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Introduction

It has become evident through many mathematical theories of our century that
Geometry and Topology offer very powerful tools in the study of qualitative and
also quantitative properties of differential equations. The main idea behind these
theories is that some equations, or better, some classes of equations can be studied
by means of theirsymmetries, where by symmetry we mean generically any alge-
braic or geometric structure which is preserved by their flow. Once such invariant
structures are determined for a class of differential equations, many properties of
the solutions of the class can be read off from the geometry of the curve obtained
by the flow, taking values in the space (typically a Lie group) of all structure-
preserving morphisms.

A simple, but instructive, example is given by the Sturmian theory for second
order ordinary differential equations inIR. The Sturm oscillation theorem deals
with equations of the form−(px′)′+rx = λx, wherep andr are functions,p > 0,
andλ is a real parameter. The theorem states that, denoting byC1

o [α, β] the space
of C1-functions on[α, β] vanishing atα andβ, the index of the symmetric bilinear
formB(x, y) =

∫ b
a [px′y′ + rxy] dt in C1

o [a, b] is equal to the sum overt ∈ ]a, b[
of the dimension of the kernel of the bilinear form

∫ t
a [px

′y′ + rxy] dt in C1
o [a, t].

The classical proof of the Sturm oscillation theorem (see for instance [4, Chap-
ter 8]) is obtained by showing that the two quantities involved in the thesis can be
obtained as thewinding numberof two homotopic closed curves in the real projec-
tive line.

The class of differential equations that we are interested in consists in the so
called “symplectic differential systems”; these are linear systems inIRn ⊕ IRn∗

whose flow preserve the canonicalsymplectic form, given byω
(
(v, α), (w, β)

)
=

β(v) − α(w). Recall that a symplectic form is a nondegenerate skew-symmetric
bilinear form on a (necessarily even dimensional) vector space. These differential
systems appear naturally in a great variety of fields of pure and applied mathe-
matics, and many areas of mathematics and physics, like Calculus of Variations,
Hamiltonian systems, (Pseudo-)Riemannian Geometry, Symplectic Geometry, Me-
chanics and Optimal Control Theory produce examples of symplectic systems as
basic objects of investigation. For instance, Morse–Sturm systems are special
cases of symplectic systems; such systems are obtained from the Jacobi equation
along any pseudo-Riemannian geodesic by means of a parallel trivialization of the
tangent bundle of the pseudo-Riemannian manifold along the geodesic. More in
general, symplectic systems are obtained by considering the linearized Hamilton
equations along any solution of a (possibly time-dependent) Hamiltonian problem,

v



vi INTRODUCTION

using a symplectic trivialization along the solution of the tangent bundle of the
underlying symplectic manifold. Another large class of examples where the the-
ory leads naturally to the study of symplectic systems is provided by Lagrangian
variational theories in manifolds, possibly time-dependent, even in the case ofcon-
strainedvariational problems. Indeed, under a suitableinvertibility assumption
called hyper-regularity, the solutions to such problems correspond, via theLe-
gendre transform, to the solutions of an associated Hamiltonian problem in the
cotangent bundle.

The fundamental matrix of a symplectic system is a curve in thesymplectic
group, denoted bySp(2n, IR), which is a closed subgroup of the general linear
groupGL(2n, IR), hence it has a Lie group structure. This structure is extremely
rich, due to the fact that symplectic forms on a vector space are intimately related
to its complex structures, and such relation produces other invariant geometric and
algebraic structures, such as inner products and Hermitian products.

Many interesting questions can be answered by studying solutions of symplec-
tic systems whose initial data belong to a fixedLagrangian subspaceof IRn⊕IRn∗.
Recall that a Lagrangian subspace of a symplectic space is a maximal subspace on
which the symplectic form vanishes. Such initial conditions are obtained, for in-
stance, in Riemannian or pseudo-Riemannian geometry when one considers Jacobi
fields along a geodesic that are variations made of geodesics starting orthogonally
at a given submanifold. Since symplectic maps preserve Lagrangian subspaces,
the image of the initial Lagrangian by the flow of a symplectic system is a curve
in the setΛ of all Lagrangian subspaces ofIRn ⊕ IRn∗. The setΛ is a smooth
(indeed, real-analytic) submanifold of theGrassmannianGn(IRn ⊕ IRn∗) of all
n-dimensional subspaces ofIRn⊕IRn∗; Λ is called theLagrangian Grassmannian
of the symplectic spaceIRn ⊕ IRn∗.

The original interest of the authors was the study of conjugate points along
geodesics in a semi-Riemannian manifold and their stability (see [29, 34]), with
the aim of developing an infinite dimensional Morse Theory (see [30, 12, 26]) for
semi-Riemannian geodesics. A few decades ago a new integer valued homological
invariant, called theMaslov index, was introduced by the Russian school (see for
instance [1] and the references therein) for closed curves in a Lagrangian submani-
foldM of the spaceIR2n endowed with its canonical symplectic structure. The no-
tion of Maslov index has been immediately recognized as an important tool in the
study of conjugate points, and it has has been thoroughly investigated and extended
in several directions by mathematical-physicists, geometers and analysts. There is
nowadays a very extensive literature about the subject, and it is almost impossible
to acknowledge the work of all the many authors who have given significant con-
tributions to the field. Our list of references ([6, 9, 11, 14, 15, 16, 24, 28, 36, 42])
is far from being exhaustive.

Periodic or non periodic solutions of Hamiltonian systems, like for instance
geodesics in a semi-Riemannian manifold, define a curve in the symplectic group,
or in the Lagrangian Grassmannian, hence they define a Maslov index. Roughly
speaking, the Maslov index gives a sort ofalgebraic countof the conjugate points
along a solution; here are some of the main properties of this invariant:
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• it is always finite (even when the number of conjugate points is infinite);
• it is stableby “small” perturbations of the data;
• it coincides with thegeometric indexin the case of a causal (timelike or

lightlike) Lorentzian geodesic;
• it is related to theanalytic index(or, more in general, to the relative index)

of the solution, which is the index of the second variation of an associated
Lagrangian action functional;

• it is related to the spectral properties of the associated Hamiltonian second
order differential operator.

Conjugate and focal points appear naturally in Optics, both classical and rela-
tivistic, and the Maslov index provides a new topological invariant. For instance,
the optics of light rays in a general-relativistic medium, like vacuum, dust, or
plasma, magnetized or not, etc., can be described using a Hamiltonian formal-
ism. As the underlying spacetime model one assumes an arbitrary 4-dimensional
Lorentzian manifold(M, g), and the trajectories of light rays are projections onto
M of solutions in the cotangent bundleTM∗ of some Hamiltonian functionH :
TM∗ → IR. Typically, the explicit form of the functionH involves the spacetime
metric and a number of tensor fields by which the medium is characterized. For a
comprehensive discussion of this subject we refer to Perlick [33].

The aim of this booklet is to provide a complete, self-contained study of the
geometry of the Grassmannian manifolds, the symplectic group and the Lagrangian
Grassmannian. This study will lead us naturally to the notion of Maslov index, that
will be introduced in the context of symplectic differential systems.

These notes are organized as follows. In Chapter 1 we describe the algebraic
setup; we will study complex structures and symplectic structures on finite dimen-
sional vector spaces. Special attention is given to the Lagrangian subspaces and to
the Lagrangian decompositions of a symplectic space.

Chapter 2 is entirely dedicated to Differential Geometry; we will study at
the differentiable structure of the Grassmannian manifolds and of the Lagrangian
Grassmannians. We will develop briefly the theory of Lie groups and their actions
on differentiable manifolds, so that we will be able to describe the Grassmannians
as homogeneous spaces.

In Chapter 3 we will develop the algebraic topological framework of the the-
ory, including the basics of homotopy theory and of singular homology theory for
topological spaces. Using the long exact sequences in homotopy and in homology,
and using the Hurewicz homomorphism we will compute the first homology and
relative homology group of the Grassmannians.

In Chapter 4 we will introduce the notion of Maslov index for curves in the
Lagrangian Grassmannian, and we will present some methods to compute it in
terms of the change of signature of curves of bilinear forms.

In Chapter 5 we will show how symplectic differential systems are produced
in several geometrical problems; more precisely, we will consider the case of the
Jacobi equation along a semi-Riemannian geodesic, and the case of the linearized
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Hamilton equation along the solution of a Hamiltonian problem in a symplectic
manifold.

At the end of each Chapter we have given a list of exercises whose solution is
based on the material presented in the chapter. The reader should be able to solve
the problems as he/she goes along; the solution or a hint for the solution of (almost)
all the exercises is given in Appendix A.
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Ognuno sta solo sul cuor della terra
trafitto da un raggio di sole:

edè subito sera.





CHAPTER 1

Symplectic Spaces

1.1. A Short Review of Linear Algebra

In this section we will briefly review some well known facts concerning the
identification of bilinear forms and linear operators on vector spaces. These identi-
fications will be used repeatedly during the exposition of the material, and, to avoid
confusion, the reader is encouraged to take a few minutes to go through the pain of
reading this section.

The results presented are valid for vector spaces over an arbitrary fieldK, how-
ever we will mainly be interested in the case thatK = IR or K = C. Moreover,
we emphasize that even though a few results presented are also valid in the case of
infinite dimensional vector spaces, in this chapterwe will always assumethat the
vector spaces involved arefinite dimensional.

Let V andW be vector spaces. We denote byLin(V,W ) and byB(V,W ) re-
spectively the vector spaces of all thelinear operatorsT : V →W and ofbilinear
operators, called alsobilinear forms, B : V ×W → K; by V ∗ we mean thedual
spaceLin(V,K) of V . Shortly, we setLin(V ) = Lin(V, V ) andB(V ) = B(V, V ).

There is anatural isomorphism:

(1.1.1) Lin(V,W ∗) −→ B(V,W ),

which is obtained by associating to each linear operatorT : V → W ∗ the bilinear
formBT ∈ B(V,W ) given byBT (v, w) = T (v)

(
w

)
.

1.1.1. REMARK . Given vector spacesV,W, V1,W1 and a pair(L,M) of linear
operators, withL ∈ Lin(V1, V ) andM ∈ Lin(W,W1), one defines another linear
operator:

(1.1.2) Lin(L,M) : Lin(V,W ) −→ Lin(V1,W1)

by:

(1.1.3) Lin(L,M) · T = M ◦ T ◦ L.
In this way,Lin(·, ·) becomes a functor, contravariant in the first variable and co-
variant in the second, from the category of pairs of vector spaces to the category
of vector spaces. Similarly, given linear operatorsL ∈ Lin(V1, V ) andM ∈
Lin(W1,W ), we can define a linear operatorB(L,M) : B(V,W ) → B(V1,W1)
by settingB(L,M) · B = B(L·,M ·). In this way,B(·, ·) turns into a functor,
contravariant in both variables, from the category of pairs of vector spaces to the
category of vector spaces. This abstract formalism will infact be useful later (see
Section 2.3).

1



2 1. SYMPLECTIC SPACES

The naturality of the isomorphism (1.1.1) may be meant in the technical sense
of natural isomorphism between the functorsLin(·, ·) andB(·, ·) (see Exercise 1.1).

To avoid confusion, in this Section we will distinguish between the symbols
of a bilinear formB and of the associated linear operatorTB, or between a linear
operatorT and the associated bilinear formBT . However, in the rest of the book
we will implicitly assume the isomorphism (1.1.1), and we will not continue with
this distinction.

Given another pair of vector spacesV1 andW1 and operatorsL1 ∈ Lin(V1, V ),
L2 ∈ Lin(W1,W ), the bilinear formsBT (L1·, ·) andBT (·, L2·) correspond via
(1.1.1) to the linear operatorsT ◦L1 andL∗2◦T respectively. Here,L∗2 : W ∗ →W ∗

1

denotes thetranspose linear operatorof L2 given by:

L∗2(α) = α ◦ L2, ∀α ∈W ∗.

We will identify every vector spaceV with its bidual V ∗∗ and every linear
operatorT with its bitransposeT ∗∗. GivenT ∈ Lin(V,W ∗) we will therefore
look atT ∗ as an element inLin(W,V ∗); if BT is the bilinear operator associated
to T , then the bilinear operatorBT ∗ associated toT ∗ is the transpose bilinear
operatorB∗

T ∈ B(W,V ) defined byB∗
T (w, v) = BT (v, w).

GivenB ∈ B(V ), we say thatB is symmetricif B(v, w) = B(w, v) for
all v, w ∈ V ; we say thatB is anti-symmetricif B(v, w) = −B(w, v) for all
v, w ∈ V (see Exercise 1.2). The sets of symmetric bilinear forms and of anti-
symmetric bilinear forms are subspaces ofB(V ), denoted respectively byBsym(V )
andBa−sym(V ).

The reader is warned that, unfortunately, the identification (1.1.1) doesnot
behave well in terms of matrices, with the usual convention for the matrix repre-
sentations of linear and bilinear operators.

If (vi)ni=1 and(wi)mi=1 are bases ofV andW respectively, we denote by(v∗i )
n
i=1

and(w∗i )
m
i=1 the corresponding dual bases ofV ∗ andW ∗. ForT ∈ Lin(V,W ∗),

the matrix representation(Tij) of T satisfies:

T (vj) =
m∑
i=1

Tij w
∗
i .

On the other hand, ifB ∈ B(V,W ), the matrix representation(Bij) ofB is defined
by:

Bij = B(vi, wj);

hence, for allT ∈ Lin(V,W ∗) we have:

Tij = T (vj)(wi) = BT (vj , wi) = [BT ]ji.

Thus, the matrix of a linear operator is thetransposeof the matrix of the corre-
sponding bilinear operator; in some cases we will be consideringsymmetricopera-
tors, and there will be no risk of confusion. However, when we deal withsymplectic
forms(see Section 1.4) one must be careful not to make sign errors.
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1.1.2. DEFINITION. GivenT ∈ Lin(V,W ), we define thepull-backassociated
to T to be map:

T# : B(W ) −→ B(V )

given byT#(B) = B(T ·, T ·). WhenT is anisomorphism, we can also define the
push-forwardassociated toT , which is the map:

T# : B(V ) −→ B(W )

defined byT#(B) = B(T−1·, T−1·).

1.1.3. EXAMPLE . Using (1.1.1) to identify linear and bilinear operators, we
have the following formulas for the pull-back and the push-forward:

(1.1.4) T#(B) = T ∗ ◦ TB ◦ T, T#(B) = (T−1)∗ ◦ TB ◦ T−1.

The identities (1.1.4) can be interpreted as equalities involving the matrix repre-
sentations, in which case one must use the matrices that representB, T#(B) and
T#(B) as linear operators.

ForB ∈ B(V ), thekernelof B is the subspace ofV defined by:

(1.1.5) Ker(B) =
{
v ∈ V : B(v, w) = 0, ∀w ∈ V

}
.

The kernel ofB coincides with the kernel of the associated linear operatorT :
V → V ∗. The bilinear formB is said to benondegenerateif Ker(B) = {0};
this is equivalent to requiring that its associated linear operatorT is injective, or
equivalently, an isomorphism.

1.1.4. EXAMPLE . If B ∈ B(V ) is nondegenerate, thenB defines an isomor-
phismTB betweenV andV ∗ and therefore we can define a bilinear form[TB]#(B)
in V ∗ by taking the push-forward ofB by TB. By (1.1.4), such bilinear form is
associated to the linear operator(T−1

B )∗; if B is symmetric, then[TB]#(B) is the
bilinear form associated to the linear mapT−1

B .

1.1.5. DEFINITION. Let B ∈ Bsym(V ) be a symmetric bilinear form inV .
We say that a linear operatorT : V → V is B-symmetric(respectively,B-anti-
symmetric) if the bilinear formB(T ·, ·) is symmetric (respectively, anti-symmet-
ric). We say thatT isB-orthogonalif T#[B] = B, i.e., ifB(T ·, T ·) = B.

1.1.6. EXAMPLE . GivenB ∈ Bsym andT ∈ Lin(V ), theB-symmetry ofT is
equivalent to:

(1.1.6) TB ◦ T = (TB ◦ T )∗;

clearly, theB-anti-symmetry is equivalent toTB ◦ T = −(TB ◦ T )∗.

WhenB is nondegenerate, we can also define thetranspose ofT relatively to
B, which is the operator̂T ∈ Lin(V ) such thatB(Tv,w) = B(v, T̂w) for all
v, w ∈ V . Explicitly, we have

(1.1.7) T̂ = T−1
B ◦ T ∗ ◦ TB.
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Then,T isB-symmetric (resp.,B-anti-symmetric) iffT̂ = T (resp., iffT̂ = −T ),
and it isB-orthogonal iffT̂ = T−1.

We also say thatT isB-normal if T commutes withT̂ .

Given a subspaceS ⊂ V and a bilinear formB ∈ B(V ), the orthogonal
complementS⊥ of S with respect toB is defined by:

(1.1.8) S⊥ =
{
v ∈ V : B(v, w) = 0, ∀w ∈ S

}
.

In particular,Ker(B) = V ⊥. The annihilator So of S is the subspace ofV ∗

defined as:
So =

{
α ∈ V ∗ : α(w) = 0, ∀w ∈ S

}
.

Observe thatS⊥ = T−1
B (So).

1.1.7. EXAMPLE . Assume thatB ∈ Bsym(V ) is nondegenerate and letT ∈
Lin(V ); denote byT̂ theB-transpose ofT . If S ⊂ V is aninvariant subspacefor
T , i.e., if T (S) ⊂ S, then theB-orthogonal complementS⊥ of S is invariant for
T̂ . This follows from (1.1.7) and from the identityS⊥ = T−1

B (So), observing that
the annihilatorSo of S is invariant forT ∗.

1.1.8. PROPOSITION. If B ∈ B(V ) is nondegenerate andS ⊂ V is a sub-
space, thendim(V ) = dim(S) + dim(S⊥).

PROOF. Simply note thatdim(V ) = dim(S) + dim(So) and thatdim(S⊥) =
dim(So), andS⊥ = T−1

B (So), with TB an isomorphism, becauseB is nondegen-
erate. �

If B is either symmetric or anti-symmetric, then it is easy to see thatS ⊂
(S⊥)⊥; the equality doesnot hold in general, but only ifB is nondegenerate.

1.1.9. COROLLARY. Suppose thatB ∈ B(V ) is either symmetric or anti-
symmetric; ifB is nondegenerate, thenS = (S⊥)⊥.

PROOF. It is S ⊂ (S⊥)⊥; by Proposition 1.1.8dim(S) = dim
(
(S⊥)⊥

)
. �

If B ∈ B(V ) is nondegenerate andS ⊂ V is a subspace, then the restriction
of B to S × S may be degenerate. We have the following:

1.1.10. PROPOSITION. The restrictionB|S×S is nondegenerate if and only if
V = S ⊕ S⊥.

PROOF. The kernel of the restrictionB|S×S isS∩S⊥; hence, ifV = S⊕S⊥,
it follows thatB is nondegenerate onS. Conversely, ifB is nondegenerate onS,
thenS ∩ S⊥ = {0}. It remains to show thatV = S + S⊥. For, observe that the
map:

(1.1.9) S 3 x 7−→ B(x, ·)|S ∈ S∗

is an isomorphism. Hence, givenv ∈ V , there existsx ∈ S such thatB(x, ·) and
B(v, ·) coincide inS, thusx− v ∈ S⊥. This concludes the proof. �
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1.1.11. COROLLARY. Suppose thatB ∈ B(V ) is either symmetric or anti-
symmetric; ifB is nondegenerate, then the following are equivalent:

• B is nondegenerate onS;
• B is nondegenerate onS⊥.

PROOF. Assume thatB is nondegenerate onS. By Proposition 1.1.10 it is
V = S⊕S⊥; by Corollary 1.1.9 we haveV = S⊥⊕(S⊥)⊥, from which it follows
thatB is nondegenerate onS⊥ by Proposition 1.1.10. The converse is analogous,
since(S⊥)⊥ = S. �

1.1.12. EXAMPLE . Proposition 1.1.10 actually doesnot hold if V is not finite
dimensional. For instance, ifV is the space ofsquare summablesequencesx =
(xi)i∈IN of real numbers, i.e.,

∑
i∈IN x

2
i < +∞,B is thestandard Hilbert product

in V given byB(x, y) =
∑

i∈IN xiyi andS ⊂ V is the subspace consisting of
all almost nullsequences, i.e.,xi 6= 0 only for a finite number of indicesi ∈ IN ,
then it is easy to see thatS⊥ = {0}. What happens here is that the map (1.1.9) is
injective, but not surjective.

1.1.13. REMARK . Observe that Proposition 1.1.10 is indeed true if we assume
only thatS is finite dimensional; for, in the proof presented, only the finiteness of
dim(S) was used to conclude that the map (1.1.9) is an isomorphism.

As an application of Proposition 1.1.10 we can now prove that every symmetric
bilinear form is diagonalizable. We say that a basis(vi)ni=1 of V diagonalizesthe
bilinear formB if B(vi, vj) = 0 for all i 6= j, i.e., ifB is represented by a diagonal
matrix in the basis(vi)ni=1.

1.1.14. THEOREM. Suppose thatK is a field of characteristic different from2.
GivenB ∈ Bsym(V ), there exists a basis(vi)ni=1 of V that diagonalizesB.

PROOF. We prove the result by induction ondim(V ). If dim(V ) = 1 the
result is trivial; assumedim(V ) = n and that the result holds true for every vector
space of dimension less thann. If B(v, v) = 0 for all v ∈ V , thenB = 0. For,

0 = B(v + w, v + w) = 2B(v, w),

and the filedK has characteristic different from2. Since the result in the case that
B = 0 is trivial, we can assume the existence ofv1 ∈ V such thatB(v1, v1) 6= 0. It
follows thatB is nondegenerate on the one-dimensional subspaceK v1 generated
by v1; by Proposition 1.1.10 we get:

V = K v1 ⊕ (K v1)⊥.

By the induction hypothesis, there exists a basis(vi)ni=1 of (K v1)⊥ that diagonal-
izes the restriction ofB; it is then easy to check that the basis(vi)ni=2 diagonalizes
B. �

1.2. Complex Structures

In this section we will study the procedure of changing the scalar field of a real
vector space, making it into a complex vector space. Of course, given a complex
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vector space, one can always reduce the scalars to the real field: such operation
will be calledreduction of the scalars.

Passing from the real to the complex field requires the introduction of an ad-
ditional structure, that will be called acomplex structure. Many of the proofs in
this section are elementary, so they will be omitted and left as an exercise for the
reader.

For clarity, in this section we will refer to linear operators asIR-linear orC-
linear, and similarly we will talk aboutIR-bases orC-bases, real or complex di-
mension, etc.

Let V be a complex vector space; we will denote byVIR the real vector space
obtained by restriction of the multiplication by scalarsC × V → V to IR × V →
V. Observe that the underlying set of vectors, as well as the operation of sum,
coincides inV andVIR. We say thatVIR is a realification of V, or thatVIR is
obtained by a reduction of scalars fromV.

The endomorphismv 7→ iv of V given by the multiplication by the imaginary
unit i =

√
−1 is C-linear, hence alsoIR-linear. The square of this endomorphism

is given by minus the identity ofV. This suggests the following definition:

1.2.1. DEFINITION. LetV be a real vector space. Acomplex structurein V is
a linear operatorJ : V → V such thatJ2 = J ◦ J = −Id.

Clearly, a complex structureJ is an isomorphism, sinceJ−1 = −J .
Given a complex structureJ on V it is easy to see that there exists a unique

way of extending the multiplication by scalarsIR×V → V of V to a multiplication
by scalarC× V → V in such a way thatJ(v) = iv. Explicitly, we define:

(1.2.1) (a+ b i)v = av + b J(v), a, b ∈ IR, v ∈ V.
Conversely, as we had already observed, every complex extension of multiplication
by scalars forV defines a complex structure onV by J(v) = iv.

We will henceforth identify every pair(V, J), whereV is a real vector space
andJ is a complex structure ofV , with the complex vector spaceV obtained from
(V, J) by (1.2.1). Observe thatV is the realificationVIR of V.

1.2.2. EXAMPLE . For everyn ∈ IN , the spaceIR2n has acanonical complex
structuredefined byJ(x, y) = (−y, x), for x, y ∈ IRn. We can identify(IR2n, J)
with the complex vector spaceCn by (x, y) 7→ x + iy. In terms of matrix repre-
sentations, we have:

(1.2.2) J =
(

0 −I
I 0

)
,

where0 andI denote respectively the0 and the identityn× n matrices.

We have the following simple Lemma:

1.2.3. LEMMA . Let (V1, J1) and(V2, J2) be real vector spaces endowed with
complex structures. AIR-linear operatorT : V1 → V2 is C-linear if and only if
T ◦J1 = J2 ◦T . In particular, theC-linear endomorphisms of a vector space with
complex structure(V, J) are theIR-linear endomorphisms ofV that commute with
J .
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PROOF. Left to the reader in Exercise 1.3. �

1.2.4. REMARK . Observe that ifJ is a complex structure onV , then also−J is
a complex structure, that will be called theconjugate complex structure. Forλ ∈ C
andv ∈ V , the product ofλ andv in the complex space(V,−J) is given by the
product ofλ̄ andv in the complex space(V, J), whereλ̄ is the complex conjugate
of λ. The set of complex bases of(V, J) and(V,−J) coincide; observe however
that the components of a vector in a fixed basis are conjugated when replacingJ
by−J .

A C-linear operatorT between complex spaces is stillC-linear when replacing
the complex structures by their conjugates in both the domain and the counterdo-
main. The representations ofT with respect to fixed bases in the complex structures
and the same bases in the conjugate complex structures are given by conjugate ma-
trices.

1.2.5. DEFINITION. A mapT between complex vector spaces is said to be
anti-linear, or conjugate linear, if it is additive and ifT (λv) = λ̄T (v) for all
λ ∈ C and allv in the domain ofT .

An anti-linear map is alwaysIR-linear when we see it as a map between the
realifications of the domain and the counterdomain. Moreover, a map is anti-linear
if and only if it is C-linear when the complex structure of its domain (or of its
counter domain) is replaced by the complex conjugate. In particular, the anti-linear
endomorphisms of(V, J) are theIR-linear endomorphisms ofV thatanti-commute
with J .

We have the following relation between the bases of(V, J) and ofV :

1.2.6. PROPOSITION. Let V be a (possibly infinite dimensional) real vector
space andJ a complex structure onV . If (bj)j∈J is a C-basis of(V, J), then the
union of(bj)j ∈ J and

(
J(bj)

)
j∈J is anIR-basis ofV .

PROOF. Left to the reader in Exercise 1.4. �

1.2.7. COROLLARY. The real dimension ofV is twice the complex dimension
of (V, J); in particular, a (finite dimensional) vector space admits a complex struc-
ture if and only if its dimension is an even number.

PROOF. We only need to show that every real vector space of even dimension
admits a complex structure. This is easily established by choosing an isomorphism
with IR2n and using the canonical complex structure given in Example 1.2.2.�

1.2.8. EXAMPLE . If (V, J) is a real vector space with complex structure, then
the dual complex space of(V, J) is given by the set ofIR-linear mapsα : V → C
such that:

(1.2.3) α ◦ J(v) = i α(v), v ∈ V.
It is easy to see that (1.2.8) determines the imaginary part ofα when it is known
its real part; hence we have anIR-linear isomorphism:

(1.2.4) (V, J)∗ 3 α 7−→ < ◦ α ∈ V ∗,
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where< : C → IR denotes the real part operator. The isomorphism (1.2.4) there-
fore induces a unique complex structure ofV ∗ that makes (1.2.4) into aC-linear
isomorphism. Such complex structure is called thedual complex structure, and it
is easy to see that it is given simply by the transpose operatorJ∗.

We conclude this section with a relation between the matrix representations of
vectors and operators in real and complex bases. Let(V, J) be a2n-dimensional
vector space with complex structure; a basis ofV adapted toJ , shortly aJ-basis,
is a basis of the form

(1.2.5) (b1, . . . , bn, J(b1), . . . , J(bn));

in this case,(bj)nj=1 is a complex basis of(V, J). For instance, the canonical basis
of IR2n, endowed with the canonical complex structure, is aJ-basis corresponding
to the canonical basis ofCn. In other words, theJ-bases of a vector space are
precisely those with respect to which the matrix representations ofJ is that given
by (1.2.2). The existence ofJ-bases is given by Proposition 1.2.6.

Let aJ-basis ofV be fixed, corresponding to a complex basisB = (bj)nj=1

of (V, J). Given v ∈ V with coordinates(z1, . . . , zn) in the basisB, then its
coordinates in the (real)J-basis ofV are:

v ∼ (x1, . . . , xn, y1, . . . , yn),

wherezj = xj + i yj , xj , yj ∈ IR. If T is aC-linear operator represented in the
complex basis by the matrixZ = A + i B (A andB real), then its representation
in the correspondingJ-basis is:

(1.2.6) T ∼
(
A −B
B A

)
.

