G-STRUCTURE PRESERVING AFFINE AND ISOMETRIC IMMERSIONS

Joint work with Daniel V. Tausk, USP

Paolo Piccione

Departamento de Matemática Instituto de Matemática e Estatística Universidade de São Paulo

Workshop on Differential Geometry and PDEs

G-structures

- G-structures
- 2 Principal spaces

- G-structures
- 2 Principal spaces
- Principal fiber bundles

- G-structures
- 2 Principal spaces
- Principal fiber bundles
- Connections

- G-structures
- 2 Principal spaces
- Principal fiber bundles
- 4 Connections
- Inner torsion of a G-structure

- G-structures
- Principal spaces
- Principal fiber bundles
- 4 Connections
- Inner torsion of a G-structure
- 6 Infinitesimally homogeneous affine manifolds with G-structure

- G-structures
- Principal spaces
- Principal fiber bundles
- 4 Connections
- Inner torsion of a G-structure
- 6 Infinitesimally homogeneous affine manifolds with G-structure
- Immersion theorems

- G-structures
- Principal spaces
- Principal fiber bundles
- 4 Connections
- Inner torsion of a G-structure
- Infinitesimally homogeneous affine manifolds with G-structure
- Immersion theorems

 X_0 set, Bij(X_0) group of bijections $f: X_0 \to X_0$.

 X_0 set, $Bij(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $Bij(X_0, X) \neq \emptyset$.

 X_0 set, $Bij(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $Bij(X_0, X) \neq \emptyset$.

 $\operatorname{Bij}(X_0)$ acts transitively on $\operatorname{Bij}(X_0,X)$ by composition on the right.

 X_0 set, $Bij(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $Bij(X_0, X) \neq \emptyset$.

 $\mathrm{Bij}(X_0)$ acts transitively on $\mathrm{Bij}(X_0,X)$ by composition on the right.

 $G \subset \operatorname{Bij}(X_0)$ subgroup

 X_0 set, $Bij(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $\mathrm{Bij}(X_0,X) \neq \emptyset$.

 $\mathrm{Bij}(X_0)$ acts transitively on $\mathrm{Bij}(X_0,X)$ by composition on the right.

 $G \subset \operatorname{Bij}(X_0)$ subgroup

Definition

A *G-structure* on *X* modeled on X_0 is a subset *P* of $Bij(X_0, X)$ which is a *G*-orbit.

 X_0 set, $\operatorname{Bij}(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $Bij(X_0, X) \neq \emptyset$.

 $Bij(X_0)$ acts transitively on $Bij(X_0, X)$ by composition on the right.

 $G \subset \operatorname{Bij}(X_0)$ subgroup

Definition

A *G-structure* on *X* modeled on X_0 is a subset *P* of $Bij(X_0, X)$ which is a *G*-orbit.

(a) $p^{-1} \circ q : X_0 \to X_0$ is in G, for all $p, q \in P$;

 X_0 set, $\operatorname{Bij}(X_0)$ group of bijections $f:X_0\to X_0$.

X another set, with $Bij(X_0, X) \neq \emptyset$.

 $\mathrm{Bij}(X_0)$ acts transitively on $\mathrm{Bij}(X_0,X)$ by composition on the right.

 $G \subset \operatorname{Bij}(X_0)$ subgroup

Definition

A *G-structure* on *X* modeled on X_0 is a subset *P* of $Bij(X_0, X)$ which is a *G*-orbit.

- (a) $p^{-1} \circ q : X_0 \to X_0$ is in G, for all $p, q \in P$;
- (b) $p \circ g : X_0 \to X$ is in P, for all $p \in P$ and all $g \in G$.

 X_0 set, $Bij(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $Bij(X_0, X) \neq \emptyset$.

 $\operatorname{Bij}(X_0)$ acts transitively on $\operatorname{Bij}(X_0,X)$ by composition on the right.

 $G \subset \operatorname{Bij}(X_0)$ subgroup

Definition

A *G-structure* on *X* modeled on X_0 is a subset *P* of $Bij(X_0, X)$ which is a *G*-orbit.

- (a) $p^{-1} \circ q : X_0 \to X_0$ is in G, for all $p, q \in P$;
- (b) $p \circ g : X_0 \to X$ is in P, for all $p \in P$ and all $g \in G$.

Given a *G*-structure *P* on *X* and a *G*-structure *Q* on *Y*, a map $f: X \to Y$ is *G*-structure preserving if $f \circ p \in Q$ for all $p \in P$.

Example (1)

V n-dimensional vector space

Example (1)

V n-dimensional vector space

A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

Example (1)

V n-dimensional vector space

A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

GL(n) acts on the right transitively on FR(V), hence FR(V) is a GL(n)-structure on V.

Example (1)

V n-dimensional vector space

A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

GL(n) acts on the right transitively on FR(V), hence FR(V) is a GL(n)-structure on V.

Conversely, given a GL(n)-structure $P \subset Bij(\mathbb{R}^n, V)$ on a set V, there exists a unique vector space structure on V such that P = FR(V).

Example (1)

V n-dimensional vector space

A frame is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

GL(n) acts on the right transitively on FR(V), hence FR(V) is a GL(n)-structure on V.

Conversely, given a GL(n)-structure $P \subset Bij(R^n, V)$ on a set V, there exists a unique vector space structure on V such that P = FR(V).

More generally, $FR_{V_0}(V)$ is a $GL(V_0)$ -structure on V.

Example (1)

V n-dimensional vector space

A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

 $\operatorname{GL}(n)$ acts on the right transitively on $\operatorname{FR}(V)$, hence $\operatorname{FR}(V)$ is a $\operatorname{GL}(n)$ -structure on V.

Conversely, given a GL(n)-structure $P \subset Bij(\mathbb{R}^n, V)$ on a set V, there exists a unique vector space structure on V such that P = FR(V). More generally, $FR_{V_0}(V)$ is a $GL(V_0)$ -structure on V.

Example (2)

M₀, M diffeomorphic differentiable manifolds

Example (1)

V n-dimensional vector space

A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

GL(n) acts on the right transitively on FR(V), hence FR(V) is a GL(n)-structure on V.

Conversely, given a GL(n)-structure $P \subset Bij(R^n, V)$ on a set V, there exists a unique vector space structure on V such that P = FR(V). More generally, $FR_{V_0}(V)$ is a $GL(V_0)$ -structure on V.

Example (2)

 M_0 , M diffeomorphic differentiable manifolds $\operatorname{Diff}(M_0, M) \subset \operatorname{Bij}(M_0, M)$ is a $\operatorname{Diff}(M_0)$ -structure on M.

Example (1)

V n-dimensional vector space

A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

GL(n) acts on the right transitively on FR(V), hence FR(V) is a GL(n)-structure on V.

Conversely, given a GL(n)-structure $P \subset Bij(R^n, V)$ on a set V, there exists a unique vector space structure on V such that P = FR(V). More generally, $FR_{V_0}(V)$ is a $GL(V_0)$ -structure on V.

Example (2)

 M_0 , M diffeomorphic differentiable manifolds $\operatorname{Diff}(M_0,M)\subset\operatorname{Bij}(M_0,M)$ is a $\operatorname{Diff}(M_0)$ -structure on M. Conversely, given a $\operatorname{Diff}(M_0)$ -structure $P\subset\operatorname{Bij}(M_0,M)$ on a set M, there exists a unique differentiable structure on M such that

 $P = Diff(M_0, M).$

Given a *G*-structure $P \subset \operatorname{Bij}(X_0, X)$ on X and a subgroup $H \subset G$.

Given a *G*-structure $P \subset \operatorname{Bij}(X_0, X)$ on X and a subgroup $H \subset G$. An H-structure $Q \subset P$ is a *strengthening* of P.

Given a *G*-structure $P \subset \operatorname{Bij}(X_0, X)$ on X and a subgroup $H \subset G$. An H-structure $Q \subset P$ is a *strengthening* of P.

Example

• Giving an O(n)-structure $Q \subset FR(V)$ is the same as giving a positive definite inner product on V.

Given a *G*-structure $P \subset \operatorname{Bij}(X_0, X)$ on X and a subgroup $H \subset G$. An H-structure $Q \subset P$ is a *strengthening* of P.

- Giving an O(n)-structure $Q \subset FR(V)$ is the same as giving a positive definite inner product on V.
- SO(n)-structure $Q \subset FR(V) \iff$ inner product + orientation on V

Given a *G*-structure $P \subset \operatorname{Bij}(X_0, X)$ on X and a subgroup $H \subset G$. An H-structure $Q \subset P$ is a *strengthening* of P.

- Giving an O(n)-structure Q ⊂ FR(V) is the same as giving a positive definite inner product on V.
- SO(n)-structure $Q \subset FR(V) \iff$ inner product + orientation on V
- If n = 2m, U(m)-structure $Q \subset FR(V) \iff$ real positive definite inner product on V and an orthogonal complex structure on V

Given a *G*-structure $P \subset \operatorname{Bij}(X_0, X)$ on X and a subgroup $H \subset G$. An H-structure $Q \subset P$ is a *strengthening* of P.

- Giving an O(n)-structure Q ⊂ FR(V) is the same as giving a positive definite inner product on V.
- SO(n)-structure $Q \subset FR(V) \iff$ inner product + orientation on V
- If n = 2m, U(m)-structure $Q \subset FR(V) \iff$ real positive definite inner product on V and an orthogonal complex structure on V
- SL(n)-structure $Q \subset FR(V) \iff$ a volume form on V

Given a *G*-structure $P \subset \operatorname{Bij}(X_0, X)$ on X and a subgroup $H \subset G$. An H-structure $Q \subset P$ is a *strengthening* of P.

