Functions on the sphere with critical points in pairs and orthogonal geodesic chords RISM4 – Nonlinear Phenomena in Mathematics and Economics

Paolo Piccione

Universidade São Paulo, Brazil

September 16th, 2015

This is a joint work with:

Roberto Giambò Università di Camerino

Fabio Giannoni Università di Camerino

Abstract

I will discuss a problem of multiplicity for geodesics starting and arriving orthogonally to the boundary of a Riemannian ball using Morse theory. This gives an analogous multiplicity result for a class of periodic solutions (brake orbits) in a potential well of a Lagrangian system.

• (1) • (1) • (1)

1 Topology: Morse-even functions on the sphere

Abstract

I will discuss a problem of multiplicity for geodesics starting and arriving orthogonally to the boundary of a Riemannian ball using Morse theory. This gives an analogous multiplicity result for a class of periodic solutions (brake orbits) in a potential well of a Lagrangian system.

- 1 Topology: *Morse-even functions* on the sphere
- ODE's: brake orbits for conservative Lagrangian systems

– only as motivation for part (1) and (3)

Abstract

I will discuss a problem of multiplicity for geodesics starting and arriving orthogonally to the boundary of a Riemannian ball using Morse theory. This gives an analogous multiplicity result for a class of periodic solutions (brake orbits) in a potential well of a Lagrangian system.

A I > A I > A

- 1 Topology: *Morse-even functions* on the sphere
- 2 ODE's: brake orbits for conservative Lagrangian systems
 - only as motivation for part (1) and (3)
- 3 Geometry: orthogonal geodesic chords

Abstract

I will discuss a problem of multiplicity for geodesics starting and arriving orthogonally to the boundary of a Riemannian ball using Morse theory. This gives an analogous multiplicity result for a class of periodic solutions (brake orbits) in a potential well of a Lagrangian system.

A (1) > A (2) > A

Morse even functions

The setup:

- *M^m* is a compact manifold;
- $\beta_k(M)$ denotes the *k*-th Betti number of *M*, k = 0, ..., m;
- $f: M \to \mathbb{R}$ is a Morse function;
- if p ∈ M is a critical point of f, i_{Morse}(f, p) is the Morse index;
- $\mu_k(f)$ is the number of critical pts of f having Morse index equal to k

< 日 > < 回 > < 回 > < 回 > < 回 > <

Morse even functions

The setup:

- *M^m* is a compact manifold;
- $\beta_k(M)$ denotes the *k*-th Betti number of *M*, k = 0, ..., m;
- $f: M \to \mathbb{R}$ is a Morse function;
- if p ∈ M is a critical point of f, i_{Morse}(f, p) is the Morse index;
- $\mu_k(f)$ is the number of critical pts of f having Morse index equal to k

Definition

f is *Morse-even* if $\mu_k(f)$ is even for all k = 0, ..., m.

・ロト ・四ト ・ヨト ・ヨト

Proposition

If $f: \mathbb{S}^m \to \mathbb{R}$ is Morse-even, then $\mu_k(f) > 0$ for all $k = 0, \dots, m$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

Proposition

If $f: \mathbb{S}^m \to \mathbb{R}$ is Morse-even, then $\mu_k(f) > 0$ for all $k = 0, \dots, m$.

Proof.

$$\beta_0(\mathbb{S}^m) = \beta_m(\mathbb{S}^m) = 1, \, \beta_k(\mathbb{S}^m) = 0.$$

Proposition

If $f: \mathbb{S}^m \to \mathbb{R}$ is Morse-even, then $\mu_k(f) > 0$ for all $k = 0, \dots, m$.

Proof.

