterization).

Obs.: gE degenerate on ∂ΩE = V −1(E).

Periodic solutions ⇐⇒
8<: closed geodesics in (ΩE , gE), or

orthogonal geodesic chords in ΩE .

The existence of closed geodesics is clear on an intuitive ground: rest position of an

elastic string whose initial position is a non null-homotopic closed curve.
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Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian
manifold:
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Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian
manifold:

c closed curve 7−→ D(c)= inscribed geodesic polygon;
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Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian
manifold:

c closed curve 7−→ D(c)= inscribed geodesic polygon;

D(c) depends continuously on c.
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Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian
manifold:

c closed curve 7−→ D(c)= inscribed geodesic polygon;

D(c) depends continuously on c.

c is homotopic to D(c), and c = D(c) if and only if c is a closed geodesic.
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Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian
manifold:

c closed curve 7−→ D(c)= inscribed geodesic polygon;

D(c) depends continuously on c.

c is homotopic to D(c), and c = D(c) if and only if c is a closed geodesic.

If c = c0 is a non null-homotopic curve, then the iterates cn+1 = D(cn) must have a
subsequence converging to c∞. By continuity:
D(c∞) = D(lim cn) = limD(cn) = lim cn+1 = c∞, hence c∞ is a closed geodesic.
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Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian
manifold:

c closed curve 7−→ D(c)= inscribed geodesic polygon;

D(c) depends continuously on c.

c is homotopic to D(c), and c = D(c) if and only if c is a closed geodesic.

If c = c0 is a non null-homotopic curve, then the iterates cn+1 = D(cn) must have a
subsequence converging to c∞. By continuity:
D(c∞) = D(lim cn) = limD(cn) = lim cn+1 = c∞, hence c∞ is a closed geodesic.

Minimax method : existence of a closed geodesic on a sphere (with arbitrary metric)
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Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian
manifold:

c closed curve 7−→ D(c)= inscribed geodesic polygon;

D(c) depends continuously on c.

c is homotopic to D(c), and c = D(c) if and only if c is a closed geodesic.

If c = c0 is a non null-homotopic curve, then the iterates cn+1 = D(cn) must have a
subsequence converging to c∞. By continuity:
D(c∞) = D(lim cn) = limD(cn) = lim cn+1 = c∞, hence c∞ is a closed geodesic.

Minimax method : existence of a closed geodesic on a sphere (with arbitrary metric)

apply the shortening method to a family of closed curves that cover simply a
sphere;
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Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian
manifold:

c closed curve 7−→ D(c)= inscribed geodesic polygon;

D(c) depends continuously on c.

c is homotopic to D(c), and c = D(c) if and only if c is a closed geodesic.

If c = c0 is a non null-homotopic curve, then the iterates cn+1 = D(cn) must have a
subsequence converging to c∞. By continuity:
D(c∞) = D(lim cn) = limD(cn) = lim cn+1 = c∞, hence c∞ is a closed geodesic.

Minimax method : existence of a closed geodesic on a sphere (with arbitrary metric)

apply the shortening method to a family of closed curves that cover simply a
sphere;

consider the longest curve of the family after each shortening process;
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Curve shortening method

Birkhoff (1917): formalization of the method of curve shortening on a Riemannian
manifold:

c closed curve 7−→ D(c)= inscribed geodesic polygon;

D(c) depends continuously on c.

c is homotopic to D(c), and c = D(c) if and only if c is a closed geodesic.

If c = c0 is a non null-homotopic curve, then the iterates cn+1 = D(cn) must have a
subsequence converging to c∞. By continuity:
D(c∞) = D(lim cn) = limD(cn) = lim cn+1 = c∞, hence c∞ is a closed geodesic.

Minimax method : existence of a closed geodesic on a sphere (with arbitrary metric)

apply the shortening method to a family of closed curves that cover simply a
sphere;

consider the longest curve of the family after each shortening process;

a subsequence to this must converge to a closed geodesic, which is not trivial,
because the sphere is not contractible.
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Topological methods

Fet, Ljusternik (1957): observe that the minimax method
can be used to prove the existence of a closed geodesic on
any closed (i.e., compact with no boundary) manifold M .
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Topological methods

Fet, Ljusternik (1957): observe that the minimax method
can be used to prove the existence of a closed geodesic on
any closed (i.e., compact with no boundary) manifold M .

Let k > 0 be the first integer such that πk(M) 6= 0 (this
exists by Hurewicz’s theorem, k ≤ dim(M);)
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Topological methods

Fet, Ljusternik (1957): observe that the minimax method
can be used to prove the existence of a closed geodesic on
any closed (i.e., compact with no boundary) manifold M .

Let k > 0 be the first integer such that πk(M) 6= 0 (this
exists by Hurewicz’s theorem, k ≤ dim(M);)

take an essential map f : Sk →M and transfer to M a
family of closed curve covering Sk;

School in Nonlinear Analysis and Calculus of Variations – p. 48/68



Topological methods

Fet, Ljusternik (1957): observe that the minimax method
can be used to prove the existence of a closed geodesic on
any closed (i.e., compact with no boundary) manifold M .

Let k > 0 be the first integer such that πk(M) 6= 0 (this
exists by Hurewicz’s theorem, k ≤ dim(M);)

take an essential map f : Sk →M and transfer to M a
family of closed curve covering Sk;

apply the curve shortening method to this family, and
obtain a closed geodesic in M which is not trivial, due
to the assumption that f represents a non zero
element in πk(M).
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Classical Hamiltonian Systems

H : R2n → R, H(q, p) = 1
2

nP
i,j=1

gijpipj + V (q), V : Rn → R, gij positive definite.
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H : R2n → R, H(q, p) = 1
2

nP
i,j=1

gijpipj + V (q), V : Rn → R, gij positive definite.

Hamilton equations: q̇i = ∂H
∂pi

, ṗi = − ∂H
∂qi
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gijpipj + V (q), V : Rn → R, gij positive definite.

Hamilton equations: q̇i = ∂H
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, ṗi = − ∂H
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A potential well is an open subset D ⊂ R
n with smooth boundary ∂D such that for some

E ∈ R, V < E in D, V = E on ∂D, and dV 6= 0 in ∂D.
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Classical Hamiltonian Systems

H : R2n → R, H(q, p) = 1
2

nP
i,j=1

gijpipj + V (q), V : Rn → R, gij positive definite.

Hamilton equations: q̇i = ∂H
∂pi

, ṗi = − ∂H
∂qi

A potential well is an open subset D ⊂ R
n with smooth boundary ∂D such that for some

E ∈ R, V < E in D, V = E on ∂D, and dV 6= 0 in ∂D.

THM: (Seifert 1948) If D = D

S
∂D is homeomorphic to the n-dimensional disk, then

there exists a solution t 7→

�
q(t), p(t)

�
of the Hamilton equations with H

�
q(t), p(t)

�
= E

and a number T > 0 such that:
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gijpipj + V (q), V : Rn → R, gij positive definite.

Hamilton equations: q̇i = ∂H
∂pi

, ṗi = − ∂H
∂qi

A potential well is an open subset D ⊂ R
n with smooth boundary ∂D such that for some

E ∈ R, V < E in D, V = E on ∂D, and dV 6= 0 in ∂D.

THM: (Seifert 1948) If D = D

S
∂D is homeomorphic to the n-dimensional disk, then

there exists a solution t 7→

�
q(t), p(t)

�
of the Hamilton equations with H

�
q(t), p(t)

�
= E

and a number T > 0 such that:

for t ∈ ]0, T [, q(t) ∈ D;
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gijpipj + V (q), V : Rn → R, gij positive definite.