- Giving an O(n)-structure $Q \subset FR(V)$ is the same as giving a positive definite inner product on V.
- SO(n)-structure $Q \subset FR(V) \iff$ inner product + orientation on V
- If n = 2m, U(m)-structure $Q \subset FR(V) \iff$ real positive definite inner product on V and an orthogonal complex structure on V
- SL(n)-structure $Q \subset FR(V) \iff$ a volume form on V
- A 1-structure $Q \subset FR(V)$ is an identification of V with \mathbb{R}^n .

Given a *G*-structure $P \subset \operatorname{Bij}(X_0, X)$ on X and a subgroup $H \subset G$. An H-structure $Q \subset P$ is a *strengthening* of P.

Example

- Giving an O(n)-structure $Q \subset FR(V)$ is the same as giving a positive definite inner product on V.
- SO(n)-structure $Q \subset FR(V) \iff$ inner product + orientation on V
- If n = 2m, U(m)-structure $Q \subset FR(V) \iff$ real positive definite inner product on V and an orthogonal complex structure on V
- SL(n)-structure $Q \subset FR(V) \iff$ a volume form on V
- A 1-structure $Q \subset FR(V)$ is an identification of V with \mathbb{R}^n .

Given a *G*-structure $P \subset \operatorname{Bij}(X_0, X)$ and a subgroup $H \subset G$, there are [G : H] strengthening H-structures of P.

- G-structures
- Principal spaces
- Principal fiber bundles
- Connections
- Inner torsion of a G-structure
- Infinitesimally homogeneous affine manifolds with G-structure
- Immersion theorems

Principal spaces

Definition

A principal space consists of a set $P \neq \emptyset$, a group G (*structural group*) and a free and transitive right action of G on P.

Principal spaces

Definition

A principal space consists of a set $P \neq \emptyset$, a group G (*structural group*) and a free and transitive right action of G on P.

Each $p \in P$ gives a *bijection* $\beta_p : G \to P$, $\beta_p(g) = p \cdot g$

Definition

A principal space consists of a set $P \neq \emptyset$, a group G (*structural group*) and a free and transitive right action of G on P.

Each $p \in P$ gives a *bijection* $\beta_p : G \to P$, $\beta_p(g) = p \cdot g$

Example

• G = V vector space, a principal space with structural group G is an *affine space* parallel to V.

Definition

A principal space consists of a set $P \neq \emptyset$, a group G (*structural group*) and a free and transitive right action of G on P.

Each $p \in P$ gives a *bijection* $\beta_p : G \to P$, $\beta_p(g) = p \cdot g$

Example

- G = V vector space, a principal space with structural group G is an affine space parallel to V.
- Any group is a principal space with structural group G (right multiplication)

Definition

A principal space consists of a set $P \neq \emptyset$, a group G (*structural group*) and a free and transitive right action of G on P.

Each $p \in P$ gives a *bijection* $\beta_p : G \to P$, $\beta_p(g) = p \cdot g$

Example

- G = V vector space, a principal space with structural group G is an *affine space* parallel to V.
- Any group is a principal space with structural group G (right multiplication)
- Given a subgroup $H \subset G$, for all $g \in G$ the left coset gH is a principal space with structural group H.

Definition

A principal space consists of a set $P \neq \emptyset$, a group G (*structural group*) and a free and transitive right action of G on P.

Each $p \in P$ gives a *bijection* $\beta_p : G \to P$, $\beta_p(g) = p \cdot g$

Example

- G = V vector space, a principal space with structural group G is an *affine space* parallel to V.
- Any group is a principal space with structural group G (right multiplication)
- Given a subgroup $H \subset G$, for all $g \in G$ the left coset gH is a principal space with structural group H.
- $FR_{V_0}(V)$ is a principal space with structural group $GL(V_0)$.

Outline

- G-structures
- Principal spaces
- Principal fiber bundles
- 4 Connections
- Inner torsion of a G-structure
- Infinitesimally homogeneous affine manifolds with G-structure
- Immersion theorems

• a set P (total space)

- a set P (total space)
- a differentiable manifold *M* (base space)

- a set P (total space)
- a differentiable manifold *M* (base space)
- a map $\Pi: P \rightarrow M$ (projection)

- a set P (total space)
- a differentiable manifold M (base space)
- a map $\Pi: P \rightarrow M$ (projection)
- a Lie group *G* (*structural group*)

- a set P (total space)
- a differentiable manifold *M* (base space)
- a map $\Pi: P \rightarrow M$ (projection)
- a Lie group G (structural group)
- a right action of G on P that makes the fiber $P_x = \Pi^{-1}(x)$ a principal space, for all $x \in m$

- a set P (total space)
- a differentiable manifold M (base space)
- a map Π : P → M (projection)
- a Lie group G (structural group)
- a right action of G on P that makes the fiber $P_x = \Pi^{-1}(x)$ a principal space, for all $x \in m$
- a maximal atlas of admissible local sections of Π.

- a set P (total space)
- a differentiable manifold *M* (base space)
- a map Π : P → M (projection)
- a Lie group *G* (*structural group*)
- a right action of G on P that makes the fiber $P_x = \Pi^{-1}(x)$ a principal space, for all $x \in m$
- a maximal atlas of admissible local sections of Π.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth, Π a smooth submersion, P_x a smooth submanifold, every admissible local section $s: U \subset M \to P$ smooth,.

- a set P (total space)
- a differentiable manifold *M* (base space)
- a map $\Pi: P \rightarrow M$ (projection)
- a Lie group G (structural group)
- a right action of G on P that makes the fiber $P_x = \Pi^{-1}(x)$ a principal space, for all $x \in m$
- a maximal atlas of admissible local sections of Π.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth, Π a smooth submersion, P_x a smooth submanifold, every admissible local section $s: U \subset M \to P$ smooth,.

$$\operatorname{Ver}_p = \operatorname{Ker}(\operatorname{d}\Pi_p) \subset T_p P$$
 vertical space;
canonical isomorphism $d\beta_p(1) : \mathfrak{g} \stackrel{\cong}{\longrightarrow} \operatorname{Ver}_p P$.

• trivial principal bundle: M manifold, G Lie group, P_0 a principal G-space, $P = M \times P_0$.

- trivial principal bundle: M manifold, G Lie group, P_0 a principal G-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup,
 Π: G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.

- trivial principal bundle: M manifold, G Lie group, P_0 a principal G-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup,
 Π: G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.
- restriction: $\Pi: P \to M$ principal fiber bundle, $U \subset M$ open subset $P|_U = \Pi^{-1}(U)$.

- trivial principal bundle: M manifold, G Lie group, P_0 a principal G-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup,
 Π: G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.
- restriction: $\Pi: P \to M$ principal fiber bundle, $U \subset M$ open subset $P|_U = \Pi^{-1}(U)$.
- principal subbundles: $\Pi: P \to M$ principal fiber bundle with structural group $G, H \subset G$ a Lie subgroup, $Q \subset P$ satisfying:

- trivial principal bundle: M manifold, G Lie group, P_0 a principal G-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup,
 Π: G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.
- restriction: $\Pi: P \to M$ principal fiber bundle, $U \subset M$ open subset $P|_U = \Pi^{-1}(U)$.
- principal subbundles: $\Pi: P \to M$ principal fiber bundle with structural group $G, H \subset G$ a Lie subgroup, $Q \subset P$ satisfying:
 - ▶ for all $x \in M$, $Q_x = P_x \cap Q$ is a principal subspace of P_x with structural group H;

- trivial principal bundle: M manifold, G Lie group, P_0 a principal G-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup,
 Π: G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.
- restriction: $\Pi: P \to M$ principal fiber bundle, $U \subset M$ open subset $P|_U = \Pi^{-1}(U)$.
- principal subbundles: $\Pi: P \to M$ principal fiber bundle with structural group $G, H \subset G$ a Lie subgroup, $Q \subset P$ satisfying:
 - ▶ for all $x \in M$, $Q_x = P_x \cap Q$ is a principal subspace of P_x with structural group H;
 - ▶ for all $x \in M$, there exists a smooth local section $s : U \to P$ with $x \in U$ and $s(U) \subset Q$.

- trivial principal bundle: M manifold, G Lie group, P_0 a principal G-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup,
 Π : G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.
- restriction: $\Pi: P \to M$ principal fiber bundle, $U \subset M$ open subset $P|_U = \Pi^{-1}(U)$.
- principal subbundles: $\Pi: P \to M$ principal fiber bundle with structural group $G, H \subset G$ a Lie subgroup, $Q \subset P$ satisfying:
 - ▶ for all $x \in M$, $Q_x = P_x \cap Q$ is a principal subspace of P_x with structural group H;
 - ▶ for all $x \in M$, there exists a smooth local section $s : U \to P$ with $x \in U$ and $s(U) \subset Q$.
- *pull-backs*: $\Pi: P \to M$ principal fiber bundle, $f: M' \to M$ smooth map, $f^*P = \bigcup_{y \in M'} (\{y\} \times P_{f(y)})$.

G Lie group, $\Pi: P \rightarrow M$ a *G*-principal bundle, *N* a differential *G*-space

G Lie group, $\Pi: P \rightarrow M$ a G-principal bundle, N a differential G-space

Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

G Lie group, $\Pi: P \rightarrow M$ a G-principal bundle, N a differential G-space

Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

G Lie group, $\Pi: P \rightarrow M$ a G-principal bundle, N a differential G-space

Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

A vector bundle consists of:

a set E (total space)

G Lie group, $\Pi: P \rightarrow M$ a G-principal bundle, N a differential G-space

Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

- a set E (total space)
- a differentiable manifold M (base manifold)

G Lie group, $\Pi: P \rightarrow M$ a G-principal bundle, N a differential G-space

Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi : E \rightarrow M$ (projection)

G Lie group, $\Pi: P \rightarrow M$ a G-principal bundle, N a differential G-space

Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi : E \rightarrow M$ (projection)
- a finite dimensional vector space E₀ (typical fiber)

G Lie group, $\Pi: P \rightarrow M$ a G-principal bundle, N a differential G-space

Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi : E \rightarrow M$ (projection)
- a finite dimensional vector space E₀ (typical fiber)
- a vector space structure on each fiber $E_x = \pi^{-1}$ isomorphic to E_0

G Lie group, $\Pi: P \rightarrow M$ a G-principal bundle, N a differential G-space

Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi : E \rightarrow M$ (projection)
- a finite dimensional vector space E₀ (typical fiber)
- a vector space structure on each fiber $E_x = \pi^{-1}$ isomorphic to E_0
- a maximal atlas of admissible local sections of the fiber bundle $FR_{E_0}(E) = \bigcup_{x \in M} FR_{E_0}(E_x)$.