1.2.9. REMARK . Formula (1.2.6) tells us that the map

Z = A+B i 7→
(
A −B
B A

)
is an injective homomorphismof the algebra of complexn × n matrices into the
algebra of real2n× 2n matrices.

1.3. Complexification and Real Forms

In this section we show that any real vector space can be “extended” in a canon-
ical way to a complex vector space, by mimicking the relation betweenIRn andCn;
such an extension will be called a complexification of the space. We also show that,
given a complex space, it can be seen as the complexification of several of its real
subspaces, that will be called the real forms of the complex space. We will only
consider the case of finite dimensional spaces, even though many of the results
presented will hold in the case of infinite dimensional spaces, up to minor modifi-
cations. Some of the proofs are elementary, and they will be omitted and left to the
reader as Exercises.



1.3. COMPLEXIFICATION AND REAL FORMS 9

1.3.1. DEFINITION. LetV be a complex vector space; areal formin V is a real
subspaceV0 of V (or, more precisely, a subspace of the realificationVIR of V) such
that:

VIR = V0 ⊕ iV0.

In other words, a real formV0 in V is a real subspace such that everyv ∈ V
can be written uniquely in the formv = v1 + i v2, with v1, v2 ∈ V0.

To a real formV0 we associate maps:

(1.3.1) < : V −→ V0, = : V −→ V0, c : V −→ V,
given by<(v1 + i v2) = v1, =(v1 + i v2) = v2 and c(v1 + i v2) = v1 − i v2,
for all v1, v2 ∈ V. We call<, = andc respectively thereal part, imaginary part,
andconjugationoperators associated to the real formV0. All these operators are
IR-linear; the operatorc is also anti-linear. Forv ∈ V, we also say thatc(v) is the
conjugateof v relatively to the real formV0, and we also write:

c(v) = v̄.

1.3.2. DEFINITION. LetV be a real vector space. Acomplexificationof V is a
pair (V C, ι), whereV C is a complex vector space andι : V → V C is an injective
IR-linear map such thatι(V ) is a real form inV C.

The result of the following Proposition is usually known as theuniversal prop-
erty of the complexification:

1.3.3. PROPOSITION. LetV be a real vector space,(V C, ι) a complexification
of V andW a complex vector space. Then, given anIR-linear mapf : V →WIR,
there exists a uniqueC-linear mapf̃ : V C → W such that the following diagram
commutes:

(1.3.2) V C

f̃

!!
V

ι

OO

f
// W

PROOF. Left to the reader in Exercise 1.5. �

As corollary, we obtain the uniqueness of a complexification, up to isomor-
phisms:

1.3.4. COROLLARY. Suppose that(V C
1 , ι1) and(V C

2 , ι2) are complexifications
of V . Then, there exists a uniqueC-linear isomorphismφ : V C

1 → V C
2 such that

the following diagram commutes:

V C
1

φ // V C
2

V

ι1

``AAAAAAA ι2

>>~~~~~~~~

PROOF. Left to the reader in Exercise 1.6. �
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If V is a real vector space, we can make the direct sumV ⊕ V into a complex
space by taking the complex structureJ(v, w) = (−w, v). Settingι(v) = (v, 0),
it is easy to see that(V ⊕ V, ι) is a complexification ofV , that will be called the
canonical complexificationof the real vector spaceV .

By Corollary 1.3.4, we do not need to distinguish between complexifications
of a vector space; so, from now on, we will denote byV C the canonical complex-
ification ofV , or, depending on the context, we may use the symbolV C to denote
some other complexification ofV , which is necessarily isomorphic to the canonical
one.

The original spaceV will then be identified withι(V ), so that we will always
think of an inclusionV ⊂ V C; sinceι(V ) is a real form inV C, thenV C is a direct
sum ofV andi V :

V C = V ⊕ i V.

1.3.5. EXAMPLE . The subspaceIRn ⊂ Cn is a real form inCn, henceCn is a
complexification ofIRn.

1.3.6. EXAMPLE . The spaceMn(IR) of realn × n matrices is a real form in
the spaceMn(C) of complexn× n matrices.

A less trivial example of a real form inMn(C) is given byu(n), which is the
space ofanti-Hermitian matrices, i.e., matricesA such thatA∗ = −A, whereA∗

denotes the conjugate transpose matrix ofA. In this example,iu(n) is the space
of Hermitian matrices, i.e., the space of those matricesA such thatA∗ = A. It is
easy to see thatMn(C) = u(n)⊕ iu(n), and sou(n) is a real form inMn(C) and
Mn(C) is a complexification ofu(n).

1.3.7. EXAMPLE . If V is a complex vector space and if(bj)nj=1 is a complex
basis ofV, then the real subspaceV0 of VIR given by:

V0 =
{ n∑
j=1

λj bj : λj ∈ IR, ∀ j
}

is a real form inV.
Actually, every real form ofV can be obtained in this way; for, ifV0 ⊂ V

is a real form, then anIR-basis(bj)nj=1 of V0 is also aC-basis ofV. It follows
in particular that the real dimension of a real formV0 is equal to the complex
dimension ofV.

Example 1.3.7 tells us that every complex space admits infinitely many real
forms; in the following proposition we give a characterization of the real forms in
a complex space. We recall that a bijectionφ of a set is said to be aninvolution if
φ2 = φ ◦ φ = Id.

1.3.8. PROPOSITION. LetV be a complex space. Then there exists a bijection
between the set of real forms inV and the set of the anti-linear involutive automor-
phisms ofV. Such bijection is obtained by:

• associating to each real formV0 ⊂ V its conjugation operatorc (see
(1.3.1));
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• associating to each anti-linear involutive automorphismc of V the set of
its fixed pointsV0 = {v ∈ V : c(v) = v}. �

The above result suggests an interesting comparison between the operation of
realification of a complex space and the operation of complexification of a real
space. In Section 1.2 we saw that, roughly speaking, the operations of realification
and of addition of a complex structure are mutually inverse; the realification is a
canonical procedure, while the addition of a complex structure employs an addi-
tional information, which is an automorphismJ with J2 = −Id. In this section we
have the opposite situation. The complexification is a canonical operation, while
its “inverse” operation, which is the passage to a real form, involves an additional
information, which is an anti-linear involutive automorphism.

Let us look now at the complexification as afunctorial construction. LetV1

andV2 be real spaces; from the universal property of the complexification (Propo-
sition 1.3.3) it follows that each linear operatorT : V1 → V2 admits a unique
C-linear extensionTC : V C

1 → V C
2 . We have the following commutative diagram:

V C
1

TC
−−−−→ V C

2

ι

x xι
V1 −−−−→

T
V2

The operatorTC is called thecomplexificationof T ; more concretely, we have that
TC is given by:

TC(v + i w) = T (v) + i T (w), v, w ∈ V1.

It is immediate that:

(1.3.3) (T1 ◦ T2)C = TC
1 ◦ TC

2 , IdC = Id,

and, whenT is invertible

(1.3.4) (TC)−1 = (T−1)C.

The identities (1.3.3) imply that the complexificationV → V C, T 7→ TC is afunc-
tor from the category of real vector spaces with morphisms theIR-linear operators
to the category of complex vector spaces with morphisms theC-linear operators.

Given a linear operatorT : V1 → V2, it is easy to see that:

(1.3.5) Ker(TC) = (Ker(T ))C, Im(TC) = Im(T )C;

in the context of categories, the identities (1.3.5) say that the complexification is an
exact functor, i.e., it takes short exact sequences into short exact sequences.

If U ⊂ V is a subspace, it is easy to see that the complexificationiC of the
inclusioni : U → V is injective, and it therefore gives an identification ofUC with
a subspace ofV C. More concretely, the subspaceUC of V C is the direct sum of
the two real subspacesU andi U of V C; equivalently,UC is the complex subspace
of V C generated by the setU ⊂ V C. However, not every subspace ofV C is the
complexification of some subspace ofV . We have the following characterization:
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1.3.9. LEMMA . Let V be a real vector space and letZ ⊂ V C be a complex
subspace of its complexification. Then, there exists a real subspaceU ⊂ V with
Z = UC if and only ifZ is invariant by conjugation, i.e.,

c(Z) ⊂ Z,

wherec is the conjugation relative to the real formV ⊂ V C. If Z = UC, then such
U is uniquely determined, and it is given explicitly byU = Z ∩ V .

PROOF. Left to the reader in Exercise 1.7. �

Given real vector spacesV1 andV2, observe that the map:

(1.3.6) Lin(V1, V2) 3 T 7−→ TC ∈ Lin(V C
1 , V

C
2 )

is IR-linear; we actually have the following:

1.3.10. LEMMA . The map(1.3.6)takesLin(V1, V2) isomorphically onto a real
form inLin(V C

1 , V
C
2 ).

PROOF. Since(V C
2 )IR = V2 ⊕ i V2, it is easy to see that:

(1.3.7) Lin
(
V1,

(
V C

2

)
IR

)
= Lin(V1, V2)⊕ iLin(V1, V2).

From the universal property of the complexification, it follows that therestriction
operator

(1.3.8) Lin
(
V C

1 , V
C
2

)
3 S

∼=−−→ S|V1 ∈ Lin
(
V1,

(
V C

2

)
IR

)
is an isomorphism. From (1.3.7) and (1.3.8) it follows:

(1.3.9) Lin
(
V C

1 , V
C
2

) ∼= Lin(V1, V2)⊕ Lin(V1, V2),

where the two summands on the right of (1.3.9) are identified respectively with the
image of (1.3.6) and with the same image multiplied byi. �

From Lemma 1.3.8 it follows in particular that the dualV ∗ = Lin(V, IR)
can be identified with a real form of the dual of the complexification(V C)∗ =
Lin(V C,C) (compare with Example 1.2.8).

Along the same lines of Lemma 1.3.9, in the next lemma we characterize the
image of (1.3.6):

1.3.11. LEMMA . Let V1, V2 be real vector spaces. Given aC-linear mapS :
V C

1 → V C
2 , the following statements are equivalent:

• there exists anIR-linear mapT : V1 → V2 such thatS = TC;
• S preserves real forms, i.e.,S(V1) ⊂ V2;
• S commutes with conjugation, i.e., c ◦ S = S ◦ c, wherec denotes the

conjugation operators inV C
1 andV C

2 with respect to the real formsV1 and
V2 respectively.

When one (hence all) of the above conditions is satisfied, there exists a unique
T ∈ Lin(V1, V2) such thatS = TC, which is given by the restriction ofS. �
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1.3.12. EXAMPLE . Let V1, V2 be real vector spaces; choosing bases forV1

andV2, the same will be bases for the complexificationsV C
1 andV C

2 (see Ex-
ample 1.3.7). With respect to these bases, the matrix representation of a linear
operatorT : V1 → V2 is equalto the matrix representation of its complexification
TC : V C

1 → V C
2 (compare with the result of Section 1.2, and more in particular

with formula (1.2.6)). In terms of matrix representations, the map (1.3.6) is simply
the inclusion of the real matrices into the complex matrices.

1.3.13. EXAMPLE . The real form inLin(V C
1 , V

C
2 ) defined in the statement

of Lemma 1.3.10 corresponds to a conjugation operator inLin(V C
1 , V

C
2 ); given

S ∈ Lin(V C
1 , V

C
2 ), we denote byS its conjugate operator. Explicitly, S is given

by:

S = c ◦ S ◦ c.

For, using Proposition 1.3.8 and Lemma 1.3.11, it suffices to observe thatS 7→
c ◦ S ◦ c defines an anti-linear involutive automorphism ofLin(V C

1 , V
C
2 ) whose

fixed point set is the image of (1.3.6). Observe that we have the identity:

S(v) = S(v̄), v ∈ V C
1 .

In terms of bases, the matrix representation ofS is thecomplex conjugateof the
matrix representation ofS.

The theory presented in this section can be easily generalized to the case of
multi-linear operators, anti-linear operators and operators with “mixed” multi-
linearity, like sesquilinear operators. The latter case has special importance:

1.3.14. DEFINITION. Given complex vector spacesV1, V2 andV, we say that
a mapB : V1 × V2 → V is sesquilinearif for all v1 ∈ V1 the mapB(v1, ·) is
anti-linear and for allv2 ∈ V2 the mapB(·, v2) is C-linear.

If V1 = V2 and if a real form is fixed inV, we say that a sesquilinear mapB
is Hermitian (respectively,anti-Hermitian) if B(v1, v2) = B(v2, v1) (respectively,
B(v1, v2) = −B(v2, v1)) for all v1, v2 ∈ V1.

A Hermitian formin a complex spaceV is a sesquilinear Hermitian mapB :
V × V → C; if B is positive definite, i.e.,B(v, v) > 0 for all v 6= 0, we also say
thatB is apositive Hermitian product, or simply anHermitian product, in V.

In the same way that we define the complexificationTC for an IR-linear op-
erator, we can define the complexificationBC of an IR-multilinear operatorB :
V1 × · · · × Vp → V as itsuniqueextension to aC-multi-linear operatorBC :
V C

1 × · · · × V C
p → V C. Similarly, we can associate to anIR-linear operator its

unique extensionTC : V C
1 → V C

2 to ananti-linear operator, and to anIR-bilinear
operatorB : V1×V2 → V its uniquesesquilinear extensionBCs : V C

1 ×V C
2 → V C.

In Exercise 1.8 the reader is asked to generalize the results of this section,
in particular Proposition 1.3.3, Lemma 1.3.10 and Lemma 1.3.11, to the case of
multi-linear, conjugate linear or sesquilinear operators.
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1.3.15. EXAMPLE . If V is a real vector space andB ∈ Bsym(V ) is a sym-
metric bilinear form onV , then the bilinear extensionBC of B to V C is sym-
metric; on the other hand, the sesquilinear extensionBCs of B is a Hermitian
form onV C. Similarly, the bilinear extension of an anti-symmetric bilinear form
is anti-symmetric, while the sesquilinear extension of an anti-symmetric form is
anti-Hermitian.

The notions of kernel (see (1.1.5)), nondegeneracy and orthogonal complement
(see (1.1.8)) for symmetric and anti-symmetric bilinear forms generalize in an ob-
vious way to sesquilinear Hermitian and anti-Hermitian forms. IfB is symmetric
(or anti-symmetric), it is easy to see that the condition of nondegeneracy ofB is
equivalent to the nondegeneracy of eitherBC orBCs . Moreover, ifB ∈ Bsym(V )
is positive definite, i.e.,B(v, v) > 0 for all v 6= 0, then its sesquilinear extension
BCs is also positive definite. Observe that theC-bilinear extensionBC will be
nondegenerate,but it is not positive definite(see Exercise 1.9).

For instance, thecanonical inner product ofIRn is given by:

〈x, y〉 =
n∑
j=1

xjyj .

Its sesquilinear extension defines thecanonical Hermitian product inCn, given by

(1.3.10) 〈z, w〉Cs =
n∑
j=1

zjw̄j ,

while itsC-bilinear extensionis given by:

〈z, w〉C =
n∑
j=1

zjwj .

1.3.16. REMARK . In the spirit of Definition 1.1.5, given a complex spaceV
and a Hermitian formB in V, we say that aC-linear operatorT ∈ Lin(V) is B-
Hermitian(respectively,B-anti-Hermitian) if B(T ·, ·) is a Hermitian (respectively,
anti-Hermitian) form. We also say thatT isB-unitary if B(T ·, T ·) = B.

Given a real vector spaceV , B ∈ Bsym(V ) and if T ∈ Lin(V ) is a B-
symmetric (respectively,B-anti-symmetric) operator, then its complexificationTC

in Lin(V C) is aBCs-Hermitian (respectively,BCs-anti-Hermitian) operator.
If T isB-orthogonal, thenTC isBCs-unitary.

1.3.1. Complex structures and complexifications.The aim of this subsec-
tion is to show that there exists a natural correspondence between the complex
structures of a real spaceV and certain direct sum decompositions of its complex-
ificationV C.

LetV be a real vector space and letJ : V → V be a complex structure inV ; we
have thatJC is aC-linear automorphism of the complexificationV C that satisfies
(JC)2 = −Id. It is then easy to see thatV C decomposes as the direct sum of
the two eigenspaces ofJC corresponding to the eigenvaluesi and−i respectively;
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more explicitly, we define:

V h =
{
v ∈ V C : JC(v) = iv

}
,

V a =
{
v ∈ V C : JC(v) = −iv

}
.

Then,V h andV a are complex subspaces ofV C, andV C = V h ⊕ V a; the projec-
tions onto the subspacesV h andV a are given by:

(1.3.11) πh(v) =
v − iJC(v)

2
, πa(v) =

v + iJC(v)
2

, v ∈ V C.

We call the spacesV h andV a respectively theholomorphicand theanti-holomor-
phic subspaces ofV C. Next proposition justifies the names of these spaces (see
also Example 1.3.18 below):

1.3.17. PROPOSITION. Let V be a real vector space andJ a complex struc-
ture inV . Then, the projectionsπh andπa given in(1.3.11)restricted toV define
respectively aC-linear isomorphism of(V, J) onto V h and aC-anti-linear iso-
morphism of(V, J) ontoV a. �

Proposition 1.3.17 tells us that, if we complexify a spaceV that already pos-
sesses a complex structureJ , we obtain a complex spaceV C that contains a copy
of the original space(V, J) (the holomorphic subspace) and a copy of(V,−J)
(the anti-holomorphic subspace). Observe also that the holomorphic and the anti-
holomorphic subspaces ofV C aremutually conjugate:

V a = c
(
V h

)
, V h = c

(
V a

)
,

wherec denotes the conjugation ofV C relative to the real formV .
In our next example we make a short digression to show how the theory of this

subsection appears naturally in the context of calculus with functions of several
complex variables.

1.3.18. EXAMPLE . The construction of the holomorphic and the anti-holomor-
phic subspaces appears naturally when one studies calculus of several complex
variables, or, more generally, when one studies the geometry of complex manifolds.

In this example we consider the spaceCn, that will be thought as the real space
IR2n endowed with the canonical complex structure. The real canonical basis of
Cn ' (IR2n, J) will be denoted by:( ∂

∂x1
, . . . ,

∂

∂xn
,
∂

∂y1
, . . . ,

∂

∂yn

)
;

this is a basis ofIR2n adapted toJ , and the corresponding complex basis ofCn is
given by: ( ∂

∂x1
, . . . ,

∂

∂xn
)
.

We now consider another complex space, given by the complexification(IR2n)C '
C2n. We denote byJ the multiplication by the scalari in Cn, while in C2n such
multiplication will be denoted in the usual wayv 7→ i v. Let JC : C2n → C2n be
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the complexification ofJ , which defines the holomorphic and the anti-holomorphic
subspaces ofC2n.

By Proposition 1.3.17, the projectionsπh andπa defined in (1.3.11) map the
canonical complex basis ofCn respectively into a basis of the holomorphic sub-
space and a basis of the anti-holomorphic subspace ofC2n. These bases are usually
denoted by

(
∂
∂zj

)n
j=1

and
(
∂
∂z̄j

)n
j=1

; using (1.3.11) we compute explicitly:

∂

∂zj
=

1
2

(
∂

∂xj
− i

∂

∂yj

)
,

∂

∂z̄j
=

1
2

(
∂

∂xj
+ i

∂

∂yj

)
.

Observe that the vector∂
∂z̄j is conjugate to the vector∂

∂zj .
The notation ∂

∂xj , ∂
∂yj for the canonical basis ofIR2n is justified by the iden-

tification of vectors inIR2n with thepartial derivative operatorson differentiable
functionsf : IR2n → IR. The complexification ofIR2n is therefore identified with
the space of partial derivative operators acting on complex differentiable functions
f : IR2n → C; in this notation, theCauchy–Riemann equations, that characterize
the holomorphic functions, are given by setting equal to0 the derivatives in the
directions of the anti-holomorphic subspace:

(1.3.12)
∂

∂z̄j
f = 0, j = 1, . . . , n.

Observe thatf satisfies (1.3.12) if and only if its differential at each point is a
C-linear operator fromCn ' (IR2n, J) to C.

We now show that the decomposition into holomorphic and anti-holomorphic
subspace determines the complex structure:

1.3.19. PROPOSITION. LetV be a real vector space and consider a direct sum
of the complexificationV C = Z1 ⊕ Z2, whereZ1 andZ2 are mutually conjugate
subspaces ofV C. Then, there exists a unique complex structureJ onV such that
Z1 = V h; moreover, for suchJ , it is alsoZ2 = V a.

PROOF. The uniqueness follows from the fact thatV h is the graph of−J when
we use the isomorphismV C ' V ⊕ V . For the existence, consider the unique
C-linear operator inV C that hasZ1 andZ2 as eigenspaces corresponding to the
eigenvaluesi and−i respectively. Clearly, such operator commutes with the con-
jugation and its square equals−Id. From Lemma 1.3.11 it follows that it is of the
form JC for some complex structureJ : V → V . �

Let nowT be aC-linear endomorphism of(V, J), i.e., anIR-linear endomor-
phism ofV such thatT ◦J = J ◦T ; letTC be its complexification. It is easy to see
that the the holomorphic and the anti-holomorphic subspaces ofV C are invariant
by TC; moreover, we have the following commutative diagrams:

(1.3.13)

V
T−−−−→ V

πh|V

y∼= ∼=

yπh|V

V h −−−−→
TC

V h

V
T−−−−→ V

πa|V
y∼= ∼=

yπa|V

V a −−−−→
TC

V a
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It follows from Proposition 1.3.17 that the vertical arrows in the diagram on the left
areC-linear isomorphisms of(V, J) with V h and the vertical arrows in the diagram
on the right areC-linear isomorphisms of(V,−J) in V a.

Let now (bj)nj=1 be a complex basis of(V, J) and let(bj , J(bj))nj=1 be the
corresponding real basis ofV adapted toJ . The latter is also a complex basis for
V C (see Example 1.3.7). By Proposition 1.3.17, the vectorsuj , ūj defined by:

(1.3.14) uj =
bj − iJ(bj)

2
∈ V h, ūj =

bj + iJ(bj)
2

∈ V a, j = 1, . . . , n

form a complex basis of(V, J). If T is represented by the matrixZ = A + B i,
with A,B real matrices, in the basis(bj)nj=1 of V C (hence it is represented by the
matrix (1.2.6) with respect to the real basis ofV ), then it follows from (1.3.13) that
the matrix representation ofTC with respect to the basis(uj , ūj)nj=1 of V C is given
by:

(1.3.15) TC ∼
(
Z 0
0 Z

)
.

On the other hand, the matrix representation ofTC with respect to the basis
(bj , J(bj))nj=1 is again (1.2.6) (see Example 1.3.12). This shows in particular that
the matrices in (1.2.6) and in (1.3.15) areequivalent(or conjugate, i.e., represent-
ing the same operator in different bases).

We summarize the above observations into the following:

1.3.20. PROPOSITION. LetV be a real vector space andJ a complex structure
in V . If T is aC-linear endomorphism of(V, J), then:

• thetraceof T as an operator onV is twice the real part of the trace ofT
as an operator on(V, J);

• the determinantof T as an operator onV is equal to the square of the
absolute value of the determinant ofT as an operator on(V, J).

More explicitly, ifA,B and realn× n matrices,Z = A+B i andC is the matrix
given in(1.2.6), then we have the following identities:

tr(C) = 2<
(
tr(Z)

)
, det(C) = |det(Z)|2 ,

wheretr(U), det(U) denote respectively the trace and the determinant of the ma-
trix U , and<(λ), |λ| denote respectively the real part and the absolute value of the
complex numberλ. �

1.3.21. REMARK . Suppose thatV is endowed with a positive definite inner
productg and thatJ : V → V is a complex structure which isg-anti-symmetric,
Then, we haveJ#g = g, i.e., J is g-orthogonal. The operatorJC on V C will
then be anti-Hermitian (and unitary) with respect to the Hermitian productgCs

in V C (see Remark 1.3.16). It is easy to see that the holomorphic and the anti-
holomorphic subspaces ofJ areorthogonalwith respect togCs :

gCs(v, w) = 0, v ∈ V h, w ∈ V a.
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Usingg andJ , we can also define a Hermitian productgs in V by setting:

gs(v, w) = g(v, w) + ig(v, Jw), v, w ∈ V.
Actually, this is theuniqueHermitian form in(V, J) that hasg as its real part.

We have the following relations:

gCs
(
πh(v), πh(w)

)
=
gs(v, w)

2
, gCs

(
πa(v), πa(w)

)
=
gs(v, w)

2
, v, w ∈ V ;

they imply, in particular, that if(bj)nj=1 is an orthonormal complex basis of(V, J)
with respect togs, then the vectors

√
2uj ,

√
2ūj , j = 1, . . . , n, (see (1.3.14)) form

an orthonormal real basis ofV C with respect togCs . Also the vectorsbj andJ(bj),
j = 1, . . . , n, form an orthonormal real basis ofV with respect tog, and therefore
they form a complex orthonormal basis ofV C with respect togCs . We conclude
then that ifZ = A+B i (A,B real matrices), then the matrices in formulas (1.2.6)
and (1.3.15) areunitarily equivalent, i.e., they represent the same complex operator
in different orthonormal bases.

1.4. Symplectic Forms

In this section we will study the symplectic vector spaces. We define the notion
of symplectomorphism, which is the equivalence in the category of symplectic
vector spaces, and we show that symplectic vector spaces of the same dimension
are equivalent.

1.4.1. DEFINITION. LetV be a real vector space; asymplectic formonV is an
anti-symmetric nondegenerate bilinear formω : V × V → IR. We say that(V, ω)
is asymplectic vector space.

1.4.2. REMARK . If ω ∈ Ba−sym(V ) is a possibly degenerate anti-symmetric
bilinear form onV , thenω defines an anti-symmetric bilinear formω on the quo-
tientV/Ker(ω); it is easy to see thatω is nondegenerate, hence(V/Ker(ω), ω) is
a symplectic space.

We start by giving a canonical form for the anti-symmetric bilinear forms; the
proof is similar to the proof of Theorem 1.1.14.

1.4.3. THEOREM. LetV be ap-dimensional vector space andω ∈ Ba−sym(V )
an anti-symmetric bilinear form onV . Then, there exists a basis ofV with respect
to which the matrix ofω (as a bilinear form) is given by:

(1.4.1) ω ∼

 0n In 0n×r
−In 0n 0n×r
0r×n 0r×n 0r

 ,

wherer = dim(Ker(ω)), p = 2n + r, and0α×β, 0α and Iα denote respectively
the zeroα× β matrix, the zero square matrixα×α and the identityα×α matrix.

PROOF. In first place, it is clear that, if a basis as in the thesis is found, then
the lastr vectors of this basis will be a basis forKer(ω), from which we getr =
dim(Ker(ω)) andp = 2n+ r.
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For the proof, we need to exhibit a basis(bi)
p
i=1 of V such that:

(1.4.2) ω(bi, bn+i) = −ω(bn+i, bi) = 1, i = 1, . . . , n,

andω(bi, bj) = 0 otherwise. We use induction onp; if p ≤ 1 then necessarily
ω = 0 and the result is trivial.

Let’s assumep > 1 and that the result is true for all vector spaces of dimension
less thanp. If ω = 0 the result is trivial; let’s assume then thatv, w ∈ V are chosen
in such a way thatω(v, w) 6= 0, for instanceω(v, w) = 1. Then, it is easy to see
thatω is nondegenerate when restricted to the two-dimensional plane generated by
v andw; from Proposition 1.1.10 it follows that:

V = (IRv + IRw)⊕ (IRv + IRw)⊥.

We now use the induction hypothesis to the restriction ofω to the(p − 2)-dimen-
sional vector space(IRv+ IRw)⊥, and we obtain a basis(b2, . . . , bn, bn+2, . . . , bp)
of (IRv + IRw)⊥ in which ω takes the canonical form. This means that equality
(1.4.2) holds fori = 2, . . . , n, andω(bi, bj) = 0 otherwise. The desired basis for
V is then obtained by settingb1 = v andbn+1 = w. �

1.4.4. COROLLARY. If (V, ω) is a symplectic space, thenV is even dimen-
sional, and there exists a basis(bi)2ni=1 of V with respect to which the matrix ofω
as a bilinear form is given by:

(1.4.3) ω ∼
(

0 I
−I 0

)
,

where0 andI denote respectively the zero and the identityn× n matrices.

1.4.5. DEFINITION. We say that(bi)2ni=1 is asymplectic basisof (V, ω) if the
matrix ofω as a bilinear form in this basis is given by (1.4.3).