Hamilton equations: q̇i = ∂H
∂pi

, ṗi = − ∂H
∂qi

A potential well is an open subset D ⊂ R
n with smooth boundary ∂D such that for some

E ∈ R, V < E in D, V = E on ∂D, and dV 6= 0 in ∂D.

THM: (Seifert 1948) If D = D

S
∂D is homeomorphic to the n-dimensional disk, then

there exists a solution t 7→

�
q(t), p(t)

�
of the Hamilton equations with H

�
q(t), p(t)

�
= E

and a number T > 0 such that:

for t ∈ ]0, T [, q(t) ∈ D;

q(0) = q(T ) ∈ ∂D.
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Classical Hamiltonian Systems

H : R2n → R, H(q, p) = 1
2

nP
i,j=1

gijpipj + V (q), V : Rn → R, gij positive definite.

Hamilton equations: q̇i = ∂H
∂pi

, ṗi = − ∂H
∂qi

A potential well is an open subset D ⊂ R
n with smooth boundary ∂D such that for some

E ∈ R, V < E in D, V = E on ∂D, and dV 6= 0 in ∂D.

THM: (Seifert 1948) If D = D

S
∂D is homeomorphic to the n-dimensional disk, then

there exists a solution t 7→

�
q(t), p(t)

�
of the Hamilton equations with H

�
q(t), p(t)

�
= E

and a number T > 0 such that:

for t ∈ ]0, T [, q(t) ∈ D;

q(0) = q(T ) ∈ ∂D.

Obs.: By the conservation of energy, p(0) = p(T ) = 0. Since H is even in p, the solution
can be continued to a 2T -periodic solution according to the formulas: q(−t) = q(t),

q(T + t) = q(T − t), p(−t) = −p(t), p(T − t) = −P (T − t) brake orbit

Its image in the configuration space oscillates
back and forth along a curve in D with
endpoints in ∂D.
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Classical Hamiltonian Systems

H : R2n → R, H(q, p) = 1
2

nP
i,j=1

gijpipj + V (q), V : Rn → R, gij positive definite.

Hamilton equations: q̇i = ∂H
∂pi

, ṗi = − ∂H
∂qi

A potential well is an open subset D ⊂ R
n with smooth boundary ∂D such that for some

E ∈ R, V < E in D, V = E on ∂D, and dV 6= 0 in ∂D.

THM: (Seifert 1948) If D = D

S
∂D is homeomorphic to the n-dimensional disk, then

there exists a solution t 7→

�
q(t), p(t)

�
of the Hamilton equations with H

�
q(t), p(t)

�
= E

and a number T > 0 such that:

for t ∈ ]0, T [, q(t) ∈ D;

q(0) = q(T ) ∈ ∂D.

Proof: apply the shortening method to a family of diameters of D. The main difficulty

here is the fact that gE vanishes on ∂D, and a limit procedure is employed to control the

behaviour of geodesics near ∂D.
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Hamiltonians of classical type

H is of classical type if for each q0, the map p 7→ H(q0, p) is even and convex.
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Hamiltonians of classical type

H is of classical type if for each q0, the map p 7→ H(q0, p) is even and convex.

Obs.: For all q0, p 7→ H(q0, p) takes its minimum at p = 0. Setting V (q) = H(q, 0), one
has K(q, p) = H(q, p) − V (q) ≥ 0. One can consider also in this case potential wells.
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THM 1: (Weinstein, 1978) Seifert’s result holds for Hamiltonians of classical type: there
exists a brake orbit in a potential well. (Hamiltonians of classical type are reversible)
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H is of classical type if for each q0, the map p 7→ H(q0, p) is even and convex.

Obs.: For all q0, p 7→ H(q0, p) takes its minimum at p = 0. Setting V (q) = H(q, 0), one
has K(q, p) = H(q, p) − V (q) ≥ 0. One can consider also in this case potential wells.

THM 1: (Weinstein, 1978) Seifert’s result holds for Hamiltonians of classical type: there
exists a brake orbit in a potential well. (Hamiltonians of classical type are reversible)

Weinstein’s result has the following beautiful consequence:
THM 2: For any Hamiltonian H, if Σ = H−1(E) is a compact, convex regular energy
surface of H, then there exists a periodic solution of the Hamilton equations in Σ.
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Hamiltonians of classical type

H is of classical type if for each q0, the map p 7→ H(q0, p) is even and convex.

Obs.: For all q0, p 7→ H(q0, p) takes its minimum at p = 0. Setting V (q) = H(q, 0), one
has K(q, p) = H(q, p) − V (q) ≥ 0. One can consider also in this case potential wells.

THM 1: (Weinstein, 1978) Seifert’s result holds for Hamiltonians of classical type: there
exists a brake orbit in a potential well. (Hamiltonians of classical type are reversible)

Weinstein’s result has the following beautiful consequence:
THM 2: For any Hamiltonian H, if Σ = H−1(E) is a compact, convex regular energy
surface of H, then there exists a periodic solution of the Hamilton equations in Σ.

Case n = 2: the result follows from another famous result by Seifert:
THM 3: Every vector field on S3 which has no singularities and which is nowhere
orthogonal to the fibers of the Hopf fibration has a periodic orbit.
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Hamiltonians of classical type

H is of classical type if for each q0, the map p 7→ H(q0, p) is even and convex.

Obs.: For all q0, p 7→ H(q0, p) takes its minimum at p = 0. Setting V (q) = H(q, 0), one
has K(q, p) = H(q, p) − V (q) ≥ 0. One can consider also in this case potential wells.

THM 1: (Weinstein, 1978) Seifert’s result holds for Hamiltonians of classical type: there
exists a brake orbit in a potential well. (Hamiltonians of classical type are reversible)

Weinstein’s result has the following beautiful consequence:
THM 2: For any Hamiltonian H, if Σ = H−1(E) is a compact, convex regular energy
surface of H, then there exists a periodic solution of the Hamilton equations in Σ.

Case n = 2: the result follows from another famous result by Seifert:
THM 3: Every vector field on S3 which has no singularities and which is nowhere
orthogonal to the fibers of the Hopf fibration has a periodic orbit.

P : Σ
∼=−→ S3 radial projection (picture) ,

~H =

P�
∂H
∂pi

∂
∂qi

− ∂H
∂qi

∂
∂pi

�
,

dP( ~H) is nowhere orthogonal to the Hopf vector field

P�

pi
∂

∂qi
− qi

∂
∂pi

�
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Theorem 1 =⇒ Theorem 2

First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

8<: 8<: P h i8>><>>:� �
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Theorem 1 =⇒ Theorem 2

First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H′, then the solutions of
the Hamilton equations of H and H′ on Σ only differ by a reparameterization.

8<: 8<: P h i8>><>>:� �

School in Nonlinear Analysis and Calculus of Variations – p. 51/68



Theorem 1 =⇒ Theorem 2

First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H′, then the solutions of
the Hamilton equations of H and H′ on Σ only differ by a reparameterization.

Lem 2: If Σ ⊂ R
m is a compact and convex hypersurface of class Cr , there exists a Cr

convex function H : Rm → R such that Σ = H−1(1).
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Theorem 1 =⇒ Theorem 2

First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H′, then the solutions of
the Hamilton equations of H and H′ on Σ only differ by a reparameterization.

Lem 2: If Σ ⊂ R
m is a compact and convex hypersurface of class Cr , there exists a Cr

convex function H : Rm → R such that Σ = H−1(1).