G Lie group, $\Pi: P \to M$ a G-principal bundle, N a differential G-space

Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi : E \rightarrow M$ (projection)
- a finite dimensional vector space E₀ (typical fiber)
- a vector space structure on each fiber $E_x = \pi^{-1}$ isomorphic to E_0
- a maximal atlas of admissible local sections of the fiber bundle $FR_{E_0}(E) = \bigcup_{x \in M} FR_{E_0}(E_x)$.

$$\operatorname{FR}_{E_0}(E) \times_{\operatorname{GL}(E_0)} E_0 \cong E, \quad [p, e_0] \mapsto p(e_0) \in E$$

G Lie group, $\Pi: P \to M$ a G-principal bundle, N a differential G-space

Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

A vector bundle consists of:

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi : E \rightarrow M$ (projection)
- a finite dimensional vector space E₀ (typical fiber)
- a vector space structure on each fiber $E_x = \pi^{-1}$ isomorphic to E_0
- a maximal atlas of admissible local sections of the fiber bundle $FR_{E_0}(E) = \bigcup_{x \in M} FR_{E_0}(E_x)$.

$$\boxed{ \operatorname{FR}_{E_0}(E) \times_{\operatorname{GL}(E_0)} E_0 \cong E, \quad [\rho, e_0] \mapsto \rho(e_0) \in E}$$

Def.: A *G-structure on E* is a *G*-principal subbundle of FR(E).

Outline

- G-structures
- Principal spaces
- Principal fiber bundles
- 4 Connections
- Inner torsion of a G-structure
- Infinitesimally homogeneous affine manifolds with G-structure
- Immersion theorems

 $\Pi: P \rightarrow M$ principal fiber bundle, G structural group

 $\Pi: P \to M$ principal fiber bundle, G structural group

A principal connection on P is a distribution $Hor(P) \subset TP$:

 $\Pi: P \to M$ principal fiber bundle, G structural group A principal connection on P is a distribution $\operatorname{Hor}(P) \subset TP$:

• $T_pP = \operatorname{Hor}_p \oplus \operatorname{Ver}_p$

 $\Pi: P \to M$ principal fiber bundle, G structural group A principal connection on P is a distribution $\operatorname{Hor}(P) \subset TP$:

- $T_pP = \operatorname{Hor}_p \oplus \operatorname{Ver}_p$
- $\operatorname{Hor}_{pg} = \operatorname{Hor}_p \cdot g$

 $\Pi: P \to M$ principal fiber bundle, G structural group A principal connection on P is a distribution $\operatorname{Hor}(P) \subset TP$:

- $\bullet T_{p}P = \operatorname{Hor}_{p} \oplus \operatorname{Ver}_{p}$
- $\operatorname{Hor}_{pg} = \operatorname{Hor}_{p} \cdot g$

Connection form of Hor: \mathfrak{g} -valued one form ω on P:

$$\operatorname{Ker}(\omega_{\rho}) = \operatorname{Hor}_{\rho}, \quad \omega_{\rho}|_{\operatorname{Ver}_{\rho}} = \mathrm{d}\beta_{\rho}(1)^{-1} : \operatorname{Ver}_{\rho} \stackrel{\cong}{\longrightarrow} \mathfrak{g}$$

 $\Pi: P \to M$ principal fiber bundle, G structural group A principal connection on P is a distribution $Hor(P) \subset TP$:

- $T_pP = \operatorname{Hor}_p \oplus \operatorname{Ver}_p$
- $\operatorname{Hor}_{pg} = \operatorname{Hor}_{p} \cdot g$

Connection form of Hor: \mathfrak{g} -valued one form ω on P:

$$\operatorname{Ker}(\omega_{\rho}) = \operatorname{Hor}_{\rho}, \quad \omega_{\rho}|_{\operatorname{Ver}_{\rho}} = \mathrm{d}\beta_{\rho}(1)^{-1} : \operatorname{Ver}_{\rho} \stackrel{\cong}{\longrightarrow} \mathfrak{g}$$

G-principal bundles $\Pi: P \to M$, $\Pi': Q \to M$ with connections $\operatorname{Hor}(P)$ and $\operatorname{Hor}(Q)$ and a morphism of principal bundles $\phi: P \to Q$, then ϕ is *connection preserving* if:

$$d\phi(\operatorname{Hor}(P)) \subset \operatorname{Hor}(Q) \iff \phi^*(\omega^Q) = \omega^P$$

 $\Pi: P \to M$ principal fiber bundle, G structural group

A *principal connection on P* is a distribution $Hor(P) \subset TP$:

- $T_pP = \operatorname{Hor}_p \oplus \operatorname{Ver}_p$
- $\operatorname{Hor}_{pg} = \operatorname{Hor}_{p} \cdot g$

Connection form of Hor: \mathfrak{g} -valued one form ω on P:

$$\operatorname{Ker}(\omega_{\rho}) = \operatorname{Hor}_{\rho}, \quad \omega_{\rho}|_{\operatorname{Ver}_{\rho}} = \mathrm{d}\beta_{\rho}(1)^{-1} : \operatorname{Ver}_{\rho} \stackrel{\cong}{\longrightarrow} \mathfrak{g}$$

G-principal bundles $\Pi: P \to M$, $\Pi': Q \to M$ with connections $\operatorname{Hor}(P)$ and $\operatorname{Hor}(Q)$ and a morphism of principal bundles $\phi: P \to Q$, then ϕ is *connection preserving* if:

$$d\phi(\operatorname{Hor}(P)) \subset \operatorname{Hor}(Q) \iff \phi^*(\omega^Q) = \omega^P$$

Properties of principal connections

 $\Pi: P \rightarrow M$ principal fiber bundle, G structural group

A principal connection on P is a distribution $Hor(P) \subset TP$:

- $T_pP = \operatorname{Hor}_p \oplus \operatorname{Ver}_p$
- $\operatorname{Hor}_{pg} = \operatorname{Hor}_{p} \cdot g$

Connection form of Hor: \mathfrak{g} -valued one form ω on P:

$$\operatorname{Ker}(\omega_{\rho}) = \operatorname{Hor}_{\rho}, \quad \omega_{\rho}|_{\operatorname{Ver}_{\rho}} = \mathrm{d}\beta_{\rho}(1)^{-1} : \operatorname{Ver}_{\rho} \stackrel{\cong}{\longrightarrow} \mathfrak{g}$$

G-principal bundles $\Pi: P \to M$, $\Pi': Q \to M$ with connections $\operatorname{Hor}(P)$ and $\operatorname{Hor}(Q)$ and a morphism of principal bundles $\phi: P \to Q$, then ϕ is *connection preserving* if:

$$d\phi(\operatorname{Hor}(P)) \subset \operatorname{Hor}(Q) \iff \phi^*(\omega^Q) = \omega^P$$

Properties of principal connections

can be pushed forward

 $\Pi: P \to M$ principal fiber bundle, G structural group

A principal connection on P is a distribution $Hor(P) \subset TP$:

- $T_pP = \operatorname{Hor}_p \oplus \operatorname{Ver}_p$
- Hor_{pg} = Hor_p · g

Connection form of Hor: g-valued one form ω on P:

$$\operatorname{Ker}(\omega_{\rho}) = \operatorname{Hor}_{\rho}, \quad \omega_{\rho}|_{\operatorname{Ver}_{\rho}} = d\beta_{\rho}(1)^{-1} : \operatorname{Ver}_{\rho} \stackrel{\cong}{\longrightarrow} \mathfrak{g}$$

G-principal bundles $\Pi: P \to M$, $\Pi': Q \to M$ with connections $\operatorname{Hor}(P)$ and Hor(Q) and a morphism of principal bundles $\phi: P \to Q$, then ϕ is connection preserving if:

$$d\phi(\operatorname{Hor}(P)) \subset \operatorname{Hor}(Q) \iff \phi^*(\omega^Q) = \omega^P$$

Properties of principal connections

- can be pushed forward
- induce connections on all associated bundles

Definition

$$\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$$

Definition

A *connection* on the vector bundle E is an \mathbb{R} -bilinear map

$$\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$$

• $C^{\infty}(M)$ -linear in X

Definition

$$\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$$

- $C^{\infty}(M)$ -linear in X
- Leibnitz rule: $\nabla_X(f\epsilon) = X(f)\epsilon + f\nabla_X\epsilon$

Definition

$$\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$$

- $C^{\infty}(M)$ -linear in X
- Leibnitz rule: $\nabla_X(f\epsilon) = X(f)\epsilon + f\nabla_X\epsilon$
- a section $s: U \subset M \to FR(E)$ (trivialization of E) defines a connection in $E|_U$: $\nabla_v^s \epsilon = s(x) (d(s^{-1} \epsilon)_x v)$ $x \in U, v \in T_x M$.