Observe that the matrix of the linear operatorω : V → V ∗ is given by the
transposeof (1.4.3), i.e., it coincides with the matrix given in (1.2.2).

Corollary 1.4.4 tells us that every symplectic space admits a symplectic basis.
We now definesub-objectsandmorphismsin the category of symplectic spaces.

1.4.6. DEFINITION. Let (V, ω) be a symplectic space; We say thatS is asym-
plectic subspaceif S ⊂ V is a subspace and the restrictionω|S×S is nondegenerate.
Hence,(S, ω|S×S) is a symplectic space.

Let (V1, ω1) and(V2, ω2) be symplectic spaces; a linear operatorT : V1 → V2

is asymplectic mapif T#(ω2) = ω1, i.e., if

ω2(T (v), T (w)) = ω1(v, w), ∀ v, w ∈ V1.

We say thatT is a symplectomorphismif T is an isomorphism and a symplectic
map.

A symplectomorphism takes symplectic bases in symplectic bases; conversely,
if T : V1 → V2 is a linear map that takes some symplectic basis ofV1 into some
symplectic basis ofV2, thenT is a symplectomorphism.
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In terms of the linear operatorsω1 ∈ Lin(V1, V
∗
1 ) andω2 ∈ Lin(V2, V

∗
2 ), a

mapT ∈ Lin(V1, V2) is symplectic if and only if:

(1.4.4) T ∗ ◦ ω2 ◦ T = ω1.

1.4.7. REMARK . Observe that the right hand side of equality (1.4.4) is an iso-
morphism, from which it follows thatevery symplectomorphismT is an injective
map. In particular, the imageT (V1) is always a symplectic subspace ofV2.

1.4.8. EXAMPLE . We define a symplectic form inIR2n by setting:

(1.4.5) ω
(
(v1, w1), (v2, w2)

)
= 〈v1, w2〉 − 〈w1, v2〉,

for v1, v2, w1, w2 ∈ IRn, where〈·, ·〉 denotes the canonical inner product ofIRn.
We say that (1.4.5) is thecanonical symplectic form ofIR2n; the canonical basis
of IR2n is a symplectic basis forω, hence the matrix ofω (as a bilinear map) with
respect to the canonical basis ofIR2n is (1.4.3).

The existence of a symplectic basis for a symplectic space (Corollary 1.4.4)
implies that every symplectic space admits a symplectomorphism with(IR2n, ω),
hence the proof of every theorem concerning symplectic spaces can be reduced to
the case of(IR2n, ω).

We can also define a canonical symplectic form inIRn ⊕ IRn∗ by setting:

ω
(
(v1, α1), (v2, α2)

)
= α2(v1)− α1(v2),

wherev1, v2 ∈ IRn andα1, α2 ∈ IRn∗. Again, the canonical basis ofIRn ⊕ IRn∗

is a symplectic basis for the canonical symplectic form ofIRn ⊕ IRn∗.

1.4.9. REMARK . Denoting by(dq1, . . . ,dqn,dp1, . . . ,dpn) the canonical ba-
sis ofIR2n∗ (dual of the canonical basis ofIR2n), the canonical symplectic form of
IR2n is given by:

ω =
n∑
i=1

dqi ∧ dpi.

It follows easily:

ωn = ω ∧ . . . ∧ ω = (−1)
n(n−1)

2 dq1 ∧ . . . ∧ dqn ∧ dp1 ∧ . . . ∧ dpn.

Hence,ωn is avolume formin IR2n; for all symplectomorphismT of (IR2n, ω) we
therefore have:

T#(ωn) = ωn = det(T )ωn,
from which it follows det(T ) = 1. In general, not every linear mapT with
det(T ) = 1 is a symplectomorphism of(IR2n, ω); whenn = 1 the symplectic form
ω is a volume form, henceT is a symplectomorphism if and only ifdet(T ) = 1.

The symplectomorphisms of a symplectic space(V, ω) form a group by com-
position.

1.4.10. DEFINITION. Let (V, ω) be a symplectic space; thesymplectic group
of (V, ω) is the group of all symplectomorphisms of(V, ω), denoted bySp(V, ω).
We denote bySp(2n, IR) the symplectic group ofIR2n endowed with the canonical
symplectic form.
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Using a symplectic basis of(V, ω), a mapT ∈ Lin(V ) is a symplectomor-
phism if and only if the matrixM that representsT in such basis satisfies:

(1.4.6) M∗ωM = ω,

whereω is the matrix given in (1.4.3). Writing

(1.4.7) T ∼
(
A B
C D

)
,

then (1.4.6) is equivalent to the following relations:

(1.4.8) D∗A−B∗C = I, A∗C andB∗D are symmetric,

whereA,B,C,D aren × n matrices,I is then × n identity matrix, and∗ means
transpose (see Exercise 1.10). A matrix of the form (1.4.7) satisfying (1.4.8) will
be called asymplectic matrix.

We define direct sum of symplectic spaces.

1.4.11. DEFINITION. Given symplectic spaces(V1, ω1) and(V2, ω2), we de-
fine a symplectic formω = ω1 ⊕ ω2 onV1 ⊕ V2 by setting:

ω((v1, v2), (w1, w2)) = ω1(v1, w1) + ω2(v2, w2), v1, w1 ∈ V1, v2, w2 ∈ V2.

The space(V1 ⊕ V2, ω1 ⊕ ω2) is called thedirect sum of the symplectic spaces
(V1, ω1), (V2, ω2).

If (V, ω) is a symplectic space, two subspacesS1, S2 ⊂ V are said to beω-
orthogonalif ω(v1, v2) = 0 for all vi ∈ Si, i = 1, 2. If V = S1 ⊕ S2 with S1 and
S2 ω-orthogonal, then it is easy to see that bothS1 andS2 are symplectic subspaces
of (V, ω); in this case we say thatV is the symplectic direct sum of the subspaces
S1 andS2.

Observe that the notion of direct sum for symplectic spaces isnot meant as a
sum in acategorical sense, i.e., it is not true that a symplectic map on a direct sum
V1 ⊕ V2 is determined by its restriction toV1 andV2 (see Exercise 1.15).

1.4.12. EXAMPLE . If Ti : Vi → V ′
i , i = 1, 2, are symplectic maps, then the

mapT = T1 ⊕ T2 : V1 ⊕ V2 → V ′
1 ⊕ V ′

2 defined by:

T (v1, v2) = (T1(v1), T2(v2)), vi ∈ Vi, i = 1, 2,

is also symplectic. If bothT1 andT2 are symplectomorphisms, then alsoT is a
symplectomorphism.

One needs to be careful with the notion of direct sum of symplectic spaces
when working with symplectic bases; more explicitly, the concatenation of a sym-
plectic basis(bi)2ni=1 of V1 and a symplectic basis(b′j)

2m
j=1 of V2 is not a symplectic

basis ofV1 ⊕ V2. In order to obtain a symplectic basis ofV1 ⊕ V2 we need to
rearrange the vectors as follows:

(b1, . . . , bn, b′1, . . . , b
′
m, bn+1, . . . , b2n, b

′
m+1, . . . , b

′
2m).

Similar problems are encountered when dealing with symplectic matrices: the sim-
ple juxtaposition of along the diagonal of an element ofSp(2n, IR) and an element



22 1. SYMPLECTIC SPACES

of Sp(2m, IR) does notproduce an element ofSp(2(n+m), IR); in order to obtain
a symplectic matrix it is necessary to perform a suitable permutation of the rows
and the columns of such juxtaposition.

1.4.1. Isotropic and Lagrangian subspaces.In this subsection we consider
a fixed symplectic space(V, ω), with dim(V ) = 2n.

1.4.13. DEFINITION. A subspaceS ⊂ V is said to beisotropic if ω|S×S = 0.

Observe thatS is isotropic if and only if it is contained in its orthogonalS⊥

with respect toω; from Proposition 1.1.8 we have:

(1.4.9) dim(S) + dim(S⊥) = 2n,

from which it follows that the dimension of an isotropic subspace is at mostn.
Observe that the notion of isotropic subspace is, roughly speaking, opposite to
the notion of symplectic subspace; for, by Proposition 1.1.10,S is a symplectic
subspace iffS ∩ S⊥ = {0}.

We have the following:

1.4.14. LEMMA . Let L ⊂ V be a subspace; the following statements are
equivalent:

• L is maximal isotropic, i.e.,L is isotropic and it is not properly contained
in any other isotropic subspace ofV ;

• L = L⊥;
• L is isotropic anddim(L) = n.

PROOF. If L is maximal isotropic, thenL ⊂ L⊥ and forv ∈ L⊥ the subspace
L + IR v is isotropic and it containsL. It follows thatL = L + IR v, hence
v ∈ L andL = L⊥. If L = L⊥, thenL is isotropic, and from (1.4.9) it follows
thatdim(L) = n. Finally, if L is isotropic anddim(L) = n, thenL is maximal
isotropic, because the dimension of an isotropic subspace is at mostn. �

1.4.15. DEFINITION. A subspaceL ⊂ V is said to beLagrangian subspaceif
it satisfies one (hence all) of the statements in Lemma 1.4.14.

1.4.16. EXAMPLE . The subspaces{0} ⊕ IRn andIRn ⊕ {0} are Lagrangian
subspaces ofIR2n endowed with the canonical symplectic structure. Given a linear
mapT ∈ Lin(IRn), then itsgraph Graph(T ) = {v + T (v) : v ∈ IRn} is a
Lagrangian subspace ofIR2n endowed with the canonical symplectic structure if
and only ifT is symmetric with respect to the canonical inner product ofIRn.

1.4.17. EXAMPLE . If S ⊂ V is an isotropic subspace, then the kernel of the
restriction ofω to S⊥ is the subspace(S⊥)⊥ ∩ S⊥ = S (see Corollary 1.1.9). It
follows thatω defines by passing to the quotient a symplectic formω in S⊥/S
(Remark 1.4.2).

In the following definition we relate symplectic forms and complex structures
onV :
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1.4.18. DEFINITION. A complex structureJ : V → V is said to becompatible
with the symplectic formω if ω(·, J ·) is aninner productin V , i.e., a symmetric,
positive definite bilinear form onV . More explicitly,J is compatible withω if:

−ω(Jv,w) = ω(v, Jw), ∀ v, w ∈ V,

and ifω(Jv, v) > 0 for all v 6= 0.

1.4.19. EXAMPLE . The canonical complex structure ofIR2n (Example 1.2.2)
is compatible with the canonical symplectic structure ofIR2n. The inner product
ω(·, J ·) is simply the canonical inner product ofIR2n. It follows that every sym-
plectic space admits a complex structure compatible with the symplectic form: it
is enough to defineJ by the matrix (1.2.2) with respect to any fixed symplectic ba-
sis. Such basis will then be anorthonormal basiswith respect to the inner product
ω(·, J ·).

Let’s assume thatJ is a given complex structure onV which is compatible
with ω, and let’s denote byg the inner productω(·, J ·); J is a symplectomorphism
of (V, ω) (see Exercise 1.16) and the following identity holds:

g(J ·, ·) = ω.

A compatible complex structureJ can be used to construct a Lagrangian which
is complementary to a given Lagrangian:

1.4.20. LEMMA . If L ⊂ V is a Lagrangian subspace andJ is a complex
structure compatible withω, thenV = L⊕ J(L).

PROOF. It suffices to observe thatL andJ(L) are orthogonal subspaces with
respect to the inner productg. �

1.4.21. COROLLARY. Every Lagrangian subspace admits a complementary
Lagrangian subspace.

PROOF. It follows from Lemma 1.4.20, observing thatJ(L) is Lagrangian,
sinceJ is a symplectomorphism (Exercise 1.16). �

We can define a complex valued sesquilinear formgs (see Definition 1.3.14) in
the complex space(V, J) by setting:

(1.4.10) gs(v, w) = g(v, w)− i ω(v, w).

It is easy to see thatgs is a positive Hermitian product in(V, J).
Recall from Remark 1.3.16 that aC-linear endomorphism isgs-unitary when

gs(T ·, T ·) = gs; in this situation we also say thatT preservesgs. We have the
following:

1.4.22. PROPOSITION. Let T ∈ Lin(V ) be anIR-linear map; the following
statements are equivalent:

• T is C-linear in (V, J) andgs-unitary;
• T is orthogonal with respect tog andT ∈ Sp(V, ω).
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PROOF. If T is C-linear andgs-unitary, thenT preservesgs, hence it preserves
separately its real part, which isg, and its imaginary part, which is−ω. HenceT
is an orthogonal symplectomorphism.

Conversely, ifT is an orthogonal symplectomorphism, then the following iden-
tities hold:

T ∗ ◦ g ◦ T = g, T ∗ ◦ ω ◦ T = ω, ω = g ◦ J,
consideringg andω as linear operators inLin(V, V ∗) (see Example 1.1.3)). It
follows easily thatJ ◦ T = T ◦ J , i.e.,T is C-linear. SinceT preserves both the
real and the imaginary part ofgs, we conclude thatT is gs-unitary. �

1.4.23. EXAMPLE . The canonical complex structureJ of IR2n (see Exam-
ple 1.4.8) is compatible with its canonical symplectic structure (Example 1.2.2),
and the inner productg corresponds to the canonical inner product ofIR2n. If we
identify (IR2n, J) with Cn (Example 1.2.2), the Hermitian productgs coincides
with the canonical Hermitian product ofCn given in (1.3.10).

1.4.24. REMARK . Observe that if(V, J) is a complex space endowed with a
Hermitian productgs, then the real part ofgs is a positive inner productg onV and
the imaginary part ofgs is a symplectic form onV ; moreover, definingω as minus
the imaginary part ofgs, it follows thatJ is compatible withω andg = ω(·, J ·).

1.4.25. REMARK . If V is a real vector space,g is a positive inner product
on V andJ is a complex structure which isg-anti-symmetric (or, equivalently,
g-orthogonal), then we get a symplectic form onV by settingω = g(J ·, ·). The
complex structureJ will then be compatible withω, andg = ω(·, J ·). Again, we
also get a Hermitian productgs in (V, J) defined by (1.4.10).

We have the following relation between Lagrangian subspaces and the Hermit-
ian productgs:

1.4.26. LEMMA . A subspaceL ⊂ V is Lagrangian if and only if it is a real
form which ispreserved bygs, i.e.,V = L⊕ J(L) andgs(L× L) ⊂ IR.

PROOF. It follows from Lemma 1.4.20 and the observation that the imaginary
part ofgs equals−ω. �

As a corollary, we now prove that the group ofgs-unitary isomorphisms of
(V, J) acttransitivelyon the set of Lagrangian subspaces of(V, ω):

1.4.27. COROLLARY. Given any pair of Lagrangian subspacesL1, L2 of V ,
there exists aC-linear isomorphismT of (V, J) which isgs-unitary and such that
T (L1) = L2.

PROOF. Let (bj)nj=1 be an orthonormal basis ofL1 with respect to the inner
productg; sinceL1 is a real form of(V, J), it follows that (bj)nj=1 is a complex
basis of(V, J) (see Example 1.3.7). Moreover, sincegs is real onL1, it follows
that (bj)nj=1 is an orthonormal basis of(V, J) with respect togs. Similarly, we
consider a basis(b′j)

n
j=1 of L2 which is orthonormal with respect tog, and we

obtain that(b′j)
n
j=1 is ags-orthonormal basis of(V, J). It follows that theC-linear
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isomorphismT defined byT (bj) = b′j , for all j = 1, . . . , n, is unitary and satisfies
T (L1) = L2. �

It follows that also the symplectic group acts transitively on the set of La-
grangian subspaces:

1.4.28. COROLLARY. Given any pairL1, L2 of Lagrangian subspaces of the
symplectic space(V, ω), there exists a symplectomorphismT ∈ Sp(V, ω) such that
T (L1) = L2.

PROOF. It follows from Corollary 1.4.27, observing that everygs-unitary map
is a symplectomorphism (Proposition 1.4.22). �

1.4.29. REMARK . For later use, we will mention a mild refinement of the
result of Corollary 1.4.27. Given Lagrangian subspacesL1, L2 ⊂ V and chosen
orientationsO1 andO2 respectively on the spacesL1 andL2, it is possible to find
a C-linear andgs-unitary endomorphismT of (V, J) such thatT (L1) = L2 and
such thatT |L1 : L1 → L2 is positively oriented. To see this, it suffices to choose
in the proof of Corollary 1.4.27 theg-orthonormal bases(bj)nj=1 and(b′j)

n
j=1 of L1

andL2 respectively in such a way that they are positively oriented.

1.4.30. REMARK . Given a Lagrangian subspaceL0 ⊂ V , then it is always
possible to find a basis(bj)2nj=1 of V which is at the same time symplectic, adapted
to J , and such that(bj)nj=1 is a basis ofL0. For, if (bj)nj=1 is a g-orthonormal
basis ofL0, then the basis defined in (1.2.5) satisfies the required properties; more-
over, such basis isg-orthonormal and the complex basis(bj)nj=1 of (V, J) is gs-
orthonormal. We therefore obtain a basis that puts simultaneously all the objects
(V, ω, J, g, gs, L0) in their canonical forms.

In the spirit of Remark 1.4.24 and Remark 1.4.25, one can ask himself whether
given a real spaceV endowed with a symplectic formω and a positive inner product
g, it is possible to construct a complex structureJ and a Hermitian productgs which
are naturally associated tog andω. If one requires the conditionω = g(J ·, ·),
then this is clearly impossible in general, because there exists a unique operator
H ∈ Lin(V ) such thatω = g(H·, ·), and suchH does not in general satisfy
H2 = −Id.

We conclude the subsection with a result in this direction:

1.4.31. PROPOSITION. Let(V, ω) be a symplectic space andg a positive inner
product inV . Then there exists a unique complex structureJ in V which isg-anti-
symmetric (or, equivalently,g-orthogonal) and compatible withω.

PROOF. The uniqueness is the hard part of the thesis, which we now prove.
Suppose thatJ is a giveng-anti-symmetric complex structure inV which is com-
patible withω, and letH ∈ Lin(V ) be the unique operator such thatω = g(H·, ·).
Then,H is ag-anti-symmetric isomorphism ofV .

The compatibility ofJ with ω is equivalent to the condition thatg(HJ ·, ·) be a
symmetric bilinear form onV which isnegative definite. By the usual identification
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of linear and bilinear maps, we see that theg-anti-symmetry property ofH andJ ,
together with theg-symmetry ofHJ are expressed by the following relations:

g ◦ J = −J∗ ◦ g, g ◦H = −H∗ ◦ g, g ◦H ◦ J = J∗ ◦H∗ ◦ g,

from which it follows easily thatH ◦ J = J ◦H.
We now consider the complexificationsJC,HC ∈ Lin(V C) and the unique

sesquilinear extensiongCs of g to V C; clearly,gCs is a positive Hermitian product
in V C, with respect to whichHC andJC are anti-Hermitian operators (see Exam-
ple 1.3.15 and Remark 1.3.16); moreover,HC ◦JC = JC ◦HC and(JC)2 = −Id.

SinceHC is gCs-anti-Hermitian, thenHC can be diagonalized in agCs-ortho-
normal basis ofV C (see Exercise 1.18); its eigenvalues are pure imaginary (non
zero, becauseHC is invertible), and sinceHC commutes with the conjugation, it
follows that eigenspaces ofHC corresponding to two conjugate eigenvalues are
mutually conjugate (see Lemma 1.3.11). We can then write agCs-orthogonal de-
composition:

V C =
r⊕
j=1

Zi λj
⊕

r⊕
j=1

Z−i λj
,

whereλj > 0 for all j, Zi λ the eigenspace ofHC corresponding to the eigenvalue
iλ; also,Z−iλ is the conjugate ofZiλ.

SinceJC commutes withHC, it follows that the eigenspaces ofHC are invari-
ant byJC. The restriction ofJC to eachZiλj

is an anti-Hermitian operator whose
square is−Id, from which it follows that such restriction is diagonalizable, and its
possible eigenvalues arei and−i. The restriction ofgCs(JC ◦HC ·, ·) toZiλj

, that
coincides with the restriction ofiλj gCs(JC ·, ·)) must be Hermitian and negative
definite, from which it follows that the unique eigenvalue of the restriction ofJC

toZiλj
must be equal toi.

We conclude that the restriction ofJC toZiλj
is the operator of multiplication

by i, and the restriction ofJC to Z−iλj
is the operator of multiplication by−i;

such conditions determineJC, which shows the uniqueness ofJ .
For the existence, simply consider the unique complex structureJ onV whose

holomorphic space coincides with
⊕

j Ziλj
(see Proposition 1.3.19). �

1.4.2. Lagrangian decompositions of a symplectic space.In this subsection
we study the properties of Lagrangian decompositions of a symplectic space, that
will be fundamental in the study of the Lagrangian Grassmannian in Section 2.5.
Throughout this subsection we will fix a symplectic space(V, ω), with dim(V ) =
2n. We start with a definition:

1.4.32. DEFINITION. A Lagrangian decompositionof (V, ω) is a pair(L0, L1)
of Lagrangian subspaces ofV with V = L0 ⊕ L1.

1.4.33. EXAMPLE . The pair(IRn ⊕ {0}, {0} ⊕ IRn) is a Lagrangian decom-
position ofIR2n endowed with the canonical symplectic structure. More generally,
if L ⊂ V is a Lagrangian subspace andJ is a complex structure onV compatible
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with ω, then(L, J(L)) is a Lagrangian decomposition of(V, ω) (see Lemma 1.4.20
and the proof of Corollary 1.4.21).

Given a Lagrangian decomposition(L0, L1) of (V, ω), we define a a map:

ρL0,L1 : L1 −→ L∗0

by setting

(1.4.11) ρL0,L1(v) = ω(v, ·)|L0

for all v ∈ L1; it is easy to see thatρL0,L1 is an isomorphism (see Exercise 1.19).

1.4.34. REMARK . The isomorphismρL0,L1 gives us an identification ofL1

with the dual spaceL∗0, but the reader should be careful when using this identifi-
cation for the following reason. The isomorphismρL0,L1 induces an isomorphism
(ρL0,L1)

∗ : L∗∗0 ' L0 → L∗1; however,(ρL0,L1)
∗ doesnot coincide withρL1,L0 ,

but with its opposite:

(1.4.12) (ρL0,L1)
∗ = −ρL1,L0 .

If L ⊂ V is a Lagrangian subspace, we also define an isomorphism:

ρL : V/L −→ L∗,

by settingρL(v + L) = ω(v, ·)|L.
Given a Lagrangian decomposition(L0, L1) of (V, ω), we have the following

commutative diagram of isomorphisms:

(1.4.13) L1
ρL0,L1

""E
EEEEEEE

q

��

L∗0

V/L0

ρL0

<<zzzzzzzz

whereq is the restriction toL1 of the quotient mapV → V/L0.
An application of the isomorphismρL0,L1 is given in the following:

1.4.35. LEMMA . If L0 ⊂ V is a Lagrangian subspace, then every basis(bi)ni=1

of L0 extends to a symplectic basis(bi)2ni=1 of V ; moreover, given any Lagrangian
L1 which is complementary toL0, one can choose the basis(bi)2ni=1 in such a way
that (bi)2ni=n+1 is a basis ofL1.

PROOF. Observe first that the LagrangianL0 admits a complementary La-
grangianL1 (see Corollary 1.4.21); given one such LagrangianL1, we define:

bn+i = −ρ−1
L0,L1

(b∗i ), i = 1, . . . , n,

where(b∗i )
n
i=1 is the basis ofL∗0 which is dual to(bi)ni=1. �

1.4.36. COROLLARY. Given any Lagrangian decompositions(L0, L1) and(L′0, L
′
1)

of V then every isomorphism fromL0 to L′0 extends to a symplectomorphism
T : V → V such thatT (L1) = L′1.
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PROOF. Let (bi)ni=1 be a basis ofL0 and let(b′i)
n
i=1 be the basis ofL′0 which

corresponds to(bi)ni=1 by the given isomorphism. Using Lemma 1.4.35 we can
find symplectic bases(bi)2ni=1 and(b′i)

2n
i=1 of V in such a way that(bi)2ni=n+1 and

(b′i)
2n
i=n+1 are bases ofL1 andL′1 respectively; to conclude the proof one simply

choosesT such thatT (bi) = b′i, i = 1, . . . , 2n. �

1.4.37. COROLLARY. If L0 ⊂ V is a Lagrangian subspace, then every iso-
morphism ofL0 extends to a symplectomorphism ofV .

PROOF. Choose a LagrangianL1 complementary toL0 (see Corollary 1.4.21)
and apply Corollary 1.4.36. �

The technique of extending bases of Lagrangians to symplectic bases of the
symplectic space may be used to give an alternative proof of Corollary 1.4.28.
Roughly speaking, Corollary 1.4.28 tells us that Lagrangian subspaces are “indis-
tinguishable” from the viewpoint of the symplectic structure; our next Proposition
tells us that the only invariant of apair (L0, L1) of Lagrangian subspaces is the
dimension of their intersectionL0 ∩ L1:

1.4.38. PROPOSITION. Given three Lagrangian subspacesL0, L, L
′ ⊂ V with

dim(L0 ∩L) = dim(L0 ∩L′), there exists a symplectomorphismT of (V, ω) such
thatT (L0) = L0 andT (L) = L′.

PROOF. By Corollary 1.4.37, there exists a symplectomorphism of(V, ω) that
takesL0 into itself andL0 ∩L ontoL0 ∩L′; we can therefore assume without loss
of generality thatL0 ∩ L = L0 ∩ L′.

SetS = L0 ∩ L = L0 ∩ L′; clearlyS is isotropic andL0, L, L
′ ⊂ S⊥. We

have a symplectic formω in S⊥/S obtained fromω by passing to the quotient (see
Example 1.4.17).

Denote byq : S⊥ → S⊥/S the quotient map; it is easy to see thatq(L0),
q(L) andq(L′) are Lagrangian subspaces of(S⊥/S, ω); moreover,

(
q(L0), q(L)

)
and

(
q(L0), q(L′)

)
are both Lagrangian decompositions ofS⊥/S and hence there

exists a symplectomorphismT of (S⊥/S, ω) such thatT
(
q(L0)

)
= q(L0) and

T
(
q(L)

)
= q(L′) (see Corollary 1.4.28). The required symplectomorphismT ∈

Sp(V, ω) is obtained from the following Lemma. �

1.4.39. LEMMA . Let L0 ⊂ V be a Lagrangian subspace and letS ⊂ L0

be any subspace. Consider the quotient symplectic formω onS⊥/S; then, given
any symplectomorphismT of (S⊥/S, ω) with T (q(L0)) = q(L0), there exists a
symplectomorphismT of (V, ω) such thatT (S) = S (hence alsoT (S⊥) = S⊥),
T (L0) = L0, and such that the following diagram commutes

S⊥
T |

S⊥ //

q

��

S⊥

q

��
S⊥/S

T

// S⊥/S

whereq : S⊥ → S⊥/S denotes the quotient map.
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PROOF. WriteL0 = S ⊕ R; henceL∗0 = So ⊕ Ro, whereSo andRo are the
annihilators ofS andR respectively. LetL1 be any complementary Lagrangian to
L0 in V (Corollary 1.4.21). We have:

L1 = ρ−1
L0,L1

(So)⊕ ρ−1
L0,L1

(Ro).

We obtain a direct sum decompositionV = V1 ⊕ V2 into ω-orthogonal subspaces
given by:

V1 = S ⊕ ρ−1
L0,L1

(Ro), V2 = R⊕ ρ−1
L0,L1

(So),
from which it follows thatV is direct sum of the symplectic spacesV1 andV2.

Observe thatS⊥ = V2 ⊕ S, hence the quotient mapq restricts to a symplec-
tomorphism ofV2 into S⊥/S; therefore, we have a unique symplectomorphismT ′

of V2 such that the diagram:

V2
T ′ //

q|V2
��

V2

q|V2
��

S⊥/S
T

// S⊥/S

commutes. SinceT preservesq(L0) it follows thatT ′ preservesR; we then define
T by settingT |V1 = Id andT |V2 = T ′ (see Example 1.4.12). �

1.4.40. REMARK . We claim that one can actually choose the symplectomor-
phismT in the thesis of Proposition 1.4.38 in such a way thatT restricts to aposi-
tively orientedisomorphism ofL0; namely, ifdim(L0 ∩ L) = dim(L0 ∩ L′) = 0
then this claim follows directly from Corollary 1.4.36. For the general case, we
observe that in the last part of the proof of Lemma 1.4.39 one can defineT |V1 to
be any symplectomorphism ofV1 which preservesS (while T |V2 = T ′ is kept un-
changed); sinceS is Lagrangian inV1, using Corollary 1.4.37, we get thatT |S can
be choosen to be any isomorphismA of S givena priori (andT |R does not depend
onA). Sincedim(S) ≥ 1, this freedom in the choice ofA can be used toadjust
the orientation ofT |L0 .