“Doubling trick”: periodic solutions (x, y) of q̇i = ∂H
∂pi

, ṗi = − ∂H
∂qi

with period 2T

correspond to pairs (α, β) and (ξ, η) of solutions resp. of:8<: q̇i = 1
2

∂H
∂pi

,

ṗi = − 1
2

∂H
∂qi

and

8<: q̇i = − 1
2

∂H
∂pi

,

ṗi = 1
2

∂H
∂qi

P h i8>><>>:� �
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Lem 1: If Σ is a regular level surface of the Hamiltonians H and H′, then the solutions of
the Hamilton equations of H and H′ on Σ only differ by a reparameterization.

Lem 2: If Σ ⊂ R
m is a compact and convex hypersurface of class Cr , there exists a Cr

convex function H : Rm → R such that Σ = H−1(1).

“Doubling trick”: periodic solutions (x, y) of q̇i = ∂H
∂pi

, ṗi = − ∂H
∂qi

with period 2T

correspond to pairs (α, β) and (ξ, η) of solutions resp. of:8<: q̇i = 1
2

∂H
∂pi

,

ṗi = − 1
2

∂H
∂qi

and

8<: q̇i = − 1
2

∂H
∂pi

,

ṗi = 1
2

∂H
∂qi

xi(t/2) = αi(t), xi(−t/2) = ξ(t), yi(t/2) = βi(t), yi(−t/2) = ηi(t).
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Theorem 1 =⇒ Theorem 2

First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H′, then the solutions of
the Hamilton equations of H and H′ on Σ only differ by a reparameterization.

Lem 2: If Σ ⊂ R
m is a compact and convex hypersurface of class Cr , there exists a Cr

convex function H : Rm → R such that Σ = H−1(1).

“Doubling trick”: periodic solutions (x, y) of q̇i = ∂H
∂pi

, ṗi = − ∂H
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with period 2T

correspond to pairs (α, β) and (ξ, η) of solutions resp. of:8<: q̇i = 1
2

∂H
∂pi

,

ṗi = − 1
2

∂H
∂qi

and

8<: q̇i = − 1
2

∂H
∂pi

,

ṗi = 1
2

∂H
∂qi

xi(t/2) = αi(t), xi(−t/2) = ξ(t), yi(t/2) = βi(t), yi(−t/2) = ηi(t).

Qi = 1
2
(αi + ξi), Qi+n = 1

2
(βi + ηi), Pi =

P
j

h
Ωij(αi − xii) + Ωj+n(βi − ηi)

i

,

Ωij =

8>><>>: 1 if j = i+ n;

−1 if i = j + n;

0 otherwise

� �
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First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H′, then the solutions of
the Hamilton equations of H and H′ on Σ only differ by a reparameterization.

Lem 2: If Σ ⊂ R
m is a compact and convex hypersurface of class Cr , there exists a Cr

convex function H : Rm → R such that Σ = H−1(1).

“Doubling trick”: periodic solutions (x, y) of q̇i = ∂H
∂pi

, ṗi = − ∂H
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with period 2T

correspond to pairs (α, β) and (ξ, η) of solutions resp. of:8<: q̇i = 1
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,
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and

8<: q̇i = − 1
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∂pi

,

ṗi = 1
2

∂H
∂qi

xi(t/2) = αi(t), xi(−t/2) = ξ(t), yi(t/2) = βi(t), yi(−t/2) = ηi(t).

Qi = 1
2
(αi + ξi), Qi+n = 1

2
(βi + ηi), Pi =

P
j

h
Ωij(αi − xii) + Ωj+n(βi − ηi)

i

,

8>><>>:

(Q,P ) satisfy the Hamilton equations of G(Q,P ) = 1
2

�
H(Q− 1

2
ΩP ) +H(Q+ 1

2
P )

�
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First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H′, then the solutions of
the Hamilton equations of H and H′ on Σ only differ by a reparameterization.

Lem 2: If Σ ⊂ R
m is a compact and convex hypersurface of class Cr , there exists a Cr

convex function H : Rm → R such that Σ = H−1(1).
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xi(t/2) = αi(t), xi(−t/2) = ξ(t), yi(t/2) = βi(t), yi(−t/2) = ηi(t).

Qi = 1
2
(αi + ξi), Qi+n = 1

2
(βi + ηi), Pi =

P
j

h
Ωij(αi − xii) + Ωj+n(βi − ηi)

i

,

8>><>>:

(Q,P ) satisfy the Hamilton equations of G(Q,P ) = 1
2

�
H(Q− 1

2
ΩP ) +H(Q+ 1

2
P )

�

(Q,P ) brake orbit for G iff (q, p) is a periodic solution of H.

School in Nonlinear Analysis and Calculus of Variations – p. 51/68
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First prove that the solutions of the Hamilton equations only depend on Σ (not on H):

Lem 1: If Σ is a regular level surface of the Hamiltonians H and H′, then the solutions of
the Hamilton equations of H and H′ on Σ only differ by a reparameterization.

Lem 2: If Σ ⊂ R
m is a compact and convex hypersurface of class Cr , there exists a Cr

convex function H : Rm → R such that Σ = H−1(1).

“Doubling trick”: periodic solutions (x, y) of q̇i = ∂H
∂pi

, ṗi = − ∂H
∂qi

with period 2T

correspond to pairs (α, β) and (ξ, η) of solutions resp. of:8<: q̇i = 1
2

∂H
∂pi

,

ṗi = − 1
2

∂H
∂qi

and

8<: q̇i = − 1
2

∂H
∂pi

,

ṗi = 1
2

∂H
∂qi

xi(t/2) = αi(t), xi(−t/2) = ξ(t), yi(t/2) = βi(t), yi(−t/2) = ηi(t).

Qi = 1
2
(αi + ξi), Qi+n = 1

2
(βi + ηi), Pi =

P
j

h
Ωij(αi − xii) + Ωj+n(βi − ηi)

i

,

8>><>>:

(Q,P ) satisfy the Hamilton equations of G(Q,P ) = 1
2

�
H(Q− 1

2
ΩP ) +H(Q+ 1

2
P )

�

(Q,P ) brake orbit for G iff (q, p) is a periodic solution of H.

Proof of THM 1: curve shortening method in Finsler geometry.
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The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz’s theorem can be used to generalize the arguments
of Seifert and Weinstein.
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The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz’s theorem can be used to generalize the arguments
of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that ΩE is
non empty and compact, then there exists a periodic solution with energy E. If ∂ΩE 6=,
then there is a brake orbit.
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Observe that the relative Hurewicz’s theorem can be used to generalize the arguments
of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that ΩE is
non empty and compact, then there exists a periodic solution with energy E. If ∂ΩE 6=,
then there is a brake orbit.

THM 2: If H : T ∗M → R is a Hamiltonian of classical type, and if E is a regular value of
H such that H−1 is non empty and compact, then there is a periodic solution of the
Hamiltonian equation having energy E.

f

School in Nonlinear Analysis and Calculus of Variations – p. 52/68



The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz’s theorem can be used to generalize the arguments
of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that ΩE is
non empty and compact, then there exists a periodic solution with energy E. If ∂ΩE 6=,
then there is a brake orbit.

THM 2: If H : T ∗M → R is a Hamiltonian of classical type, and if E is a regular value of
H such that H−1 is non empty and compact, then there is a periodic solution of the
Hamiltonian equation having energy E.

Proof. Curve shortening method in Finsler geometry with free boundary.

f
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The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz’s theorem can be used to generalize the arguments
of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that ΩE is
non empty and compact, then there exists a periodic solution with energy E. If ∂ΩE 6=,
then there is a brake orbit.

THM 2: If H : T ∗M → R is a Hamiltonian of classical type, and if E is a regular value of
H such that H−1 is non empty and compact, then there is a periodic solution of the
Hamiltonian equation having energy E.