Definition

$$\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$$

- $C^{\infty}(M)$ -linear in X
- Leibnitz rule: $\nabla_X(f\epsilon) = X(f)\epsilon + f\nabla_X\epsilon$
- a section $s: U \subset M \to FR(E)$ (trivialization of E) defines a connection in $E|_U$: $\nabla_v^s \epsilon = s(x) (d(s^{-1} \epsilon)_x v) x \in U, v \in T_x M$.
- the difference $\nabla \nabla^s$ defines the *Christoffel tensor*:

$$\Gamma_X^s: T_XM \times E_X \to E_X$$

Definition

A *connection* on the vector bundle E is an \mathbb{R} -bilinear map

$$\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$$

- $C^{\infty}(M)$ -linear in X
- Leibnitz rule: $\nabla_X(f\epsilon) = X(f)\epsilon + f\nabla_X\epsilon$
- a section $s: U \subset M \to FR(E)$ (trivialization of E) defines a connection in $E|_U$: $\boxed{\nabla_v^s \epsilon = s(x) (\mathrm{d}(s^{-1}\epsilon)_x v)}$ $x \in U, v \in T_x M$.
- the difference $\nabla \nabla^s$ defines the *Christoffel tensor*:

$$\boxed{\Gamma_x^s:T_xM\times E_x\to E_x}$$

 ∇ induces natural connections on all vector bundles obtained with functorial constructions from E: sums, tensor products, duals, pull-backs, ...

Definition

$$\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$$

- $C^{\infty}(M)$ -linear in X
- Leibnitz rule: $\nabla_X(f\epsilon) = X(f)\epsilon + f\nabla_X\epsilon$
- a section $s: U \subset M \to FR(E)$ (trivialization of E) defines a connection in $E|_U$: $\nabla_v^s \epsilon = s(x) (d(s^{-1} \epsilon)_x v) x \in U, v \in T_x M$.
- the difference $\nabla \nabla^s$ defines the *Christoffel tensor*:

$$\Gamma_X^s: T_X M \times E_X \to E_X$$

- ∇ induces natural connections on all vector bundles obtained with functorial constructions from E: sums, tensor products, duals, pull-backs, ...
- Connections on E \iff Principal connections on FR(E)

Curvature and torsion

Curvature tensor of ∇ : $R : \Gamma(TM) \times \Gamma(TM) \times \Gamma(E) \longrightarrow \Gamma(E)$

$$R(X,Y)\epsilon = \nabla_X \nabla_Y \epsilon - \nabla_Y \nabla_X \epsilon - \nabla_{[X,Y]} \epsilon$$

$$R_X: T_XM \times T_XM \times E_X \to E_X$$

Curvature and torsion

Curvature tensor of $\nabla \colon R : \Gamma(TM) \times \Gamma(TM) \times \Gamma(E) \longrightarrow \Gamma(E)$

$$R(X,Y)\epsilon = \nabla_X \nabla_Y \epsilon - \nabla_Y \nabla_X \epsilon - \nabla_{[X,Y]} \epsilon$$

$$R_X: T_XM \times T_XM \times E_X \rightarrow E_X$$

Given $\iota : TM \to E$ vector bundle morphism, ι -torsion tensor.

 $T^{\iota}:\Gamma(TM)\times\Gamma(TM)\to\Gamma(E)$

$$T^{\iota}(X,Y) = \nabla_{X}(\iota(Y)) - \nabla_{Y}(\iota(X)) - \iota([X,Y])$$

$$T_X^{\iota}: T_XM \times T_XM \to E_X$$

Curvature and torsion

Curvature tensor of $\nabla \colon R : \Gamma(TM) \times \Gamma(TM) \times \Gamma(E) \longrightarrow \Gamma(E)$

$$R(X,Y)\epsilon = \nabla_X\nabla_Y\epsilon - \nabla_Y\nabla_X\epsilon - \nabla_{[X,Y]}\epsilon$$

$$R_X: T_X M \times T_X M \times E_X \to E_X$$

Given $\iota : TM \to E$ vector bundle morphism, ι -torsion tensor. $T^{\iota} : \Gamma(TM) \times \Gamma(TM) \to \Gamma(E)$

$$T^{\iota}(X, Y) = \nabla_{X}(\iota(Y)) - \nabla_{Y}(\iota(X)) - \iota([X, Y])$$

$$T_X^{\iota}: T_XM \times T_XM \to E_X$$

When E = TM, torsion: $T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$.

 ∇ is *symmetric* if T = 0

 $\pi_1: E^1 \to M$ and $\pi_2: E^2 \to M$ vector bundle.

Whitney sum: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection.

 $\pi_1: E^1 \to M$ and $\pi_2: E^2 \to M$ vector bundle.

Whitney sum: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection.

 $\pi_1: E^1 \to M$ and $\pi_2: E^2 \to M$ vector bundle.

Whitney sum: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection.

 ∇ connection on E. Given sections $\epsilon^i \in \Gamma(E^i)$:

• $\nabla_X^1 \epsilon_1 = \operatorname{pr}_1(\nabla_X \epsilon_1)$ connection in E^1

 $\pi_1: E^1 \to M$ and $\pi_2: E^2 \to M$ vector bundle.

Whitney sum: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection.

- $\nabla_X^1 \epsilon_1 = \operatorname{pr}_1(\nabla_X \epsilon_1)$ connection in E^1
- $\nabla_X^2 \epsilon_1 = \operatorname{pr}_2(\nabla_X \epsilon_2)$ connection in E^2

 $\pi_1: E^1 \to M$ and $\pi_2: E^2 \to M$ vector bundle.

Whitney sum: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection.

- $\nabla_X^1 \epsilon_1 = \operatorname{pr}_1(\nabla_X \epsilon_1)$ connection in E^1
- $\nabla_X^2 \epsilon_1 = \operatorname{pr}_2(\nabla_X \epsilon_2)$ connection in E^2
- $\alpha^1(X, \epsilon_2) = \operatorname{pr}_1(\nabla_X \epsilon_2)$, tensor $\alpha_X^1 : T_X M \times E_X^2 \to E_X^1$

 $\pi_1: E^1 \to M$ and $\pi_2: E^2 \to M$ vector bundle.

Whitney sum: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection.

- $\nabla_X^1 \epsilon_1 = \operatorname{pr}_1(\nabla_X \epsilon_1)$ connection in E^1
- $\nabla_X^2 \epsilon_1 = \operatorname{pr}_2(\nabla_X \epsilon_2)$ connection in E^2
- $\alpha^1(X, \epsilon_2) = \operatorname{pr}_1(\nabla_X \epsilon_2)$, tensor $\alpha_X^1 : T_X M \times E_X^2 \to E_X^1$
- $\alpha^2(X, \epsilon_1) = \operatorname{pr}_2(\nabla_X \epsilon_1)$, tensor $\alpha_X^2 : T_X M \times E_X^1 \to E_X^2$

 $\pi_1: E^1 \to M$ and $\pi_2: E^2 \to M$ vector bundle.

Whitney sum: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection.

 ∇ connection on E. Given sections $\epsilon^i \in \Gamma(E^i)$:

- $\nabla_X^1 \epsilon_1 = \operatorname{pr}_1(\nabla_X \epsilon_1)$ connection in E^1
- $\nabla_X^2 \epsilon_1 = \operatorname{pr}_2(\nabla_X \epsilon_2)$ connection in E^2
- $\alpha^1(X, \epsilon_2) = \operatorname{pr}_1(\nabla_X \epsilon_2)$, tensor $\alpha_X^1 : T_X M \times E_X^2 \to E_X^1$
- $\alpha^2(X, \epsilon_1) = \operatorname{pr}_2(\nabla_X \epsilon_1)$, tensor $\alpha_X^2 : T_X M \times E_X^1 \to E_X^2$

Gauss equation:

$$\mathrm{pr}_{1}\big(R(X,Y)\epsilon_{1}\big) = R_{1}(X,Y)\epsilon_{1} + \alpha^{1}\big(X,\alpha^{2}(Y,\epsilon_{1})\big) - \alpha^{1}\big(Y,\alpha^{2}(X,\epsilon_{1})\big)$$

 $\pi_1: E^1 \to M$ and $\pi_2: E^2 \to M$ vector bundle.

Whitney sum: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection.

 ∇ connection on E. Given sections $\epsilon^i \in \Gamma(E^i)$:

- $\nabla_X^1 \epsilon_1 = \operatorname{pr}_1(\nabla_X \epsilon_1)$ connection in E^1
- $\nabla_X^2 \epsilon_1 = \operatorname{pr}_2(\nabla_X \epsilon_2)$ connection in E^2
- $\alpha^1(X, \epsilon_2) = \operatorname{pr}_1(\nabla_X \epsilon_2)$, tensor $\alpha_X^1 : T_X M \times E_X^2 \to E_X^1$
- $\alpha^2(X, \epsilon_1) = \operatorname{pr}_2(\nabla_X \epsilon_1)$, tensor $\alpha_X^2 : T_X M \times E_X^1 \to E_X^2$

Gauss equation:

$$\mathrm{pr}_1\big(R(X,Y)\epsilon_1\big) = R_1(X,Y)\epsilon_1 + \alpha^1\big(X,\alpha^2(Y,\epsilon_1)\big) - \alpha^1\big(Y,\alpha^2(X,\epsilon_1)\big)$$

Codazzi equations

$$\begin{array}{l} \operatorname{pr}_2\big(R(X,Y)\epsilon_1\big) = \nabla\alpha^2(X,Y,\epsilon_1) - \nabla\alpha^2(Y,X,\epsilon_1) + \alpha^2\big(T(X,Y),\epsilon_1\big) \\ \operatorname{pr}_1\big(R(X,Y)\epsilon_2\big) = \nabla\alpha^1(X,Y,\epsilon_2) - \nabla\alpha^1(Y,X,\epsilon_2) + \alpha^1\big(T(X,Y),\epsilon_2\big) \end{array}$$

 $\pi_1: E^1 \to M$ and $\pi_2: E^2 \to M$ vector bundle.

Whitney sum: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection.