Exercises for Chapter 1

EXERCISE 1.1. Show that the isomorphism between the spacesLin(V,W ∗)
andB(V,W ) given in (1.1.1) is natural in the sense that it gives anatural iso-
morphism of the functorsLin(·, ·) andB(·, ·) from the category of pairs of vector
spaces to the category of vector spaces.

EXERCISE1.2. Prove thatB(V ) = Bsym(V )⊕ Ba−sym(V ).

EXERCISE1.3. Prove Lemma 1.2.3.

EXERCISE1.4. Prove Proposition 1.2.6.

EXERCISE1.5. Prove Proposition 1.3.3.

EXERCISE1.6. Prove Corollary 1.3.4.
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EXERCISE1.7. Prove Lemma 1.3.9.

EXERCISE 1.8. Generalize the results of Section 1.3, in particular Proposi-
tion 1.3.3, Lemma 1.3.10 and Lemma 1.3.11, to the case of anti-linear, multi-linear
and sesquilinear operators.

EXERCISE1.9. Prove that ifV is a non trivial complex vector space, then there
exists noC-bilinear form onV which is positive definite.

EXERCISE 1.10. Prove thatT ∈ Lin(V ) is a symplectomorphism of(V, ω)
if and only if its matrix representation with respect to a symplectic basis of(V, ω)
satisfies the relations (1.4.8).

EXERCISE1.11. Consider the symplectic spaceIRn ⊕ IRn∗ endowed with its
canonical symplectic structure. Prove that to each Lagrangian subspaceL there
corresponds a unique pair(P, S), whereP ⊂ IRn is a subspace andS : P × P →
IR is a symmetric bilinear form onP , such that:

L =
{
(v, α) ∈ IRn ⊕ IRn∗ : v ∈ P, α|P + S(v, ·) = 0

}
.

More generally, if(L0, L1) is a Lagrangian decomposition of the symplectic space
(V, ω), there exists a bijection between the Lagrangian subspacesL ⊂ V and the
pairs(P, S), whereP ⊂ L1 is any subspace andS ∈ Bsym(P ) is a symmetric
bilinear form onP , so that (recall formula (1.4.11)):

(1.4.14) L =
{
v + w : v ∈ P, w ∈ L0, ρL1,L0(w)|P + S(v, ·) = 0

}
.

EXERCISE 1.12. LetT =
(
A B
C D

)
be an element inSp(2n, IR) (recall for-

mula (1.4.8)) and letL0 = {0} ⊕ IRn∗. Prove that the following two statements
are equivalent:

(a) T (L0) is transverse toL0;
(b) B is invertible.

Prove also that, in this case, then×n matricesDB−1,B−1A andC −DB−1A−
B−1 are symmetric.

EXERCISE1.13. Prove that the transpose of a symplectic matrix inSp(2n, IR)
is again symplectic.

EXERCISE1.14. Every invertible matrixM can be written inpolar form:

M = PO, P = (MM∗)
1
2 , O = P−1M,

whereP is symmetric and positive definite andO is orthogonal. Such decomposi-
tion is unique and it depends continuously onM .

Prove thatM ∈ Sp(2n, IR) if and only if bothP andO are inSp(2n, IR).

EXERCISE1.15. Prove that the direct sum of symplectic spaces is not categor-
ical, i.e., it is not true in general that if a linear mapT : V1 ⊕ V2 →W is such that
its restrictionsT |V1 andT |V2 are symplectic, thenT is symplectic.

EXERCISE1.16. Prove that a complex structure on a symplectic space which
is compatible with the symplectic form is a symplectomorphism.
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EXERCISE 1.17. LetV be a real vector space andg a positive inner product.
Prove that a complex structureJ in V is g-anti-symmetric iff it isg-orthogonal.

EXERCISE 1.18. LetV be a complex space,gs a positive Hermitian product
in V andT ∈ Lin(V) a gs-normal operator. Show thatT is diagonalizable in a
gs-orthonormal basis ofV.

EXERCISE1.19. Given a Lagrangian decomposition(L0, L1) of a symplectic
space(V, ω), prove that the mapρL0,L1 : L1 → L∗0 defined in (1.4.11) page 27 is
an isomorphism.

EXERCISE 1.20. Let(V, ω) be a symplectic space,S ⊂ V an isotropic sub-
space, and consider the quotient symplectic space(S⊥/S, ω) defined in Exam-
ple 1.4.17. Prove that ifL ⊂ V is a Lagrangian subspace of(V, ω), thenπ(L) is
Lagrangian in(S⊥/S, ω), whereπ : S⊥ → S⊥/S is the projection.



CHAPTER 2

The Geometry of Grassmannians

2.1. Differentiable Manifolds and Lie Groups

In this section we give the basic definitions and we fix some notations concern-
ing calculus on manifolds. In this text, the term “manifold” will always mean a real,
finite dimensional differentiable manifold whose topology satisfies the Hausdorff
property and the second countability axiom, i.e., it admits a countable basis of
open sets. The term “differentiable” will always mean “of classC∞”; we will de-
scribe below the terminology used in the construction of a differentiable manifold
structure.

LetM be a set; achart in M is a bijection:

φ : U → Ũ ,

whereU ⊂M is any subset and̃U is an open set in some Euclidean spaceIRn; in
some situation, with a slight abuse of terminology, we will allow thatŨ be an open
subset of some arbitrary real finite dimensional vector space.

We say that two chartsφ : U → Ũ andψ : V → Ṽ in M arecompatibleif
U ∩ V = ∅ or if φ(U ∩ V ) andψ(U ∩ V ) are both open sets and thetransition
function:

ψ ◦ φ−1 : φ(U ∩ V ) −→ ψ(U ∩ V )

is a differentiable diffeomorphism. Adifferentiable atlasA in M is a set of charts
in M that are pairwise compatible and whose domains form a covering ofM . A
chart is said to becompatible with a differentiable atlasif it is compatible with all
the charts of the atlas; it is easy to see that two charts that are compatible with an
atlas are compatible with each other. Hence, every differentiable atlasA is con-
tained in aunique maximal differentiable atlaswhich is obtained as the collection
of all the charts inM that are compatible withA.

A differentiable atlasA induces onM a unique topologyτ such that each chart
of A is ahomeomorphismdefined in an open subset of(M, τ); such topologyτ is
defined as the set of partsA ⊂ M such thatφ(A ∩ U) is an open subset of̃U for
every chartφ : U → Ũ in A.

A (differentiable) manifoldis then defined as a pair(M,A), whereM is a set
andA is a maximal differentiable atlas inM whose corresponding topologyτ is
Hausdorff and second countable; achart, or acoordinate system, in a differentiable
manifold(M,A) is a chart that belongs toA.

32
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2.1.1. REMARK . Observe that some authors replace the assumption of second
countability for a differentiable manifold with the assumption ofparacompactness.
In Exercise 2.1 the reader is asked to show that such assumption is “weaker”, but
indeed “not so much weaker”.

Let M be a manifold andN ⊂ M be a subset; we say that a chartφ : U →
Ũ ⊂ IRn is asubmanifold chartfor N if φ(U ∩N) is equal to the intersection of
Ũ with a vector subspaceS of IRn. We then say that:

φ|U∩N : U ∩N −→ Ũ ∩ S

is thechart inN induced byφ. The subsetN is said to be anembedded subman-
ifold of M if for all x ∈ N there exists a submanifold chart forN whose domain
containsx. The inclusioni : N →M will then be anembeddingofN inM , i.e., a
differentiable immersion which is a homeomorphism onto its image endowed with
the relative topology.

An immersed submanifoldN in M is a manifoldN such thatN is a subset of
M and such that the inclusioni : N → M is a differentiable immersion. Observe
that a subsetN ⊂ M may admitseveraldifferentiable structures that make it into
an immersed submanifold; however, if we fix a topology inN , then there exists
at most one differentiable structure inN compatible with such topology and for
whichN is an immersed submanifold ofM (see Exercise 2.3).

In general, ifN andM are any two manifolds, and iff : N →M is aninjec-
tive differentiable immersion, then there exists a unique differentiable structure on
f(N) that makesf into a differentiable diffeomorphism ontof(N); hence,f(N)
is an immersed submanifold ofM . If f is an embedding, then it follows from the
local form of immersions thatf(N) is an embedded submanifold ofM .

From now on, unless otherwise stated, by “submanifold” we will always mean
“embedded submanifold”.

2.1.2. REMARK . If P andM are two manifolds,N ⊂ M is an embedded
submanifold andf : P → M is a differentiable map such thatf(P ) ⊂ N , then
there exists a unique mapf0 : P → N such that the following diagram commutes:

(2.1.1) M

P

f
>>}}}}}}}}

f0
// N

i

OO

wherei denotes the inclusion. We say thatf0 is obtained fromf by change of
counterdomain, and we will often use the same symbolf for f0; the mapf0 is
differentiable. The same resultsdoes nothold in general ifN is only an immersed
submanifold; it holds under the assumption of continuity forf0 (see Exercise 2.2).

Immersed submanifoldsN ⊂M for which the differentiability off in (2.1.1)
implies the differentiability off0 are known asalmost embedded submanifoldsof
M ; examples of such submanifolds areintegral submanifolds of involutive distrib-
utions, or immersed submanifolds that aresubgroups of Lie groups.
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2.1.3. REMARK . If f : M → N is a differentiable submersion, then it follows
from the local form of the submersions that for ally ∈ Im(f) and for allx ∈
f−1(y) ⊂M there exists alocal differentiable sectionof f that takesy into x, i.e.,
there exists a differentiable maps : U → M defined in an open neighborhoodU
of y in N such thats(y) = x and such thatf(s(z)) = z for all z ∈ U .

The existence of local differentiable sections allows to prove that differentiable
submersions that are surjective have thequotient property; this means that iff :
M → N is a surjective submersion andg : M → P is a differentiable map, and if
there exists a map̄g : N → P such that the following diagram commutes:

M
g

  A
AA

AA
AA

A

f

��
N

ḡ
// P

then alsōg is differentiable.
In particular, ifM is a manifold andf : M → N is a surjective map, then there

exists at most one differentiable structure onN that makesf into a differentiable
submersion; such structure is called aquotient differentiable structure induced by
f .

2.1.1. Classical Lie Groups and Lie Algebras.In this subsection we give a
short description and we introduce the notations for the classical Lie groups and
Lie algebras that will be used in the text.

A Lie groupis a groupG endowed with a differentiable structure such that the
mapG×G 3 (x, y) 7→ xy−1 ∈ G is differentiable; the unit ofG will be denoted
by 1 ∈ G.

A Lie group homomorphismwill always means a group homomorphism which
is also continuous; then, it will be automatically differentiable (see for instance
[47, Theorem 2.11.2] and [48, Theorem 3.39]).

For g ∈ G, we denote bylg andrg respectively the diffeomorphisms ofG
given by theleft-translationlg(x) = gx and by theright-translationrg(x) = xg;
by Ig = lg ◦ r−1

g we denote theinner automorphismofG associated tog. If g ∈ G
andv ∈ TxG is a tangent vector toG, we write:

gv = dlg(x) · v, vg = drg(x) · v;

for all X ∈ T1G we define vector fieldsXL andXR in G by setting:

(2.1.2) XL(g) = gX, XR(g) = Xg,

for all g ∈ G. We say thatXL (respectively,XR) is theleft-invariant (respectively,
theright-invariant ) vector field inX associated toX ∈ T1G.

The Lie algebracorresponding toG, denoted byg, is defined as the tangent
space at1 of the manifoldG: g = T1G; the Lie bracket, or commutator, in g
is obtained as the restriction of the Lie brackets of vector fields inG where we
identify eachX ∈ g with the left-invariant vector fieldXL.
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We denote byexp : g → G theexponential mapof G, defined in such a way
that, for eachX ∈ g, the map:

(2.1.3) IR 3 t 7−→ exp(tX) ∈ G

is a Lie group homomorphism whose derivative att = 0 is equal toX. Then, the
curve (2.1.3) is an integral curve of the vector fieldsXL andXR, that is:

(2.1.4)
d
dt

exp(tX) = XL(exp(tX)) = XR(exp(tX)),

for all t ∈ IR (see [48, Theorem 3.31]).
A Lie subgroupof G is an immersed submanifold which is also a subgroup

of G; then,H is also a Lie group with the group and the differentiable structure
inherited from those ofG (see Remark 2.1.2). A Lie subgroupH ⊂ G will be an
embedded submanifold if and only ifH is closed inG (see [47, Theorem 2.5.4]
and [48, Theorem 3.21]); moreover, every closed subgroup of a Lie group is a Lie
subgroup ofG (see [47, Theorem 2.12.6] and [48, Theorem 3.42]).

If H ⊂ G is a Lie subgroup, then the differential of the inclusion map allows
to identify the Lie algebrah of H with a Lie subalgebra ofg (see [48, Proposi-
tion 3.33]); explicitly, we have:

(2.1.5) h =
{
X ∈ g : exp(tX) ∈ H, ∀t ∈ IR

}
.

Observe that everydiscretesubgroupH ⊂ G is an embedded (and closed) Lie
subgroup ofG with dim(H) = 0; in this caseh = {0}.

If Go denotes the connected component ofG containing the identity (which
is also an arc-connected component), then it is easy to see thatGo is a normal
subgroup ofG which is closed and open. Actually, every open subgroup ofG
is also closed, as its complementary is union of cosets of this subgroup, that are
open. It follows that every open subgroup ofG is the union of some connected
components ofG, and the Lie algebra of an open subgroup ofG is identified with
the Lie algebra ofG.

2.1.4. REMARK . If G is a Lie group andh is a subspace ofg, then there exists a
uniqueleft-invariant distributionDL and a uniqueright-invariant distributionDR
in G such thatDL(1) = DR(1) = h. We have thatDL, orDR, is involutiveif and
only if h is a Lie subalgebra ofg. In this case, the maximal connected integral sub-
manifold ofDL, or ofDR, passing through1 ∈ G is a (connected) Lie subgroup
of G whose Lie algebra ish; moreover, ifH ⊂ G is any Lie subgroup whose Lie
algebra ish, thenHo is the maximal connected integral submanifold ofDL, or of
DR passing through1 ∈ G. The other maximal connected integral submanifolds
of DL (respectively, ofDR) are the left cosetsgH (respectively, the right cosets
Hg) of H. A proof of these facts can be found in [47, Theorem 2.5.2] and [48,
Corollary (b), Theorem 3.19]; for the basic notions of involutive distributions, in-
tegral submanifolds and theFrobenius Theoremthe reader may use, for instance,
[47, Section 1.3] or [48, pages 41–49].
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From the above observations we obtain that a curvet 7→ γ(t) ∈ G of classC1

has image contained in some left coset ofH if and only if

γ(t)−1γ′(t) ∈ h,

for all t; similarly, it has image in some right coset ofH if and only if:

γ′(t)γ(t)−1 ∈ h,

for all t.

We will now present a short list of the classical Lie groups that will be encoun-
tered in this text, and we will describe their Lie algebras. All these groups and
algebras are formed by real or complex matrices, or by linear operators on real or
complex vector spaces. The group multiplication will always be the multiplication
of matrices, or the operator composition, and the Lie bracket will always be given
by: [

X,Y
]

= XY − Y X;
finally, the exponential map will always be:

exp(X) =
∞∑
n=0

Xn

n!
.

Typically, we will use capital letters to denote Lie groups and the corresponding
small letters to denote their Lie algebras; all the vector spaces below will be meant
to be finite dimensional.

• The general linear group.Let V be a real or a complex vector space; we
denote byGL(V ) the group of all linear automorphisms ofV ; its Lie algebra
gl(V ) coincides with the space of all linear endomorphismsLin(V ) of V . We
call GL(V ) thegeneral linear group ofV .
We writeGL(IRn) = GL(n, IR), gl(IRn) = gl(n, IR), GL(Cn) = GL(n,C)

andgl(Cn) = gl(n,C); obviously, we can identifyGL(n, IR) (respectively,
GL(n,C)) with the group of invertible real (respectively, complex)n×n ma-
trices, andgl(n, IR) (resp.,gl(n,C)) with the algebra of all real (resp., com-
plex)n× n matrices.

Observe that ifV is a real space andJ is a complex structure onV , so
that(V, J) is identified with a complex space, thenGL(V, J) (resp.,gl(V, J))
can be seen as the subgroup (resp., the subalgebra) ofGL(V ) (resp., ofgl(V ))
consisting of those operators that commute withJ (see Lemma 1.2.3).

In this way we obtain an inclusion ofGL(n,C) into GL(2n, IR) and of
gl(n,C) into gl(2n, IR) (see Example 1.2.2 and Remark 1.2.9).

• The special linear group.
If V is a real or complex vector space, we denote bySL(V ) the special

linear group ofV , given by the closed subgroup ofGL(V ) consisting of those
endomorphisms with determinant equal to1. Its Lie algebrasl(V ) is given
by the set of endomorphisms ofV with null trace. We also writeSL(IRn) =
SL(n, IR), SL(Cn) = SL(n,C), sl(IRn) = sl(n, IR) andsl(Cn) = sl(n,C).
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We identifySL(n, IR) (resp.,SL(n,C)) with the group of real (resp., complex)
n×nmatrices with determinant equal to1, andsl(n, IR) (resp.,sl(n,C)) with
the algebra of real (resp., complex)n× n matrices with null trace.

As in the case of the general linear group, we have inclusions:SL(n,C) ⊂
SL(2n, IR) andsl(n,C) ⊂ sl(2n, IR).

• The orthogonal and the special orthogonal groups.
If V is a real vector space endowed with a positive inner productg, we de-

note byO(V, g) theorthogonal group of(V, g), which is the closed subgroup
of GL(V ) consisting of theg-orthogonal operators. Thespecial orthogonal
group of(V, g) is defined by:

SO(V, g) = O(V, g) ∩ SL(V ).

The Lie algebras ofO(V, g) and of SO(V, g) coincide, and they are both
denoted byso(V, g); this is the subalgebra ofgl(V ) consisting ofg-anti-
symmetric operators.
If V = IRn andg is the canonical inner product, then we writeO(IRn, g) =

O(n), SO(IRn, g) = SO(n) andso(IRn, g) = so(n); O(n) is identified with
the group ofn×n orthogonal matrices(a matrix is orthogonal if its transpose
coincides with its inverse),SO(n) is the subgroup ofO(n) consisting of those
matrices with determinant equal to1, andso(n) is the Lie algebra of realn×n
anti-symmetric matrices.

• The unitary and the special unitary groups.Let V be a complex vector space
endowed with a positive Hermitian productgs. Theunitary groupof (V, gs),
denoted byU(V, gs), is the closed subgroup ofGL(V) consisting of thegs-
unitary operators onV; thespecial unitary groupof (V, gs) is defined by:

SU(V, gs) = U(V, gs) ∩ SL(V).

The Lie algebrau(V, gs) of U(V, gs) is the subalgebra ofgl(V) consisting of
thegs-anti-Hermitian operators, and the Lie algebrasu(V, gs) of SU(V, gs) is
the subalgebra ofu(V, gs) consisting of operators with null trace.

If V is a real space andJ is a complex structure inV in such a way
that (V, J) is identified with a complex vector spaceV, then given a Hermit-
ian productgs in (V, J) we also writeU(V, gs) = U(V, J, gs), SU(V, gs) =
SU(V, J, gs), u(V, gs) = u(V, J, gs) andsu(V, gs) = su(V, J, gs).

If V = Cn and gs is the canonical Hermitian product inCn, then we
write U(Cn, gs) = U(n), SU(Cn, gs) = SU(n), u(Cn, gs) = u(n) and
su(Cn, gs) = su(n); thenU(n) is the group of complexn × n unitary ma-
trices (a matrix is unitary if its conjugate transpose is equal to its inverse),
SU(n) is the subgroup ofU(n) consisting of matrices with determinant equal
to 1, u(n) is the Lie algebra of all complexn × n anti-Hermitian matrices
(a matrix is anti-Hermitian if its conjugate transpose equals its opposite), and
su(n) is the subalgebra ofu(n) consisting of matrices with null trace.

• The symplectic group.
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Let (V, ω) be a symplectic space; in Definition 1.4.10 we have introduced
the symplectic groupSp(V, ω). We have thatSp(V, ω) is a closed subgroup of
GL(V ); its Lie algebra consists of those linear endomorphismsX of V such
thatω(X·, ·) is a symmetric bilinear form, that is:

(2.1.6) ω(X(v), w) = ω(X(w), v), v, w ∈ V.

In terms of the linear operatorω : V → V ∗, formula (2.1.6) is equivalent to
the identity:

(2.1.7) ω ◦X = −X∗ ◦ ω.

If ω is the canonical symplectic form ofIR2n, then we writeSp(IR2n, ω) =
Sp(2n, IR) andsp(IR2n, ω) = sp(2n, IR). The matrix representations of ele-
ments ofSp(V, ω) with respect to a symplectic basis are described in formulas
(1.4.7) and (1.4.8). Using (2.1.7) it is easy to see that the matrix representation
of elements ofsp(V, ω) in a symplectic basis is of the form:(

A B
C −A∗

)
, B, C symmetric,

whereA∗ denotes the transpose ofA.

2.1.2. Actions of Lie Groups and Homogeneous Manifolds.In this subsec-
tion we state some results concerning actions of Lie groups on manifolds and we
study thehomogeneous manifolds, that are manifolds obtained as quotients of Lie
groups.

If G is a group andM is a set, a(left) actionof G onM is a map:

(2.1.8) G×M 3 (g,m) 7−→ g ·m ∈M

such thatg1 · (g2 ·m) = (g1g2) ·m and1 ·m = m for all g1, g2 ∈ G and for all
m ∈M , where1 is the unit ofG. Given an action ofG onM , we get a map

(2.1.9) βm : G −→M

given byβm(g) = g ·m, and for allg ∈ G we get a bijection:

γg : M →M

of M given byγg(m) = g ·m; the mapg 7→ γg is a group homomorphism fromG
to the group of bijections ofM .

For allm ∈M , we define theorbit of m relative to the action ofG by:

G(m) =
{
g ·m : g ∈ G

}
;

the orbits of the action ofG form a partition ofM ; we also define theisotropy
groupof the elementm ∈M by:

Gm =
{
g ∈ G : g ·m = m

}
.

It is easy to see thatGm is a subgroup ofG.
We say that the action ofG onM is transitiveif G(m) = M for some, hence

for all,m ∈M ; we say that the action isfree, or without fixed points, if Gm = {1}
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for all m ∈ M . The action iseffectiveif the homomorphismg 7→ γg is injective,
i.e., if

⋂
m∈M Gm = {1}.

If H is a subgroup ofG, we will denote byG/H the set ofleft cosetsof H in
G:

G/H =
{
gH : g ∈ G

}
,

wheregH = {gh : h ∈ H} is the left coset ofg ∈ G. We have a natural action of
G onG/H given by:

(2.1.10) G×G/H 3 (g1, g2H) 7−→ (g1g2)H ∈ G/H;

this action is calledaction by left translationof G in the left cosets ofH. The
action (2.1.10) is always transitive.

If G acts onM andGm is the isotropy group of the elementm ∈M , then the
mapβm of (2.1.9) passes to the quotient and defines a bijection:

(2.1.11) β̄m : G/Gm −→ G(m)

given by β̄m(gGm) = g · m. We therefore have the following commutative dia-
gram:

G

q

��

βm

##F
FFFFFFFF

G/Gm
∼=

β̄m

// M

whereq : G→ G/Gm denotes the quotient map.

2.1.5. DEFINITION. Given actions of the groupG on setsM andN , we say
that a mapφ : M → N isG-equivariantif the following identity holds:

φ(g ·m) = g · φ(m),

for all g ∈ G and allm ∈ M . If φ is an equivariant bijection, we say thatφ is an
equivariant isomorphism; in this caseφ−1 is automatically equivariant.

The bijection (2.1.11) is an equivariant isomorphism when we consider the
action ofG onG/Gm by left translation and the action ofG onG(m) obtained by
the restriction of the action ofG onM .

2.1.6. REMARK . It is possible to define also aright actionof a groupG on a
setM as a map:

(2.1.12) M ×G 3 (m, g) 7−→ m · g ∈M

that satisfies(m · g1) · g2 = m · (g1g2) andm · 1 = m for all g1, g2 ∈ G and all
m ∈ M . A theory totally analogous to the theory of left actions can be developed
for right actions; as a matter of facts, every right action (2.1.12) defines a left action
by (g,m) 7→ m · g−1. Observe that in the theory of right actions, in order to define
properly the bijection̄βm in formula (2.1.11), the symbolG/H has to be meant as
the set ofright cosetsof H.
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Let’s assume now thatG is a Lie group and thatM is a manifold; in this context
we will always assume that the map (2.1.8) is differentiable, and we will say that
G acts differentiably onM . If H is a closed subgroup ofG, then there exists a
unique differentiable structure in the setG/H such that the quotient map:

q : G −→ G/H

is a differentiable submersion (see Remark 2.1.3). The kernel of the differential
dq(1) is precisely the Lie algebrah of H, so that the tangent space toG/H at the
point 1H may be identified with the quotient spaceg/h. Observe that, sinceq is
open and surjective, it follows thatG/H has thequotient topologyinduced byq
from the topology ofG.

By continuity, for allm ∈ M , the isotropy groupGm is a closed subgroup of
G, hence we get a differentiable structure onG/Gm; it can be shown that the map
gGm 7→ g ·m is a differentiable immersion, from which we obtain the following:

2.1.7. PROPOSITION. If G is a Lie group that acts differentiably on the mani-
foldM , then for allm ∈ M the orbitG(m) has a unique differentiable structure
that makes(2.1.11)into a differentiable diffeomorphism; with such structureG(m)
is an immersed submanifold ofM , and the tangent spaceTmG(m) coincides with
the image of the map:

dβm(1) : g −→ TmM,

whereβm is the map defined in(2.1.9). �

2.1.8. REMARK . If we choose a different pointm′ ∈ G(m), so thatG(m′) =
G(m), then it is easy to see that the differentiable structure induced onG(m) by
β̄m′ coincides with that induced bȳβm.

We also have the following:

2.1.9. COROLLARY. If G acts transitively onM , then for allm ∈M the map
(2.1.11) is a differentiable diffeomorphism ofG/Gm ontoM ; in particular, the
mapβm of (2.1.9)is a surjective submersion. �

In the case of transitive actions, when we identifyG/Gm with M by the dif-
feomorphism (2.1.11), we will say thatm is the base pointfor such identification;
we then say thatM (orG/Gm) is ahomogeneous manifold.

2.1.10. COROLLARY. LetM,N be manifolds and letG be a Lie group that
acts differentiably on bothM andN . If the action ofG onM is transitive, then
every equivariant mapφ : M → N is differentiable.

PROOF. Choosem ∈M ; the equivariance property ofφ gives us the following
commutative diagram:

G

βm

��

βφ(m)

  B
BB

BB
BB

B

M
φ
// N

and the conclusion follows from Corollary 2.1.9 and Remark 2.1.3. �
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In some situations we will need to know if a given orbit of the action of a Lie
group is an embedded submanifold. Let us give the following definition:

2.1.11. DEFINITION. LetX be a topological space; a subsetS ⊂ X is said to
be locally closedif S is given by the intersection of an open and a closed subset of
X. Equivalently,S is locally closed when it is open in the relative topology of its
closureS.

Exercise 2.4 is dedicated to the notion of locally closed subsets.
We have the following:

2.1.12. THEOREM. LetG be a Lie group acting differentiably on the manifold
M . Givenm ∈ M , the orbitG(m) is an embedded submanifold ofM if and only
if G(m) is locally closed inM .

PROOF. See [47, Theorem 2.9.7]. �

We conclude the subsection with a result that relates the notions offibration
and homogeneous manifold.

2.1.13. DEFINITION. Given manifoldsF , E andB and a differentiable map
p : E → B, we say thatp is adifferentiable fibration with typical fiberF if for all
b ∈ B there exists a diffeomorphism:

α : p−1(U) −→ U × F

such thatπ1 ◦ α = p|p−1(U), whereU ⊂ B is an open neighborhood ofb in B and
π1 : U × F → U is the projection onto the first factor. In this case, we say thatα
is a local trivializationof p aroundb.

2.1.14. THEOREM. Let G be a Lie group andH,K closed subgroups ofG
withK ⊂ H; then the map:

p : G/K −→ G/H

defined byp(gK) = gH is a differentiable fibration with typical fiberH/K.

