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Outline of this talk.

Main topics

1 Topology: Morse-even
functions on the sphere

2 ODE’s: brake orbits for
conservative Lagrangian
systems
– only as motivation for
part (1) and (3)

3 Geometry: orthogonal
geodesic chords

Abstract

I will discuss a problem of
multiplicity for geodesics
starting and arriving
orthogonally to the boundary
of a Riemannian ball using
Morse theory. This gives an
analogous multiplicity result
for a class of periodic
solutions (brake orbits) in a
potential well of a Lagrangian
system.

P. Piccione — USP, Brazil Functions on the sphere with critical points in pairs



Outline of this talk.

Main topics

1 Topology: Morse-even
functions on the sphere

2 ODE’s: brake orbits for
conservative Lagrangian
systems
– only as motivation for
part (1) and (3)

3 Geometry: orthogonal
geodesic chords

Abstract

I will discuss a problem of
multiplicity for geodesics
starting and arriving
orthogonally to the boundary
of a Riemannian ball using
Morse theory. This gives an
analogous multiplicity result
for a class of periodic
solutions (brake orbits) in a
potential well of a Lagrangian
system.

P. Piccione — USP, Brazil Functions on the sphere with critical points in pairs



Outline of this talk.

Main topics

1 Topology: Morse-even
functions on the sphere

2 ODE’s: brake orbits for
conservative Lagrangian
systems
– only as motivation for
part (1) and (3)

3 Geometry: orthogonal
geodesic chords

Abstract

I will discuss a problem of
multiplicity for geodesics
starting and arriving
orthogonally to the boundary
of a Riemannian ball using
Morse theory. This gives an
analogous multiplicity result
for a class of periodic
solutions (brake orbits) in a
potential well of a Lagrangian
system.

P. Piccione — USP, Brazil Functions on the sphere with critical points in pairs



Outline of this talk.

Main topics

1 Topology: Morse-even
functions on the sphere

2 ODE’s: brake orbits for
conservative Lagrangian
systems
– only as motivation for
part (1) and (3)

3 Geometry: orthogonal
geodesic chords

Abstract

I will discuss a problem of
multiplicity for geodesics
starting and arriving
orthogonally to the boundary
of a Riemannian ball using
Morse theory. This gives an
analogous multiplicity result
for a class of periodic
solutions (brake orbits) in a
potential well of a Lagrangian
system.

P. Piccione — USP, Brazil Functions on the sphere with critical points in pairs



Morse even functions

The setup:
Mm is a compact manifold;
βk (M) denotes the k -th Betti number of M, k = 0, . . . ,m;
f : M → R is a Morse function;
if p ∈ M is a critical point of f , iMorse(f ,p) is the Morse
index;
µk (f ) is the number of critical pts of f having Morse index
equal to k

Definition

f is Morse-even if µk (f ) is even for all k = 0, . . . ,m.
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Morse-even functions on the sphere

Proposition

If f : Sm → R is Morse-even, then µk (f ) > 0 for all k = 0, . . . ,m.

Proof.

β0(Sm) = βm(Sm) = 1, βk (Sm) = 0. Morse relations:

µ0 ≥ β0

µ1 − µ0 ≥ β1 − β0

. . .

µm − µm−1 + . . .+ (−1)mµ0 ≥ βm − βm−1 + . . .+ (−1)mβ0

µ0 ≥ 2.
µ1 ≥ µ0 + β1 − β0 = µ0 − 1 ≥ 1.
µ2 ≥ µ1 − µ0 + β2 − β1 + β0 = µ1 − µ0 + 1 > 0....
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Generalization to Morse even functions on arbitrary manifolds

Theorem

If Mm is a compact manifold which is connected and orientable
(β0(M) = βm(M) = 1) with βk (M) ∈ 2N for all k = 1, . . . ,m − 1,
and f : M → R is a Morse-even function, then:

µk (f ) > βk , for all k = 0, . . . ,m.

