Functions on the sphere with critical points in pairs and orthogonal geodesic chords
 RISM4 - Nonlinear Phenomena in Mathematics and Economics

Paolo Piccione

Universidade São Paulo, Brazil

September 16th, 2015

This is a joint work with:

Roberto Giambò
Università di Camerino

Fabio Giannoni
Università di Camerino

Main topics

Abstract

I will discuss a problem of multiplicity for geodesics starting and arriving orthogonally to the boundary of a Riemannian ball using Morse theory. This gives an analogous multiplicity result for a class of periodic solutions (brake orbits) in a potential well of a Lagrangian system.

Outline of this talk.

Main topics

Abstract

1 Topology: Morse-even functions on the sphere

I will discuss a problem of multiplicity for geodesics starting and arriving orthogonally to the boundary of a Riemannian ball using Morse theory. This gives an analogous multiplicity result for a class of periodic solutions (brake orbits) in a potential well of a Lagrangian system.

Outline of this talk.

Main topics

Abstract

1 Topology: Morse-even functions on the sphere

2 ODE's: brake orbits for conservative Lagrangian systems

- only as motivation for part (1) and (3)

I will discuss a problem of multiplicity for geodesics starting and arriving orthogonally to the boundary of a Riemannian ball using Morse theory. This gives an analogous multiplicity result for a class of periodic solutions (brake orbits) in a potential well of a Lagrangian system.

Outline of this talk.

Main topics

Abstract

1 Topology: Morse-even functions on the sphere

2 ODE's: brake orbits for conservative Lagrangian systems

- only as motivation for part (1) and (3)

3 Geometry: orthogonal geodesic chords

I will discuss a problem of multiplicity for geodesics starting and arriving orthogonally to the boundary of a Riemannian ball using Morse theory. This gives an analogous multiplicity result for a class of periodic solutions (brake orbits) in a potential well of a Lagrangian system.

The setup:

- M^{m} is a compact manifold;

■ $\beta_{k}(M)$ denotes the k-th Betti number of $M, k=0, \ldots, m$;
■ $f: M \rightarrow \mathbb{R}$ is a Morse function;
■ if $p \in M$ is a critical point of $f, \mathrm{i}_{\text {Morse }}(f, p)$ is the Morse index;

- $\mu_{k}(f)$ is the number of critical pts of f having Morse index equal to k

The setup:

- M^{m} is a compact manifold;

■ $\beta_{k}(M)$ denotes the k-th Betti number of $M, k=0, \ldots, m$;
$\square f: M \rightarrow \mathbb{R}$ is a Morse function;
■ if $p \in M$ is a critical point of $f, \mathrm{i}_{\text {Morse }}(f, p)$ is the Morse index;

- $\mu_{k}(f)$ is the number of critical pts of f having Morse index equal to k

Definition

f is Morse-even if $\mu_{k}(f)$ is even for all $k=0, \ldots, m$.

Morse-even functions on the sphere

Proposition

If $f: \mathbb{S}^{m} \rightarrow \mathbb{R}$ is Morse-even, then $\mu_{k}(f)>0$ for all $k=0, \ldots, m$.

Morse-even functions on the sphere

Proposition

If $f: \mathbb{S}^{m} \rightarrow \mathbb{R}$ is Morse-even, then $\mu_{k}(f)>0$ for all $k=0, \ldots, m$.

$$
\begin{aligned}
& \text { Proof. } \\
& \beta_{0}\left(\mathbb{S}^{m}\right)=\beta_{m}\left(\mathbb{S}^{m}\right)=1, \beta_{k}\left(\mathbb{S}^{m}\right)=0 .
\end{aligned}
$$

Morse-even functions on the sphere

Proposition

If $f: \mathbb{S}^{m} \rightarrow \mathbb{R}$ is Morse-even, then $\mu_{k}(f)>0$ for all $k=0, \ldots, m$.

Proof.

$$
\beta_{0}\left(\mathbb{S}^{m}\right)=\beta_{m}\left(\mathbb{S}^{m}\right)=1, \beta_{k}\left(\mathbb{S}^{m}\right)=0 . \text { Morse relations: }
$$

$$
\begin{aligned}
\mu_{0} & \geq \beta_{0} \\
\mu_{1}-\mu_{0} & \geq \beta_{1}-\beta_{0} \\
& \ldots \\
\mu_{m}-\mu_{m-1}+\ldots+(-1)^{m} \mu_{0} & \geq \beta_{m}-\beta_{m-1}+\ldots+(-1)^{m} \beta_{0}
\end{aligned}
$$

Morse-even functions on the sphere

Proposition

If $f: \mathbb{S}^{m} \rightarrow \mathbb{R}$ is Morse-even, then $\mu_{k}(f)>0$ for all $k=0, \ldots, m$.