 ∇ connection on E. Given sections $\epsilon^i \in \Gamma(E^i)$:

- $\nabla_X^1 \epsilon_1 = \operatorname{pr}_1(\nabla_X \epsilon_1)$ connection in E^1
- $\nabla_X^2 \epsilon_1 = \operatorname{pr}_2(\nabla_X \epsilon_2)$ connection in E^2
- $\alpha^1(X, \epsilon_2) = \operatorname{pr}_1(\nabla_X \epsilon_2)$, tensor $\alpha_X^1 : T_X M \times E_X^2 \to E_X^1$
- $\alpha^2(X, \epsilon_1) = \operatorname{pr}_2(\nabla_X \epsilon_1)$, tensor $\alpha_X^2 : T_X M \times E_X^1 \to E_X^2$

Gauss equation:

$$\mathrm{pr}_1\big(R(X,Y)\epsilon_1\big) = R_1(X,Y)\epsilon_1 + \alpha^1\big(X,\alpha^2(Y,\epsilon_1)\big) - \alpha^1\big(Y,\alpha^2(X,\epsilon_1)\big)$$

Codazzi equations

$$\begin{aligned} & \operatorname{pr}_{2}(R(X,Y)\epsilon_{1}) = \nabla \alpha^{2}(X,Y,\epsilon_{1}) - \nabla \alpha^{2}(Y,X,\epsilon_{1}) + \alpha^{2}(T(X,Y),\epsilon_{1}) \\ & \operatorname{pr}_{1}(R(X,Y)\epsilon_{2}) = \nabla \alpha^{1}(X,Y,\epsilon_{2}) - \nabla \alpha^{1}(Y,X,\epsilon_{2}) + \alpha^{1}(T(X,Y),\epsilon_{2}) \end{aligned}$$

Ricci equation

$$\operatorname{pr}_{2}(R(X,Y)\epsilon_{2}) = R_{2}(X,Y)\epsilon_{2} + \alpha^{2}(X,\alpha^{1}(Y,\epsilon_{2})) - \alpha^{2}(Y,\alpha^{1}(X,\epsilon_{2}))$$

Outline

- G-structures
- Principal spaces
- Principal fiber bundles
- 4 Connections
- Inner torsion of a G-structure
- Infinitesimally homogeneous affine manifolds with G-structure
- Immersion theorems

• $\pi: E \to M$ vector bundle

- $\pi: E \to M$ vector bundle
- $G \subset GL(\mathbb{R}^k)$ Lie subgroup

- $\pi: E \to M$ vector bundle
- $G \subset \operatorname{GL}(\mathbb{R}^k)$ Lie subgroup
- P ⊂ FR(E) a G-structure on E

- $\pi: E \to M$ vector bundle
- $G \subset \operatorname{GL}(\mathbb{R}^k)$ Lie subgroup
- $P \subset FR(E)$ a G-structure on E
- ∇ connection on E

- $\pi: E \to M$ vector bundle
- $G \subset GL(\mathbb{R}^k)$ Lie subgroup
- $P \subset FR(E)$ a G-structure on E
- ∇ connection on E

P is *compatible* with ∇ if parallel transport of frames of *P* remain in *P*

- $\pi: E \to M$ vector bundle
- $G \subset GL(\mathbb{R}^k)$ Lie subgroup
- $P \subset FR(E)$ a G-structure on E
- ∇ connection on E

P is *compatible* with ∇ if parallel transport of frames of P remain in P. The lack of compatibility is measured by a tensor, called the *inner torsion* of (M, ∇, P) :

- $\pi: E \to M$ vector bundle
- $G \subset GL(\mathbb{R}^k)$ Lie subgroup
- P ⊂ FR(E) a G-structure on E
- ∇ connection on E

P is compatible with ∇ if parallel transport of frames of P remain in P. The lack of compatibility is measured by a tensor, called the *inner torsion* of (M, ∇, P) :

• $s: U \rightarrow P$ frame of E compatible with $P, x \in U$

- $\pi: E \to M$ vector bundle
- $G \subset GL(\mathbb{R}^k)$ Lie subgroup
- P ⊂ FR(E) a G-structure on E
- ∇ connection on E

P is compatible with ∇ if parallel transport of frames of P remain in P. The lack of compatibility is measured by a tensor, called the *inner torsion* of (M, ∇, P) :

- $s: U \rightarrow P$ frame of E compatible with $P, x \in U$
- $\Gamma_x : T_xM \to \mathfrak{gl}(E_x)$ Christoffel tensor of ∇ rel. to s

- $\pi: E \to M$ vector bundle
- $G \subset GL(\mathbb{R}^k)$ Lie subgroup
- P ⊂ FR(E) a G-structure on E
- ∇ connection on E

P is *compatible* with ∇ if parallel transport of frames of *P* remain in *P* The lack of compatibility is measured by a tensor, called the *inner torsion* of (M, ∇, P) :

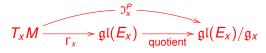
- $s: U \to P$ frame of E compatible with $P, x \in U$
- $\Gamma_X : T_XM \to \mathfrak{gl}(E_X)$ Christoffel tensor of ∇ rel. to s
- $G_X = \{ T \in GL(E_X) : T \circ p \in P_X, \forall p \in P_X \}, g_X = Lie(G_X).$

- $\pi: E \to M$ vector bundle
- $G \subset GL(\mathbb{R}^k)$ Lie subgroup
- P ⊂ FR(E) a G-structure on E
- ∇ connection on E

P is compatible with ∇ if parallel transport of frames of P remain in P. The lack of compatibility is measured by a tensor, called the *inner torsion* of (M, ∇, P) :

- $s: U \rightarrow P$ frame of E compatible with $P, x \in U$
- $\Gamma_X : T_XM \to \mathfrak{gl}(E_X)$ Christoffel tensor of ∇ rel. to s
- $\bullet \ \ G_X = \{T \in \mathrm{GL}(E_X) : T \circ p \in P_X, \ \forall \ p \in P_X\}, \ \mathfrak{g}_X = \mathrm{Lie}(G_X).$

The inner torsion $\mathfrak{I}_{X}^{P}:T_{X}M\to\mathfrak{gl}(E_{X})/\mathfrak{g}_{X}$ is:



Example 1: 1-structures

Let *E* be a *trivial* vector bundle over *M* and let $s: M \to FR(E)$ be a smooth global frame.

Let *E* be a *trivial* vector bundle over *M* and let $s: M \to FR(E)$ be a smooth global frame.

P = s(M) is a G-structure on E, with $G = \{ \operatorname{Id}_{\mathbb{R}^k} \}$

Let *E* be a *trivial* vector bundle over *M* and let $s: M \to FR(E)$ be a smooth global frame.

$$\mathit{P} = \mathit{s}(\mathit{M})$$
 is a G -structure on E , with $\mathit{G} = \left\{ \operatorname{Id}_{\mathbb{R}^k} \right\}$

$$G_X = \{ \mathrm{Id}_{E_X} \}, \, \mathfrak{g}_X = \{ 0 \}$$

Let *E* be a *trivial* vector bundle over *M* and let $s: M \to FR(E)$ be a smooth global frame.

$$\mathit{P} = \mathit{s}(\mathit{M})$$
 is a G -structure on E , with $\mathit{G} = \left\{ \operatorname{Id}_{\mathbb{R}^k} \right\}$

$$G_X = \{\mathrm{Id}_{E_X}\}, \, \mathfrak{g}_X = \{0\}$$

 \mathfrak{I}_{x}^{P} coincides with the Christoffel tensor $\Gamma_{x}:T_{x}M\to\mathfrak{gl}(E_{x}).$

Let *E* be a *trivial* vector bundle over *M* and let $s: M \to FR(E)$ be a smooth global frame.

$$\mathit{P} = \mathit{s}(\mathit{M})$$
 is a $\mathit{G}\text{-structure}$ on E , with $\mathit{G} = \left\{ \operatorname{Id}_{\mathbb{R}^k} \right\}$

$$G_X = \{\mathrm{Id}_{E_X}\},\,\mathfrak{g}_X = \{0\}$$

 \mathfrak{I}_{X}^{P} coincides with the Christoffel tensor $\Gamma_{X}:T_{X}M\to\mathfrak{gl}(E_{X}).$

Lemma

$$\mathfrak{I}_{x}^{P}=0$$
 iff ∇ is flat.

 $\pi: E \to M$ vector bundle with a Riemannian metric g

 $\pi: E \to M$ vector bundle with a Riemannian metric g

 ∇ connection on E.

 $\pi: E \to M$ vector bundle with a Riemannian metric g

 ∇ connection on E.

O(k)-structure of g-orthonormal frames of E: $P \subset FR(E)$

 $\pi: E \to M$ vector bundle with a Riemannian metric g ∇ connection on E.

O(k)-structure of g-orthonormal frames of E: $P \subset FR(E)$

 $\operatorname{Lin}(E_X)/\mathfrak{so}(E_X)\cong\operatorname{sym}(E_X)$ by the map $T\mapsto \frac{1}{2}(T+T^*)$.

 $\pi: E \to M$ vector bundle with a Riemannian metric g

 ∇ connection on E.

O(k)-structure of g-orthonormal frames of E: $P \subset FR(E)$

$$\operatorname{Lin}(E_X)/\mathfrak{so}(E_X)\cong\operatorname{sym}(E_X)$$
 by the map $T\mapsto \frac{1}{2}(T+T^*)$.

An explicit computation using local sections of E that are constant in some orthonormal frame $s: U \to P$ gives:

$$\boxed{\mathfrak{I}_{X}^{P}(v) = \frac{1}{2} \big(\Gamma(v) + \Gamma(v)^* \big) = -\frac{1}{2} \nabla_{v} g \in \operatorname{sym}(E_{X})}$$

for all $x \in M$, $v \in T_x M$.

 $\pi: E \to M$ vector bundle with a Riemannian metric g

 ∇ connection on E.

O(k)-structure of g-orthonormal frames of E: $P \subset FR(E)$

$$\operatorname{Lin}(E_X)/\mathfrak{so}(E_X)\cong\operatorname{sym}(E_X)$$
 by the map $T\mapsto \frac{1}{2}(T+T^*)$.