Proof. Curve shortening method in Finsler geometry with free boundary. Need a convex
boundary: enlarge M to a larger manifold fM constructed by adding a convex collar.
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The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz’s theorem can be used to generalize the arguments
of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that ΩE is
non empty and compact, then there exists a periodic solution with energy E. If ∂ΩE 6=,
then there is a brake orbit.

THM 2: If H : T ∗M → R is a Hamiltonian of classical type, and if E is a regular value of
H such that H−1 is non empty and compact, then there is a periodic solution of the
Hamiltonian equation having energy E.

Proof. Curve shortening method in Finsler geometry with free boundary. Need a convex
boundary: enlarge M to a larger manifold fM constructed by adding a convex collar.
Then, take limit as the size of the collar goes to 0.
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The results of Gluck and Ziller (1983)

Observe that the relative Hurewicz’s theorem can be used to generalize the arguments
of Seifert and Weinstein.

THM 1: Given a classical conservative system and an energy level E such that ΩE is
non empty and compact, then there exists a periodic solution with energy E. If ∂ΩE 6=,
then there is a brake orbit.

THM 2: If H : T ∗M → R is a Hamiltonian of classical type, and if E is a regular value of
H such that H−1 is non empty and compact, then there is a periodic solution of the
Hamiltonian equation having energy E.

Proof. Curve shortening method in Finsler geometry with free boundary. Need a convex
boundary: enlarge M to a larger manifold fM constructed by adding a convex collar.
Then, take limit as the size of the collar goes to 0.

They also obtain a multiplicity result in the case that the E-sublevel of the potential is

homeomorphic to a disk, under a certain nonresonance assumption: the maximum

diameter of the disk should have gE -length smaller than twice the length of the shortest

gE -geodesic chord.
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The Hamiltonian problem

Natural Hamiltonian: H ∈ C2
(
R

2m,R
)
,:

H(p, q) = 1
2

∑m
i,j=1 a

ij(q)pipj + V (q)

V ∈ C2
(
R
m,R

)
,

A(q) =
(
aij(q)

)
positive definite quadratic form on R

m:
m∑

i,j=1

aij(q)pipj ≥ ν(q)|q|2, ν : Rm → R
+ continuous.
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The Hamiltonian problem

Natural Hamiltonian: H ∈ C2
(
R

2m,R
)
,:

H(p, q) = 1
2

∑m
i,j=1 a

ij(q)pipj + V (q)

V ∈ C2
(
R
m,R

)
,

A(q) =
(
aij(q)

)
positive definite quadratic form on R

m:
m∑

i,j=1

aij(q)pipj ≥ ν(q)|q|2, ν : Rm → R
+ continuous.

The corresponding
Hamiltonian
system (HS) is:





ṗ = −
∂H

∂q

q̇ =
∂H

∂p
,
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The Hamiltonian problem

Natural Hamiltonian: H ∈ C2
(
R

2m,R
)
,:

H(p, q) = 1
2

∑m
i,j=1 a

ij(q)pipj + V (q)

V ∈ C2
(
R
m,R

)
,

A(q) =
(
aij(q)

)
positive definite quadratic form on R

m:
m∑

i,j=1

aij(q)pipj ≥ ν(q)|q|2, ν : Rm → R
+ continuous.

The corresponding
Hamiltonian
system (HS) is:





ṗ = −
∂H

∂q

q̇ =
∂H

∂p
,

d

dt
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Properties of the solutions of (HS)

Assume (p, q) : R→ R
2m is a solution of (HS) of class C1.
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Properties of the solutions of (HS)

Assume (p, q) : R→ R
2m is a solution of (HS) of class C1.

H
(
p(t), q(t)

)
is constant; the value of such constant is

the energy of the solution.
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Properties of the solutions of (HS)

Assume (p, q) : R→ R
2m is a solution of (HS) of class C1.

H
(
p(t), q(t)

)
is constant; the value of such constant is

the energy of the solution.

Define linear maps L(q) : Rm → R
m whose matrix repr. in

the canonical basis is (aij) = (aij)−1.
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Properties of the solutions of (HS)

Assume (p, q) : R→ R
2m is a solution of (HS) of class C1.

H
(
p(t), q(t)

)
is constant; the value of such constant is

the energy of the solution.

Define linear maps L(q) : Rm → R
m whose matrix repr. in

the canonical basis is (aij) = (aij)−1.

p=L(q)q̇

p is determined by q
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Properties of the solutions of (HS)

Assume (p, q) : R→ R
2m is a solution of (HS) of class C1.

H
(
p(t), q(t)

)
is constant; the value of such constant is

the energy of the solution.

Define linear maps L(q) : Rm → R
m whose matrix repr. in

the canonical basis is (aij) = (aij)−1.

p=L(q)q̇

q is of class C2. p is determined by q
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Brake orbits

Def.: A brake orbit is a non constant periodic sol. of (HS)

R ∋ t
C2

7−→
(
p(t), q(t)

)
∈ R

2m, with p(0) = p(T ) = 0.
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Brake orbits

Def.: A brake orbit is a non constant periodic sol. of (HS)

R ∋ t
C2

7−→
(
p(t), q(t)

)
∈ R

2m, with p(0) = p(T ) = 0.

Properties:
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Brake orbits

Def.: A brake orbit is a non constant periodic sol. of (HS)

R ∋ t
C2

7−→
(
p(t), q(t)

)
∈ R

2m, with p(0) = p(T ) = 0.

Properties:

H is even in p, hence
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Brake orbits

Def.: A brake orbit is a non constant periodic sol. of (HS)

R ∋ t
C2

7−→
(
p(t), q(t)

)
∈ R

2m, with p(0) = p(T ) = 0.

Properties:

H is even in p, hence (p, q) is 2T -periodic,
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Brake orbits

Def.: A brake orbit is a non constant periodic sol. of (HS)

R ∋ t
C2

7−→
(
p(t), q(t)

)
∈ R

2m, with p(0) = p(T ) = 0.

Properties:

H is even in p, hence (p, q) is 2T -periodic,
p(T + t) = −p(T − t), and
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Brake orbits

Def.: A brake orbit is a non constant periodic sol. of (HS)

R ∋ t
C2

7−→
(
p(t), q(t)

)
∈ R

2m, with p(0) = p(T ) = 0.

Properties:

H is even in p, hence (p, q) is 2T -periodic,
p(T + t) = −p(T − t), and
q(T + t) = q(T − t) for all t ∈ [0, T ];
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Brake orbits

Def.: A brake orbit is a non constant periodic sol. of (HS)

R ∋ t
C2

7−→
(
p(t), q(t)

)
∈ R

2m, with p(0) = p(T ) = 0.