Proof.
$\beta_{0}\left(\mathbb{S}^{m}\right)=\beta_{m}\left(\mathbb{S}^{m}\right)=1, \beta_{k}\left(\mathbb{S}^{m}\right)=0$. Morse relations:

$$
\begin{aligned}
\mu_{0} & \geq \beta_{0} \\
\mu_{1}-\mu_{0} & \geq \beta_{1}-\beta_{0} \\
& \ldots \\
\mu_{m}-\mu_{m-1}+\ldots+(-1)^{m} \mu_{0} & \geq \beta_{m}-\beta_{m-1}+\ldots+(-1)^{m} \beta_{0}
\end{aligned}
$$

$$
\mu_{0} \geq 2
$$

Morse-even functions on the sphere

Proposition

If $f: \mathbb{S}^{m} \rightarrow \mathbb{R}$ is Morse-even, then $\mu_{k}(f)>0$ for all $k=0, \ldots, m$.

Proof.

$$
\beta_{0}\left(\mathbb{S}^{m}\right)=\beta_{m}\left(\mathbb{S}^{m}\right)=1, \beta_{k}\left(\mathbb{S}^{m}\right)=0 . \text { Morse relations: }
$$

$$
\begin{aligned}
\mu_{0} & \geq \beta_{0} \\
\mu_{1}-\mu_{0} & \geq \beta_{1}-\beta_{0} \\
& \ldots \\
\mu_{m}-\mu_{m-1}+\ldots+(-1)^{m} \mu_{0} & \geq \beta_{m}-\beta_{m-1}+\ldots+(-1)^{m} \beta_{0}
\end{aligned}
$$

$$
\mu_{0} \geq 2
$$

$$
\mu_{1} \geq \mu_{0}+\beta_{1}-\beta_{0}=\mu_{0}-1 \geq 1
$$

Morse-even functions on the sphere

Proposition

If $f: \mathbb{S}^{m} \rightarrow \mathbb{R}$ is Morse-even, then $\mu_{k}(f)>0$ for all $k=0, \ldots, m$.

Proof.

$$
\begin{aligned}
& \beta_{0}\left(\mathbb{S}^{m}\right)=\beta_{m}\left(\mathbb{S}^{m}\right)=1, \beta_{k}\left(\mathbb{S}^{m}\right)=0 . \text { Morse relations: } \\
& \qquad \begin{aligned}
\mu_{0} & \geq \beta_{0} \\
\mu_{1}-\mu_{0} & \geq \beta_{1}-\beta_{0} \\
& \ldots
\end{aligned} \\
& \mu_{m}-\mu_{m-1}+\ldots+(-1)^{m} \mu_{0} \geq \beta_{m}-\beta_{m-1}+\ldots+(-1)^{m} \beta_{0} \\
& \mu_{0} \geq 2 \\
& \mu_{1} \geq \mu_{0}+\beta_{1}-\beta_{0}=\mu_{0}-1 \geq 1 \\
& \mu_{2} \geq \mu_{1}-\mu_{0}+\beta_{2}-\beta_{1}+\beta_{0}=\mu_{1}-\mu_{0}+1>0 \ldots
\end{aligned}
$$

Theorem

If M^{m} is a compact manifold which is connected and orientable $\left(\beta_{0}(M)=\beta_{m}(M)=1\right)$ with $\beta_{k}(M) \in 2 \mathbb{N}$ for all $k=1, \ldots, m-1$, and $f: M \rightarrow \mathbb{R}$ is a Morse-even function, then:

$$
\mu_{k}(f)>\beta_{k}, \quad \text { for all } k=0, \ldots, m
$$

Problem: Classify compact connected orientable n-manifolds M with $\beta_{k}(M)$ even for all $k=1, \ldots, n-1$.