An explicit computation using local sections of E that are constant in some orthonormal frame $s: U \rightarrow P$ gives:

$$\boxed{\mathfrak{I}_X^P(v) = \frac{1}{2} \big(\Gamma(v) + \Gamma(v)^* \big) = -\frac{1}{2} \nabla_v g \in \operatorname{sym}(E_X) }$$

for all $x \in M$, $v \in T_x M$.

Lemma

 $\mathfrak{I}_{x}^{P}=0$ iff g is ∇ -parallel.

 $\pi: E \to M$ vector bundle with a Riemannian metric g

 $\pi: E \to M$ vector bundle with a Riemannian metric g

F ⊂ *E* vector subbundle

 $\pi: E \to M$ vector bundle with a Riemannian metric g

 $F \subset E$ vector subbundle

P set of frames *adapted* to the orthogonal sum $E = F \oplus F^{\perp}$ is a G-structure on E, where $G = O(k_1) \times O(k_2)$.

 $\pi: E \to M$ vector bundle with a Riemannian metric g

 $F \subset E$ vector subbundle

P set of frames *adapted* to the orthogonal sum $E = F \oplus F^{\perp}$ is a G-structure on E, where $G = O(k_1) \times O(k_2)$.

 G_X is the group of linear isometries of E_X that preserve F_X , g_X is the Lie algebra of anti-symmetric endomorphisms of E_X that preserve F_X .

 $\pi: E \to M$ vector bundle with a Riemannian metric g

 $F \subset E$ vector subbundle

P set of frames *adapted* to the orthogonal sum $E = F \oplus F^{\perp}$ is a G-structure on E, where $G = O(k_1) \times O(k_2)$.

 G_X is the group of linear isometries of E_X that preserve F_X , g_X is the Lie algebra of anti-symmetric endomorphisms of E_X that preserve F_X .

$$\begin{split} \mathfrak{gl}(E_X)/\mathfrak{g}_X &\cong \text{sym}(E_X) \oplus \text{Lin}(F_X, F_X^{\perp}) \\ T+\mathfrak{g}_X &\longmapsto \left(\frac{1}{2}(T+T^*), \frac{1}{2}\mathfrak{q}_X \circ (T-T^*)|_{F_X}\right) \end{split}$$

$$\mathfrak{I}_{X}^{P}(v) = \left(-\frac{1}{2}\nabla_{v}g, \alpha_{X}(v, \cdot) + \frac{1}{2}\mathfrak{q} \circ \nabla_{v}g|_{F_{X}}\right)$$

 $q: E \to F^{\perp}$ projection, α is the 2nd fundamental form of F.

 $\pi: E \to M$ vector bundle with a Riemannian metric g

 $F \subset E$ vector subbundle

P set of frames *adapted* to the orthogonal sum $E = F \oplus F^{\perp}$ is a G-structure on E, where $G = O(k_1) \times O(k_2)$.

 G_x is the group of linear isometries of E_x that preserve F_x , g_x is the Lie algebra of anti-symmetric endomorphisms of E_x that preserve F_x .

$$\begin{split} \mathfrak{gl}(E_X)/\mathfrak{g}_X &\cong \mathrm{sym}(E_X) \oplus \mathrm{Lin}(F_X, F_X^\perp) \\ T+\mathfrak{g}_X &\longmapsto \left(\frac{1}{2}(T+T^*), \frac{1}{2}\mathfrak{q}_X \circ (T-T^*)|_{F_X}\right) \end{split}$$

$$\mathfrak{I}_{X}^{P}(\mathbf{v}) = \left(-\frac{1}{2}\nabla_{\mathbf{v}}\mathbf{g}, \alpha_{X}(\mathbf{v}, \cdot) + \frac{1}{2}\mathfrak{q} \circ \nabla_{\mathbf{v}}\mathbf{g}|_{F_{X}}\right)$$

 $q: E \to F^{\perp}$ projection, α is the 2nd fundamental form of F.

Lemma

 $\mathfrak{I}_{\chi}^{P}=0$ iff g is ∇ -parallel and F is parallel (i.e., covariant derivative of sections of F are in F).

Example 4: O(k-1)-structures E vector bundle with Riemannian metric g

Example 4: O(k-1)-structures *E* vector bundle with Riemannian metric *g*

 ϵ smooth section of E, with $g(\epsilon,\epsilon)=1$

E vector bundle with Riemannian metric g ϵ smooth section of E, with $g(\epsilon, \epsilon) = 1$

 $P \subset FR(E)$ set of orthonormal frames of E whose first element is ϵ is a G-structure on E, where:

$$G = \begin{pmatrix} 1 & 0 \\ 0 & O(k-1) \end{pmatrix}$$

E vector bundle with Riemannian metric g ϵ smooth section of E, with $g(\epsilon,\epsilon)=1$

 $P \subset FR(E)$ set of orthonormal frames of E whose first element is ϵ is a G-structure on E, where:

$$G = \begin{pmatrix} 1 & 0 \\ 0 & O(k-1) \end{pmatrix}$$

 G_X is the set of isometries of E_X that fix $\epsilon(x)$, \mathfrak{g}_X is the set of endomorphisms T of E_X such that $T(\epsilon(x)) = 0$.

$$\mathfrak{gl}(E_X)/\mathfrak{g}_X \cong \operatorname{sym}(E_X) \oplus \epsilon(X)^{\perp}$$
$$T + \mathfrak{g}_X \longmapsto \left(\frac{1}{2}(T + T^*), \frac{1}{2}(T - T^*) \cdot \epsilon(X)\right)$$

E vector bundle with Riemannian metric *g* ϵ smooth section of *E*, with $g(\epsilon, \epsilon) = 1$ $P \subset FR(E)$ set of orthonormal frames of *E* whose first element

 $P \subset FR(E)$ set of orthonormal frames of E whose first element is ϵ is a G-structure on E, where:

$$G = \begin{pmatrix} 1 & 0 \\ 0 & O(k-1) \end{pmatrix}$$

 G_X is the set of isometries of E_X that fix $\epsilon(x)$, \mathfrak{g}_X is the set of endomorphisms T of E_X such that $T(\epsilon(x)) = 0$.

$$\mathfrak{gl}(E_X)/\mathfrak{g}_X \cong \operatorname{sym}(E_X) \oplus \epsilon(X)^{\perp}$$
$$T + \mathfrak{g}_X \longmapsto \left(\frac{1}{2}(T + T^*), \frac{1}{2}(T - T^*) \cdot \epsilon(X)\right)$$
$$\mathfrak{I}_X^P(V) = \left(-\frac{1}{2}\nabla g, \nabla_V \epsilon + \frac{1}{2}(\nabla_V g)\epsilon\right)$$

E vector bundle with Riemannian metric g ϵ smooth section of E, with $g(\epsilon, \epsilon) = 1$ $P \subset FR(E)$ set of orthonormal frames of E whose first element is ϵ is a G-structure on E, where:

$$G = \begin{pmatrix} 1 & 0 \\ 0 & O(k-1) \end{pmatrix}$$

 G_X is the set of isometries of E_X that fix $\epsilon(x)$, \mathfrak{g}_X is the set of endomorphisms T of E_X such that $T(\epsilon(x)) = 0$.

$$\mathfrak{gl}(E_X)/\mathfrak{g}_X \cong \operatorname{sym}(E_X) \oplus \epsilon(X)^{\perp}$$

$$T + \mathfrak{g}_X \longmapsto \left(\frac{1}{2}(T + T^*), \frac{1}{2}(T - T^*) \cdot \epsilon(X)\right)$$

$$\mathfrak{I}_X^P(V) = \left(-\frac{1}{2}\nabla g, \nabla_V \epsilon + \frac{1}{2}(\nabla_V g)\epsilon\right)$$

Lemma

 $\mathfrak{I}_{\mathsf{x}}^{P}=0$ iff g is ∇ -parallel and $\nabla\epsilon=0$.

Example 5: U(/)-structures

k = 2I, E vector bundle with a Riemannian metric g and an almost complex anti-symmetric structure J.

Example 5: U(/)-structures

k = 2I, E vector bundle with a Riemannian metric g and an almost complex anti-symmetric structure J.

 $P \subset FR(E)$ set of complex orthonormal frames, is a $\mathrm{U}(I)$ -structure on E

Example 5: U(/)-structures

k = 2I, E vector bundle with a Riemannian metric g and an almost complex anti-symmetric structure J.

 $P \subset FR(E)$ set of complex orthonormal frames, is a U(I)-structure on E G_X is the set of complex isometries of E_X , g_X is the Lie algebra of of complex linear g_X -antisymmetric endomorphisms of E_X .

Example 5: U(I)-structures

k = 2I, E vector bundle with a Riemannian metric g and an almost complex anti-symmetric structure J.

 $P \subset \operatorname{FR}(E)$ set of complex orthonormal frames, is a $\operatorname{U}(I)$ -structure on E G_X is the set of complex isometries of E_X , \mathfrak{g}_X is the Lie algebra of of complex linear g_X -antisymmetric endomorphisms of E_X .

$$\mathfrak{gl}(E_X)/\mathfrak{g}_X \cong \operatorname{sym}(E_X) \oplus \overline{\operatorname{Lin}}_{\operatorname{a}}(E_X)$$
$$T + \mathfrak{g}_X \longmapsto \left(\frac{1}{2}(T + T^*), \frac{1}{2}[T - T^*, J_X]\right)$$

 $\overline{\text{Lin}}_{a}(E_{x})$ is the space of g_{x} -antisymmetric endomorphisms of E_{x} that anti-commute with J_{x} .

Example 5: U(I)-structures

k = 2I, E vector bundle with a Riemannian metric g and an almost complex anti-symmetric structure J.