Properties:

H is even in p, hence (p, q) is 2T -periodic,
p(T + t) = −p(T − t), and
q(T + t) = q(T − t) for all t ∈ [0, T ];

if E is the energy of (p, q), then
V

(
q(0)

)
= V

(
q(T )

)
= E.
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Jacobi metric

Choose E > inf V regular value of V ; set:

ΩE = V −1
(
]−∞, E[

)
=

{
x ∈ R

m : V (x) < E
}

open
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Jacobi metric

Choose E > inf V regular value of V ; set:

ΩE = V −1
(
]−∞, E[

)
=

{
x ∈ R

m : V (x) < E
}

open

∂ΩE = φ−1(0) is a smooth oriented hypersurface
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Jacobi metric

Choose E > inf V regular value of V ; set:

ΩE = V −1
(
]−∞, E[

)
=

{
x ∈ R

m : V (x) < E
}

open

∂ΩE = φ−1(0) is a smooth oriented hypersurface
Jacobi metric in ΩE:

gE(x) =
(
E − V (x)

)
·
1

2

m∑

i,j=1

aij(x) dxi dxj, (aij) = (aij)−1.
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Jacobi metric

Choose E > inf V regular value of V ; set:

ΩE = V −1
(
]−∞, E[

)
=

{
x ∈ R

m : V (x) < E
}

open

∂ΩE = φ−1(0) is a smooth oriented hypersurface
Jacobi metric in ΩE:

gE(x) =
(
E − V (x)

)
·
1

2

m∑

i,j=1

aij(x) dxi dxj, (aij) = (aij)−1.

gE degenerates on ∂ΩE;

School in Nonlinear Analysis and Calculus of Variations – p. 56/68



Jacobi metric

Choose E > inf V regular value of V ; set:

ΩE = V −1
(
]−∞, E[

)
=

{
x ∈ R

m : V (x) < E
}

open

∂ΩE = φ−1(0) is a smooth oriented hypersurface
Jacobi metric in ΩE:

gE(x) =
(
E − V (x)

)
·
1

2

m∑

i,j=1

aij(x) dxi dxj, (aij) = (aij)−1.

gE degenerates on ∂ΩE;

if (p, q) is a brake orbit of energy E:

q(t) ∈ ΩE for all t, q(0), q(T ) ∈ ∂ΩE.
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Maupertuis–Jacobi principle

Maupertuis integral fa,b : H1
(
ΩE,R

)
→ R:

fa,b(x) =
1

2

∫ b

a

(
E − V (x)

)
g(ẋ, ẋ) dt.
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Maupertuis–Jacobi principle

Maupertuis integral fa,b : H1
(
ΩE,R

)
→ R:

fa,b(x) =
1

2

∫ b

a

(
E − V (x)

)
g(ẋ, ẋ) dt.

Euler–Lagrange equations:(
E − V (x)

)
D
dt
ẋ− g

(
∇V, ẋ) ẋ+ 1

2
g(ẋ, ẋ)∇V = 0.
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Maupertuis–Jacobi principle

Maupertuis integral fa,b : H1
(
ΩE,R

)
→ R:

fa,b(x) =
1

2

∫ b

a

(
E − V (x)

)
g(ẋ, ẋ) dt.

Euler–Lagrange equations:(
E − V (x)

)
D
dt
ẋ− g

(
∇V, ẋ) ẋ+ 1

2
g(ẋ, ẋ)∇V = 0.

Maupertuis–Jacobi principle:
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Maupertuis–Jacobi principle

Maupertuis integral fa,b : H1
(
ΩE,R

)
→ R:

fa,b(x) =
1

2

∫ b

a

(
E − V (x)

)
g(ẋ, ẋ) dt.

Euler–Lagrange equations:(
E − V (x)

)
D
dt
ẋ− g

(
∇V, ẋ) ẋ+ 1

2
g(ẋ, ẋ)∇V = 0.

Maupertuis–Jacobi principle:

critical points of fa,b ⇐⇒ solutions of (HS)
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Maupertuis–Jacobi principle

Maupertuis integral fa,b : H1
(
ΩE,R

)
→ R:

fa,b(x) =
1

2

∫ b

a

(
E − V (x)

)
g(ẋ, ẋ) dt.

Euler–Lagrange equations:(
E − V (x)

)
D
dt
ẋ− g

(
∇V, ẋ) ẋ+ 1

2
g(ẋ, ẋ)∇V = 0.

Maupertuis–Jacobi principle:

critical points of fa,b ⇐⇒ solutions of (HS)

We want to extend the MJ-principle to brake orbits.

School in Nonlinear Analysis and Calculus of Variations – p. 57/68



Maupertuis–Jacobi principle for
brake orbits

Thm.: E regular value of V , x : ]a, b[−→ΩE s.t.: C0 ∩H1
loc

∫ b

a

[
(E−V )g(ẋ, D

dt
W

)
− 1

2
g(ẋ, ẋ)g

(
∇V,W

)]
dt=0, ∀W ∈ C∞

0 ,
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Maupertuis–Jacobi principle for
brake orbits

Thm.: E regular value of V , x : ]a, b[−→ΩE s.t.: C0 ∩H1
loc

∫ b

a

[
(E−V )g(ẋ, D

dt
W

)
− 1

2
g(ẋ, ẋ)g

(
∇V,W

)]
dt=0, ∀W ∈ C∞

0 ,

and V
(
x(a)

)
, V

(
x(b)

)
= E. Then ∃ cx, T ∈ R

+ and a diffeo
σ : [0, T ]→ [a, b] with:
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Maupertuis–Jacobi principle for
brake orbits

Thm.: E regular value of V , x : ]a, b[−→ΩE s.t.: C0 ∩H1
loc

∫ b

a

[
(E−V )g(ẋ, D

dt
W

)
− 1

2
g(ẋ, ẋ)g

(
∇V,W

)]
dt=0, ∀W ∈ C∞

0 ,

and V
(
x(a)

)
, V

(
x(b)

)
= E. Then ∃ cx, T ∈ R

+ and a diffeo
σ : [0, T ]→ [a, b] with:

x(a) 6= x(b) and
(
E − V (x)

)
g(ẋ, ẋ) ≡ cx;
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Maupertuis–Jacobi principle for
brake orbits

Thm.: E regular value of V , x : ]a, b[−→ΩE s.t.: C0 ∩H1
loc

∫ b

a

[
(E−V )g(ẋ, D

dt
W

)
− 1

2
g(ẋ, ẋ)g

(
∇V,W

)]
dt=0, ∀W ∈ C∞

0 ,

and V
(
x(a)

)
, V

(
x(b)

)
= E. Then ∃ cx, T ∈ R

+ and a diffeo
σ : [0, T ]→ [a, b] with:

x(a) 6= x(b) and
(
E − V (x)

)
g(ẋ, ẋ) ≡ cx;

(p, q) : [0, T ]→ R
m solution of (HS), q = x ◦ σ,

p = L(q)q̇;
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Maupertuis–Jacobi principle for
brake orbits

Thm.: E regular value of V , x : ]a, b[−→ΩE s.t.: C0 ∩H1
loc

∫ b

a

[
(E−V )g(ẋ, D

dt
W

)
− 1

2
g(ẋ, ẋ)g

(
∇V,W

)]
dt=0, ∀W ∈ C∞

0 ,

and V
(
x(a)

)
, V

(
x(b)

)
= E. Then ∃ cx, T ∈ R

+ and a diffeo
σ : [0, T ]→ [a, b] with:

x(a) 6= x(b) and
(
E − V (x)

)
g(ẋ, ẋ) ≡ cx;

(p, q) : [0, T ]→ R
m solution of (HS), q = x ◦ σ,

p = L(q)q̇;

(p, q) can be extended to a 2T -periodic brake orbit of
energy E.
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The Lagrangian problem

Let (M, g) be a Riemannian manifold
V : M → R a C2-map (potential).
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The Lagrangian problem

Let (M, g) be a Riemannian manifold
V : M → R a C2-map (potential).
The Lagrangian problem (LP) is the 2nd order equation:
D
dt
q̇ +∇V (q) = 0 q : R→M .
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The Lagrangian problem

Let (M, g) be a Riemannian manifold
V : M → R a C2-map (potential).
The Lagrangian problem (LP) is the 2nd order equation:
D
dt
q̇ +∇V (q) = 0 q : R→M .

q solution of (LP), E = 1
2
g(q̇, q̇) + V (q) constant (energy).
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The Lagrangian problem

Let (M, g) be a Riemannian manifold
V : M → R a C2-map (potential).
The Lagrangian problem (LP) is the 2nd order equation:
D
dt
q̇ +∇V (q) = 0 q : R→M .

q solution of (LP), E = 1
2
g(q̇, q̇) + V (q) constant (energy).