Problem: Classify compact connected orientable n-manifolds M with $\beta_{k}(M)$ even for all $k=1, \ldots, n-1$.
$n=2$ for every compact orientable surface M^{2} of genus g :
$\beta_{1}(M)=2 g$

Problem: Classify compact connected orientable n-manifolds M with $\beta_{k}(M)$ even for all $k=1, \ldots, n-1$.
$n=2$ for every compact orientable surface M^{2} of genus g :
$\beta_{1}(M)=2 g$
$n=3$ the only compact simply connected M^{3} is \mathbb{S}^{3}

Problem: Classify compact connected orientable n-manifolds M with $\beta_{k}(M)$ even for all $k=1, \ldots, n-1$.
$n=2$ for every compact orientable surface M^{2} of genus g :
$\beta_{1}(M)=2 g$
$n=3$ the only compact simply connected M^{3} is \mathbb{S}^{3}
$n=4$ Recall that β_{2} is additive by connected sum:

$$
\beta_{2}\left(M_{1}^{4} \sharp M_{2}^{4}\right)=\beta_{2}\left(M_{1}^{4}\right)+\beta_{2}\left(M_{2}^{4}\right)
$$

Problem: Classify compact connected orientable n-manifolds M with $\beta_{k}(M)$ even for all $k=1, \ldots, n-1$.
$n=2$ for every compact orientable surface M^{2} of genus g :
$\beta_{1}(M)=2 g$
$n=3$ the only compact simply connected M^{3} is \mathbb{S}^{3}
$n=4$ Recall that β_{2} is additive by connected sum:

$$
\begin{aligned}
& \beta_{2}\left(M_{1}^{4} \sharp M_{2}^{4}\right)=\beta_{2}\left(M_{1}^{4}\right)+\beta_{2}\left(M_{2}^{4}\right) \\
& \beta_{2}\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right)=2, \quad \beta_{2}\left(\mathbb{C} P^{2}\right)=1
\end{aligned}
$$

Problem: Classify compact connected orientable n-manifolds M with $\beta_{k}(M)$ even for all $k=1, \ldots, n-1$.
$n=2$ for every compact orientable surface M^{2} of genus g :
$\beta_{1}(M)=2 g$
$n=3$ the only compact simply connected M^{3} is \mathbb{S}^{3}
$n=4$ Recall that β_{2} is additive by connected sum:

$$
\begin{gathered}
\beta_{2}\left(M_{1}^{4} \sharp M_{2}^{4}\right)=\beta_{2}\left(M_{1}^{4}\right)+\beta_{2}\left(M_{2}^{4}\right) \\
\beta_{2}\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right)=2, \quad \beta_{2}\left(\mathbb{C P}^{2}\right)=1 \\
M=\underbrace{\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right) \sharp \cdots \sharp\left(\mathbb{S}^{2} \times \mathbb{S}^{2}\right)}_{k \text { times }} \# \underbrace{\mathbb{C} P^{2} \sharp \cdots \sharp \mathbb{C} P^{2}}_{(2 m) \text { times }}
\end{gathered}
$$

ODE's: periodic solutions of Lagrangian systems

Conservative Lagrangian systems:
■ (M, g) Riemannian manifold (configuration space)

- $V: M \rightarrow \mathbb{R}$ potential function (dynamics)
- Lagrangian system: $\frac{\mathrm{D} \dot{\mathrm{d} t} \dot{x}=-\nabla V(x)}{}$

ODE's: periodic solutions of Lagrangian systems

Conservative Lagrangian systems:
■ (M, g) Riemannian manifold (configuration space)

- $V: M \rightarrow \mathbb{R}$ potential function (dynamics)
- Lagrangian system: $\frac{\mathrm{D} \dot{\mathrm{d} t} \dot{x}=-\nabla V(x)}{}$
- Energy of a solution: $E=\frac{1}{2} g(\dot{x}, \dot{x})+V(x)$

ODE's: periodic solutions of Lagrangian systems

Conservative Lagrangian systems:
■ (M, g) Riemannian manifold (configuration space)
■ $V: M \rightarrow \mathbb{R}$ potential function (dynamics)

- Lagrangian system: $\frac{\mathrm{D} \dot{\mathrm{t}} \dot{x}=-\nabla V(x)}{}$
- Energy of a solution: $E=\frac{1}{2} g(\dot{x}, \dot{x})+V(x)$

■ We look for periodic solutions with given energy E.