P. Piccione — USP, Brazil Functions on the sphere with critical points in pairs



Classification of low dimensional manifolds with even Betti numbers

Problem: Classify compact connected orientable n-manifolds
M with βk (M) even for all k = 1, . . . ,n − 1.

n = 2 for every compact orientable surface M2 of genus g:
β1(M) = 2g

n = 3 the only compact simply connected M3 is S3

n = 4 Recall that β2 is additive by connected sum:

β2(M4
1 ]M

4
2 ) = β2(M4

1 ) + β2(M4
2 )

β2(S2 × S2) = 2, β2(CP2) = 1

M = (S2 × S2)] · · · ](S2 × S2)︸ ︷︷ ︸
k times

] CP2] · · · ]CP2︸ ︷︷ ︸
(2m) times
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ODE’s: periodic solutions of Lagrangian systems

Conservative Lagrangian systems:
(M,g) Riemannian manifold (configuration space)
V : M → R potential function (dynamics)

Lagrangian system: D
dt ẋ = −∇V (x)

Energy of a solution: E = 1
2g(ẋ , ẋ) + V (x)

We look for periodic solutions with given energy E .

Maupertuis’ Principle

Solutions of energy E ⇐⇒
geodesics in ΩE = V−1

(
]−∞,E ]

)
relatively to the conformal metric
gE = (E − V ) · g

Obs.: gE is singular on ∂ΩE = V−1(E).
Special class of periodic solutions: brake orbits (pendulum-like)
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Seifert’s conjecture (1947)

Conjecture

Assume:
E regular value of V ;
ΩE is homeomorphic to the ball Bm+1.

Then, there are at least m + 1 distinct brake orbits of energy E .

Problem: need m + 1 geodesics with endpoints on the singular
boundary

Geometric construction:
remove from ΩE a suitably defined neighborhood V of ∂ΩE ;
geodesics in ΩE with endpoints in ∂ΩE correspond to
geodesics in Ω′ = ΩE \ V arriving orthogonally to ∂Ω′

Ω′ is homeomorphic to ΩE
∼= Bm+1

∂Ω′ ∼= Sm is concave.
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Geometry: orthogonal geodesic chords

(Ω,g) compact Riemannian manifold with boundary ∂Ω

γ : [0,T ] −→ Ω geodesic with γ(0), γ(T ) ∈ ∂Ω

γ is an orthogonal geodesic chord if γ̇(0), γ̇(T ) ∈ T (∂Ω)⊥

ν unit normal vector field along ∂Ω pointing inside Ω.
p ∈ ∂Ω, γp(t) = expp(t · νp)

Basic assumptions on (Ω,g)

For all p ∈ ∂Ω:

(HP1) ∃Tp > 0 such that:
γp(t) 6∈ ∂Ω for t ∈ ]0,Tp[;
γp meets ∂Ω transversally at t = Tp.

(HP2) γp(Tp) is not a focal point along γp.
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How bad are the assumptions?

(HP1) is an open condition relatively to the C1-topology

(HP2) is an open condition relatively to the C2-topology

Radially symmetric metrics on balls satisfy (HP1) and
(HP2)

Neither (HP1) nor (HP2) is generic.
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Critical points of the crossing time

W

¶
W

Obs. 1: By transversality (HP1),
T : ∂Ω −→ ]0,+∞[ is smooth.

Crossing time function of (Ω,g).

Theorem

Under assumption (HP2), p is a
critical point of T iff γp is an
orthogonal geodesic chord, i.e., iff
γ̇p(Tp) ⊥ ∂Ω.

Obs. 2: Critical points of
T : ∂Ω→ R come in pairs!
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Morse indices associated to an OGC

γp : [0,Tp] −→ Ω orthogonal geodesic chord.

γp(0) = p, γp(Tp) = q
γq = γ−p (backward reparameterization)

3 different notions of Morse index associated to γ

1 Morse index of γp as a free endpoints geodesic: ifree(γp)

2 Morse index of γp as fixed endpoint geodesic: ifixed(γp)

3 Morse index of the crossing time: iMorse(T ,p)

Theorem

(a) ifixed(γp) equals the number of ∂Ω-focal pts along γp.

(b) ifree(γp) = ifixed(γp) + iMorse(T ,p)
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The crossing time is a Morse-even function

In general, the number focal points
depends on the orientation!

W

¶W

Theorem

Under assumption
(HP2), T is a
Morse-even function.

Proof.

Stability of the
focal points
They do not
collapse onto the
boundary

Obs.: Example shows
that (HP2) is not generic.
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Main Result

Theorem

Let g be a metric on Bm+1 satisfying (HP1) and (HP2).
Then, there are at least m + 1 distinct orthogonal geodesic
chords in Bm.

This settles Seifert’s conjecture in a quite large number of
cases.
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Counterexample when ∂Ω is not a sphere

When ∂Ω is not connected, one cannot expect the existence of
more than 2 OGC’s, regardless of the dimension.

W

¶W

Γ
1

Γ
2
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