(HS)⇐⇒ (LP) (Legendre transform)
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The Lagrangian problem

Let (M, g) be a Riemannian manifold
V : M → R a C2-map (potential).
The Lagrangian problem (LP) is the 2nd order equation:
D
dt
q̇ +∇V (q) = 0 q : R→M .

q solution of (LP), E = 1
2
g(q̇, q̇) + V (q) constant (energy).

(HS)⇐⇒ (LP) (Legendre transform)

if M = R
m and g = 1

2

∑m
i,j=1 aij(x) dxi dxj, then:

q solution of (LP) ⇐⇒
(
L(q), q

)
solution of (HS).
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The Lagrangian problem

Let (M, g) be a Riemannian manifold
V : M → R a C2-map (potential).
The Lagrangian problem (LP) is the 2nd order equation:
D
dt
q̇ +∇V (q) = 0 q : R→M .

q solution of (LP), E = 1
2
g(q̇, q̇) + V (q) constant (energy).

(HS)⇐⇒ (LP) (Legendre transform)

if M = R
m and g = 1

2

∑m
i,j=1 aij(x) dxi dxj, then:

q solution of (LP) ⇐⇒
(
L(q), q

)
solution of (HS).

same energy
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Homoclinic horbits

Consider the Lagrangian problem.
Let x0 be a critical point of V : ∇V (x0) = 0.
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Homoclinic horbits

Consider the Lagrangian problem.
Let x0 be a critical point of V : ∇V (x0) = 0.

A solution q ∈ C2(R,M) of (LP) is a homoclinic orbit
issuing from x0 if:
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Homoclinic horbits

Consider the Lagrangian problem.
Let x0 be a critical point of V : ∇V (x0) = 0.

A solution q ∈ C2(R,M) of (LP) is a homoclinic orbit
issuing from x0 if:

lim
t→−∞

q(t) = lim
t→+∞

q(t) = x0
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Homoclinic horbits

Consider the Lagrangian problem.
Let x0 be a critical point of V : ∇V (x0) = 0.

A solution q ∈ C2(R,M) of (LP) is a homoclinic orbit
issuing from x0 if:

lim
t→−∞

q(t) = lim
t→+∞

q(t) = x0

lim
t→−∞

q̇(t) = lim
t→+∞

q̇(t) = 0.
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Homoclinic horbits

Consider the Lagrangian problem.
Let x0 be a critical point of V : ∇V (x0) = 0.

A solution q ∈ C2(R,M) of (LP) is a homoclinic orbit
issuing from x0 if:

lim
t→−∞

q(t) = lim
t→+∞

q(t) = x0

lim
t→−∞

q̇(t) = lim
t→+∞

q̇(t) = 0.

Observe: V (x0) = lim
t→∞

[
1
2
g(q̇, q̇) + V (q)

]
= E; moreover, x0

must be a critical point of V .
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Homoclinic horbits

Consider the Lagrangian problem.
Let x0 be a critical point of V : ∇V (x0) = 0.

A solution q ∈ C2(R,M) of (LP) is a homoclinic orbit
issuing from x0 if:

lim
t→−∞

q(t) = lim
t→+∞

q(t) = x0

lim
t→−∞

q̇(t) = lim
t→+∞

q̇(t) = 0.

Observe: V (x0) = lim
t→∞

[
1
2
g(q̇, q̇) + V (q)

]
= E; moreover, x0

must be a critical point of V .
We need a Maupertuis–Jacobi principle for homoclinics.
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M–J principle for homoclinics

Thm.: (M, g) Riemannian manifold, V ∈ C2
(
M,R

)
,

x0 ∈M a nondegenerate max of V , E = V (x0).
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M–J principle for homoclinics

Thm.: (M, g) Riemannian manifold, V ∈ C2
(
M,R

)
,

x0 ∈M a nondegenerate max of V , E = V (x0).
If x ∈ C0

(
]a, b] ,ΩE

) ⋂
H1

loc

(
[a, b],ΩE

)
is s.t.:
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M–J principle for homoclinics

Thm.: (M, g) Riemannian manifold, V ∈ C2
(
M,R

)
,

x0 ∈M a nondegenerate max of V , E = V (x0).
If x ∈ C0

(
]a, b] ,ΩE

) ⋂
H1

loc

(
[a, b],ΩE

)
is s.t.:

V
(
x(t)

)
< E for s ∈ [a, b[, x(b) = x0
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M–J principle for homoclinics

Thm.: (M, g) Riemannian manifold, V ∈ C2
(
M,R

)
,

x0 ∈M a nondegenerate max of V , E = V (x0).
If x ∈ C0

(
]a, b] ,ΩE

) ⋂
H1

loc

(
[a, b],ΩE

)
is s.t.:

V
(
x(t)

)
< E for s ∈ [a, b[, x(b) = x0

b∫
a

(E−V )g(ẋ, D
dt
W

)
− 1

2
g(ẋ, ẋ)g

(
∇V,W

)
dt=0, ∀W ∈ C∞

0 ,

School in Nonlinear Analysis and Calculus of Variations – p. 61/68



M–J principle for homoclinics

Thm.: (M, g) Riemannian manifold, V ∈ C2
(
M,R

)
,

x0 ∈M a nondegenerate max of V , E = V (x0).
If x ∈ C0

(
]a, b] ,ΩE

) ⋂
H1

loc

(
[a, b],ΩE

)
is s.t.:

V
(
x(t)

)
< E for s ∈ [a, b[, x(b) = x0

b∫
a

(E−V )g(ẋ, D
dt
W

)
− 1

2
g(ẋ, ẋ)g

(
∇V,W

)
dt=0, ∀W ∈ C∞

0 ,

then ∃ a diffeo σ : [0,+∞[→ [a, b[ s.t. q = x ◦ σ is a
solution of (LP) with:

q(0) = x(a)

lim
t→+∞

q(t) = x0, lim
t→+∞

q̇(t) = 0.
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Jacobi distance from ∂ΩE

If E reg. value of V , ΩE compact, set dE : Ω → [0,+∞[:

dE(Q) = inf

� R 1
0 (E − V )g(ẋ, ẋ)

1

2 dt : x ∈ H1

�
[0, 1],ΩE , x(0) = Q, x(1) ∈ ∂Ω

	
.

� � �Z � �
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Jacobi distance from ∂ΩE

If E reg. value of V , ΩE compact, set dE : Ω → [0,+∞[:

dE(Q) = inf

� R 1
0 (E − V )g(ẋ, ẋ)

1

2 dt : x ∈ H1

�
[0, 1],ΩE , x(0) = Q, x(1) ∈ ∂Ω

	
.

Lem 1: dE(Q) attained on some γQ ∈ H1

�
[0, 1],ΩE

�
∩ C2

�
[0, 1[). Such curve

satisfies

1Z
0

(E − V )g(γ̇Q,
D
dt
W ) − 1

2
g(γ̇Q, γ̇Q)g

�
∇V,W

�
dt=0, ∀W ∈ C∞

0 .
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Jacobi distance from ∂ΩE

If E reg. value of V , ΩE compact, set dE : Ω → [0,+∞[:

dE(Q) = inf

� R 1
0 (E − V )g(ẋ, ẋ)

1

2 dt : x ∈ H1

�
[0, 1],ΩE , x(0) = Q, x(1) ∈ ∂Ω

	
.

Lem 1: dE(Q) attained on some γQ ∈ H1

�
[0, 1],ΩE

�
∩ C2

�
[0, 1[). Such curve

satisfies

1Z
0

(E − V )g(γ̇Q,
D
dt
W ) − 1

2
g(γ̇Q, γ̇Q)g

�
∇V,W

�
dt=0, ∀W ∈ C∞

0 .