 $\beta_0(\mathbb{S}^m) = \beta_m(\mathbb{S}^m) = 1, \, \beta_k(\mathbb{S}^m) = 0.$ Morse relations:

$$\mu_0 \geq \beta_0$$

$$\mu_1 - \mu_0 \geq \beta_1 - \beta_0$$

 $\mu_m - \mu_{m-1} + \ldots + (-1)^m \mu_0 \geq \beta_m - \beta_{m-1} + \ldots + (-1)^m \beta_0$

э

Proposition

If $f: \mathbb{S}^m \to \mathbb{R}$ is Morse-even, then $\mu_k(f) > 0$ for all $k = 0, \dots, m$.

Proof.

 $\beta_0(\mathbb{S}^m) = \beta_m(\mathbb{S}^m) = 1, \, \beta_k(\mathbb{S}^m) = 0.$ Morse relations:

$$\mu_0 \geq \beta_0$$

$$\mu_1 - \mu_0 \geq \beta_1 - \beta_0$$

 $\mu_m - \mu_{m-1} + \ldots + (-1)^m \mu_0 \geq \beta_m - \beta_{m-1} + \ldots + (-1)^m \beta_0$

 $\mu_0 \ge 2.$

э

< 回 > < 回 > < 回 >

Proposition

If $f: \mathbb{S}^m \to \mathbb{R}$ is Morse-even, then $\mu_k(f) > 0$ for all $k = 0, \dots, m$.

Proof.

 $\beta_0(\mathbb{S}^m) = \beta_m(\mathbb{S}^m) = 1, \, \beta_k(\mathbb{S}^m) = 0.$ Morse relations:

$$\mu_0 \geq \beta_0$$

$$\mu_1 - \mu_0 \geq \beta_1 - \beta_0$$

 $\mu_m - \mu_{m-1} + \ldots + (-1)^m \mu_0 \geq \beta_m - \beta_{m-1} + \ldots + (-1)^m \beta_0$

 $\mu_0 \ge 2.$ $\mu_1 \ge \mu_0 + \beta_1 - \beta_0 = \mu_0 - 1 \ge 1.$

▲ □ ▶ ▲ □ ▶

Proposition

If $f: \mathbb{S}^m \to \mathbb{R}$ is Morse-even, then $\mu_k(f) > 0$ for all $k = 0, \dots, m$.

Proof.

 $\beta_0(\mathbb{S}^m) = \beta_m(\mathbb{S}^m) = 1, \, \beta_k(\mathbb{S}^m) = 0.$ Morse relations:

$$\mu_0 \geq \beta_0$$

$$\mu_1 - \mu_0 \geq \beta_1 - \beta_0$$

 $\mu_m - \mu_{m-1} + \ldots + (-1)^m \mu_0 \geq \beta_m - \beta_{m-1} + \ldots + (-1)^m \beta_0$

 $\mu_0 \ge 2.$ $\mu_1 \ge \mu_0 + \beta_1 - \beta_0 = \mu_0 - 1 \ge 1.$ $\mu_2 \ge \mu_1 - \mu_0 + \beta_2 - \beta_1 + \beta_0 = \mu_1 - \mu_0 + 1 > 0....$

Theorem

If M^m is a compact manifold which is connected and orientable $(\beta_0(M) = \beta_m(M) = 1)$ with $\beta_k(M) \in 2\mathbb{N}$ for all k = 1, ..., m - 1, and $f \colon M \to \mathbb{R}$ is a Morse-even function, then:

 $\mu_k(f) > \beta_k$, for all $k = 0, \ldots, m$.

く 同 と く ヨ と く ヨ と …

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

Classification of low dimensional manifolds with even Betti numbers

Problem: Classify compact connected orientable *n*-manifolds *M* with $\beta_k(M)$ even for all k = 1, ..., n - 1.

n = 2 for every compact orientable surface M^2 of genus g: $\beta_1(M) = 2g$

◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ● � � �

Classification of low dimensional manifolds with even Betti numbers

Problem: Classify compact connected orientable *n*-manifolds *M* with $\beta_k(M)$ even for all k = 1, ..., n - 1.