 $P \subset \operatorname{FR}(E)$ set of complex orthonormal frames, is a $\operatorname{U}(I)$ -structure on E G_X is the set of complex isometries of E_X , \mathfrak{g}_X is the Lie algebra of of complex linear g_X -antisymmetric endomorphisms of E_X .

$$\begin{split} \mathfrak{gl}(E_X)/\mathfrak{g}_X &\cong \mathrm{sym}(E_X) \oplus \overline{\mathrm{Lin}}_{\mathrm{a}}(E_X) \\ T+\mathfrak{g}_X &\longmapsto \left(\frac{1}{2}(T+T^*), \frac{1}{2}[T-T^*, J_X]\right) \end{split}$$

 $\overline{\text{Lin}}_{a}(E_{x})$ is the space of g_{x} -antisymmetric endomorphisms of E_{x} that anti-commute with J_{x} .

$$\mathfrak{I}_{X}^{P}(v) = \left(-\frac{1}{2}\nabla_{V}g, \nabla_{V}J - [\nabla_{V}g, J_{X}]\right)$$

Example 5: U(I)-structures

k = 2I, E vector bundle with a Riemannian metric g and an almost complex anti-symmetric structure J.

 $P \subset FR(E)$ set of complex orthonormal frames, is a U(I)-structure on E G_X is the set of complex isometries of E_X , \mathfrak{g}_X is the Lie algebra of of complex linear g_X -antisymmetric endomorphisms of E_X .

$$\begin{split} \mathfrak{gl}(E_X)/\mathfrak{g}_X &\cong \text{sym}(E_X) \oplus \overline{\text{Lin}}_a(E_X) \\ T+\mathfrak{g}_X &\longmapsto \left(\frac{1}{2}(T+T^*), \frac{1}{2}[T-T^*, J_X]\right) \end{split}$$

 $\overline{\text{Lin}}_{a}(E_{x})$ is the space of g_{x} -antisymmetric endomorphisms of E_{x} that anti-commute with J_{x} .

$$\mathfrak{I}_{X}^{P}(v) = \left(-\frac{1}{2}\nabla_{v}g, \nabla_{v}J - [\nabla_{v}g, J_{X}]\right)$$

Lemma

 $\mathfrak{I}_{x}^{P}=0$ iff g and J are ∇ -parallel.

Outline

- G-structures
- Principal spaces
- Principal fiber bundles
- Connections
- Inner torsion of a G-structure
- 6 Infinitesimally homogeneous affine manifolds with G-structure
- Immersion theorems

 (M, ∇) affine manifold,

 (M, ∇) affine manifold, $G \subset GL(n)$ Lie subgroup,

 (M, ∇) affine manifold, $G \subset GL(n)$ Lie subgroup, $P \subset FR(TM)$ a G-structure.

 (M, ∇) affine manifold, $G \subset GL(n)$ Lie subgroup, $P \subset FR(TM)$ a G-structure.

Definition

 (M, ∇, P) is *infinitesimally homegeneous* if \mathfrak{I}^P , T and R are *constant* in frames of the G-structure P.

 (M, ∇) affine manifold, $G \subset GL(n)$ Lie subgroup, $P \subset FR(TM)$ a G-structure.

Definition

 (M, ∇, P) is *infinitesimally homegeneous* if \mathfrak{I}^P , T and R are *constant* in frames of the G-structure P.

Definition

 (M, ∇, P) is *locally homogeneous* if for all $x, y \in M$ and every G-structure preserving map $\sigma : T_xM \to T_yM$ there exists neighborhoods $U \ni x, V \ni y$ and a smooth G-structure preserving affine diffeomorphism $f : U \to V$ with f(x) = y and $df_x = \sigma$.

 (M, ∇) affine manifold, $G \subset GL(n)$ Lie subgroup, $P \subset FR(TM)$ a G-structure.

Definition

 (M, ∇, P) is *infinitesimally homegeneous* if \mathfrak{I}^P , T and R are *constant* in frames of the G-structure P.

Definition

 (M, ∇, P) is *locally homogeneous* if for all $x, y \in M$ and every G-structure preserving map $\sigma: T_xM \to T_yM$ there exists neighborhoods $U \ni x, V \ni y$ and a smooth G-structure preserving affine diffeomorphism $f: U \to V$ with f(x) = y and $\mathrm{d} f_x = \sigma$.

Theorem

 (M, ∇, P) infinitesimally homogeneous \implies (M, ∇, P) locally homogeneous. If (M, ∇) is geodesically complete and M is simply connected, then (M, ∇, P) is globally homogeneous.

 (M, ∇) affine manifold, $G \subset GL(n)$ Lie subgroup, $P \subset FR(TM)$ a G-structure.

Definition

 (M, ∇, P) is infinitesimally homegeneous if \mathfrak{I}^P , T and R are constant in frames of the G-structure P.

Definition

 (M, ∇, P) is *locally homogeneous* if for all $x, y \in M$ and every *G*-structure preserving map $\sigma: T_XM \to T_YM$ there exists neighborhoods $U \ni x$, $V \ni y$ and a smooth G-structure preserving affine diffeomorphism $f: U \to V$ with f(x) = v and $df_x = \sigma$.

Proof.

An application of the Cartan–Ambrose–Hicks theorem!

• (M,g) Riemannian manifold, ∇ Levi–Civita connection of g, P the O(n)-structure of orthonormal frames is infinitesimally homogeneous iff g has constant sectional curvature.

- (M,g) Riemannian manifold, ∇ Levi–Civita connection of g, P the O(n)-structure of orthonormal frames is infinitesimally homogeneous iff g has constant sectional curvature.
- (M,g,J) a Kähler manifold, ∇ Levi–Civita connection of g,P the $\mathrm{U}(n)$ -structure given by the complex orthonormal frames. Then, (M,∇,P) is infinitesimally homogeneous iff (M,g,J) has constant holomorphic curvature.

- (M,g) Riemannian manifold, ∇ Levi–Civita connection of g, P the O(n)-structure of orthonormal frames is infinitesimally homogeneous iff g has constant sectional curvature.
- (M, g, J) a Kähler manifold, ∇ Levi–Civita connection of g, P the $\mathrm{U}(n)$ -structure given by the complex orthonormal frames. Then, (M, ∇, P) is infinitesimally homogeneous iff (M, g, J) has constant holomorphic curvature.
- M Lie group, ∇ left invariant connection, P a 1-structure on M given by the choice of a left invariant frame. (M, ∇, P) is infinitesimally homogeneous.

- (M,g) Riemannian manifold, ∇ Levi–Civita connection of g, P the O(n)-structure of orthonormal frames is infinitesimally homogeneous iff g has constant sectional curvature.
- (M, g, J) a Kähler manifold, ∇ Levi–Civita connection of g, P the U(n)-structure given by the complex orthonormal frames. Then, (M, ∇, P) is infinitesimally homogeneous iff (M, g, J) has constant holomorphic curvature.
- M Lie group, ∇ left invariant connection, P a 1-structure on M given by the choice of a left invariant frame. (M, ∇, P) is infinitesimally homogeneous.
- (M_i, g_i) Riemannian, i = 1, 2, $M = M_1 \times M_2$ endowed with the product metric g, ∇ Levi–Civita connection of g, P the $O(n_1) \times O(n_2)$ -structure given by the orthonormal frames *adapted* to the product. Then, (M, ∇, P) is infinitesimally homogeneous iff (M_i, g_i) has constant sectional curvature, i = 1, 2.

- (M, g) Riemannian manifold, ∇ Levi–Civita connection of g, P the O(n)-structure of orthonormal frames is infinitesimally homogeneous iff g has constant sectional curvature.
- (M, g, J) a Kähler manifold, ∇ Levi–Civita connection of g, P the U(n)-structure given by the complex orthonormal frames. Then, (M, ∇, P) is infinitesimally homogeneous iff (M, g, J) has constant holomorphic curvature.
- M Lie group, ∇ left invariant connection, P a 1-structure on M given by the choice of a left invariant frame. (M, ∇, P) is infinitesimally homogeneous.
- (M_i, g_i) Riemannian, i = 1, 2, $M = M_1 \times M_2$ endowed with the product metric g, ∇ Levi–Civita connection of g, P the $O(n_1) \times O(n_2)$ -structure given by the orthonormal frames *adapted* to the product. Then, (M, ∇, P) is infinitesimally homogeneous iff (M_i, g_i) has constant sectional curvature, i = 1, 2.
- More generally, product of infinitesimally homogeneous manifolds is infinitesimally homogeneous.

(M,g) 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil_3 , $\widetilde{PSL_2(\mathbb{R})}$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

(M,g) 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil_3 , $PSL_2(\mathbb{R})$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

Geometrical structure: Riemannian fibrations over a 2-dim. space form. Fibers are geodesics, the vertical field ξ is Killing.

(M,g) 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil_3 , $PSL_2(\mathbb{R})$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

Geometrical structure: Riemannian fibrations over a 2-dim. space form. Fibers are geodesics, the vertical field ξ is Killing.

Classified by two constants: κ curvature of the base, τ bundle curvature: $\nabla_{\mathbf{v}}\xi = \tau \mathbf{v} \times \xi$ (Obs.: needs orientation!)

(M,g) 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil_3 , $PSL_2(\mathbb{R})$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

Geometrical structure: Riemannian fibrations over a 2-dim. space form. Fibers are geodesics, the vertical field ξ is Killing.

Classified by two constants: κ curvature of the base, τ bundle curvature: $\nabla_{\mathbf{v}}\xi = \tau\mathbf{v} \times \xi$ (Obs.: needs orientation!)

- \bullet au=0, then $extbf{ extit{M}}=\mathbb{M}^2(\kappa) imes\mathbb{R}$
- \bullet $\tau \neq 0$:
 - $\kappa > 0 \Longrightarrow$ Berger spheres
 - $\kappa = 0 \Longrightarrow Nil_{\underline{3}}$
 - $\kappa < 0 \Longrightarrow PSL_2(\mathbb{R})$

(M,g) 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil_3 , $PSL_2(\mathbb{R})$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

Geometrical structure: Riemannian fibrations over a 2-dim. space form. Fibers are geodesics, the vertical field ξ is Killing.