Lem 2: The map dE : ΩE → [0,+∞[ is continuous, and it admits a continuous
extension to ΩE by setting dE = 0 on ∂ΩE .
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Lem 2: The map dE : ΩE → [0,+∞[ is continuous, and it admits a continuous
extension to ΩE by setting dE = 0 on ∂ΩE .

Lem 3: For Q sufficiently near ∂ΩE , the minimizer γQ is unique.

School in Nonlinear Analysis and Calculus of Variations – p. 62/68



Jacobi distance from ∂ΩE

If E reg. value of V , ΩE compact, set dE : Ω → [0,+∞[:

dE(Q) = inf

� R 1
0 (E − V )g(ẋ, ẋ)
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D
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g(γ̇Q, γ̇Q)g
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�
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0 .

Lem 2: The map dE : ΩE → [0,+∞[ is continuous, and it admits a continuous
extension to ΩE by setting dE = 0 on ∂ΩE .

Lem 3: For Q sufficiently near ∂ΩE , the minimizer γQ is unique.

Lem 4: Set ψ = 1
2
d2E : ΩE → R

+; for y near ∂ΩE :

Hess(ψ)y [v, v] > 0, for v 6= 0 with dψy [v] = 0.
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OGC’s and the Maupertuis Integral

THM: E reg. value of V , ΩE compact. Then, exists δ∗ > 0

s.t., setting Ω∗ =
{
x ∈ ΩE : dE(x) > δ∗

}
the following hold:

R b b b � �

School in Nonlinear Analysis and Calculus of Variations – p. 63/68



OGC’s and the Maupertuis Integral

THM: E reg. value of V , ΩE compact. Then, exists δ∗ > 0

s.t., setting Ω∗ =
{
x ∈ ΩE : dE(x) > δ∗

}
the following hold:

∂Ω∗ of class C2,

R b b b � �

School in Nonlinear Analysis and Calculus of Variations – p. 63/68



OGC’s and the Maupertuis Integral

THM: E reg. value of V , ΩE compact. Then, exists δ∗ > 0

s.t., setting Ω∗ =
{
x ∈ ΩE : dE(x) > δ∗

}
the following hold:

∂Ω∗ of class C2, Ω∗ diffeomorphic to ΩE;

R b b b � �

School in Nonlinear Analysis and Calculus of Variations – p. 63/68



OGC’s and the Maupertuis Integral

THM: E reg. value of V , ΩE compact. Then, exists δ∗ > 0

s.t., setting Ω∗ =
{
x ∈ ΩE : dE(x) > δ∗

}
the following hold:
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x ∈ ΩE : dE(x) > δ∗

}
the following hold:

∂Ω∗ of class C2, Ω∗ diffeomorphic to ΩE;

Ω∗ is strongly concave w.r. to gE;

if x : [0, 1]→ Ω∗ is a gE-OGC, then ∃ [α, β] ⊃ [0, 1] and
a unique extension x̂ : [α, β]→ Ω of x such that:
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if x : [0, 1]→ Ω∗ is a gE-OGC, then ∃ [α, β] ⊃ [0, 1] and
a unique extension x̂ : [α, β]→ Ω of x such that:

1R
0

(E − V)g(bx′, D
dt
W ) − 1

2
g(bx′, bx′)g�∇V,W �dt=0, ∀W ∈ C∞

0 ;
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if x : [0, 1]→ Ω∗ is a gE-OGC, then ∃ [α, β] ⊃ [0, 1] and
a unique extension x̂ : [α, β]→ Ω of x such that:

1R
0

(E − V)g(bx′, D
dt
W ) − 1

2
g(bx′, bx′)g�∇V,W �dt=0, ∀W ∈ C∞

0 ;

x̂(s) ∈ d−1
E

(
]−δ∗, 0[

)
for s ∈ ]α, 0[

⋃
]1, β[;
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s.t., setting Ω∗ =
{
x ∈ ΩE : dE(x) > δ∗

}
the following hold:

∂Ω∗ of class C2, Ω∗ diffeomorphic to ΩE;

Ω∗ is strongly concave w.r. to gE;

if x : [0, 1]→ Ω∗ is a gE-OGC, then ∃ [α, β] ⊃ [0, 1] and
a unique extension x̂ : [α, β]→ Ω of x such that:
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0

(E − V)g(bx′, D
dt
W ) − 1

2
g(bx′, bx′)g�∇V,W �dt=0, ∀W ∈ C∞

0 ;

x̂(s) ∈ d−1
E

(
]−δ∗, 0[

)
for s ∈ ]α, 0[

⋃
]1, β[;

V
(
x̂(α)

)
= V

(
x̂(β)

)
= 0.
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THM: E reg. value of V , ΩE compact. Then, exists δ∗ > 0

s.t., setting Ω∗ =
{
x ∈ ΩE : dE(x) > δ∗

}
the following hold:

∂Ω∗ of class C2, Ω∗ diffeomorphic to ΩE;

Ω∗ is strongly concave w.r. to gE;

if x : [0, 1]→ Ω∗ is a gE-OGC, then ∃ [α, β] ⊃ [0, 1] and
a unique extension x̂ : [α, β]→ Ω of x such that:

1R
0

(E − V)g(bx′, D
dt
W ) − 1

2
g(bx′, bx′)g�∇V,W �dt=0, ∀W ∈ C∞

0 ;

x̂(s) ∈ d−1
E

(
]−δ∗, 0[

)
for s ∈ ]α, 0[

⋃
]1, β[;

V
(
x̂(α)

)
= V

(
x̂(β)

)
= 0.

if Ω is centrally symmetric, also Ω∗ is cent. symmetric.
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Jacobi distance from a
nondegenerate max

x0 nondegenerate max of V , V (x0) = E, E reg. value of V , V −1
�

]−∞, E]

�
compact.

� �n�Z � � � o� �� � ��� �R � �b b
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Jacobi distance from a
nondegenerate max

x0 nondegenerate max of V , V (x0) = E, E reg. value of V , V −1
�

]−∞, E]

�
compact.

Choose δ > 0 small so that Ωδ = V −1

�
]E − δ,+∞[

�
has two connected components.
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Jacobi distance from a
nondegenerate max

x0 nondegenerate max of V , V (x0) = E, E reg. value of V , V −1
�

]−∞, E]

�
compact.

Choose δ > 0 small so that Ωδ = V −1

�
]E − δ,+∞[

�
has two connected components.

λE(Q)=inf

n�Z 1

0
(E − V )g(ẋ, ẋ)dt

� 1

2

: x ∈ C0∩H1
loc

�
[0, 1],Ωδ

�
, x(0)=Q, x(1)=x0

o

� �� � ��� �R � �b b
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n�Z 1

0
(E − V )g(ẋ, ẋ)dt

� 1

2

: x ∈ C0∩H1
loc

�
[0, 1],Ωδ

�
, x(0)=Q, x(1)=x0

o
Lem 1:λE(Q) is attained on some γQ, gE(γ̇Q, γ̇Q) constant, γQ

�
[0, 1[

�
⊂ ΩQ \ {x0}.
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loc

�
[0, 1],Ωδ

�
, x(0)=Q, x(1)=x0

o
Lem 1:λE(Q) is attained on some γQ, gE(γ̇Q, γ̇Q) constant, γQ

�
[0, 1[

�
⊂ ΩQ \ {x0}.

lim
Q→x0

λE(Q) = 0, lim
Q→x0

�
sup

s∈[0,1]
dist

�
γQ(s), x0

��
= 0;

� �R � �b b
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[0, 1[

�
⊂ ΩQ \ {x0}.