ODE's: periodic solutions of Lagrangian systems

Conservative Lagrangian systems:

■ (M, g) Riemannian manifold (configuration space)

- $V: M \rightarrow \mathbb{R}$ potential function (dynamics)
- Lagrangian system: $\frac{\mathrm{D}}{\mathrm{d} t} \dot{x}=-\nabla V(x)$
- Energy of a solution: $E=\frac{1}{2} g(\dot{x}, \dot{x})+V(x)$
- We look for periodic solutions with given energy E.

Maupertuis' Principle
geodesics in $\left.\left.\Omega_{E}=V^{-1}(]-\infty, E\right]\right)$
Solutions of energy $E \Longleftrightarrow$ relatively to the conformal metric

$$
g_{E}=(E-V) \cdot g
$$

ODE's: periodic solutions of Lagrangian systems

Conservative Lagrangian systems:

■ (M, g) Riemannian manifold (configuration space)

- $V: M \rightarrow \mathbb{R}$ potential function (dynamics)
- Lagrangian system: $\frac{\mathrm{D}}{\mathrm{d} t} \dot{x}=-\nabla V(x)$
- Energy of a solution: $E=\frac{1}{2} g(\dot{x}, \dot{x})+V(x)$
- We look for periodic solutions with given energy E.

Maupertuis' Principle

$$
\text { geodesics in } \left.\left.\Omega_{E}=V^{-1}(]-\infty, E\right]\right)
$$

Solutions of energy $E \Longleftrightarrow$ relatively to the conformal metric

$$
g_{E}=(E-V) \cdot g
$$

Obs.: g_{E} is singular on $\partial \Omega_{E}=V^{-1}(E)$.

ODE's: periodic solutions of Lagrangian systems

Conservative Lagrangian systems:

■ (M, g) Riemannian manifold (configuration space)

- $V: M \rightarrow \mathbb{R}$ potential function (dynamics)
- Lagrangian system: $\frac{\mathrm{D}}{\mathrm{d} t} \dot{x}=-\nabla V(x)$
- Energy of a solution: $E=\frac{1}{2} g(\dot{x}, \dot{x})+V(x)$
- We look for periodic solutions with given energy E.

Maupertuis' Principle

$$
\text { geodesics in } \left.\left.\Omega_{E}=V^{-1}(]-\infty, E\right]\right)
$$

Solutions of energy $E \Longleftrightarrow$ relatively to the conformal metric

$$
g_{E}=(E-V) \cdot g
$$

Obs.: g_{E} is singular on $\partial \Omega_{E}=V^{-1}(E)$.
Special class of periodic solutions: brake orbits (pendulum-like)

Seifert's conjecture (1947)

Conjecture

Assume:
■ E regular value of V;

- Ω_{E} is homeomorphic to the ball B^{m+1}.

Conjecture

Assume:

■ E regular value of V;

- Ω_{E} is homeomorphic to the ball B^{m+1}.

Then, there are at least $m+1$ distinct brake orbits of energy E.

Conjecture

Assume:

■ E regular value of V;

- Ω_{E} is homeomorphic to the ball B^{m+1}.

Then, there are at least $m+1$ distinct brake orbits of energy E.
Problem: need $m+1$ geodesics with endpoints on the singular boundary

Seifert's conjecture (1947)

Conjecture

Assume:

$\square E$ regular value of V;

- Ω_{E} is homeomorphic to the ball B^{m+1}.

Then, there are at least $m+1$ distinct brake orbits of energy E.
Problem: need $m+1$ geodesics with endpoints on the singular boundary

Geometric construction:

- remove from Ω_{E} a suitably defined neighborhood V of $\partial \Omega_{E}$;

■ geodesics in Ω_{E} with endpoints in $\partial \Omega_{E}$ correspond to geodesics in $\Omega^{\prime}=\Omega_{E} \backslash V$ arriving orthogonally to $\partial \Omega^{\prime}$
■ Ω^{\prime} is homeomorphic to $\Omega_{E} \cong B^{m+1}$

- $\partial \Omega^{\prime} \cong \mathbb{S}^{m}$ is concave.