PROOF. It follows from Remark 2.1.3 thatp is differentiable. GivengH ∈
G/H, let s : U → G be a local section of the submersionq : G → G/H defined
in an open neighborhoodU ⊂ G/H of gH; it follows thatq ◦ s is the inclusion of
U in G/H. We define a local trivialization ofp:

α : p−1(U) −→ U ×H/K

by settingα(xK) = (xH, s(xH)−1 xK). The conclusion follows. �

2.1.15. COROLLARY. Under the assumptions of Corollary 2.1.9, the mapβm
given in(2.1.9)is a differentiable fibration with typical fiberGm. �

2.1.16. COROLLARY. Let f : G → G′ be a Lie group homomorphism and let
H ⊂ G,H ′ ⊂ G′ be closed subgroups such thatf(H) ⊂ H ′; consider the map:

f̄ : G/H −→ G′/H ′

induced fromf by passage to the quotient, i.e.,f̄(gH) = f(g)H ′ for all g ∈ G. If
f̄ is surjective, then̄f is a differentiable fibration with typical fiberf−1(H ′)/H.
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PROOF. Consider the action ofG onG′/H ′ given by

G×G′/H ′ 3 (g, g′H ′) 7−→ (f(g)g′)H ′ ∈ G′/H ′.

The orbit of the element1H ′ ∈ G′/H ′ is the image off̄ , and its isotropy group
is f−1(H ′); since f̄ is surjective, it follows from Corollary 2.1.9 that the map
f̂ : G/f−1(H ′) → G′/H ′ induced fromf by passage to the quotient is a diffeo-
morphism. We have the following commutative diagram:

G/H
p

yyrrrrrrrrrr
f̄

##H
HH

HH
HH

HH

G/f−1(H ′)
f̂

// G′/H ′

wherep is induced from the identity ofG by passage to the quotient; it follows from
Theorem 2.1.14 thatp is a differentiable fibration with typical fiberf−1(H ′)/H.
This concludes the proof. �

A differentiable coveringis a differentiable fibering whose fiber is adiscrete
manifold (i.e., zero dimensional). We have the following:

2.1.17. COROLLARY. Under the assumptions of Corollary 2.1.16, ifH and
f−1(H ′) have the same dimension, thenf̄ is a differentiable covering. �

2.1.18. REMARK . Given a differentiable fibrationp : E → B with typical
fiberF , then every curveγ : [a, b] → B of classCk, 0 ≤ k ≤ +∞, admits alift
γ : [a, b] → E (i.e.,p ◦ γ = γ) which is of classCk:

E

p

��
[a, b]

γ̃
==

γ
// B

The proof of this fact is left to the reader in Exercise 2.9.

2.1.3. Linearization of the Action of a Lie Group on a Manifold. In this
subsection we will consider a Lie groupG with a differentiable (left) action on the
manifoldM ; we show that such action defines a anti-homomorphism of the Lie
algebrag of G to the Lie algebra of the differentiable vector fields onM .

GivenX ∈ g, we define a differentiable vector fieldX∗ onM by setting:

X∗(m) = dβm(1) ·X, m ∈M,

whereβm is the map defined in (2.1.9).
Recall that iff : N1 → N2 is a differentiable map, the vector fieldsY1 andY2

onN1 andN2 respectively are said to bef -relatedif:

Y2(f(n)) = dfn(Y1(n)), ∀n ∈ N1.
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2.1.19. REMARK . If Y1, Z1 are differentiable vector fields on the manifoldN1

that aref -related respectively with the fieldsY2, Z2 on the manifoldN2, then the
Lie bracket[Y1, Z1] is f -related to the Lie bracket[Y2, Z2].

Observe that, for allg ∈ G and allm ∈M , we have

βgm = βm ◦ rg,
hence

(2.1.13) dβgm(1) = dβm(g) ◦ drg(1).

If XR denotes the right invariant vector field onG corresponding to the element
X ∈ g, then, using (2.1.13), we have:

(2.1.14) X∗(g ·m) = dβm(g) ·XR(g), ∀m ∈M.

The identity (2.1.14) tells us that, for allm ∈ M , the fieldX∗ in M is βm-related
with the fieldXR in G.

2.1.20. REMARK . Let us denote byXL the left invariant vector field onG
corresponding toX ∈ g; if G acts on the left onM , then in general it is not
possible to construct a vector field inM which isβm-related toXL. Observe also
that, in general, the fieldX∗ is not invariant by the action ofG in M ; actually, it
is not possible in general to construct a vector field onM which is invariant by the
action ofG and whose value at a given point is given.

As a corollary of (2.1.14) we get the following:

2.1.21. PROPOSITION. GivenX,Y ∈ g, then we have:

[X,Y ]∗ = −[X∗, Y ∗],

where the bracket on the left of the equality is the Lie product ing and the bracket
on the right denotes the Lie bracket of vector fields inM .

PROOF. Choosem ∈ M ; since the vector fieldsX∗ andY ∗ areβm-related
respectively to the right invariant vector fieldsXR andY R, it follows from Re-
mark 2.1.19 that[X∗, Y ∗] is βm-related to[XR, Y R]. To conclude the proof, we
will show that:

(2.1.15) [XR, Y R] = −[X,Y ]R;

observe now that from (2.1.15) it will follow that both[X∗, Y ∗] and−[X,Y ]∗ are
βm-related to[XR, Y R], hence they must coincide onIm(βm) = G(m). Sincem
is arbitrary, the proof of Proposition 2.1.21 will follow.

In order to show (2.1.15), consider the inversion mapinv : G → G given by
inv(g) = g−1; we have thatd(inv)(1) = −Id. Then, it is easy to see thatXR

is inv-related to the left invariant field−XL, and, by Remark 2.1.19,[XR, Y R] is
inv-related to[XL, Y L] = [X,Y ]L; also,−[X,Y ]R is inv-related to[X,Y ]L. The
conclusion now follows from the fact thatinv is surjective. �

The mapX 7→ X∗ is called thelinearization of the action ofG inM ; Proposi-
tion 2.1.21 tells us that this map is aanti-homomorphismof the Lie algebrag into
the Lie algebra of differentiable vector fields onM .
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2.1.22. REMARK . From (2.1.14) it follows easily that, for allm ∈M , the map
t 7→ exp(tX) ·m is an integral curve ofX∗.

More generally, given any mapI 3 t 7→ X(t) ∈ g defined in an interval
I ⊂ IR, we obtain atime-dependent right invariant vector fieldin G given by:

(2.1.16) I ×G 3 (t, g) 7−→ X(t)R(g) = X(t)g ∈ TgG;

we also have a time-dependent vector field inM by setting:

(2.1.17) I ×M 3 (t,m) 7−→ X(t)∗(m) ∈ TmM.

From (2.1.14) it follows also that, for anym ∈ M , the mapβm takes integral
curves of (2.1.16) into integral curves of (2.1.17); more explicitly, ift 7→ γ(t) ∈ G
satisfies

γ′(t) = X(t)γ(t),
for all t then:

d
dt

(γ(t) ·m) = X(t)∗(γ(t) ·m).

2.2. Grassmannians and Their Differentiable Structure

In this section we will study the geometry of the set of allk-dimensional sub-
spaces of a Euclidean space.

Let n, k be fixed integers, withn ≥ 0 and0 ≤ k ≤ n; we will denote by
Gk(n) the set of allk-dimensional vector subspaces ofIRn; Gk(n) is called the
Grassmannian ofk-dimensional subspaces ofIRn.

Our goal is to describe a differentiable atlas forGk(n), and the main idea is to
view the points ofGk(n) asgraphsof linear maps defined on a fixedk-dimensional
subspace ofIRn and taking values in another fixed(n − k)-dimensional subspace
of IRn, where these two fixed subspaces are transversal.

To this aim, we consider a direct sum decompositionIRn = W0 ⊕W1, where
dim(W0) = k (and obviouslydim(W1) = n − k). For every linear operator
T : W0 →W1, thegraphof T given by:

Gr(T ) = { v + T (v) : v ∈W0 }

is an element inGk(n). Moreover, an elementW ∈ Gk(n) is of the formGr(T )
if and only if it is transversal toW1, i.e., iff it belongs to the set:

G0
k(n,W1) =

{
W ∈ Gk(n) : W ∩W1 = {0}

}
⊂ Gk(n).

In this situation, the operatorT is uniquely determined byW . We can therefore
define a bijection:

(2.2.1) φW0,W1 : G0
k(n,W1) −→ Lin(W0,W1),

by settingφW0,W1(W ) = T whenW = Gr(T ).
More concretely, ifπ0 andπ1 denote respectively the projections ontoW0 and

W1 in the decompositionIRn = W0 ⊕W1, then the operatorT = φW0,W1(W ) is
given by:

T = (π1|W ) ◦ (π0|W )−1.
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Observe that the condition thatW be transversal toW1 is equivalent to the condi-
tion that the restrictionπ0|W be an isomorphism ontoW0.

We will now show that the collection of the chartsφW0,W1 , when(W0,W1)
run over the set of all direct sum decomposition ofIRn with dim(W0) = k, is a
differentiable atlas forGk(n). To this aim, we need to study the transition functions
between these charts. Let us give the following:

2.2.1. DEFINITION. Given subspacesW0,W
′
0 ⊂ IRn and given a common

complementary subspaceW1 ⊂ IRn of theirs, i.e.,IRn = W0 ⊕W1 = W ′
0 ⊕W1,

then we have an isomorphism:

η = ηW1

W0,W ′
0
: W0 −→W ′

0,

obtained by the restriction toW0 of the projection ontoW ′
0 relative to the decom-

positionIRn = W ′
0 ⊕W1. We say thatηW1

W0,W ′
0

is theisomorphism ofW0 andW ′
0

determined by the common complementary subspaceW1.

The inverse ofηW1

W0,W ′
0

is simplyηW1

W ′
0,W0

; we have the following commutative
diagram of isomorphisms:

IRn/W1

W0

q|W0

;;wwwwwwwww

η
W1
W0,W ′

0

// W ′
0

q|W ′
0

ccGGGGGGGGG

whereq : IRn → IRn/W1 is the quotient map.
Let us consider chartsφW0,W1 andφW ′

0,W1
in Gk(n), with k = dim(W0) =

dim(W ′
0); observe that they havethe same domain. In this case it is easy to obtain

the following formula for the transition function:

(2.2.2) φW ′
0,W1

◦ (φW0,W1)
−1(T ) = (π′1|W0 + T ) ◦ ηW1

W ′
0,W0

,

whereπ′1 denotes the projection ontoW1 relative to the decompositionIRn =
W ′

0 ⊕W1.
Let us now consider decompositionsIRn = W0 ⊕ W1 = W0 ⊕ W ′

1, with
dim(W0) = k, and let us look at the transition functionφW0,W ′

1
◦ (φW0,W1)

−1. In
first place, we observe that its domain consists of those operatorsT ∈ Lin(W0,W1)
such thatGr(T ) ∈ G0

k(n,W
′
1); it is easy to see that this condition is equivalent to

the invertibility of the map:

Id + (π′0|W1) ◦ T,
whereπ′0 denotes the projection ontoW0 relative to the decompositionIRn =
W0 ⊕W ′

1 andId is the identity operator onW0. We have the following formula
for φW0,W ′

1
◦ (φW0,W1)

−1:

(2.2.3) φW0,W ′
1
◦ (φW0,W1)

−1(T ) = ηW0

W1,W ′
1
◦ T ◦

(
Id + (π′0|W1) ◦ T

)−1
.

We have therefore proven the following:
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2.2.2. PROPOSITION. The set of all chartsφW0,W1 in Gk(n), where the pair
(W0,W1) run over the set of all direct sum decompositions ofIRn withdim(W0) =
k, is a differentiable atlas forGk(n).

PROOF. Since every subspace ofIRn admits one complementary subspace, it
follows that the domains of the chartsφW0,W1 coverGk(n). The transition func-
tions (2.2.2) and (2.2.3) are differentiable maps defined in open subsets of the vec-
tor spaceLin(W0,W1). The general case of compatibility between chartsφW0,W1

andφW ′
0,W

′
1

follows from transitivity. �

2.2.3. REMARK . As to the argument of transitivity mentioned in the proof of
Proposition 2.2.2, we observe that in general the property of the compatibility of
charts isnot transitive. However, the following weaker transitivity property holds,
and that applies to the case of Proposition 2.2.2: ifψ0, ψ1 andψ2 are charts on a
set such thatψ0 is compatible withψ1, ψ1 is compatible withψ2 and the domain
of ψ0 coincideswith the domain ofψ1, thenψ0 is compatible withψ2.

2.2.4. REMARK . Formulas (2.2.2) and (2.2.3) show indeed that the charts
φW0,W1 form areal analyticatlas forGk(n).

2.2.5. REMARK . Given a finite collectionV1, . . . , Vr of k-dimensional sub-
spaces ofIRn, it is possible to find a subspaceW which is complementary to all
of theVi’s. For, if k < n, we can choose a vectorv1 ∈ IRn \

⋃r
i=1 Vi. Let us

now consider the subspacesV ′
i = Vi ⊕ IR v1 of dimensionk + 1; by repeating the

construction to theV ′
i ’s, we determine inductively vectorsv1, . . . , vn−k that form

a basis for a common complementary to theVi’s. This argument shows that every
finitesubset ofGk(n) belongs to the domain of some chartφW0,W1 . In Exercise 2.6
the reader is asked to show that the same holds forcountablesubsets ofGk(n).

We finally prove thatGk(n) is a manifold:

2.2.6. THEOREM. The differentiable atlas in Proposition 2.2.2 makesGk(n)
into a differentiable manifold of dimensionk(n− k).

PROOF. If dim(W0) = k anddim(W1) = n− k, thendim(Lin(W0,W1)) =
k(n − k). It remains to prove that the topology defined by the atlas is Hausdorff
and second countable. The Hausdorff property follows from the fact that every
pair of points ofGk(n) belongs to the domain of a chart. The second countability
property follows from the fact that, if we consider the finite set of chartφW0,W1 ,
where bothW0 andW1 are generated by elements of the canonical basis ofIRn,
we obtain a finite differentiable atlas forGk(n). �

2.2.7. REMARK . It follows immediately from the definition of topology in-
duced by a differentiable atlas that the subsetsG0

k(n,W1) ⊂ Gk(n) are open;
moreover, since the chartsφW0,W1 are surjective, it follows thatG0

k(n,W1) is
homeomorphic (and diffeomorphic) to the vector spaceLin(W0,W1).

2.2.8. EXAMPLE . The GrassmannianG1(n) of all the lines through the ori-
gin in IRn is also known as thereal projective spaceIRPn−1. By takingW0 =
{0}n−1 ⊕ IR andW1 = IRn−1 ⊕ {0}, the chartφW0,W1 gives us what is usually
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known in projective geometry as thehomogeneous coordinates. The spaceIRPn−1

can also be described as the quotient of the sphereSn−1 obtained by identifying
the antipodal points.

The real projective lineIRP 1 is diffeomorphic to the circleS1; in fact, con-
sideringS1 ⊂ C, the mapz 7→ z2 is a two-fold covering ofS1 over itself that
identifies antipodal points.

2.2.9. REMARK . The theory of this section can be repeatedverbatimto define
a manifold structure in the Grassmannian of allk-dimensional complex subspaces
of Cn. Formulas (2.2.2) and (2.2.3) areholomorphic, which says that such Grass-
mannian is acomplex manifold, whose complex dimension isk(n− k).

2.3. The tangent Space to a Grassmannian

In this section we give a concrete description of the tangent spaceTWGk(n)
for W ∈ Gk(n), by showing that it can be naturally identified with the space
Lin(W, IRn/W ). This identification will allow to compute in a simple way the
derivative of a curve inGk(n).

We start with an informal approach. Suppose that we are given a differentiable
curvet 7→ W (t) in Gk(n), i.e., for all instantst we havek-dimensional subspace
W (t) of IRn. How can we think of the derivativeW ′(t0) in an intuitive way?
Consider a curve of vectorst 7→ w(t) ∈ IRn, with v(t) ∈ W (t) for all t; in some
sense, the derivativev′(t0) mustencodepart of the information contained in the
derivativeW ′(t0). We now try to formalize these ideas.

For all t, writeW (t) = Ker
(
A(t)

)
, whereA(t) ∈ Lin(IRn, IRn−k); differen-

tiating the identityA(t)w(t) = 0 in t = t0 we get:

A′(t0)w(t0) +A(t0)w′(t0) = 0.

This identity shows that the value ofw′(t0) is totally determined byw(t0) up to
elements ofW (t0). More precisely, to allw0 ∈ W (t0), we can associate a class
w′0 + W (t0) ∈ IRn/W (t0) by settingw′0 = w′(t0), wheret 7→ w(t) is any
differentiable curve inIRn with w(t) ∈ W (t) for all t andw(0) = w0. Using the
above identity it is easy to see that such map is well defined, i.e., it does not depend
on the choice of the curvew(t). The mapw0 7→ w′0 +W (t0) is a linear operator
fromW (t0) to IRn/W (t0), and we can look at it as thederivative of the curve of
subspacesW (t) in t = t0.

We can now prove the existence of a canonical isomorphism of the tangent
spaceTWGk(n) with Lin(W, IRn/W ); in the following proposition we will use
the abstract formalism concerning the functorLin(·, ·) introduced in Remark 1.1.1.

2.3.1. PROPOSITION. LetW ∈ Gk(n) andW1 be a complementary subspace
of W in IRn. Denote byq1 : W1 → IRn/W the restriction of the quotient map
ontoIRn/W . We have an isomorphism:

(2.3.1) Lin(Id, q1) ◦ dφW,W1(W ) : TWGk(n) −→ Lin(W, IRn/W ),

where

(2.3.2) Lin(Id, q1) : Lin(W,W1) −→ Lin(W, IRn/W )
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is the operator of composition on the leftT 7→ q1 ◦ T (recall formulas(1.1.2)and
(1.1.3)).

The isomorphism(2.3.1) does notdepend on the choice of the complementary
subspaceW1.

PROOF. Sinceq1 is an isomorphism andφW,W1 is a chart aroundW , obvi-
ously (2.3.1) is an isomorphism. The only non trivial fact in the statement is
the independence of (2.3.1) from the choice of the subspaceW1. To prove this
fact, consider a different complementary subspaceW ′

1 of W in IRn; observe that
φW,W1(W ) = φW,W ′

1
(W ) = 0. By differentiating the transition function (2.2.3) in

T = 0 we see that the following diagram commutes:

TWGk(n)
dφW,W1

(W )

wwppppppppppp dφW,W ′
1
(W )

''OOOOOOOOOOO

Lin(W,W1)
Lin

(
Id, ηW

W1,W ′
1

) // Lin(W,W ′
1).

The conclusion now follows easily from the observation that also the diagram

(2.3.3) W1

ηW
W1,W ′

1 //

q1 ##G
GG

GG
GG

GG
W ′

1

q′1{{ww
ww

ww
ww

w

IRn/W

is commutative, whereq′1 denotes the restriction toW ′
1 of the quotient map onto

Rn/W . �

2.3.2. REMARK . Observe that, from a functorial point of view, the conclu-
sion of Proposition 2.3.1 follows by applying the functorLin(W, ·) to the diagram
(2.3.3).

Keeping in mind Proposition 2.3.1, we will henceforth identify the spaces
TWGk(n) andLin(W, IRn/W ). Our next proposition will provide a justification
for the informal reasons of such identification given at the beginning of the section:

2.3.3. PROPOSITION. Let W : I → Gk(n) andw : I → IRn be curves
defined in an intervalI containingt0, both differentiable att = t0. Suppose that
w(t) ∈W (t) for all t ∈ I. Then, the following identity holds:

W ′(t0) · w(t0) = w′(t0) +W (t0) ∈ IRn/W (t0),

where we identifyW ′(t0) with an element inLin(W, IRn/W (t0)) using the iso-
morphism(2.3.1).

PROOF. SetW0 = W (t0) and choose a complementary subspaceW1 of W0

in IRn. SetT = φW0,W1 ◦W , so that, for allt ∈ I sufficiently close tot0, we
haveW (t) = Gr(T (t)). Denoting byπ0 the projection ontoW0 relative to the
decompositionIRn = W0 ⊕W1, we setu = π0 ◦ w.
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Sincew(t) ∈W (t), we have:

(2.3.4) w(t) = u(t) + T (t) · u(t), t ∈ I.

Using the isomorphism (2.3.1) we see thatW ′(t0) ∈ TW0Gk(n) is identified with:

Lin(Id, q1) ◦ dφW0,W1(W0) ·W ′(t0) = q1 ◦ T ′(t0) ∈ Lin(W0, IR
n/W0),

whereq1 andLin(Id, q1) are defined as in the statement of Proposition 2.3.1.
Hence, it remains to show that:

q1 ◦ T ′(t0) · w(t0) = w′(t0) +W0 ∈ IRn/W0.

Differentiating (2.3.4) int = t0 and observing thatT (t0) = 0, u(t0) = w(t0), we
obtain:

w′(t0) = u′(t0) + T ′(t0) · w(t0),

whereu′(t0) ∈W0. The conclusion follows. �

2.3.4. REMARK . Given a curveW : I → Gk(n), t0 ∈ I and a vector
w0 ∈ W0 = W (t0), we can always find a curvet 7→ w(t) ∈ IRn defined in
a neighborhood oft0 in I, with w(t) ∈ W (t) for all t, with w(t0) = w0 and
such thatw has thesame regularity asW . Indeed, fort neart0, we writeW
in the formW (t) = Gr(T (t)) using a local chartφW0,W1 ; then we can define
w(t) = w0 + T (t) · w0.

This implies that Proposition 2.3.3 canalwaysbe used to compute differentials
of functions defined on, or taking values in, Grassmannian manifolds. Indeed, the
computation of differentials may always be reduced to the computation of tangent
vectors to curves, and to this aim we can always use Proposition 2.3.3 (see for
instance the proofs of Lemma 2.3.5, Proposition 2.4.11 and Proposition 2.4.12).

We now compute the differential of a chartφW0,W1 at a pointW of its domain
using the identificationTWGk(n) ' Lin(W, IRn/W ):

2.3.5. LEMMA . Consider a direct sum decompositionIRn = W0 ⊕W1, with
dim(W0) = k, and letW ∈ G0

k(n,W1); then the differential of the chartφW0,W1

atW is the operator:

Lin
(
ηW1
W0,W

, q−1
1

)
: Lin(W, IRn/W ) −→ Lin(W0,W1),

that is:

dφW0,W1(W ) · Z = q−1
1 ◦ Z ◦ ηW1

W0,W
, Z ∈ Lin(W, IRn/W ) ∼= TWGk(n),

whereq1 denotes the restriction toW1 of the quotient map ontoRn/W andηW1
W0,W

is the isomorphism ofW0 ontoW determined by the common complementaryW1

(cf. Definition 2.2.1).

PROOF. It is a direct application of the technique described in Remark 2.3.4.
Let t 7→ W(t) be a differentiable curve inGk(n) with W(0) = W , W′(0) =

Z; write T (t) = φW0,W1(W(t)), so thatW(t) = Gr(T (t)) for all t; observe that
T ′(0) = dφW0,W1(W ) · Z.
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Let w ∈ W ; sinceW = Gr(T (0)), we can writew = w0 + T (0) · w0 with
w0 ∈ W0. Then,t 7→ w(t) = w0 + T (t) · w0 is a curve inIRn with w(t) ∈ W(t)
for all t andw(0) = w. By Proposition 2.3.3 we have:

W′(0) · w = Z · w = w′(0) +W = T ′(0) · w0 +W ∈ IRn/W.

Observing thatw0 = ηW1
W,W0

(w), we conclude that

Z = q1 ◦ T ′(0) ◦ ηW1
W,W0

.

The conclusion follows. �

2.4. The Grassmannian as a Homogeneous Space

In this section we will show that the natural action of the general linear group
of IRn onGk(n) is differentiable. This action is transitive, even when restricted to
the special orthogonal group; it will follow that the Grassmannian is a quotient of
this group, and therefore it is acompact and connectedmanifold.

Each linear isomorphismA ∈ GL(n, IR) defines a bijection ofGk(n) that
associates to eachW ∈ Gk(n) its imageA(W ); with a slight abuse of notation,
this bijection will be denoted by the same symbolA. We therefore have a (left)
action ofGL(n, IR) onGk(n), that will be called thenatural actionof GL(n, IR)
onGk(n) .

We start by proving the differentiability of this action:

2.4.1. PROPOSITION. The natural actionGL(n, IR) × Gk(n) → Gk(n) is
differentiable.

PROOF. We simply compute the representation of this action in local charts.
LetA ∈ GL(n, IR) andW0 ∈ Gk(n) be fixed. LetW1 be a common comple-

mentary forW0 andA(W0); hence,φW0,W1 is a chart whose domain contains both
W0 andA(W0). We computeφW0,W1(B(W )) for B in a neighborhood ofA and
W in a neighborhood ofW0; writing T = φW0,W1(W ) we have:

(2.4.1) φW0,W1(B(W )) = (B10 +B11 ◦ T ) ◦ (B00 +B01 ◦ T )−1,

whereBij denotes the componentπi ◦ (B|Wj ) of B andπi, i = 0, 1, denotes the
projection ontoWi relative to the decompositionIRn = W0 ⊕ W1. Obviously,
(2.4.1) is a differentiable function of the pair(B, T ). �

The action ofGL(n, IR) onGk(n) is transitive; actually, we have the following
stronger result:

2.4.2. PROPOSITION. The natural action ofSO(n) in Gk(n), obtained by re-
striction of the natural action ofGL(n, IR), is transitive.

PROOF. LetW,W ′ ∈ Gk(n) be fixed; we can find orthonormal bases(bj)nj=1

and(b′j)
n
j=1 of IRn such that(bj)kj=1 is a basis ofW and(b′j)

k
j=1 is a basis ofW ′.

By possibly replacingb1 with −b1, we can assume that the two bases define the
same orientation ofIRn. We can therefore findA ∈ SO(n) such thatA(bj) = b′j
for all j = 1, . . . , n, hence in particularA(W ) = W ′. �
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2.4.3. COROLLARY. The GrassmannianGk(n) is diffeomorphic to the quo-
tients:

O(n)
O(k)×O(n− k)

and
SO(n)

S
(
O(k)×O(n− k)

)
whereS

(
O(k)×O(n− k)

)
denotes the intersection:

SO(n) ∩
(
O(k)×O(n− k)

)
.

It follows in particular thatGk(n) is a compact and connected manifold.

PROOF. The isotropy of the pointIRk⊕{0}n−k by the action ofO(n) is given
by the group of orthogonal operators that leave the subspacesIRk ⊕ {0}n−k and
{0}k ⊕ IRn−k invariant; this group is clearly isomorphic toO(k) × O(n − k).
A similar argument applies to the case of the action ofSO(n). The conclusion
follows from Corollary 2.1.9 and Proposition 2.4.2. �

2.4.4. REMARK . Obviously, we could have added to the statement of Corol-
lary 2.4.3 a representation ofGk(n) as a quotient ofGL(n, IR). Observe that in
this case the isotropy ofIRk⊕{0}n−k is notGL(k)×GL(n−k) (see Exercise 2.7).

2.4.5. REMARK . As a matter of facts, formula (2.4.1) shows that the natural
action ofGL(n, IR) onGk(n) is real analytic. In the case of a complex Grass-
mannian, the natural action of the linear groupGL(n,C) on Cn is holomorphic.
An obvious generalization of Proposition 2.4.2 shows that the action of the special
unitary groupSU(n) on the complex Grassmannian is transitive. Analogously to
the result of Corollary 2.4.3, we conclude that the complex Grassmannian is com-
pact, connected and isomorphic to the quotientsU(n)/

(
U(k) × U(n − k)

)
and

SU(n)/S
(
U(k)×U(n− k)), whereS

(
U(k)×U(n− k)

)
denotes the intersection

SU(n) ∩
(
U(k)×U(n− k)

)
.

We have two more interesting corollaries of the representation ofGk(n) as the
quotient of a Lie group.

2.4.6. PROPOSITION. In an open neighborhoodU of any point ofGk(n) we
can define a differentiable mapA : U → GL(n, IR) such that

A(W )(IRk ⊕ {0}n−k) = W

for all W ∈ U .