Classified by two constants: κ curvature of the base, τ bundle curvature: $\nabla_{\mathbf{v}}\xi = \tau\mathbf{v} \times \xi$ (Obs.: needs orientation!)

- \bullet au=0, then $extbf{ extit{M}}=\mathbb{M}^2(\kappa) imes\mathbb{R}$
- $\tau \neq 0$:
 - $\kappa > 0 \Longrightarrow$ Berger spheres
 - $\kappa = 0 \Longrightarrow Nil_{\underline{3}}$
 - $\kappa < 0 \Longrightarrow PSL_2(\mathbb{R})$

R computed explicitly: formula involving only $g \in \xi$

(M,g) 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil_3 , $PSL_2(\mathbb{R})$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

Geometrical structure: Riemannian fibrations over a 2-dim. space form. Fibers are geodesics, the vertical field ξ is Killing.

Classified by two constants: κ curvature of the base, τ bundle curvature: $\nabla_{\mathbf{v}}\xi = \tau\mathbf{v} \times \xi$ (Obs.: needs orientation!)

- \bullet au=0, then $extbf{ extit{M}}=\mathbb{M}^2(\kappa) imes\mathbb{R}$
- $\tau \neq 0$:
 - $\kappa > 0 \Longrightarrow$ Berger spheres
 - $\kappa = 0 \Longrightarrow Nil_{\underline{3}}$
 - $\kappa < 0 \Longrightarrow PSL_2(\mathbb{R})$

R computed explicitly: formula involving only g e ξ Infinitesimally homogeneous $\mathrm{SO}(n-1)$ -structure with non vanishing $\mathfrak{I}^{\overline{P}}$

Outline

- G-structures
- Principal spaces
- Principal fiber bundles
- 4 Connections
- Inner torsion of a G-structure
- Infinitesimally homogeneous affine manifolds with G-structure
- Immersion theorems

Problem. Given objects:

M an n-dimensional differentiable manifold

- M an n-dimensional differentiable manifold
- \overline{M} an \overline{n} -dimensional differentiable manifold

- M an n-dimensional differentiable manifold
- \overline{M} an \overline{n} -dimensional differentiable manifold
- $\pi: E \to M$ a vector bundle over M with typical fiber \mathbb{R}^k , $\bar{n} = n + k$

- M an n-dimensional differentiable manifold
- \overline{M} an \overline{n} -dimensional differentiable manifold
- $\pi: E \to M$ a vector bundle over M with typical fiber \mathbb{R}^k , $\bar{n} = n + k$
- $\widehat{\nabla}$ a connection on $\widehat{E} = TM \oplus E$

- M an n-dimensional differentiable manifold
- \overline{M} an \overline{n} -dimensional differentiable manifold
- $\pi : E \to M$ a vector bundle over M with typical fiber \mathbb{R}^k , $\bar{n} = n + k$
- $\widehat{\nabla}$ a connection on $\widehat{E} = TM \oplus E$
- $\overline{\nabla}$ a connection on $T\overline{M}$

Problem. Given objects:

- M an n-dimensional differentiable manifold
- \overline{M} an \overline{n} -dimensional differentiable manifold
- $\pi : E \to M$ a vector bundle over M with typical fiber \mathbb{R}^k , $\bar{n} = n + k$
- $\widehat{\nabla}$ a connection on $\widehat{E} = TM \oplus E$
- $\overline{\nabla}$ a connection on $T\overline{M}$

Definition

An affine immersion of $(M, E, \widehat{\nabla})$ into $(\overline{M}, \overline{\nabla})$ is a pair (f, L), where $f: M \to \overline{M}$ is a smooth map, $L: \widehat{E} \to f^*T\overline{M}$ is a connection preserving vector bundle isomorphism with: $L_X|_{\mathcal{T}_XM} = \mathrm{d}f_X, \quad \forall \, X \in M.$

Problem. Given objects:

- M an n-dimensional differentiable manifold
- ullet \overline{M} an \overline{n} -dimensional differentiable manifold
- $\pi : E \to M$ a vector bundle over M with typical fiber \mathbb{R}^k , $\bar{n} = n + k$
- $\widehat{\nabla}$ a connection on $\widehat{E} = TM \oplus E$
- $\overline{\nabla}$ a connection on $T\overline{M}$

Definition

An affine immersion of $(M, E, \widehat{\nabla})$ into $(\overline{M}, \overline{\nabla})$ is a pair (f, L), where $f: M \to \overline{M}$ is a smooth map, $L: \widehat{E} \to f^*T\overline{M}$ is a connection preserving vector bundle isomorphism with: $L_X|_{T_XM} = \mathrm{d}f_X, \quad \forall \, X \in M.$

Lemma (Uniqueness)

If M is connected, given (f^1, L^1) and (f^2, L^2) with $f^1(x_0) = f^2(x_0)$ and $L^1(x_0) = L^2(x_0)$, then $(f^1, L^1) = (f^2, L^2)$.

Theorem (part 1)

• $(\overline{M}^{\overline{n}}, \overline{\nabla}, \overline{P})$ affine manifold with G-structure \overline{P} infinitesimally homogeneous;

- $(\overline{M}^{\overline{n}}, \overline{\nabla}, \overline{P})$ affine manifold with G-structure \overline{P} infinitesimally homogeneous;
- M^n differentiable manifold, $\pi: E \to M$ vector bundle with typical fiber \mathbb{R}^k , $\bar{n} = n + k$;

- $(\overline{M}^{\overline{n}}, \overline{\nabla}, \overline{P})$ affine manifold with G-structure \overline{P} infinitesimally homogeneous;
- M^n differentiable manifold, $\pi: E \to M$ vector bundle with typical fiber \mathbb{R}^k , $\bar{n} = n + k$;
- $\widehat{\nabla}$ connection on $\widehat{E} = TM \oplus E$ with ι -torsion \widehat{T} , $\iota : TM \oplus E \to TM$ inclusion;

- $(\overline{M}^{\overline{n}}, \overline{\nabla}, \overline{P})$ affine manifold with G-structure \overline{P} infinitesimally homogeneous;
- M^n differentiable manifold, $\pi: E \to M$ vector bundle with typical fiber \mathbb{R}^k , $\bar{n} = n + k$;
- $\widehat{\nabla}$ connection on $\widehat{E} = TM \oplus E$ with ι -torsion \widehat{T} , $\iota : TM \oplus E \to TM$ inclusion;
- $\widehat{P} \subset FR(\widehat{E})$ a G-structure on \widehat{E} .

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

 $\bullet \ \overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{X}^{\widehat{P}} = \mathfrak{I}_{Y}^{\overline{P}} \circ \sigma|_{T_{X}M};$

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

- $\bullet \ \overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{x}^{\widehat{P}} = \mathfrak{I}_{y}^{\overline{P}} \circ \sigma|_{T_{x}M};$
- \widehat{T}_X is σ -related with \overline{T}_Y ;

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

- $\bullet \ \overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{x}^{\widehat{P}} = \mathfrak{I}_{y}^{\overline{P}} \circ \sigma|_{T_{x}M};$
- \widehat{T}_x is σ -related with \overline{T}_y ;
- \widehat{R}_{x} is σ -related with \overline{R}_{y} .

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

- $\bullet \ \overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{x}^{\widehat{P}} = \mathfrak{I}_{y}^{\overline{P}} \circ \sigma|_{T_{x}M};$
- \widehat{T}_X is σ -related with \overline{T}_y ;
- \widehat{R}_x is σ -related with \overline{R}_y .

Then, for all $x_0 \in M$, $y_0 \in M$, $\sigma_0 : \widehat{E}_x \to T_{y_0} \overline{M}$ G-structure preserving, there exist a locally defined affine immersion (f, L) of (M, E, ∇) into $(\overline{M}, \overline{\nabla})$ with $f(x_0) = y_0$, $L(x_0) = \sigma_0$, and such that L is G-structure preserving.

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

- $\bullet \ \overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{X}^{\widehat{P}} = \mathfrak{I}_{Y}^{\overline{P}} \circ \sigma|_{T_{X}M};$
- \widehat{T}_X is σ -related with \overline{T}_y ;
- \widehat{R}_x is σ -related with \overline{R}_y .

Then, for all $x_0 \in M$, $y_0 \in M$, $\sigma_0 : \widehat{E}_x \to T_{y_0} \overline{M}$ G-structure preserving, there exist a locally defined affine immersion (f, L) of (M, E, ∇) into $(\overline{M}, \overline{\nabla})$ with $f(x_0) = y_0$, $L(x_0) = \sigma_0$, and such that L is G-structure preserving.

If M is simply connected and $(\overline{M}, \overline{\nabla})$ is geodesically complete, then the affine immersion is global.

• relating \widehat{R} with \overline{R} : Gauss, Codazzi and Ricci equations.

- relating \widehat{R} with \overline{R} : Gauss, Codazzi and Ricci equations.
- relating \widehat{T} and $\overline{T} = 0$ means:
 - symmetry of the second fundamental form
 - ▶ ∇ symmetric

- relating \widehat{R} with \overline{R} : Gauss, Codazzi and Ricci equations.
- relating \widehat{T} and $\overline{T} = 0$ means:
 - symmetry of the second fundamental form
 - ▶ ∇ symmetric
- relating $\mathfrak{I}^{\overline{P}}$ with $\mathfrak{I}^{\overline{P}}=0$ provide additional geometrical assumptions.

- relating \widehat{R} with \overline{R} : Gauss, Codazzi and Ricci equations.
- relating \widehat{T} and $\overline{T} = 0$ means:
 - symmetry of the second fundamental form
 - ▶ ∇ symmetric
- relating $\mathfrak{I}^{\widehat{P}}$ with $\mathfrak{I}^{\overline{P}}=0$ provide additional geometrical assumptions.

Applications: isometric immersion theorem into:

- space forms,
- Kähler manifolds with constant holomorphic curvature,
- all homogeneous geometries in dimension 3,
- Lie groups,
- products, etc.