Geometry: orthogonal geodesic chords

Geometry: orthogonal geodesic chords

- (Ω, g) compact Riemannian manifold with boundary $\partial \Omega$

■ (Ω, g) compact Riemannian manifold with boundary $\partial \Omega$
■ $\gamma:[0, T] \longrightarrow \Omega$ geodesic with $\gamma(0), \gamma(T) \in \partial \Omega$

Geometry: orthogonal geodesic chords

■ (Ω, g) compact Riemannian manifold with boundary $\partial \Omega$

- $\gamma:[0, T] \longrightarrow \Omega$ geodesic with $\gamma(0), \gamma(T) \in \partial \Omega$

■ γ is an orthogonal geodesic chord if $\dot{\gamma}(0), \dot{\gamma}(T) \in T(\partial \Omega)^{\perp}$

Geometry: orthogonal geodesic chords

■ (Ω, g) compact Riemannian manifold with boundary $\partial \Omega$
$\square \gamma:[0, T] \longrightarrow \Omega$ geodesic with $\gamma(0), \gamma(T) \in \partial \Omega$
■ γ is an orthogonal geodesic chord if $\dot{\gamma}(0), \dot{\gamma}(T) \in T(\partial \Omega)^{\perp}$
ν unit normal vector field along $\partial \Omega$ pointing inside Ω.
$p \in \partial \Omega, \gamma_{p}(t)=\exp _{p}\left(t \cdot \nu_{p}\right)$

Geometry: orthogonal geodesic chords

- (Ω, g) compact Riemannian manifold with boundary $\partial \Omega$

■ $\gamma:[0, T] \longrightarrow \Omega$ geodesic with $\gamma(0), \gamma(T) \in \partial \Omega$
■ γ is an orthogonal geodesic chord if $\dot{\gamma}(0), \dot{\gamma}(T) \in T(\partial \Omega)^{\perp}$
ν unit normal vector field along $\partial \Omega$ pointing inside Ω.
$p \in \partial \Omega, \gamma_{p}(t)=\exp _{p}\left(t \cdot \nu_{p}\right)$

Basic assumptions on (Ω, g)

For all $p \in \partial \Omega$:
(HP1) $\exists T_{p}>0$ such that:

- $\gamma_{p}(t) \notin \partial \Omega$ for $\left.t \in\right] 0, T_{p}[$;
- γ_{p} meets $\partial \Omega$ transversally at $t=T_{p}$.

Geometry: orthogonal geodesic chords

■ (Ω, g) compact Riemannian manifold with boundary $\partial \Omega$
■ $\gamma:[0, T] \longrightarrow \Omega$ geodesic with $\gamma(0), \gamma(T) \in \partial \Omega$
■ γ is an orthogonal geodesic chord if $\dot{\gamma}(0), \dot{\gamma}(T) \in T(\partial \Omega)^{\perp}$
ν unit normal vector field along $\partial \Omega$ pointing inside Ω.
$p \in \partial \Omega, \gamma_{p}(t)=\exp _{p}\left(t \cdot \nu_{p}\right)$

Basic assumptions on (Ω, g)

For all $p \in \partial \Omega$:
(HP1) $\exists T_{p}>0$ such that:

- $\gamma_{p}(t) \notin \partial \Omega$ for $\left.t \in\right] 0, T_{p}[$;
- γ_{p} meets $\partial \Omega$ transversally at $t=T_{p}$.
(HP2) $\gamma_{p}\left(T_{p}\right)$ is not a focal point along γ_{p}.

How bad are the assumptions?

- (HP1) is an open condition relatively to the C^{1}-topology
- (HP1) is an open condition relatively to the C^{1}-topology
- (HP2) is an open condition relatively to the C^{2}-topology
- (HP1) is an open condition relatively to the C^{1}-topology
- (HP2) is an open condition relatively to the C^{2}-topology

■ Radially symmetric metrics on balls satisfy (HP1) and (HP2)

■ (HP1) is an open condition relatively to the C^{1}-topology
■ (HP2) is an open condition relatively to the C^{2}-topology
■ Radially symmetric metrics on balls satisfy (HP1) and (HP2)

■ Neither (HP1) nor (HP2) is generic.

Obs. 1: By transversality (HP1), $T: \partial \Omega \longrightarrow] 0,+\infty[$ is smooth.

Obs. 1: By transversality (HP1), $T: \partial \Omega \longrightarrow] 0,+\infty[$ is smooth. Crossing time function of (Ω, g).

Critical points of the crossing time

Obs. 1: By transversality (HP1), $T: \partial \Omega \longrightarrow] 0,+\infty[$ is smooth.

Crossing time function of (Ω, g).

Theorem

Under assumption (HP2), p is a critical point of T iff γ_{p} is an orthogonal geodesic chord, i.e., iff $\dot{\gamma}_{p}\left(T_{p}\right) \perp \partial \Omega$.