PROOF. It follows from Propositions 2.4.1, 2.4.2 and from Corollary 2.1.9 that
the map:

GL(n, IR) 3 B 7−→ B
(
IRk ⊕ {0}n−k

)
∈ Gk(n)

is a submersion; the required map is simply a local differentiable section of this
submersion (see Remark 2.1.3). �

2.4.7. COROLLARY. In an open neighborhoodU of any point ofGk(n) there
exist differentiable maps:

Zker : U −→ Lin(IRn, IRn−k) and Zim : U −→ Lin(IRk, IRn)

such thatW = Ker
(
Zker(W )

)
= Im

(
Zim(W )

)
for all W ∈ U .
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PROOF. DefineA as in Proposition 2.4.6 and takeZker = π ◦ A(W )−1 and
Zim = A(W ) ◦ i, wherei : IRk → IRn is the inclusion in the firstk-coordinates
andπ : IRn → IRn−k is the projection onto the lastn− k coordinates. �

2.4.8. COROLLARY. Let S ⊂ IRn be any subspace and letr ∈ Z be a non
negative integer; then, the set of subspacesW ∈ Gk(n) such thatdim(W ∩S) ≤ r
is open inGk(n).

PROOF. LetW0 ∈ Gk(n) be fixed and letZker be a map as in the statement
of Corollary 2.4.7 defined in an open neighborhoodU of W0 in Gk(n). For all
W ∈ U we have:

W ∩ S = Ker
(
Zker(W )|S

)
,

from which we get thatdim(W ∩ S) ≤ r if and only if the operatorZker(W )|S ∈
Lin(S, IRn−k) has rank greater or equal todim(S) − r; this condition defines an
open subset ofLin(S, IRn−k), and the conclusion follows. �

We now consider the action of the product of Lie groupsGL(n, IR)×GL(m, IR)
on the vector spaceLin(IRn, IRm) given by:

(2.4.2) (A,B, T ) 7−→ B ◦ T ◦A−1,

for A ∈ GL(n, IR), B ∈ GL(m, IR) andT ∈ Lin(IRn, IRm). An elementary
linear algebra argument shows that the orbits of the action (2.3.4) are the sets:

Linr(IRn, IRm) =
{
T ∈ Lin(IRn, IRm) : T is a matrix of rankr

}
,

wherer = 1, . . . ,min{n,m}. It is also easy to see that the sets:⋃
i≥r

Lini(IRn, IRm) and
⋃
i≤r

Lini(IRn, IRm)

are respectively an open and a closed subset ofLin(IRn, IRm); it follows that each
Linr(IRn, IRm) is locally closed inLin(IRn, IRm).

Thus, we have the following:

2.4.9. LEMMA . For eachr = 1, . . . ,min{n,m}, the setLinr(IRn, IRm) is an
embedded submanifold ofLin(IRn, IRm).

PROOF. It follows from Theorem 2.1.12. �

We also obtain directly the following:

2.4.10. PROPOSITION. Given non negative integersm,n and r, with r ≤
min{n,m}, then the maps:

Linr(IRn, IRm) 3 T 7−→ Im(T ) ∈ Gr(m)(2.4.3)

Linr(IRn, IRm) 3 T 7−→ Ker(T ) ∈ Gn−r(n)(2.4.4)

are differentiable.
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PROOF. The productGL(n, IR) × GL(m, IR) acts transitively on the orbit
Linr(IRn, IRm), and it also acts transitively onGr(m), by considering the action
for which GL(n, IR) acts trivially andGL(m, IR) acts onGr(m) with its nat-
ural action. The map (2.4.3) is equivariant, hence its differentiability follows from
Corollary 2.1.10 and Proposition 2.4.1.

The differentiability of (2.4.4) follows similarly. �

In the next two propositions we compute the differential of the natural action
of GL(n, IR) onGk(n).

2.4.11. PROPOSITION. For A ∈ GL(n, IR), let us consider the diffeomor-
phism ofGk(n), also denoted byA, given byW 7→ A(W ). For W ∈ Gk(n), the
differentialdA(W ) ofA at the pointW is the operator:

Lin
(
(A|W )−1, Ā

)
: Lin(W, IRn/W ) −→ Lin(A(W ), IRn/A(W ))

given byZ 7→ Ā ◦ Z ◦ (A|W )−1, where

Ā : IRn/W −→ IRn/A(W )

is induced fromA by passing to the quotient.

PROOF. It is a direct application of the technique described in Remark 2.3.4.
Let t 7→ W (t) a differentiable curve inGk(n) with W (0) = W andW ′(0) =

Z; let t 7→ w(t) be a differentiable curve inIRn with w(t) ∈ W (t) for all t. It
follows thatt 7→ A(w(t)) is a differentiable curve inIRn withA(w(t)) ∈ A(W (t))
for all t; by Proposition 2.3.3 we have:

(2.4.5) (A ◦W )′(0) ·A(w(0)) = A(w′(0)) +A(W ) ∈ IRn/A(W ).

Using again Proposition 2.3.3, we get:

(2.4.6) W ′(0) · w(0) = w′(0) +W ∈ IRn/W.
The conclusion follows from (2.4.5) and (2.4.6). �

2.4.12. PROPOSITION. For W ∈ Gk(n), the differential of the map:

βW : GL(n, IR) −→ Gk(n)

given byβW (A) = A(W ) is:

dβW (A) ·X = q ◦X ◦A−1|A(W ),

for all A ∈ GL(n, IR),X ∈ Lin(IRn), whereq : IRn → IRn/A(W ) is the quotient
map.

PROOF. We use again the technique described in Remark 2.3.4.
Let t 7→ A(t) be a differentiable curve inGL(n, IR) with A(0) = A and

A′(0) = X; fix w0 ∈ W . It follows thatt 7→ A(t)(w0) is a differentiable curve in
IRn with A(t)(w0) ∈ βW (A(t)) for all t. Using Proposition 2.3.3 we get:

(βW ◦A)′(0) ·A(w0) = X(w0) +A(W ) ∈ IRn/A(W ).

The conclusion follows.
�
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2.5. The Lagrangian Grassmannian

In this section we will show that the setΛ of all Lagrangian subspaces of a
2n-dimensional symplectic space(V, ω) is a submanifold of the Grassmannian of
all n-dimensional subspaces ofV . We will call Λ the Lagrangian Grassmannian of
(V, ω). We will study in detail the charts ofΛ, its tangent space and the action of the
symplectic groupSp(V, ω) on Λ; we will show that, like the total Grassmannian,
the Lagrangian Grassmannian is a homogeneous manifold.

We will make systematic use of the results concerning the Grassmannian man-
ifolds presented in Sections 2.2, 2.3 and 2.4, as well as the results concerning the
symplectic spaces presented in Section 1.4, and especially in Subsection 1.4.2.

We start with the observation that the theory of Grassmannians of subspaces of
IRn developed in Sections 2.2, 2.3 and 2.4 can be generalized in an obvious way if
we replaceIRn with any other arbitrary finite dimensional real vector spaceV ; let
us briefly mention the changes in the notation that will be used in order to consider
Grassmannians of subspaces of an arbitrary spaceV .

We will denote byGk(V ) the set of allk-dimensional subspaces ofV , with 0 ≤
k ≤ dim(V ); this set has a differentiable structure of dimensionk(dim(V ) − k),
with charts described in Section 2.2. IfW1 ⊂ V is a subspace of codimensionk,
we will denote byG0

k(V,W1) (or more simply byG0
k(W1) when the spaceV will

be clear from the context) the subset ofGk(V ) consisting of those subspaces that
are transversal toW1:

G0
k(V,W1) = G0

k(W1) =
{
W ∈ Gk(V ) : V = W ⊕W1

}
.

If W0 ∈ G0
k(W1), thenG0

k(W1) is the domain of the chartφW0,W1 .
ForW ∈ Gk(V ), we will always consider the following identification of the

tangent spaceTWGk(V ):

TWGk(V ) ' Lin(W,V/W ),

that is constructed precisely as in Section 2.3. In Section 2.4 we must replace the
general linear groupGL(n, IR) of IRn by the general linear groupGL(V ) of V ;
in Proposition 2.4.2 and in Corollary 2.4.3 the orthogonal and the special orthog-
onal groupO(n) andSO(n) of IRn must be replaced by the corresponding group
O(V, g) andSO(V, g) associated to an arbitrary choice of an inner productg in V .

Let now be fixed for the rest of this section a symplectic space(V, ω) with
dim(V ) = 2n. We denote byΛ(V, ω), or more simply byΛ, the set of all La-
grangian subspaces of(V, ω):

Λ(V, ω) = Λ =
{
L ∈ Gn(V ) : L is Lagrangian

}
.

We say thatΛ is theLagrangian Grassmannianof the symplectic space(V, ω).
We start with a description of submanifold charts forΛ:
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2.5.1. LEMMA . Let (L0, L1) be a Lagrangian decomposition ofV ; then a
subspaceL ∈ G0

n(L1) is Lagrangian if and only if the bilinear form:

(2.5.1) ρL0,L1 ◦ φL0,L1(L) ∈ Lin(L0, L
∗
0) ' B(L0)

is symmetric.

PROOF. Sincedim(L) = n, thenL is Lagrangian if and only if it is isotropic.
Let T = φL0,L1(L), so thatT ∈ Lin(L0, L1) andL = Gr(T ); we have:

ω
(
v + T (v), w + T (w)

)
= ω(T (v), w)− ω(T (w), v).

The conclusion follows by observing that the bilinear form (2.5.1) coincides with
ω(T ·, ·)|L0×L0 . �

If L1 ⊂ V is a Lagrangian subspace, we denote byΛ0(L1) the set of all
Lagrangian subspaces ofV that are transversal toL1:

(2.5.2) Λ0(L1) = Λ ∩G0
n(L1).

It follows from Lemma 2.5.1 that, associated to each Lagrangian decomposition
(L0, L1) of V we have a bijection:

(2.5.3) ϕL0,L1 : Λ0(L1) −→ Bsym(L0)

given byϕL0,L1(L) = ρL0,L1 ◦ φL0,L1(L). We therefore have the following:

2.5.2. COROLLARY. The Grassmannian LagrangianΛ is an embedded sub-
manifold ofGn(V ) with dimensiondim(Λ) = 1

2n(n + 1); the chartsϕL0,L1 de-
fined in(2.5.3)form a differentiable atlas forΛ as(L0, L1) runs over the set of all
Lagrangian decompositions ofV .

PROOF. Given a Lagrangian decomposition(L0, L1) of V , it follows from
Lemma 2.5.1 that the chart:

(2.5.4) G0
n(L1) 3W 7−→ ρL0,L1 ◦ φL0,L1(W ) ∈ Lin(L0, L

∗
0) ' B(L0)

of Gn(V ) is a submanifold chart forΛ, that induces the chart (2.5.3) ofΛ. More-
over, dim(Bsym(L0)) = 1

2n(n + 1). The conclusion follows from the fact that,
since every Lagrangian admits a complementary Lagrangian (Corollary 1.4.21),
the domains of the charts (2.4.5) coverΛ as(L0, L1) runs over the set of all La-
grangian decompositions ofV . �

2.5.3. REMARK . It follows from formula (2.5.2) and Remark 2.2.7 that the
subsetΛ0(L1) is open inΛ; moreover, since the chart (2.5.3) is surjective, we
have thatΛ0(L1) is homeomorphic (and diffeomorphic) to the Euclidean space
Bsym(L0).

It is sometimes useful to have an explicit formula for the transition functions
between the charts (2.5.3) of the Lagrangian Grassmannian; we have the following:

2.5.4. LEMMA . Given Lagrangian decompositions(L0, L1) and (L′0, L1) of
V then:

(2.5.5) ϕL′0,L1
◦ (ϕL0,L1)

−1(B) = ϕL′0,L1
(L0) +

(
ηL1

L′0,L0

)#(B) ∈ Bsym(L′0),
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for everyB ∈ Bsym(L0), whereηL1

L′0,L0
denotes the isomorphism ofL′0 ontoL0

determined by the common complementaryL1 (recall Definitions 1.1.2 and2.2.1);
if (L0, L

′
1) is also a Lagrangian decomposition ofV then the following identity

holds:

(2.5.6) ϕL0,L′1
◦ (ϕL0,L1)

−1(B) = B ◦
(
Id + (π′0|L1) ◦ ρ−1

L0,L1
◦B

)−1
,

for all B ∈ ϕL0,L1(Λ
0(L′1)) ⊂ Bsym(L0), whereπ′0 denotes the projection onto

L0 relative to the decompositionV = L0 ⊕ L′1.
Observe that the following identity holds:

(2.5.7) (π′0|L1) ◦ ρ−1
L0,L1

= (ρL0,L1)#
(
ϕL1,L0(L

′
1)

)
.

PROOF. Using (2.2.2) it is easy to see that:

(2.5.8) ϕL′0,L1
◦ (ϕL0,L1)

−1(B) = ρL′0,L1
◦ (π′1|L0 + ρ−1

L0,L1
◦B) ◦ ηL1

L′0,L0
,

whereπ′1 denotes the projection ontoL1 relative to the decompositionV = L′0 ⊕
L1; it is also easy to prove that:

ρL′0,L1
◦ ρ−1

L0,L1
=

(
ηL1

L′0,L0

)∗ : L∗0 −→ L′0
∗

and substituting in (2.5.8) we obtain (see also (1.1.4)):

(2.5.9) ϕL′0,L1
◦ (ϕL0,L1)

−1(B) = ρL′0,L1
◦ (π′1|L0) ◦ η

L1

L′0,L0
+

(
ηL1

L′0,L0

)#(B).

SettingB = 0 in (2.5.9) we conclude that

ϕL′0,L1
(L0) = ρL′0,L1

◦ (π′1|L0) ◦ η
L1

L′0,L0
,

which completes the proof of (2.5.5).
Now, using (2.2.3) it is easy to see that:

ϕL0,L′1
◦ (ϕL0,L1)

−1(B) =

ρL0,L′1
◦ ηL0

L1,L′1
◦ ρ−1

L0,L1
◦B ◦

(
Id + (π′0|L1) ◦ ρ−1

L0,L1
◦B

)−1;

and it is also easy to prove that:

ρL0,L′1
◦ ηL0

L1,L′1
◦ ρ−1

L0,L1
= Id: L∗0 −→ L∗0,

and this concludes the proof. �

In our next Lemma we show an interesting formula that involves the charts
(2.5.3).

2.5.5. LEMMA . Let L0, L1 and L be Lagrangian subspaces ofV that are
pairwise complementary; the following identities hold:

ϕL0,L1(L) = −ϕL0,L(L1),(2.5.10)

ϕL0,L1(L) = −(ρL1,L0)
#

(
ϕL1,L0(L)−1

)
;(2.5.11)
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PROOF. LetT = φL0,L1(L); thenT ∈ Lin(L0, L1) andL = Gr(T ). Observe
thatKer(T ) = L0 ∩ L = {0} and soT is invertible; hence:

L1 = {v + (−v − T (v)) : v ∈ L0}
and therefore:

φL0,L(L1) : L0 3 v 7−→ −v − T (v) ∈ L.
For allv, w ∈ L0, we now compute, :

ϕL0,L(L1) · (v, w) = ω(−v − T (v), w) = −ω(T (v), w) = −ϕL0,L1(L) · (v, w),

which completes the proof of (2.5.10). To show (2.5.11) observe thatφL1,L0(L) =
T−1; then:

ϕL1,L0(L) = ρL1,L0 ◦ T−1, ϕL0,L1(L) = ρL0,L1 ◦ T,
from which we get:

ϕL0,L1(L) = ρL0,L1 ◦ ϕL1,L0(L)−1 ◦ ρL1,L0 .

The conclusion follows from (1.4.12) and (1.1.4). �

We will now study the tangent spaceTLΛ of the Lagrangian Grassmannian.

2.5.6. PROPOSITION. LetL ∈ Λ be fixed; then the isomorphism:

(2.5.12) Lin(Id, ρL) : Lin(L, V/L) −→ Lin(L,L∗) ' B(L)

given byZ 7→ ρL ◦ Z takesTLΛ ⊂ TLGn(V ) ' Lin(L, V/L) onto the subspace
Bsym(L) ⊂ B(L).

PROOF. LetL1 be a Lagrangian complementary toL. As in the proof of Corol-
lary 2.5.2, the chart:

(2.5.13) G0
n(L1) 3W 7−→ ρL,L1 ◦ φL,L1(W ) ∈ B(L)

of Gn(V ) is a submanifold chart forΛ that induces the chartϕL,L1 of Λ; hence,
the differential of (2.5.13) at the pointL is an isomorphism that takesTLΛ onto
Bsym(L). By Lemma 2.3.5, the differential ofφL,L1 at the pointL is Lin(Id, q−1

1 ),
whereq1 denotes the restriction toL1 of the quotient map ontoV/L; it follows
from the diagram (1.4.13) that the differential of (2.5.13) atL coincides with the
isomorphism (2.5.12). �

Using the result of Proposition 2.5.6,we will henceforth identify the tangent
spaceTLΛ with Bsym(L). We will now prove versions of Lemma 2.3.5 and Propo-
sitions 2.4.11 and 2.4.12 for the Lagrangian Grassmannian; in these proofs we must
keep in mind the isomorphism (2.5.12) that identifiesTLΛ andBsym(L).

2.5.7. LEMMA . Consider a Lagrangian decomposition(L0, L1) of V and let
L ∈ Λ0(L1) be fixed; then, the differential of the chartϕL0,L1 at the pointL is the
push-forward operator:(

ηL1
L,L0

)
#

: Bsym(L) −→ Bsym(L0),

whereηL1
L,L0

denotes the isomorphism ofL ontoL0 determined by the common
complementaryL1 (see Definition 2.2.1).
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PROOF. By differentiating the equality:

ϕL0,L1 = Lin(Id, ρL0,L1) ◦ φL0,L1

at the pointL and keeping in mind the identificationTLΛ ' Bsym(L), we obtain:

dϕL0,L1(L) = Lin
(
ηL1
L0,L

, ρL0,L1 ◦ q−1
1 ◦ ρ−1

L

)
|Bsym(L) : Bsym(L) −→ Bsym(L0),

whereq1 denotes the restriction toL1 of the quotient map ontoV/L. On the other
hand, it is easy to see that:

ρL0,L1 ◦ q−1
1 ◦ ρ−1

L =
(
ηL1
L0,L

)∗
.

This concludes the proof. �

Clearly, the natural action ofGL(V ) on the GrassmannianGn(V ) restricts to
an action of the symplectic groupSp(V, ω) on the Lagrangian GrassmannianΛ;
we have the following:

2.5.8. PROPOSITION. The natural action ofSp(V, ω) onΛ is differentiable.

PROOF. It follows directly from Proposition 2.4.1. �

Let us now compute the differential of the action ofSp(V, ω) onΛ:

2.5.9. PROPOSITION. For A ∈ Sp(V, ω), consider the diffeomorphism, also
denoted byA, of Λ given byL 7→ A(L). For L ∈ Λ, the differentialdA(L) is the
push-forward operator:

(A|L)# : Bsym(L) −→ Bsym(A(L)).

PROOF. Using Proposition 2.4.11 and keeping in mind the identifications of
the tangent spacesTLΛ ' Bsym(L) andTA(L)Λ ' Bsym(A(L)), we see that the
differentialdA(L) is obtained by the restriction toBsym(L) of the mapΦ defined
by the following commutative diagram:

B(L) Φ // B(A(L))

Lin(L, V/L)

Lin(Id,ρL)

OO

Lin
(
(A|L)−1,Ā

) // Lin
(
A(L), V/A(L)

)Lin
(
Id,ρA(L)

)OO

whereĀ : V/L→ V/A(L) is induced fromA by passing to the quotient, hence:

Φ = Lin
(
(A|L)−1, ρA(L) ◦ Ā ◦ ρ−1

L

)
.

It is easy to see that:

ρA(L) ◦ Ā ◦ ρ−1
L = (A|L)∗−1.

This concludes the proof. �
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2.5.10. PROPOSITION. For L ∈ Λ, the differential of the map:

βL : Sp(V, ω) −→ Λ

given byβL(A) = A(L) is:

dβL(A) ·X = ω(X ◦A−1·, ·)|A(L)×A(L),

for all A ∈ Sp(V, ω),X ∈ TASp(V, ω) = sp(V, ω) ·A.

PROOF. It follows easily from Proposition 2.4.11, keeping in mind the iden-
tification TA(L)Λ ' Bsym(A(L)) obtained by the restriction of the isomorphism
Lin(Id, ρA(L)). �

We will now show that the Lagrangian Grassmannian can be obtained as a quo-
tient of the unitary group. LetJ be a complex structure inV which is compatible
with the symplectic formω; consider the corresponding inner productg = ω(·, J ·)
onV and the Hermitian productgs in (V, J) defined in (1.4.10). Using the notation
introduced in Subsection 2.1.1, Proposition 1.4.22 tells us that

U(V, J, gs) = O(V, g) ∩ Sp(V, ω).

Let us now fix a LagrangianL0 ⊂ V ; by Lemma 1.4.26,L0 is a real form in
(V, J) wheregs is real. It follows thatgs is the unique sesquilinear extension
of the inner productg|L0×L0 in L0. SinceL0 is a real form in(V, J), we have
that(V, J) is a complexification ofL0, from which it follows that everyIR-linear
endomorphismT ∈ Lin(L0) extends uniquely to aC-linear endomorphism of
(V, J). From Remark 1.3.16 it follows thatT ∈ Lin(L0) is g-orthogonal if and
only if TC is gs-unitary; we therefore have an injective homomorphism of Lie
groups:

(2.5.14) O
(
L0, g|L0×L0

)
3 T 7−→ TC ∈ U(V, J, gs)

whose image consists precisely of the elements inU(V, J, gs) that leaveL0 invari-
ant (see Lemma 1.3.11). Corollary 1.4.27 tells us that the subgroupU(V, J, gs)
of Sp(V, ω) acts transitively onΛ; from Corollary 2.1.9 we therefore obtain the
following:

2.5.11. PROPOSITION. Fix L0 ∈ Λ and a complex structureJ onV which is
compatible withω; the map:

U(V, J, gs) 3 A 7−→ A(L0) ∈ Λ

induces a diffeomorphism

U(V, J, gs)/O
(
L0, g|L0×L0

)
' Λ,

whereO(L0, g|L0×L0

)
is identified with a closed subgroup ofU(V, J, gs) through

(2.5.14). �

Obviously, the choice of a symplectic basis inV induces an isomorphism be-
tween the Lagrangian Grassmannian of(V, ω) and the Lagrangian Grassmannian
of IR2n endowed with the canonical symplectic structure. Hence we have the fol-
lowing:
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2.5.12. COROLLARY. The Lagrangian GrassmannianΛ is isomorphic to the
quotientU(n)/O(n); in particular, Λ is a compact and connect manifold.

2.5.1. The submanifoldsΛk(L0). In this subsection we will consider a fixed
symplectic space(V, ω), with dim(V ) = 2n, and a Lagrangian subspaceL0 ⊂ V .
Fork = 0, . . . , n we define the following subsets ofΛ:

Λk(L0) =
{
L ∈ Λ : dim(L ∩ L0) = k

}
.

Observe that, fork = 0, the above definition is compatible with the definition of
Λ0(L0) given in (2.5.2). Our goal is to show that eachΛk(L0) is a submanifold of
Λ and to compute its tangent space; we will also show thatΛ1(L0) has codimension
1 in Λ, and that it admits a canonical transverse orientation inΛ.

Let us denote bySp(V, ω, L0) the closed subgroup ofSp(V, ω) consisting of
those symplectomorphisms that preserveL0:

(2.5.15) Sp(V, ω, L0) =
{
A ∈ Sp(V, ω) : A(L0) = L0

}
.

It is easy to see that the Lie algebrasp(V, ω, L0) of Sp(V, ω, L0) is given by (see
formula (2.1.5)):

sp(V, ω, L0) =
{
X ∈ sp(V, ω) : X(L0) ⊂ L0

}
.

In the next Lemma we compute more explicitly this algebra:

2.5.13. LEMMA . The Lie algebrasp(V, ω, L0) consists of those linear endo-
morphismsX ∈ Lin(V ) such thatω(X·, ·) is a symmetricbilinear form that van-
ishes onL0.

PROOF. It follows from the characterization of the algebrasp(V, ω) given in
Subsection 2.1.1, observing thatω(X·, ·)|L0×L0 = 0 if and only ifX(L0) is con-
tained in theω-orthogonal complementL⊥0 of L0. But L0 is Lagrangian, hence
L⊥0 = L0. �

It is clear that the action ofSp(V, ω) onΛ leaves each subsetΛk(L0) invariant;
moreover, by Proposition 1.4.38, it follows thatΛk(L0) is an orbit of the action of
Sp(V, ω, L0). The strategy then is to use Theorem 2.1.12 to conclude thatΛk(L0)
is an embedded submanifold ofΛ; to this aim, we need to show thatΛk(L0) is
locally closed inΛ.

For eachk = 0, . . . , n we define:

Λ≥k(L0) =
n⋃
i=k

Λi(L0), Λ≤k(L0) =
k⋃
i=0

Λi(L0).

We have the following:

2.5.14. LEMMA . For all k = 0, . . . , n, the subsetΛ≤k(L0) is open and the
subsetΛ≥k(L0) is closed inΛ.

PROOF. It follows from Corollary 2.4.8 that the set of spacesW ∈ Gn(V )
such thatdim(W ∩ L0) ≤ k is open inGn(V ); sinceΛ has the topology induced
by that ofGn(V ), it follows that Λ≤k(L0) is open inΛ. SinceΛ≥k(L0) is the
complementary ofΛ≤k−1(L0), the conclusion follows. �
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2.5.15. COROLLARY. For all k = 0, . . . , n, the subsetΛk(L0) is locally closed
in Λ.

PROOF. Simply observe thatΛk(L0) = Λ≥k(L0) ∩ Λ≤k(L0). �

As a corollary, we obtain the main result of the subsection:

2.5.16. THEOREM. For eachk = 0, . . . , n, Λk(L0) is an embedded submani-
fold ofΛ with codimension12k(k + 1); its tangent space is given by:

(2.5.16) TLΛk(L0) =
{
B ∈ Bsym(L) : B|(L0∩L)×(L0∩L) = 0

}
,

for all L ∈ Λk(L0).

PROOF. It follows from Proposition 1.4.38 thatΛk(L0) is an orbit of the action
of Sp(V, ω, L0) on Λ. From Theorem 2.1.12 and Corollary 2.5.15 it follows that
Λk(L0) is an embedded submanifold ofΛ. It remains to prove the identity in
(2.5.16), because then it will follow that

(2.5.17) TLΛ ∼= Bsym(L) 3 B 7−→ B|(L0∩L)×(L0∩L) ∈ Bsym(L0 ∩ L)

is a surjective linear operator whose kernel isTLΛk(L0), which implies the claim
on the codimension ofΛk(L0).

Using Propositions 2.1.7, 2.5.10 and Lemma 2.5.13, we have that:

TLΛk(L0) =
{
B|L×L : B ∈ Bsym(V ), B|L0×L0 = 0

}
,

for all L ∈ Λk(L0). It remains to prove that every symmetric bilinear formB ∈
Bsym(L) that vanishes on vectors inL∩L0 can be extended to a symmetric bilinear
form onV that vanishes onL0. This fact is left to the reader in Exercise 2.8.�

2.5.17. REMARK . One can actually prove that the manifoldsΛk(L0) are con-
nected; namely, Remark 1.4.40 implies that the groupSp+(V, ω, L0) of symplec-
tomorphisms ofV which restrict to apositiveisomorphism ofL0 acts transitively
on Λk(L0). The connectedness ofΛk(L0) then follows from the conectedness of
Sp+(V, ω, L0) (see Example 3.2.36).

2.5.18. REMARK . It follows from Theorem 2.5.16 thatΛ0(L0) is a dense open
subset ofΛ; indeed, its complementΛ≥1(L0) is a finite union of positive codimen-
sion submanifolds, all of which have thereforenull measure. It follows that given
any sequence(Li)i∈IN of Lagrangian subspaces ofV , then the set⋂

i∈IN
Λ0(Li) =

{
L ∈ Λ : L ∩ Li = {0}, ∀i ∈ IN

}
is dense inΛ, because its complement is a countable union of sets of null measure.
The same conclusion can be obtained by using Baire’s Lemma instead of the “null
measure argument”.

We are now able to define a transverse orientation forΛ1(L0) in Λ. Recall
that if N is a submanifold ofM , then atransverse orientationfor N in M is
an orientation for thenormal bundlei∗(TM)/TN , wherei : N → M denotes
the inclusion; more explicitly, a transverse orientation forN inM is a choice of an
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orientation for the quotient spaceTnM/TnN that dependscontinuouslyonn ∈ IN .
Thecontinuous dependenceof the choice of an orientation has to be meant in the
following sense: given anyn0 ∈ N there exists an open neighborhoodU ⊂ N
of n0 and there existcontinuousfunctionsXi : U → TM , i = 1, . . . , r, such
that(Xi(n) + TnN)ri=1 is a positively oriented basis ofTnM/TnN for all n ∈ U .
It follows that, if such continuous mapsXi exist, then we can replace them with
differentiable mapsXi that satisfy the same condition.