lim
Q→x0

λE(Q) = 0, lim
Q→x0

�
sup

s∈[0,1]
dist

�
γQ(s), x0

��
= 0;

For Q near x0, γQ

�
[0, 1]

�
⊂ Ωδ , γQ is of class C2 and it satisfies:

1R
0

(E − V )g(γ̇Q,
D
dt
W ) − 1

2
g(γ̇Q, γ̇Q)g

�
∇V,W

�
dt=0, ∀W ∈ C∞

0

b b
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o
Lem 1:λE(Q) is attained on some γQ, gE(γ̇Q, γ̇Q) constant, γQ
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[0, 1[
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⊂ ΩQ \ {x0}.

lim
Q→x0

λE(Q) = 0, lim
Q→x0

�
sup

s∈[0,1]
dist

�
γQ(s), x0

��
= 0;

For Q near x0, γQ

�
[0, 1]

�
⊂ Ωδ , γQ is of class C2 and it satisfies:

1R
0

(E − V )g(γ̇Q,
D
dt
W ) − 1

2
g(γ̇Q, γ̇Q)g

�
∇V,W

�
dt=0, ∀W ∈ C∞

0

Lem 2: λE : ΩE → [0,+∞[ is continuous.

b b
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Jacobi distance from a
nondegenerate max

x0 nondegenerate max of V , V (x0) = E, E reg. value of V , V −1
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loc
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o
Lem 1:λE(Q) is attained on some γQ, gE(γ̇Q, γ̇Q) constant, γQ

�
[0, 1[
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⊂ ΩQ \ {x0}.

lim
Q→x0

λE(Q) = 0, lim
Q→x0

�
sup

s∈[0,1]
dist

�
γQ(s), x0

��
= 0;

For Q near x0, γQ

�
[0, 1]

�
⊂ Ωδ , γQ is of class C2 and it satisfies:

1R
0

(E − V )g(γ̇Q,
D
dt
W ) − 1

2
g(γ̇Q, γ̇Q)g

�
∇V,W

�
dt=0, ∀W ∈ C∞

0

Lem 2: λE : ΩE → [0,+∞[ is continuous.

Lem 3: ∃bρ > 0 s.t., setting ψ(y) = 1
2
λQ(y)2, for dist(y, x0) ≤ bρ:

Hess(ψ)y [v, v] > 0, for v 6= 0 with dψy [v] = 0.
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M–J principle for homoclinics

THM: x0 nondegenerate max of V , V (x0) = E, E regular value of V ,
V −1

�

]−∞, E[

�S{x0} homeomorhic to an open ball in R
m.

� � � 	
bb �b � Sb b� �S
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M–J principle for homoclinics

THM: x0 nondegenerate max of V , V (x0) = E, E regular value of V ,
V −1

�

]−∞, E[

�S{x0} homeomorhic to an open ball in R
m.

∃ δ∗ > 0 s.t., setting: Ω∗ =

�
x ∈ R

m : distE

�
x, V −1(E)

�
> δ∗

	
denoting by D0 the connected component of ∂Ω∗ near x0,
by D1 the connected component of ∂Ω∗ near V −1(E) \ {0},
the following hold:
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the following hold:
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∂Ω∗ is of class C2, Ω∗ is homeomorphic to an annulus;

Ω∗ is gE -strongly concave;

if x : [0, 1] → Ω∗ is an OGC with x(0) ∈ D0, x(1) ∈ D1, then there exists
]α, β] ⊃ [0, 1] and a unique extension bx : [α, β] → ΩE , x ∈ C0 ∩H1

loc, satisfying:
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]α, β] ⊃ [0, 1] and a unique extension bx : [α, β] → ΩE , x ∈ C0 ∩H1

loc, satisfying:bx is a gE -geodesic;

dist

�bx(s), V −1(E)

�
∈ ]−δ∗, 0[ for s ∈ ]α, 0[

S
]1, β[;
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if x : [0, 1] → Ω∗ is an OGC with x(0) ∈ D0, x(1) ∈ D1, then there exists
]α, β] ⊃ [0, 1] and a unique extension bx : [α, β] → ΩE , x ∈ C0 ∩H1

loc, satisfying:bx is a gE -geodesic;
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�bx(s), V −1(E)

�
∈ ]−δ∗, 0[ for s ∈ ]α, 0[

S
]1, β[;bx(α) = x0, bx(β) ∈ V −1(E) \ {x0};
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∂Ω∗ is of class C2, Ω∗ is homeomorphic to an annulus;

Ω∗ is gE -strongly concave;

if x : [0, 1] → Ω∗ is an OGC with x(0) ∈ D0, x(1) ∈ D1, then there exists
]α, β] ⊃ [0, 1] and a unique extension bx : [α, β] → ΩE , x ∈ C0 ∩H1

loc, satisfying:bx is a gE -geodesic;

dist

�bx(s), V −1(E)

�
∈ ]−δ∗, 0[ for s ∈ ]α, 0[

S
]1, β[;bx(α) = x0, bx(β) ∈ V −1(E) \ {x0};

if V −1

�
]−∞, E[

�S{x0} and V are centrally symmetric around x0, then so is
Ω∗.
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Theorem 1: Let H ∈ C2(R2m,R) be a natural Hamiltonian. Let E be a regular value of
the potential V , and assume

ΩE = V −1

�
]−∞, E[

�
is homeomorphic to an m-dimensional annulus. Then, the Hamiltonian system (HS) has
at least two geometrically distict brake orbits of energy E, whose endpoints are in
different connected components of V −1(E).

Theorem 2: Under the assumptions of THM 1, if the functions aij and V are centrally

symmetric w. resp. to some y0 6∈ V −1

�
]−∞, E]

�
,
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Theorem 1: Let H ∈ C2(R2m,R) be a natural Hamiltonian. Let E be a regular value of
the potential V , and assume

ΩE = V −1

�
]−∞, E[

�
is homeomorphic to an m-dimensional annulus. Then, the Hamiltonian system (HS) has
at least two geometrically distict brake orbits of energy E, whose endpoints are in
different connected components of V −1(E).

Theorem 2: Under the assumptions of THM 1, if the functions aij and V are centrally

symmetric w. resp. to some y0 6∈ V −1

�
]−∞, E]

�
, then there are at least m

geometrically distinct brake orbits for (HS) with energy E.
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Final results –2

Theorem 3: (M, g) Riemannian manifold, V : M
C2

−→ R, x0 ∈M a nondegenerate
maximum of V . Assume:

� �S
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V −1

�

]−∞, E[

�S
{x0} is homeomorphic to an open ball of Rm;
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Theorem 3: (M, g) Riemannian manifold, V : M
C2

−→ R, x0 ∈M a nondegenerate
maximum of V . Assume:

V −1

�

]−∞, E[

�S
{x0} is homeomorphic to an open ball of Rm;

dV (x) 6= 0 for all x ∈ V −1(E) \ {x0}.
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{x0} is homeomorphic to an open ball of Rm;
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Final results –2

Theorem 3: (M, g) Riemannian manifold, V : M
C2

−→ R, x0 ∈M a nondegenerate
maximum of V . Assume:

V −1

�

]−∞, E[

�S
{x0} is homeomorphic to an open ball of Rm;

dV (x) 6= 0 for all x ∈ V −1(E) \ {x0}.

Then, there are at least two geometrically distinct homoclinic orbits for the Lagrangian
problem (LP) emanating from x0.

Theorem 4: Under the assumptions of THM 3, if (M, g) and V are centrally symmetric

around x0, then there are at least m geometrically distinct homoclinics of (LP)

emanating from x0.
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Gluing a convex collar to a manifold
with boundary
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