n = 2 for every compact orientable surface M^2 of genus g: $\beta_1(M) = 2g$

n=3 the only compact simply connected M^3 is \mathbb{S}^3

n = 2 for every compact orientable surface M^2 of genus g: $\beta_1(M) = 2g$

n = 3 the only compact simply connected M^3 is \mathbb{S}^3

n = 4 Recall that β_2 is additive by connected sum:

$$\beta_2(M_1^4 \sharp M_2^4) = \beta_2(M_1^4) + \beta_2(M_2^4)$$

n = 2 for every compact orientable surface M^2 of genus g: $\beta_1(M) = 2g$

n = 3 the only compact simply connected M^3 is \mathbb{S}^3

n = 4 Recall that β_2 is additive by connected sum:

$$\beta_2(M_1^4 \sharp M_2^4) = \beta_2(M_1^4) + \beta_2(M_2^4)$$

 $\beta_2(\mathbb{S}^2 \times \mathbb{S}^2) = 2, \quad \beta_2(\mathbb{C}P^2) = 1$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ① ● ○ ● ●

n = 2 for every compact orientable surface M^2 of genus g: $\beta_1(M) = 2g$

n = 3 the only compact simply connected M^3 is \mathbb{S}^3

n = 4 Recall that β_2 is additive by connected sum:

$$\beta_2(M_1^4 \sharp M_2^4) = \beta_2(M_1^4) + \beta_2(M_2^4)$$

$$\beta_2(\mathbb{S}^2 \times \mathbb{S}^2) = 2, \quad \beta_2(\mathbb{C}P^2) = 1$$

$$M = \underbrace{(\mathbb{S}^2 \times \mathbb{S}^2) \sharp \cdots \sharp (\mathbb{S}^2 \times \mathbb{S}^2)}_{k \text{ times}} \ \sharp \underbrace{\mathbb{C}P^2 \sharp \cdots \sharp \mathbb{C}P^2}_{(2m) \text{ times}}$$

Conservative Lagrangian systems:

- \blacksquare (*M*, *g*) Riemannian manifold (configuration space)
- $V: M \to \mathbb{R}$ potential function (dynamics)

• Lagrangian system: $\int \frac{D}{dt} \dot{x} = -\nabla V(x)$

▲ 御 ▶ ▲ 国 ▶ ▲ 国 ▶

Conservative Lagrangian systems:

- \blacksquare (*M*, *g*) Riemannian manifold (configuration space)
- $V: M \to \mathbb{R}$ potential function (dynamics)
- Lagrangian system: $\frac{\mathrm{D}}{\mathrm{d}t}\dot{x} = -\nabla V(x)$
- Energy of a solution: $E = \frac{1}{2}g(\dot{x}, \dot{x}) + V(x)$

A (1) < (1) < (2) < (2) </p>

Conservative Lagrangian systems:

- \blacksquare (*M*, *g*) Riemannian manifold (configuration space)
- $V: M \to \mathbb{R}$ potential function (dynamics)
- Lagrangian system: $\frac{\mathrm{D}}{\mathrm{d}t}\dot{x} = -\nabla V(x)$
- Energy of a solution: $E = \frac{1}{2}g(\dot{x}, \dot{x}) + V(x)$
- We look for periodic solutions with given energy *E*.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Conservative Lagrangian systems:

- (M, g) Riemannian manifold (configuration space)
- $V: M \to \mathbb{R}$ potential function (dynamics)
- Lagrangian system: $\left| \frac{\mathrm{D}}{\mathrm{d}t} \dot{x} = -\nabla V(x) \right|$
- Energy of a solution: $E = \frac{1}{2}g(\dot{x}, \dot{x}) + V(x)$
- We look for periodic solutions with given energy *E*.