Observe that, for eachL ∈ Λk(L0), the map (2.5.17) passes to the quotient
and defines an isomorphism:

(2.5.18) TLΛ/TLΛk(L0)
∼=−−→ Bsym(L0 ∩ L).

2.5.19. DEFINITION. For eachL ∈ Λ1(L0) we define an orientation in the
quotientTLΛ/TLΛ1(L0) in the following way:

• we give an orientation to the unidimensional spaceBsym(L0 ∩ L) by
requiring that an elementB ∈ Bsym(L0 ∩ L) is a positively oriented
basis ifB(v, v) > 0 for some (hence for all)v ∈ L0 ∩ L with v 6= 0;

• we consider the unique orientation inTLΛ/TLΛ1(L0) that makes the iso-
morphism (2.5.18) positively oriented.

2.5.20. PROPOSITION. The orientation chosen in Definition 2.5.19 for the
spaceTLΛ/TLΛ1(L0) makesΛ1(L0) into a transversally oriented submanifold
of Λ; this transverse orientation is invariant by the action ofSp(V, ω, L0), i.e., for
all A ∈ Sp(V, ω, L0) and for allL ∈ Λ1(L0) the isomorphism:

TLΛ/TLΛ1(L0) −→ TA(L)Λ/TA(L)Λ
1(L0)

induced fromdA(L) by passage to the quotient is positively oriented.

PROOF. It follows from Proposition 2.5.9 that the differentialdA(L) coincides
with the push-forwardA#; hence we have the following commutative diagram:

(2.5.19) TLΛ
dA(L) //

��

TA(L)Λ

��
Bsym(L ∩ L0)

(A|L∩L0
)#

// Bsym(A(L) ∩ L0)

where the vertical arrows are the operators of restriction of bilinear forms. Then,
the orientation given in Definition 2.5.19 isSp(V, ω, L0)-invariant.

The continuous dependence onL of such orientation now follows from the fact
that the action ofSp(V, ω, L0) onΛ1(L0) is transitive.1 �

1The required transverse orientation can be seen as a sectionO of the (Z2-principal) fiber bun-
dle overΛ1(L0) whose fiber at the pointL ∈ Λ1(L0) is the set consisting of the two possible
orientations ofTLΛ/TLΛ1(L0). Under this viewpoint, theSp(V, ω, L0)-invariance of this trans-
verse orientation means that the mapO is Sp(V, ω, L0)-equivariant, and the differentiability ofO
follows then from Corollary 2.1.10.
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2.5.21. REMARK . If A ∈ Sp(V, ω) is a symplectomorphism withA(L0) =
L′0, then, as in the proof of Proposition 2.5.20, it follows that the isomorphism:

TLΛ/TLΛ1(L0) −→ TA(L)Λ/TA(L)Λ
1(L′0)

induced by the differentialdA(L) by passage to the quotient is positively oriented
for all L ∈ Λ1(L0). To see this, simply replaceL0 byL′0 in the right column of the
diagram (2.5.19).

Exercises for Chapter 2

EXERCISE2.1. LetX be a locally compact Hausdorff topological space. Show
that ifX is second countable thenX is paracompact; conversely, show that ifX is
paracompact, connected and locally second countable thenX is second countable.

EXERCISE 2.2. Suppose thatP,M are manifolds,N ⊂ M is an immersed
submanifold andf : P → M is a differentiable map. Suppose thatf(P ) ⊂ N ;
prove that iff0 : P → N is continuous (f0 is defined by the diagram (2.1.1))
whenN is endowed with the topology induced by its differentiable atlas, then
f0 : P → N is differentiable.

EXERCISE 2.3. LetM be a manifold,N ⊂ M a subset andτ a topology for
N . Prove that there exists at most one differentiable structure onN that induces
the topologyτ and that makesN an immersed submanifold ofM .

EXERCISE 2.4. Prove that every locally compact subspace of a Hausdorff
space is locally closed and, conversely, that in a locally compact Hausdorff space
every locally closed subset is locally compact in the induced topology.

EXERCISE 2.5. LetG be a Lie group acting differentiably on the manifold
M ; let X ∈ g and letX∗ be the vector field given by (2.1.14). Prove thatX∗ is
completein M , i.e., its maximal integral lines are defined over the whole real line.

EXERCISE 2.6. Show that, given any countable family{Vi}∞i=1 of k-dimen-
sional subspaces ofIRn, with k < n, then there exist a(n − k)-dimensional sub-
spaceW ⊂ IRn which is complementary to all theVi’s.

EXERCISE2.7. Determine the isotropy of the elementIRk⊕{0}n−k ∈ Gk(n)
with respect to the natural action ofGL(n, IR) onGk(n).

EXERCISE 2.8. Let (V, ω) be a (finite dimensional) symplectic space and
L,L0 be Lagrangian subspaces ofV . Suppose thatB ∈ Bsym(L) is a symmet-
ric bilinear form onL that vanishes inL∩L0. Prove thatB extends to a symmetric
bilinear form onV that vanishes inV0.

EXERCISE 2.9. Prove that ifP : E → B is a differentiable fibration, then
every curve of classCk, γ : [a, b] → B, admits a liftγ : [a, b] → B of classCk,
0 ≤ k ≤ +∞ (see Remark 2.1.18).
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EXERCISE2.10. Show that the map

Lin(IRn, IRm) 3 T 7−→ Gr(T ) ∈ Gn(n+m)

is a diffeomorphism onto an open set and compute its differential.

EXERCISE 2.11. Prove that a mapD : [a, b] → Gk(n) is of classCp if and
only if there exist mapsY1, . . . , Yk : [a, b] → IRn of classCp such that(Yi(t))ki=1
is a basis ofD(t) for all t.

EXERCISE 2.12. TheGrassmannian of orientedk-dimensional subspaces of
IRn is the setG+

k (n) of all pairs (W,O) whereW ⊂ IRn is a k-dimensional
subspace andO is an orientation inW . Define an action ofGL(n, IR) in G+

k (n)
and show that its restriction toSO(n) is transitive ifk < n. Conclude that, if
k < n,G+

k (n) has a natural structure of homogeneous manifold which is compact
and connected.

EXERCISE2.13. Given a LagrangianL0 of a symplectic space(V, ω), denote
by FixL0 the subgroup ofSp(V, ω) consisting of those symplectomorphismsT
such thatT |L0 = Id, i.e., such thatT (v) = v for all v ∈ L0. Prove thatFixL0

is a Lie subgroup ofSp(V, ω), and that it acts freely and transitively onΛ0(L0).
Conclude thatFixL0 is diffeomorphic toΛ0(L0).

EXERCISE2.14. In the notations of Exercise 2.13, prove thatFixL0 is isomor-
phic as a Lie group to the additive group ofn× n real symmetric matrices.

EXERCISE 2.15. GivenL0, L ∈ Λ with L ∩ L0 = {0} andB ∈ Bsym(L0) a
nondegenerate symmetric bilinear form onL0, prove that there existsL1 ∈ Λ with
L1 ∩ L0 = {0} and such thatϕL0,L1(L) = B.



CHAPTER 3

Topics of Algebraic Topology

3.1. The Fundamental Groupoid and Group

In this section we will give a short summary of the definition and of the main
properties of the fundamental groupoid and group of a topological spaceX. We
will denote byI the unit closed interval[0, 1] and byC0(Y, Z) the set of continuous
mapsf : Y → Z between any two topological spacesY andZ.

Let us begin with a general definition:

3.1.1. DEFINITION. If Y andZ are topological spaces, we say that two maps
f, g ∈ C0(Y, Z) arehomotopicwhen there exists a continuous function:

H : I × Y −→ Z

such thatH(0, y) = f(y) andH(1, y) = g(y) for everyy ∈ Y . We then say that
H is ahomotopybetweenf andg and we writeH : f ∼= g. Fors ∈ I, we denote
byHs : Y → Z the mapHs(y) = H(s, y).

Intuitively, a homotopyH : f ∼= g is a one-parameter family(Hs)s∈I in
C0(Y, Z) thatdeforms continuouslyH0 = f intoH1 = g.

In our context, the following notion of homotopy is more interesting:

3.1.2. DEFINITION. Let γ, µ : [a, b] → X be continuous curves in a topolog-
ical spaceX; we say thatγ is homotopic toµ with fixed endpointsif there exists
a homotopyH : γ ∼= µ such thatH(s, a) = γ(a) = µ(a) andH(s, b) = γ(b) =
µ(b) for everys ∈ I. In this case, we say thatH is ahomotopy with fixed endpoints
betweenγ andµ.

Clearly, two curvesγ, µ : [a, b] → X can only be homotopic with fixed end-
points if they have the same endpoints, i.e., ifγ(a) = µ(a) andγ(b) = µ(b);
given a homotopy with fixed endpointsH the stagesHs are curves with the same
endpoints asγ andµ.

It is easy to see that the “homotopy” and the “homotopy with fixed endpoints”
are equivalence relations inC0(Y, Z) and inC0([a, b], X) respectively.

For this section we will fix a topological spaceX and we will denote byΩ(X)
the set of all continuous curvesγ : I → X:

Ω(X) = C0(I,X).

Forγ ∈ Ω(X), we denote by[γ] the equivalence class of all curves homotopic
to γ with fixed endpoints; we also denote byΩ(X) the set of such classes:

Ω(X) =
{

[γ] : γ ∈ Ω(X)
}
.

65
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If γ, µ ∈ Ω(X) are such thatγ(1) = µ(0), we define theconcatenation ofγ andµ
to be the curveγ · µ in Ω(X) defined by:

(γ · µ)(t) =

{
γ(2t), t ∈ [0, 1

2 ],
µ(2t− 1), t ∈ [12 , 1].

In this way, the map(γ, µ) 7→ γ · µ defines apartial binary operationin the set
Ω(X). Forγ ∈ Ω(X), we defineγ−1 ∈ Ω(X) by setting:

γ−1(t) = γ(1− t), t ∈ I.

For each pointx ∈ X we denote byox ∈ Ω(X) the constant curve equal tox:

ox(t) = x, t ∈ I.

It is not hard to prove that, ifγ(1) = µ(0), [γ] = [γ1] and[µ] = [µ1], then:

[γ · µ] = [γ1 · µ1],
[
γ−1

]
=

[
γ−1

1

]
.

These identities show that the operations(γ, µ) 7→ γ · µ andγ 7→ γ−1 pass to the
quotientand they define operations in the setΩ(X); we then define:

[γ] · [µ] = [γ · µ], [γ]−1 =
[
γ−1

]
.

The homotopy class[γ] of a curveγ is invariant by reparameterizations:

3.1.3. LEMMA . Let γ ∈ Ω(X) be a continuous curve and consider arepara-
meterizationγ ◦ σ of γ, whereσ : I → I is a continuous map. Ifσ(0) = 0 and
σ(1) = 1, then[γ] = [γ ◦ σ]; if σ(0) = σ(1), thenγ ◦ σ is homotopic with fixed
endpoints to a constant curve, i.e.,[γ ◦ σ] = [oγ(σ(0))].

PROOF. DefineH(s, t) = γ
(
(1−s)t+s σ(t)

)
to prove the first statement and

H(s, t) = γ
(
(1− s)σ(t) + s σ(0)

)
to prove the second statement. �

3.1.4. REMARK . In some cases we may need to consider homotopy classes of
curvesγ : [a, b] → X defined on an arbitrary closed interval[a, b]; in this case we
will denote by[γ] the homotopy class with fixed endpoints of the curve:

(3.1.1) I 3 t 7−→ γ
(
(b− a)t+ a

)
∈ X;

it follows from Lemma 3.1.3 that (3.1.1) is homotopic with fixed endpoints to every
reparameterizationγ ◦ σ of γ, whereσ : I → [a, b] is a continuous map with
σ(0) = a andσ(1) = b. Also the concatenation of curves defined on arbitrary
closed intervals should be understood in the sense of the concatenation of their
affine reparameterizations on the intervalI.

3.1.5. COROLLARY. Givenγ, µ, κ ∈ Ω(X) with γ(1) = µ(0) and µ(1) =
κ(0), then:

(3.1.2)
(
[γ] · [µ]

)
· [κ] = [γ] ·

(
[µ] · [κ]

)
.

Moreover, forγ ∈ Ω(X) we have:

(3.1.3) [γ] · [oγ(1)] = [γ], [oγ(0)] · [γ] = [γ]
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and also:

(3.1.4) [γ] · [γ]−1 = [oγ(0)], [γ]−1 · [γ] = [oγ(1)].

PROOF. The identity (3.1.2) follows from the observation that(γ · µ) · κ is a
reparameterization ofγ · (µ · κ) by a continuous mapσ : I → I with σ(0) = 0
andσ(1) = 1. Similarly, the identities in (3.1.3) are obtained by observing that
γ · oγ(1) andoγ(0) · γ are reparameterizations ofγ by a mapσ with σ(0) = 0 and
σ(1) = 1. The first identity in (3.1.4) follows from the fact thatγ · γ−1 = γ ◦ σ
whereσ : I → I satisfiesσ(0) = σ(1) = 0; the second identity in (3.1.4) is
obtained similarly. �

The identity (3.1.2) tells us that the concatenation isassociativein Ω(X) when
all the products involved are defined; the identities in (3.1.3), roughly speaking,
say that the classes[ox], x ∈ X, act like neutral elementsfor the operation of
concatenation, and the identities in (3.1.4) tell us that the class[γ−1] acts like the
inverseof the class[γ] with respect to the concatenation.

If we fix a pointx0 ∈ X, we denote byΩx0(X) the set ofloops inX with
basepointx0:

Ωx0(X) =
{
γ ∈ Ω(X) : γ(0) = γ(1) = x0

}
.

We also consider the image ofΩx0(X) in the quotientΩ(X), that will be denoted
by:

π1(X,x0) =
{
[γ] : γ ∈ Ωx0(X)

}
.

The (partially defined) binary operation of concatenation inΩ(X) restricts to a
(totally defined) binary operation inπ1(X,x0); from Corollary 3.1.5 we obtain the
following:

3.1.6. THEOREM. The setπ1(X,x0) endowed with the concatenation opera-
tion is a group. �

This is the main definition of the section:

3.1.7. DEFINITION. The setΩ(X) endowed with the (partially defined) oper-
ation of concatenation is called thefundamental groupoidof the topological space
X. For allx0 ∈ X, the groupπ1(X,x0) (with respect to the concatenation opera-
tion) is called thefundamental group ofX with basepointx0.

3.1.8. REMARK . A groupoid is normally defined as asmall category, i.e., a
category whose objects form a set, whose morphisms are all isomorphisms. In this
context it will not be important to study this abstract notion of groupoid, never-
theless it is important to observe that Corollary 3.1.5 shows that the fundamental
groupoid of a topological space is indeed a groupoid in this abstract sense.

3.1.9. REMARK . If X0 ⊂ X is the arc-connected component ofx0 in X, then
π1(X,x0) = π1(X0, x0), since every loop inX with basepoint inx0 has image
contained inX0, as well as every homotopy between such loops has image inX0.

In the following lemma we describe the functoriality properties of the funda-
mental groupoid and group:
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3.1.10. LEMMA . Let f : X → Y be a continuous map; forγ ∈ Ω(X), the
homotopy class[f ◦ γ] depends only on the homotopy class[γ] of γ; hence, we
have a well defined map

f∗ : Ω(X) −→ Ω(Y )
given byf∗([γ]) = [f ◦ γ]. For γ, µ ∈ Ω(X) with γ(1) = µ(0) and for every
x0 ∈ X the following identities hold:

f∗([γ] · [µ]) = f∗([γ]) · f∗([µ]), f∗
(
[γ]−1

)
= f∗([γ])−1, f∗([ox0 ]) = [of(x0)].

In particular, if f(x0) = y0 thenf∗ restricts to a map

f∗ : π1(X,x0) −→ π1(Y, y0)

which is a group homomorphism. �

Clearly, givenf ∈ C0(X,Y ) andg ∈ C0(Y, Z) then:

(g ◦ f)∗ = g∗ ◦ f∗,
and that, ifId denotes the identity ofX, thenId∗ is the identity ofΩ(X); it follows
that, if f : X → Y is a homeomorphism, thenf∗ is a bijection, and it induces an
isomorphism ofπ1(X,x0) ontoπ1(Y, f(x0)). The mapf∗ is said to beinducedby
f in the fundamental groupoid or in the fundamental group.

The following proposition relates the fundamental groups relative to different
basepoints:

3.1.11. PROPOSITION. Givenx0, x1 ∈ X and a continuous curveλ : I → X
with λ(0) = x0 andλ(1) = x1, we have an isomorphism:

λ# : π1(X,x0) −→ π1(X,x1)

defined byλ#([γ]) = [λ]−1 · [γ] · [λ], for everyγ ∈ Ωx0(X). �

3.1.12. COROLLARY. If x0 andx1 belong to the same arc-connected compo-
nent ofX, then the groupsπ1(X,x0) andπ1(X,x1) are isomorphic. �

The following commutative diagram relates the homomorphismsf∗ andλ#:

π1(X,x0)
f∗−−−−→ π1(Y, y0)

λ#

y y(f◦λ)#

π1(X,x1) −−−−→
f∗

π1(Y, y1)

wheref ∈ C0(X,Y ), x0, x1 ∈ X, y0 = f(x0), y1 = f(x1) andλ ∈ Ω(X) is a
curve fromx0 to x1.

3.1.13. REMARK . In spite of the fact thatπ1(X,x0) andπ1(X,x1) are isomor-
phic if x0 andx1 are in the same arc-connected component ofX, such isomorphism
is not canonical; more explicitly, ifλ0, λ1 ∈ Ω(X) are curves fromx0 to x1, then:

(λ1)−1
# ◦ (λ0)# = I[λ],

whereλ = λ1 ·λ−1
0 andI[λ] denotes the operator of conjugation by the element[λ]

in π1(X,x0). If π1(X,x0) is abelian it follows that(λ0)# = (λ1)#, and therefore
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the fundamental groups with basepoints in the same arc-connected components can
be canonically identified (compare with Remark 3.3.34).

3.1.14. DEFINITION. We say that a topological spaceX is simply connectedif
it is arc-connected and ifπ1(X,x0) is the trivial group{ox0} for some (hence for
all) x0 ∈ X.

Observe that, ifX is simply connected, then[γ] = [µ] for all continuous curves
γ, µ : I → X such thatγ(0) = µ(0) andγ(1) = µ(1); for, in this case,[γ]·[µ]−1 =
[ox0 ].

3.1.15. EXAMPLE . A subsetX ⊂ IRn is said to bestar-shapedaround the
pointx0 ∈ X if for everyx ∈ X the segment:

[x0, x] =
{
(1− t)x0 + tx : t ∈ I

}
is contained inX; we say thatX is convexif it is star-shaped at each one of its
points. IfX is star-shaped atx0, thenX is simply connected; indeed,X is clearly
arc-connected, and, given a loopγ ∈ Ωx0(X), we can define a homotopy:

I × I 3 (s, t) 7→ (1− s)γ(t) + s x0 ∈ X
betweenγ andox0 .

3.1.16. REMARK . Two loopsγ ∈ Ωx0(X) andµ ∈ Ωx1(X) are said to be
freely homotopicif there exists a homotopyH : γ ∼= µ such that, for everys ∈ I,
the curveHs is a loop inX, i.e.,H(s, 0) = H(s, 1) for everys. In this situation,
if we setλ(s) = H(s, 0), we have the following identity:

(3.1.5) λ#([γ]) = [µ].

The identity (3.1.5) follows from the fact that, since the squareI × I is convex,
the homotopy class inΩ(I × I) of the loop that is obtained by considering the
boundary ofI × I run counterclockwise is trivial, hence so is its image byH∗.
Such image is precisely the difference of the terms on the two sides of the equality
in (3.1.5). In Exercise 3.3 the reader is asked to show that, conversely, any loopγ
is always freely homotopic toλ−1 · γ · λ, for any curveλ with λ(0) = γ(0).

In particular, ifγ, µ ∈ Ωx0(X) are freely homotopic, then the classes[γ] and
[µ] areconjugatein π1(X,x0); it follows thatγ ∈ Ωx0(X) is such that[γ] = [ox0 ]
if and only if γ is freely homotopic to a constant loop. With this argument we have
shown thatan arc-connected topological spaceX is simply connected if and only
if every loop inX is freely homotopic to a constant loop.

3.1.17. EXAMPLE . A topological spaceX is said to becontractible if the
identity map ofX is homotopic to a constant map, i.e., if there exists a continuous
mapH : I ×X → X andx0 ∈ X such thatH(0, x) = x andH(1, x) = x0 for
everyx ∈ X. For instance, ifX ⊂ IRn is star-shaped atx0, thenX is contractible:
the required homotopyH is given byH(s, x) = (1− s)x+ s x0.
It is easy to see that every contractible space is arc-connected (see Exercise 3.1).

Moreover, ifX is contractible thenX is simply connected; indeed, ifH : Id ∼= x0

is a homotopy andγ ∈ Ω(X) is a loop, then the map(s, t) 7→ H(s, γ(t)) is a free
homotopy betweenγ and the constant loopox0 (see Remark 3.1.16).
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3.1.1. Stability of the homotopy class of a curve.In this subsection we show
that, under reasonable assumptions on the topology of the spaceX, two continuous
curves inX that aresufficiently closebelong to the same homotopy class. We begin
with a definition of “proximity” for continuous maps:

3.1.18. DEFINITION. LetY, Z be topological spaces; forK ⊂ Y compact and
U ⊂ Z open, we define:

V(K;U) =
{
f ∈ C0(Y, Z) : f(K) ⊂ U

}
.

The compact-open topologyin C0(Y, Z) is the topology generated by the sets
V(K;U) with K ⊂ Y compact andU ⊂ Z open; more explicitly, an open set
in the compact-open topology is union of intersections of the form:

V(K1;U1) ∩ . . . ∩ V(Kn;Un)

with eachKi ⊂ Y compact and eachUi ⊂ Z open,i = 1, . . . , n.

3.1.19. REMARK . When the topology of the counterdomainZ is metrizable,
i.e., it is induced by a metricd, the compact-open topology inC0(Y, Z) is also
called thetopology of the uniform convergence on compacta; in this case it is not
too hard to prove that, forf ∈ C0(Y, Z), a fundamental systems of open neighbor-
hood off is obtained by considering the sets:

V(f ;K, ε) =
{
g ∈ C0(Y, Z) : sup

y∈K
d(f(y), g(y)) < ε

}
,

whereK ⊂ Y is an arbitrary compact set andε > 0. In this topology, a sequence
(or a net)fn converges tof if and only if fn converges uniformly tof on each
compact subset ofY .

In the context of differential topology, ifY andZ are manifolds (possibly
with boundary), the compact-open topology inC0(Y, Z) is also known as theC0-
topologyor as theC0-weak Whitney topology.

3.1.20. REMARK . To each mapf : X × Y → Z which is continuous in the
second variable there corresponds a map:

f̃ : X −→ C0(Y, Z).

An interesting property of the compact-open topology inC0(Y, Z) is that, ifY is
Hausdorff, the continuity of̃f is equivalent to the continuity off |X×K for every
compactK ⊂ Y (see [22, Proposiç̃ao 21,§8, Caṕıtulo 9]). In particular, ifY
is Hausdorff and locally compact, the continuity off and the continuity off̃ are
equivalent.

We will now introduce suitable conditions on the topological spaceX that will
allow to prove the stability of the homotopy class of curves.

3.1.21. DEFINITION. We say that the topological spaceX is locally arc-con-
nectedif every point ofX has a fundamental system of open neighborhoods con-
sisting of arc-connected subsets, i.e., if for everyx ∈ X and every neighborhood
V of x in X there exists an open arc-connected subsetU ⊂ X with x ∈ U ⊂ V .
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We say thatX is semi-locally simply connectedif everyx ∈ X has a neighbor-
hoodV such that every loop onV is contractible inX, i.e., givenγ ∈ Ω(X) with
γ(0) = γ(1) andIm(γ) ⊂ V , thenγ is homotopic (inX) with fixed endpoints to
a constant curve.

3.1.22. EXAMPLE . If every point ofX has a simply connected neighborhood,
thenX is semi-locally simply connected; in particular, every differentiable (or even
topological) manifold is locally arc-connected and semi-locally simply connected.

This is the main result of the subsection:

3.1.23. THEOREM. LetX be a locally arc-connected and semi-locally simply
connected topological space; given a curveγ ∈ Ω(X), there exists a neighborhood
U of γ in the spaceC0(I,X) endowed with the compact-open topology such that
for everyµ ∈ U , if µ(0) = γ(0) andµ(1) = γ(1) then[µ] = [γ].

PROOF. Write X =
⋃
α∈A Uα, where eachUα ⊂ X is open and such that

every lace inUα is contractible inX. Then, the inverse imagesγ−1(Uα), α ∈ A,
form an open covering of the compact spaceI, which has aLebesgue number
δ > 0, i.e., every subset ofI whose diameter is less thanδ is contained in some
γ−1(Uα).

Let 0 = t0 < t1 < · · · < tk = 1 be a partition ofI with tr+1 − tr < δ and let
αr ∈ A be such thatγ([tr, tr+1]) ⊂ Uαr for everyr = 0, . . . , k−1. For eachr, the
pointγ(tr) ∈ Uαr−1 ∩ Uαr has an open arc-connected neighborhoodVr contained
in the intersectionUαr−1 ∩ Uαr ; define the neighborhoodU of γ in C0(I,X) by:

U =
k−1⋂
r=0

V([tr, tr+1];Uαr) ∩
k−1⋂
r=1

V({tr};Vr).

Clearly,γ ∈ U . Let nowµ ∈ U be such thatµ(0) = γ(0) andµ(1) = γ(1); we
need to show that[γ] = [µ].

For eachr = 1, . . . , k− 1 choose a curveλr ∈ Ω(Vr) with λr(0) = γ(tr) and
λr(1) = µ(tr); setλ0 = oγ(0) andλk = oγ(1). Forr = 0, . . . , k − 1, we have (see
Remark 3.1.4):

(3.1.6) [µ|[tr,tr+1]] = [λr]−1 · [γ|[tr,tr+1]] · [λr+1],

because the curve on the right hand side of (3.1.6) concatenated with the inverse
of the curve on the left hand side of (3.1.6) is the homotopy class of a loop inUαr ,
hence trivial inΩ(X). Moreover,

[µ] = [µ|[t0,t1]] · · · · · [µ|[tk−1,tk]],

[γ] = [γ|[t0,t1]] · · · · · [γ|[tk−1,tk]].
(3.1.7)

The conclusion now follows from (3.1.7) by concatenating the curves on both sides
of the identities (3.1.6) forr = 0, . . . , k − 1. �

3.1.24. EXAMPLE . Let Sn ⊂ IRn+1 be the unitn-dimensional sphere. From
the proof of Theorem 3.1.23 it follows that every curveγ : I → Sn is homotopic
with fixed endpoints to a curve which is piecewiseC1. If n ≥ 2, such curve cannot
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be surjective onto the sphere, because its image must have null measure inSn.
Hence, ifn ≥ 2 andγ : I → Sn is a piecewiseC1 loop, there existsx ∈ Sn such
thatIm(γ) ⊂ Sn \ {x}. Using the stereographic projection, we see thatSn \ {x}
is homeomorphic toIRn, therefore it is simply connected. From this argument it
follows that the sphereSn is simply connected forn ≥ 2; the circleS1 is not
simply connected (see Example 3.2.24).

We will need also a version of Theorem 3.1.23 for the case of homotopies with
free endpoints in a given set.

3.1.25. DEFINITION. LetA ⊂ X be a subset and letγ, µ : [a, b] → X be given
curves withγ(a), µ(a), γ(b), µ(b) ∈ A; we say thatγ andµ arehomotopic with
endpoints free inA if there exists a homotopyH : γ ∼= µ such thatHs(a),Hs(b) ∈
A for everys ∈ I; in this case we say thatH is a homotopy with free endpoints in
A betweenγ andµ.

The relation of “homotopy with free endpoints inA” is an equivalence relation
in the set of curvesγ ∈ C0([a, b], X) such thatγ(a), γ(b) ∈ A; obviously, if two
curves with endpoints inA are homotopic with fixed endpoints then they will be
homotopic with free endpoints inA.

3.1.26. REMARK . If γ ∈ Ω(X) is a curve with endpoints inA andλ ∈ Ω(A)
is such thatγ(1) = λ(0), then the concatenationγ · λ is homotopic toγ with
free endpoints inA. Indeed, for eachs ∈ I, denote byλs ∈ Ω(A) the curve
λs(t) = λ

(
(1 − s)t

)
. Then,Hs = γ · λs defines a homotopy with free endpoints

in A betweenγ · λ andγ · oλ(0); the conclusion follows from the fact thatγ and
γ · oλ(0) are homotopic with fixed endpoints.