Critical points of the crossing time

Obs. 1: By transversality (HP1), $T: \partial \Omega \longrightarrow] 0,+\infty[$ is smooth.

Crossing time function of (Ω, g).

Theorem

Under assumption (HP2), p is a critical point of T iff γ_{p} is an orthogonal geodesic chord, i.e., iff $\dot{\gamma}_{p}\left(T_{p}\right) \perp \partial \Omega$.

Obs. 2: Critical points of $T: \partial \Omega \rightarrow \mathbb{R}$ come in pairs!

■ $\gamma_{p}:\left[0, T_{p}\right] \longrightarrow \bar{\Omega}$ orthogonal geodesic chord.

- $\gamma_{p}(0)=p, \gamma_{p}\left(T_{p}\right)=q$
- $\gamma_{q}=\gamma_{p}^{-}$(backward reparameterization)

■ $\gamma_{p}:\left[0, T_{p}\right] \longrightarrow \bar{\Omega}$ orthogonal geodesic chord.

- $\gamma_{p}(0)=p, \gamma_{p}\left(T_{p}\right)=q$
- $\gamma_{q}=\gamma_{p}^{-}$(backward reparameterization)

3 different notions of Morse index associated to γ

■ $\gamma_{p}:\left[0, T_{p}\right] \longrightarrow \bar{\Omega}$ orthogonal geodesic chord.

- $\gamma_{p}(0)=p, \gamma_{p}\left(T_{p}\right)=q$
- $\gamma_{q}=\gamma_{p}^{-}$(backward reparameterization)

3 different notions of Morse index associated to γ
1 Morse index of γ_{p} as a free endpoints geodesic: $\mathfrak{i}_{\text {free }}\left(\gamma_{p}\right)$
2 Morse index of γ_{p} as fixed endpoint geodesic: $\mathfrak{i}_{\text {fixed }}\left(\gamma_{p}\right)$
3 Morse index of the crossing time: $\mathfrak{i}_{\text {Morse }}(T, p)$

■ $\gamma_{p}:\left[0, T_{p}\right] \longrightarrow \bar{\Omega}$ orthogonal geodesic chord.

- $\gamma_{p}(0)=p, \gamma_{p}\left(T_{p}\right)=q$
- $\gamma_{q}=\gamma_{p}^{-}$(backward reparameterization)

3 different notions of Morse index associated to γ
1 Morse index of γ_{p} as a free endpoints geodesic: $i_{\text {iree }}\left(\gamma_{p}\right)$
2 Morse index of γ_{p} as fixed endpoint geodesic: $\mathrm{i}_{\mathrm{fixed}}\left(\gamma_{p}\right)$
3 Morse index of the crossing time: $\mathrm{i}_{\text {Morse }}(T, p)$

Theorem

(a) $\mathfrak{i}_{\text {fixed }}\left(\gamma_{p}\right)$ equals the number of $\partial \Omega$-focal pts along γ_{p}.
(b) $\mathfrak{i}_{\text {free }}\left(\gamma_{p}\right)=\mathfrak{i}_{\text {fixed }}\left(\gamma_{p}\right)+\mathfrak{i}_{\text {Morse }}(T, p)$

In general, the number focal points depends on the orientation!

In general, the number focal points depends on the orientation!

Theorem

Under assumption (HP2), T is a Morse-even function.

In general, the number focal points depends on the orientation!

Theorem

Under assumption (HP2), T is a Morse-even function.

Proof.

■ Stability of the focal points
■ They do not collapse onto the boundary

In general, the number focal points depends on the orientation!

Theorem

Under assumption (HP2), T is a Morse-even function.

Proof.

■ Stability of the focal points
■ They do not collapse onto the boundary

Obs.: Example shows that (HP2) is not generic.

Main Result

Theorem

Let g be a metric on B^{m+1} satisfying (HP1) and (HP2).

Theorem

Let g be a metric on B^{m+1} satisfying (HP1) and (HP2). Then, there are at least $m+1$ distinct orthogonal geodesic chords in B^{m}.

Theorem

Let g be a metric on B^{m+1} satisfying (HP1) and (HP2). Then, there are at least $m+1$ distinct orthogonal geodesic chords in B^{m}.

This settles Seifert's conjecture in a quite large number of cases.

When $\partial \Omega$ is not connected, one cannot expect the existence of more than 2 OGC's, regardless of the dimension.