Maupertuis' Principle

Solutions of energy $E \iff$ geodesics in $\Omega_E = V^{-1}(]-\infty, E]$) relatively to the conformal metric $g_E = (E - V) \cdot g$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Conservative Lagrangian systems:

- \blacksquare (*M*, *g*) Riemannian manifold (configuration space)
- $V: M \to \mathbb{R}$ potential function (dynamics)
- Lagrangian system: $\frac{D}{dt}\dot{x} = -\nabla V(x)$
- Energy of a solution: $E = \frac{1}{2}g(\dot{x}, \dot{x}) + V(x)$
- We look for periodic solutions with given energy *E*.

Maupertuis' Principle

Solutions of energy $E \iff$ geodesics in $\Omega_E = V^{-1}(]-\infty, E]$ relatively to the conformal metric $g_E = (E - V) \cdot g$

Obs.: g_E is singular on $\partial \Omega_E = V^{-1}(E)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Conservative Lagrangian systems:

- \blacksquare (*M*, *g*) Riemannian manifold (configuration space)
- $V: M \to \mathbb{R}$ potential function (dynamics)
- Lagrangian system: $\frac{D}{dt}\dot{x} = -\nabla V(x)$
- Energy of a solution: $E = \frac{1}{2}g(\dot{x}, \dot{x}) + V(x)$
- We look for periodic solutions with given energy *E*.

Maupertuis' Principle

Solutions of energy $E \iff$ geodesics in $\Omega_E = V^{-1}(]-\infty, E]$ relatively to the conformal metric $g_E = (E - V) \cdot g$

Obs.: g_E is singular on $\partial \Omega_E = V^{-1}(E)$. **Special class of periodic solutions:** brake orbits (pendulum-like)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○

P. Piccione — USP, Brazil Functions on the sphere with critical points in pairs

Conjecture

Assume:

- E regular value of V;
- Ω_E is homeomorphic to the ball B^{m+1} .

イロト イヨト イヨト イヨト

Conjecture

Assume:

- E regular value of V;
- Ω_E is homeomorphic to the ball B^{m+1} .

Then, there are at least m + 1 distinct brake orbits of energy *E*.

Conjecture

Assume:

- E regular value of V;
- Ω_E is homeomorphic to the ball B^{m+1} .

Then, there are at least m + 1 distinct brake orbits of energy *E*.

Problem: need m + 1 geodesics with endpoints on the singular boundary

Conjecture

Assume:

- E regular value of V;
- Ω_E is homeomorphic to the ball B^{m+1} .

Then, there are at least m + 1 distinct brake orbits of energy *E*.

Problem: need m + 1 geodesics with endpoints on the singular boundary

Geometric construction:

- remove from Ω_E a suitably defined neighborhood V of $\partial \Omega_E$;
- geodesics in Ω_E with endpoints in ∂Ω_E correspond to geodesics in Ω' = Ω_E \ V arriving orthogonally to ∂Ω'
- Ω' is homeomorphic to $\Omega_E \cong B^{m+1}$

• $\partial \Omega' \cong \mathbb{S}^m$ is concave.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

P. Piccione — USP, Brazil Functions on the sphere with critical points in pairs

▲御▶ ▲ 国▶ ▲ 国≯

• (Ω, g) compact Riemannian manifold with boundary $\partial \Omega$

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

(Ω, g) compact Riemannian manifold with boundary ∂Ω
 γ: [0, T] → Ω geodesic with γ(0), γ(T) ∈ ∂Ω

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

• (Ω, g) compact Riemannian manifold with boundary $\partial \Omega$

• $\gamma : [0, T] \longrightarrow \Omega$ geodesic with $\gamma(0), \gamma(T) \in \partial \Omega$

• γ is an orthogonal geodesic chord if $\dot{\gamma}(\mathbf{0}), \dot{\gamma}(\mathbf{T}) \in T(\partial \Omega)^{\perp}$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● の Q @

Geometry: orthogonal geodesic chords

(Ω, g) compact Riemannian manifold with boundary ∂Ω
 γ: [0, T] → Ω geodesic with γ(0), γ(T) ∈ ∂Ω
 γ is an orthogonal geodesic chord if γ(0), γ(T) ∈ T(∂Ω)[⊥]

 ν unit normal vector field along $\partial \Omega$ pointing inside Ω .

 $p \in \partial \Omega, \gamma_p(t) = \exp_p(t \cdot \nu_p)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Geometry: orthogonal geodesic chords

(Ω, g) compact Riemannian manifold with boundary ∂Ω
 γ: [0, T] → Ω geodesic with γ(0), γ(T) ∈ ∂Ω
 γ is an orthogonal geodesic chord if γ(0), γ(T) ∈ T(∂Ω)[⊥]

 ν unit normal vector field along $\partial \Omega$ pointing inside Ω .

 $\boldsymbol{\rho} \in \partial \Omega, \, \gamma_{\boldsymbol{\rho}}(t) = \exp_{\boldsymbol{\rho}}(t \cdot \nu_{\boldsymbol{\rho}})$

Basic assumptions on (Ω, g)

For all $p \in \partial \Omega$:

(HP1) $\exists T_p > 0$ such that: $\gamma_p(t) \notin \partial \Omega$ for $t \in]0, T_p[;$ γ_p meets $\partial \Omega$ transversally at $t = T_p$.

(日)

Geometry: orthogonal geodesic chords

(Ω, g) compact Riemannian manifold with boundary ∂Ω
 γ: [0, T] → Ω geodesic with γ(0), γ(T) ∈ ∂Ω
 γ is an orthogonal geodesic chord if γ(0), γ(T) ∈ T(∂Ω)[⊥]

 ν unit normal vector field along $\partial \Omega$ pointing inside Ω .

 $\boldsymbol{\rho} \in \partial \Omega, \, \gamma_{\boldsymbol{\rho}}(t) = \exp_{\boldsymbol{\rho}}(t \cdot \nu_{\boldsymbol{\rho}})$

Basic assumptions on (Ω, g)

For all $p \in \partial \Omega$:

(HP1) $\exists T_p > 0$ such that: $\gamma_p(t) \notin \partial \Omega$ for $t \in]0, T_p[;$ γ_p meets $\partial \Omega$ transversally at $t = T_p$.

(HP2) $\gamma_p(T_p)$ is not a focal point along γ_p .

(日)

э

How bad are the assumptions?

P. Piccione — USP, Brazil Functions on the sphere with critical points in pairs

<日</td>

• (HP1) is an open condition relatively to the C^1 -topology

- (HP1) is an open condition relatively to the C¹-topology
- (HP2) is an open condition relatively to the C²-topology

- (HP1) is an open condition relatively to the C¹-topology
- (HP2) is an open condition relatively to the C^2 -topology
- Radially symmetric metrics on balls satisfy (HP1) and (HP2)

< 同 > < 回 > < 回 >

- (HP1) is an open condition relatively to the C¹-topology
- (HP2) is an open condition relatively to the C^2 -topology
- Radially symmetric metrics on balls satisfy (HP1) and (HP2)
- Neither (HP1) nor (HP2) is generic.

< 同 > < 回 > < 回 >

Obs. 1: By transversality (HP1), $T: \partial \Omega \longrightarrow]0, +\infty[$ is smooth.

Obs. 1: By transversality (HP1), $T: \partial \Omega \longrightarrow]0, +\infty[$ is smooth. Crossing time function of (Ω, g) .

P. Piccione — USP, Brazil Functions on the sphere with critical points in pairs

Obs. 1: By transversality (HP1), $T: \partial \Omega \longrightarrow]0, +\infty[$ is smooth. Crossing time function of (Ω, g) .

Theorem

Under assumption (HP2), p is a critical point of T iff γ_p is an orthogonal geodesic chord, i.e., iff $\dot{\gamma}_p(T_p) \perp \partial \Omega$.

Obs. 1: By transversality (HP1), $T: \partial \Omega \longrightarrow]0, +\infty[$ is smooth. Crossing time function of (Ω, g) .

Theorem

Under assumption (HP2), p is a critical point of T iff γ_p is an orthogonal geodesic chord, i.e., iff $\dot{\gamma}_p(T_p) \perp \partial \Omega$.

Obs. 2: Critical points of $T : \partial \Omega \to \mathbb{R}$ come in pairs!

• $\gamma_{p} \colon [0, T_{p}] \longrightarrow \overline{\Omega}$ orthogonal geodesic chord.

•
$$\gamma_{p}(0) = p, \gamma_{p}(T_{p}) = q$$

• $\gamma_q = \gamma_p^-$ (backward reparameterization)

◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● のへで

• $\gamma_{p} \colon [0, T_{p}] \longrightarrow \overline{\Omega}$ orthogonal geodesic chord.

• $\gamma_q = \gamma_p^-$ (backward reparameterization)

3 different notions of Morse index associated to γ

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 日 ● の Q @

• $\gamma_{p} \colon [0, T_{p}] \longrightarrow \overline{\Omega}$ orthogonal geodesic chord.

• $\gamma_q = \gamma_p^-$ (backward reparameterization)

3 different notions of Morse index associated to γ

- **1** Morse index of γ_p as a free endpoints geodesic: $i_{\text{free}}(\gamma_p)$
- 2 Morse index of γ_p as fixed endpoint geodesic: $i_{fixed}(\gamma_p)$
- 3 Morse index of the crossing time: $i_{Morse}(T, p)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

• $\gamma_{p} \colon [0, T_{p}] \longrightarrow \overline{\Omega}$ orthogonal geodesic chord.

• $\gamma_q = \gamma_p^-$ (backward reparameterization)

3 different notions of Morse index associated to γ

- **1** Morse index of γ_p as a free endpoints geodesic: $i_{free}(\gamma_p)$
- 2 Morse index of γ_p as fixed endpoint geodesic: $i_{fixed}(\gamma_p)$
- 3 Morse index of the crossing time: $i_{Morse}(T, p)$

Theorem

(a) i_{fixed}(γ_p) equals the number of ∂Ω-focal pts along γ_p.
(b) i_{free}(γ_p) = i_{fixed}(γ_p) + i_{Morse}(T, p)

(過) () () () () ()

In general, the number focal points depends on the orientation!

In general, the number focal points depends on the orientation!

Theorem

Under assumption (HP2), T is a Morse-even function.

In general, the number focal points depends on the orientation!

Theorem

Under assumption (HP2), T is a Morse-even function.

Proof.

- Stability of the focal points
- They do not collapse onto the boundary

In general, the number focal points depends on the orientation!

Theorem

Under assumption (HP2), T is a Morse-even function.

Proof.

- Stability of the focal points
- They do not collapse onto the boundary

Obs.: Example shows that (HP2) is not generic.

Main Result

P. Piccione — USP, Brazil Functions on the sphere with critical points in pairs

æ

Theorem

Let g be a metric on B^{m+1} satisfying (HP1) and (HP2).

P. Piccione — USP, Brazil Functions on the sphere with critical points in pairs

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

크

Theorem

Let g be a metric on B^{m+1} satisfying (HP1) and (HP2). Then, there are at least m + 1 distinct orthogonal geodesic chords in B^m .

・ロト ・ 同 ト ・ 国 ト ・ 国 ト …

э.

Theorem

Let g be a metric on B^{m+1} satisfying (HP1) and (HP2). Then, there are at least m + 1 distinct orthogonal geodesic chords in B^m .

This settles Seifert's conjecture in a quite large number of cases.

▲□→ ▲ □ → ▲ □ →

3

Counterexample when $\partial \Omega$ is not a sphere

When $\partial \Omega$ is not connected, one cannot expect the existence of more than 2 OGC's, regardless of the dimension.