Similarly, one shows that ifλ ∈ Ω(A) is such thatλ(1) = γ(0), thenλ · γ is
homotopic toγ with free endpoints inA.

We have the following version of Theorem 3.1.23 for homotopies with free
endpoints in a set:

3.1.27. THEOREM. LetX be a locally arc-connected and semi-locally simply
connected topological space; letA ⊂ X be a locally arc-connected subspace of
X. Given a curveγ : I → X with endpoints inA, then there exists a neighborhood
U of γ in C0(I,X) endowed with the compact-open topology such that, for every
µ ∈ U with endpoints inA, the curvesγ andµ are homotopic with free endpoints
in A.

PROOF. We will only show how to adapt the proof of Theorem 3.1.23 to this
case. Once the open setsUαr andVr are constructed, we also choose open neigh-
borhoodV0 andVk of γ(t0) andγ(tk) respectively in such a way thatV0 ∩ A and
Vk ∩ A are arc-connected and contained respectively inUα0 and inUαk−1

. Then,
we defineU by setting:

U =
k−1⋂
r=0

V([tr, tr+1];Uαr) ∩
k⋂
r=0

V({tr};Vr).
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Let µ ∈ U be a curve with endpoints inA; we must show thatγ andµ are homo-
topic with free endpoints inA. The curvesλ0 andλk are now chosen in such a
way thatλr(0) = γ(tr), λr(1) = µ(tr) andIm(λr) ⊂ Vr ∩ A for r = 0, k. The
identity (3.1.6) still holds forr = 0, . . . , k − 1. Using the same argument of that
proof, we now obtain:

[µ] = [λ0]−1 · [γ] · [λk];
and the conclusion follows from Remark 3.1.26. �

3.2. The Homotopy Exact Sequence of a Fibration

In this section we will give a short exposition of the definition and the basic
properties of the (absolute and relative) homotopy groups of a topological space;
we will describe the exact sequence in homotopy of a pair(X,A), and as a corol-
lary we will obtain the homotopy exact sequence of a fibrationp : E → B.

As in Section 3.1, we will denote byI the closed unit interval[0, 1] and by
C0(Y, Z) the set of continuous maps fromY to Z. We will denote byIn theunit
n-dimensional cube, and by∂In its boundary, that is:

∂In =
{
t ∈ In : ti ∈ {0, 1} for somei = 1, . . . , n

}
.

If n = 0, we defineI0 = {0} and∂I0 = ∅.
Let IR∞ denote the space of all sequences(ti)i≥1 of real numbers; we identify

In with the subset ofIR∞:

In ∼= {(t1, . . . , tn, 0, 0, . . .) : 0 ≤ ti ≤ 1, i = 1, . . . , n} ⊂ IR∞

in such a way that, forn ≥ 1, the cubeIn−1 will be identified with the face ofIn:

In−1 ∼= {t ∈ In : tn = 0} ⊂ In;

we will call this face theinitial face of In. We denote byJn−1 the union of the
other faces ofIn:

Jn−1 =
{
t ∈ In : tn = 1 or ti ∈ {0, 1} for somei = 1, . . . , n− 1

}
.

We will henceforth fix a topological spaceX; for everyx0 ∈ X we denote by
Ωn
x0

(X) the set:

Ωn
x0

(X) =
{
φ ∈ C0(In, X) : φ(∂In) ⊂ {x0}

}
.

If n = 0, we identify a mapφ : I0 → X with the pointφ(0) ∈ X, so thatΩ0
x0

(X)
is identified with the setX (observe thatΩ0

x0
(X) does not actually depend onx0).

The setΩ1
x0

(X) is the loop space with basepointx0 introduced in Section 3.1.
We say that(X,A) is apair of topological spacesif X is a topological space

andA ⊂ X is a subspace. If(X,A) is a pair of topological spaces,x0 ∈ A and
n ≥ 1 we denote byΩn

x0
(X,A) the set:

Ωn
x0

(X,A) =
{
φ ∈ C0(In, X) : φ(In−1) ⊂ A, φ(Jn−1) ⊂ {x0}

}
.

Observe that, forφ ∈ Ωn
x0

(X,A), we haveφ(∂In) ⊂ A; also:

(3.2.1) Ωn
x0

(X) = Ωn
x0

(X, {x0}), n ≥ 1.
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If n = 1, the cubeIn is the intervalI, the initial faceIn−1 is the point{0} and
Jn−1 = {1}; the setΩ1

x0
(X,A) therefore is simply the set of continuous curves

γ : I → X with γ(0) ∈ A andγ(1) = x0.

3.2.1. DEFINITION. If X is a topological space,x0 ∈ X andn ≥ 0, we
say thatφ, ψ ∈ Ωn

x0
(X) are homotopic inΩn

x0
(X) if there exists a homotopy

H : φ ∼= ψ such thatHs ∈ Ωn
x0

(X) for everys ∈ I; the “homotopy inΩn
x0

(X)” is
an equivalence relation, and for everyφ ∈ Ωn

x0
(X) we denote by[φ] its equivalence

class. The quotient set is denoted by:

πn(X,x0) =
{
[φ] : φ ∈ Ωn

x0
(X)

}
.

We say that[φ] is thehomotopy class defined byφ in πn(X,x0).
Similarly, if (X,A) is a pair of topological spaces,x0 ∈ A andn ≥ 1, we say

thatφ, ψ ∈ Ωn
x0

(X,A) arehomotopic inΩn
x0

(X,A) when there exists a homotopy
H : φ ∼= ψ such thatHs ∈ Ωn

x0
(X,A) for everys ∈ I; then we have an equivalence

relation in Ωn
x0

(X,A) and we also denote the equivalence classes by[φ]. The
quotient set is denoted by:

πn(X,A, x0) =
{
[φ] : φ ∈ Ωn

x0
(X,A)

}
.

We say that[φ] is thehomotopy class defined byφ in πn(X,A, x0).

Observe that the setπ0(X,x0) does not depend on the pointx0, and it is iden-
tified with the set ofarc-connected componentsof X; for everyx ∈ X, [x] will
denote then the arc-connected component ofX that containsx.

From (3.2.1) it follows that:

(3.2.2) πn(X, {x0}, x0) = πn(X,x0), n ≥ 1.

Givenφ, ψ ∈ Ωn
x0

(X) with n ≥ 1, or givenφ, ψ ∈ Ωn
x0

(X,A) with n ≥ 2, we
define theconcatenationof φ with ψ as the mapφ · ψ : In → X given by:

(3.2.3) (φ · ψ)(t) =

{
φ(2t1, t2, . . . , tn), t1 ∈ [0, 1

2 ],
ψ(2t1 − 1, t2, . . . , tn), t1 ∈ [12 , 1],

for everyt = (t1, . . . , tn) ∈ In. Observe that the definition (3.2.3) doesnot make
sense in general forφ, ψ ∈ Ω0

x0
(X) or for φ, ψ ∈ Ω1

x0
(X,A).

The concatenation is a binary operation inΩn
x0

(X) for n ≥ 1 and inΩn
x0

(X,A)
for n ≥ 2; it is easy to see that this binary operation passes to the quotient and it
defines operations in the setsπn(X,x0) andπn(X,A, x0) of the homotopy classes,
given by:

[φ] · [ψ] = [φ · ψ].

We generalize Theorem 3.1.6 as follows:

3.2.2. THEOREM. For n ≥ 1, the setπn(X,x0) is a group (with respect to the
concatenation operation) and forn ≥ 2 also the setπn(X,A, x0) is a group; in
both cases, the neutral element is the classox0 of the constant mapox0 : In → X:

(3.2.4) ox0(t) = x0, t ∈ In,
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and the inverse of[φ] is the homotopy class[φ−1] of the mapφ−1 : In → X given
by:

φ−1(t) = φ(1− t1, t2, . . . , tn), t ∈ In.
�

3.2.3. DEFINITION. A pointed setis a pair(C, c0) whereC is an arbitrary
set andc0 ∈ C is an element ofC. We say thatc0 is thedistinguished element
of (C, c0). A map of pointed setsf : (C, c0) → (C ′, c′0) is an arbitrary map
f : C → C ′ such thatf(c0) = c′0; in this case we define thekernelof f by:

(3.2.5) Ker(f) = f−1(c′0),

If Ker(f) = C we say thatf is thenull mapof (C, c0) in (C ′, c′0). A pointed set
(C, c0) with C = {c0} will be called thenull pointed set. Both the null pointed set
and the null map of pointed sets will be denoted by0 when there is no danger of
confusion.

Given a groupG, we will always think ofG as the pointed set(G, 1), where1
is the identity ofG; with this convention, the group homomorphisms are maps of
pointed sets, and the definition of kernel (3.2.5) coincides with the usual definition
of kernel of a homomorphism.

3.2.4. DEFINITION. For n ≥ 1, the groupπn(X,x0) is called then-th (ab-
solute) homotopy groupof the spaceX with basepointx0; for n ≥ 2, the group
πn(X,A, x0) is called then-th relative homotopy groupof the pair(X,A) with
basepointx0 ∈ A. We callπ0(X,x0) andπ1(X,A, x0) respectively thezero-th
set of homotopyof X with basepointx0 ∈ X and thefirst set of homotopyof the
pair (X,A) with basepointx0 ∈ A; all the sets and groups of homotopy (absolute
or relative) will be seen as pointed sets, being the class[0x0 ] their distinguished
element.

3.2.5. REMARK . Arguing as in Example 3.1.9, one concludes that ifX0 is the
arc-connected component ofX containingx0, thenπn(X,x0) = πn(X0, x0) for
everyn ≥ 1; if x0 ∈ A ⊂ X0, then alsoπn(X,A, x0) = πn(X0, A, x0) for every
n ≥ 1. If x0 ∈ A ⊂ X and if A0 denotes the arc-connected component ofA
containingx0, thenπn(X,A, x0) = πn(X0, A0, x0) for everyn ≥ 2.

3.2.6. EXAMPLE . If X ⊂ IRd is star-shaped around the pointx0 ∈ X, then
πn(X,x0) = 0 for everyn ≥ 0; for, givenφ ∈ Ωn

x0
(X) we define a homotopy

H : φ ∼= ox0 by setting:

H(s, t) = (1− s)φ(t) + s x0, s ∈ I, t ∈ In.

3.2.7. EXAMPLE . Forn ≥ 1, if φ ∈ Ωn
x0

(X,A) is such thatIm(φ) ⊂ A, then
[φ] = [ox0 ] in πn(X,A, x0); for, a homotopyH : φ ∼= ox0 in Ωn

x0
(X,A) can be

defined by:

H(s, t) = φ
(
t1, . . . , tn−1, 1− (1− s)(1− tn)

)
, t ∈ In, s ∈ I.

In particular, we haveπn(X,X, x0) = 0.
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3.2.8. DEFINITION. LetX,Y be topological spaces and letx0 ∈ X, y0 ∈ Y
be given. Iff : X → Y is a continuous map such thatf(x0) = y0, we say thatf
preserves basepoints, and we write

f : (X,x0) −→ (Y, y0).

Then, forn ≥ 0, f induces a map of pointed sets:

(3.2.6) f∗ : πn(X,x0) −→ πn(Y, y0)

defined byf∗([φ]) = [f ◦ φ].

Given pairs(X,A) and(Y,B) of topological spaces, then amap of pairs

f : (X,A) −→ (Y,B)

is a continuous mapf : X → Y such thatf(A) ⊂ B. If a choice of basepoints
x0 ∈ A andy0 ∈ B is done, we say thatf preserves basepointsif f(x0) = y0, in
which case we write:

f : (X,A, x0) −→ (Y,B, y0).

Forn ≥ 1, such a map induces a mapf∗ of pointed sets:

(3.2.7) f∗ : πn(X,A, x0) −→ πn(Y,B, y0)

defined byf∗([φ]) = [f ◦ φ].
It is easy to see that the mapsf∗ are well defined, i.e., they do not depend on

the choice of representatives in the homotopy classes. Given maps:

f : (X,A, x0) −→ (Y,B, y0), g : (Y,B, y0) −→ (Z,C, z0)

then(g ◦ f)∗ = g∗ ◦ f∗; if Id denotes the identity of(X,A, x0), thenId∗ is the
identity ofπn(X,A, x0). It follows that if f : (X,A, x0) → (Y,B, y0) is ahome-
omorphism of triples, i.e., f : X → Y is a homeomorphism,f(A) = B and
f(x0) = y0, thenf∗ is a bijection. Similar observations can be made for the ab-
solute homotopy groupsπn(X,x0). We also have the following:

3.2.9. PROPOSITION. Givenf : (X,x0) → (Y, y0), then, forn ≥ 1, the map
f∗ given in(3.2.6)is agroup homomorphism; moreover, if

f : (X,A, x0) → (Y,B, y0),

then forn ≥ 2 the mapf∗ given in(3.2.7)is a group homomorphism. �

3.2.10. EXAMPLE . If X = X1 × X2, andpr1 : X → X1, pr2 : X →
X2 denote the projections, then a continuous mapφ : In → X is completely
determined by its coordinates:

pr1 ◦ φ = φ1 : In −→ X1, pr2 ◦ φ = φ2 : In −→ X2,

from which it is easy to see that, givenx = (x1, x2) ∈ X andn ≥ 0, we have a
bijection:

πn(X,x)

(
(pr1)∗,(pr2)∗

)
−−−−−−−−−−→

∼=
πn(X1, x1)× πn(X2, x2)
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which is also a group homomorphism ifn ≥ 1. More generally, givenA1 ⊂ X1,
A2 ⊂ X2, x ∈ A = A1 ×A2, then forn ≥ 1 we have a bijection:

πn(X,A, x)

(
(pr1)∗,(pr2)∗

)
−−−−−−−−−−→

∼=
πn(X1, A1, x1)× πn(X2, A2, x2)

which is also a group homomorphism ifn ≥ 2. Similar observations can be made
for products of an arbitrary number (possibly infinite) of topological spaces.

Give a pair(X,A) andx0 ∈ A, we have the following maps:

i : (A, x0) −→ (X,x0), q : (X, {x0}, x0) −→ (X,A, x0),

induced respectively by the inclusion ofA intoX and by the identity ofX. Keep-
ing in mind (3.2.2) and Definition 3.2.8, we therefore obtain maps of pointed sets:

(3.2.8) i∗ : πn(A, x0) −→ πn(X,x0), q∗ : πn(X,x0) −→ πn(X,A, x0);

explicitly, we havei∗([φ]) = [φ] andq∗([φ]) = [φ]. For n ≥ 1 we define the
connection operatorrelative to the triple(X,A, x0):

(3.2.9) ∂∗ : πn(X,A, x0) −→ πn−1(A, x0)

by setting∂∗([φ]) = [φ|In−1 ]; it is easy to see that∂∗ is well defined, i.e., it does
not depend on the choice of a representative of the homotopy class. Moreover,∂∗
is always a map of pointed sets, and it is a group homomorphism ifn ≥ 2.

3.2.11. DEFINITION. A sequence of pointed sets and maps of pointed sets of
the form:

· · · fi+2−−−−→ (Ci+1, ci+1)
fi+1−−−−→ (Ci, ci)

fi−−→ (Ci−1, ci−1)
fi−1−−−−→ · · ·

is said to beexact at(Ci, ci) if Ker(fi) = Im(fi+1); the sequence is said to be
exactif it is exact at each(Ci, ci) for everyi.

We can now prove one of the main results of this section:

3.2.12. THEOREM. If (X,A) is a pair of topological spaces andx0 ∈ A, then
the sequence:

· · · ∂∗−−→πn(A, x0)
i∗−−→ πn(X,x0)

q∗−−−→ πn(X,A, x0)
∂∗−−−→ πn−1(A, x0)

i∗−−→

· · · q∗−−−→ π1(X,A, x0)
∂∗−−−→ π0(A, x0)

i∗−−→ π0(X,x0)

(3.2.10)

is exact, where for eachn the pointed set mapsi∗, q∗ and∂∗ are given in formulas
(3.2.8)and (3.2.9)

PROOF. The proof is done by considering several cases in which the homo-
topies are explicitly exhibited.
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• Exactness atπn(X,x0). The fact thatIm(i∗) ⊂ Ker(q∗) follows from Exam-
ple 3.2.7. Letφ ∈ Ωn

x0
(X) be such that there exists a homotopyH : φ ∼= ox0

in Ωn
x0

(X,A). DefineK : I × In → X by setting:

Ks(t) = K(s, t) =

{
H2tn(t1, . . . , tn−1, 0), 0 ≤ 2tn ≤ s,

Hs

(
t1, . . . , tn−1,

2tn−s
2−s

)
, s ≤ 2tn ≤ 2;

It is easy to see thatψ = K1 ∈ Ωn
x0

(A) and thatK : φ ∼= ψ is a homotopy in
Ωn
x0

(X). It follows [φ] = i∗([ψ]).

• Exactness atπn(X,A, x0).
The inclusionIm(q∗) ⊂ Ker(∂∗) is trivial. Let φ ∈ Ωn−1

x0
(X,A) be

such that there exists a homotopyH : φ|In−1
∼= ox0 in Ωn

x0
(A). DefineK :

I × In → X by the following formula:

Ks(t) = K(s, t) =

{
Hs−2tn(t1, . . . , tn−1), 0 ≤ 2tn ≤ s,

φ
(
t1, . . . , tn−1,

2tn−s
2−s

)
, s ≤ 2tn ≤ 2;

It is easy to see thatψ = K1 ∈ Ωn
x0

(X) and thatK : φ ∼= ψ is a homotopy in
Ωn
x0

(X,A). It follows that[φ] = q∗([ψ]).

• Exactness atπn(A, x0).
We first show thatIm(∂∗) ⊂ Ker(i∗). To this aim, letφ ∈ Ωn+1

x0
(X,A).

DefineH : I × In → X by setting:

Hs(t) = H(s, t) = φ(t, s), s ∈ I, t ∈ In;
It is easy to see thatH : φ|In ∼= ox0 is a homotopy inΩn

x0
(X), so that

(i∗ ◦ ∂∗)([φ]) = [ox0 ].

Let nowψ ∈ Ωn
x0

(A) be such that there exists a homotopyK : ψ ∼= ox0

in Ωn
x0

(X). Then, define:

φ(t) = Ktn+1(t1, . . . , tn), t ∈ In+1;

it follows thatφ ∈ Ωn+1
x0

(X,A) and∂∗([φ]) = [ψ].

This concludes the proof. �

The exact sequence (3.2.10) is known as the thelong exact homotopy sequence
of the pair(X,A) relative to the basepointx0. The exactness property of (3.2.10)
atπ1(X,A, x0) can be refined a bit as follows:

3.2.13. PROPOSITION. The map

(3.2.11) π1(X,A, x0)× π1(X,x0) 3 ([γ], [µ]) 7−→ [γ · µ] ∈ π1(X,A, x0)

defines a right action of the groupπ1(X,x0) on the setπ1(X,A, x0); the orbit
of the distinguished element[ox0 ] ∈ π1(X,A, x0) is the kernel of the connection
operator

∂∗ : π1(X,A, x0) −→ π0(A, x0),
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and the isotropy group of[ox0 ] is the image of the homomorphism:

i∗ : π1(A, x0) −→ π1(X,x0);

in particular, the map

(3.2.12) q∗ : π1(X,x0) −→ π1(X,A, x0)

induces, by passage to the quotient, a bijection between the set of right cosets
π1(X,x0)/Im(i∗) and the setKer(∂∗).

PROOF. It is easy to see that (3.2.11) does indeed define a right action (see
Corollary 3.1.5). The other statements follow from the long exact sequence of
the pair(X,A) and from the elementary theory of actions of groups on sets, by
observing that the map of “action on the elementox0”:

β[ox0 ] : π1(X,x0) −→ π1(X,A, x0)

given byβ[ox0 ]([µ]) = [ox0 · µ] coincides with (3.2.12). �

We now proceed with the study of fibrations.

3.2.14. DEFINITION. Let F,E,B be topological spaces; a continuous map
p : E → B is said to be alocally trivial fibration with typical fiber F if for every
b ∈ B there exists an open neighborhoodU of b in B and a homeomorphism:

(3.2.13) α : p−1(U) −→ U × F

such thatpr1 ◦ α = p|p−1(U), wherepr1 denotes the first projection of the product
U × F ; we then say thatα is a local trivialization of p aroundb, and we also say
that the fibrationp is trivial on the open setU ⊂ B. We callE the total spaceand
B thebaseof the fibrationp; for everyb ∈ B the subsetEb = p−1(b) ⊂ E will be
called thefiber overb.

Clearly, any local trivialization ofp aroundb induces a homeomorphism of the
fiberEb onto the typical fiberF .

We have the following:

3.2.15. LEMMA . Let p : E → B a locally trivial fibration, with typical fiber
F ; then, givene0 ∈ E, b0 ∈ B with p(e0) = b0, the map:

(3.2.14) p∗ : πn(E,Eb0 , e0) −→ πn(B, {b0}, b0) = πn(B, b0)

is a bijection for everyn ≥ 1.

The proof of Lemma 3.2.15 is based on the following technical Lemma:

3.2.16. LEMMA . Letp : E → B be a locally trivial fibration with typical fiber
F ; then, forn ≥ 1, given continuous mapsφ : In → B andψ : Jn−1 → E with
p ◦ ψ = φ|Jn−1 , there exists a continuous map̃φ : In → E such thatφ̃|Jn−1 = ψ
and such that the following diagram commutes:

E

p

��
In

eφ
>>

φ
// B
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PROOF. The proof is split into several steps.

(1) There exists aretractionr : In → Jn−1, i.e.,r is continuous andr|Jn−1 =
Id.

Fix t̄ =
(

1
2 , . . . ,

1
2 ,−1

)
∈ IRn; for eacht ∈ In definer(t) as the unique

point ofJn−1 that belongs to the straight line throught̄ andt.

(2) The Lemma holds if there exists a trivialization(3.2.13)of p with Im(φ) ⊂
U .

Letψ0 : Jn−1 → F be such that

α(ψ(t)) = (φ(t), ψ0(t)), t ∈ Jn−1;

then, we consider:

φ̃(t) = α−1
(
φ(t), ψ0(r(t))

)
, t ∈ In.

(3) The Lemma holds ifn = 1.
Let 0 = u0 < u1 < . . . < uk = 1 be a partition ofI such that, fori =

0, . . . , k − 1, φ([ui, ui+1]) is contained in an open subset ofB over which the
fibrationp is trivial (see the idea of the proof of Theorem 3.1.23); using step
(2), defineφ̃ on the interval[ui, ui+1] starting withi = k − 1 and proceeding
inductively up toi = 0.

(4) The Lemma holds in general.
We prove the general case by induction onn; the base of induction is step

(3). Suppose then that the Lemma holds for cubes of dimensions less thann.
Consider a partition:

(3.2.15) 0 = u0 < u1 < . . . < uk = 1

of the intervalI; let a = (a1, . . . , an−1) be such that for eachi = 1, . . . , n−1,
the setai is equal to one of the intervals[uj , uj+1], j = 0, . . . , k − 1 of the
partition (3.2.15), or elseai is equal to one of the points{uj}, j = 1, . . . , k−1;
define:

Ia = Ia1 × · · · × Ian−1 ⊂ In−1.

If r ∈ {0, . . . , n − 1} is the number of indicesi such thatai is an interval
(containing more than one point), we will say thatIa is ablock of dimension
r. The partition (3.2.15) could have been chosen in such a way that each
φ
(
Ia× [uj , uj+1]

)
is contained in an open subset ofB over which the fibration

is trivial (see the idea of the proof of Theorem 3.1.23).
Using the induction hypotheses (or step (3)) we define the mapφ̃ on the

subsetsIa × I whereIa is a block of dimension one. We then proceed in-
ductively until whenφ̃ is defined on eachIa × I such thatIa is a block of
dimensionr ≤ n− 2.

Fix nowa in such a way thatIa is a block of dimensionn− 1; using step
(2) we defineφ̃ on ia × [uj , uj+1] starting withj = k − 1 and continuing
inductively untilj = 0. This concludes the proof.
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�

The mapφ̃ in the statement of Lemma 3.2.16 is called alifting of φ relatively top.

PROOF OFLEMMA 3.2.15. Given[φ] ∈ πn(B, b0), by Lemma 3.2.16 there
exists a liftingφ̃ : In → E of φ relatively top, such that̃φ is constant equal to
e0 onJn−1; then

[
φ̃
]
∈ πn(E,Eb0 , e0) andp∗

([
φ̃
])

= [φ]. This shows thatp∗ is
surjective; we now show thatp∗ is injective.

Let [ψ1], [ψ2] ∈ πn(E,Eb0 , e0) be such thatp∗([ψ1]) = p∗([ψ2]); then, there
exists a homotopy

H : I × In = In+1 −→ B

such thatH0 = p ◦ ψ1, H1 = p ◦ ψ2 andHs ∈ Ωn
b0

(B) for everys ∈ I. Observe
that:

Jn =
(
I × Jn−1

)
∪ ({0} × In) ∪ ({1} × In);

we can therefore define a continuous map

ψ : Jn −→ E

by settingψ(0, t) = ψ1(t), ψ(1, t) = ψ2(t) for t ∈ In, andψ(s, t) = e0 for s ∈ I,
t ∈ Jn−1. It follows from Lemma 3.2.16 that there exists a continuous map:

H̃ : I × In = In+1 −→ E

such thatp ◦ H̃ = H e H̃|Jn = ψ; it is then easy to see that̃H : ψ1
∼= ψ2 is

a homotopy inΩn
e0(E,Eb0) and therefore[ψ1] = [ψ2] ∈ πn(E,Eb0 , e0). This

concludes the proof. �

The idea now is to “replace”πn(E,Eb0 , e0) by πn(B, b0) in the long exact
homotopy sequence of the pair(E,Eb0), obtaining a new exact sequence. Towards
this goal, we consider a locally trivial fibrationp : E → B with typical fiberF ;
chooseb0 ∈ B, f0 ∈ F , a homeomorphismh : Eb0 → F and lete0 ∈ Eb0 be such
that h(e0) = f0. We then define mapsι∗ e δ∗ in such a way that the following
diagrams commute:

(3.2.16) πn
(
Eb0 , e0

)
h∗
∼=xxppppppppppp

i∗ &&NNNNNNNNNNN

πn(F, f0) ι∗
// πn(E, e0)

(3.2.17) πn
(
E,Eb0 , e0

) ∂∗ //

p∗ ∼=

��

πn−1

(
Eb0 , e0

)
h∗∼=

��
πn(B, b0)

δ∗
// πn−1(F, f0)

wherei∗ is induced by inclusion, and∂∗ is the connection operator corresponding
to the triple(E,Eb0 , e0).

We then obtain the following:
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3.2.17. COROLLARY. Letp : E → B be a locally trivial fibration with typical
fiber F ; choosingb0 ∈ B, f0 ∈ F , a homeomorphismh : Eb0 → F and taking
e0 ∈ Eb0 such thath(e0) = f0 we obtain an exact sequence

· · · δ∗−−−→πn(F, f0)
ι∗−−→ πn(E, e0)

p∗−−−→ πn(B, b0)
δ∗−−−→ πn−1(F, f0)

ι∗−−→

· · · p∗−−−→ π1(B, b0)
δ∗−−−→ π0(F, f0)

ι∗−−→ π0(E, e0)
p∗−−−→ π0(B, b0)

(3.2.18)

whereι∗ e δ∗ are defined respectively by the commutative diagrams(3.2.16)and
(3.2.17).

PROOF. Everything except for the exactness atπ0(E, e0) follows directly from
the long exact sequence of the pair(E,Eb0) and from the definitions ofι∗ andδ∗.
The exactness atπ0(E, e0) is obtained easily from Lemma 3.2.16 withn = 1. �

The exact sequence (3.2.18) is known as thelong exact homotopy sequence of
the fibrationp.

3.2.18. DEFINITION. A map p : E → B is said to be acovering if p is a
locally trivial fibration with typical fiberF that is a discrete space.

We have the following:

3.2.19. COROLLARY. If p : E → B is a covering, then, givene0 ∈ E and
b0 ∈ B with p(e0) = b0, the map:

p∗ : πn(E, e0) −→ πn(B, b0)

is an isomorphism for everyn ≥ 2.

PROOF. It follows directly from the long exact homotopy sequence of the
fibration p, observing that, sinceF is discrete, it isπn(F, f0) = 0 for every
n ≥ 1. �

3.2.20. REMARK . Let p : E → B be a locally trivial fibration with typical
fiberF ; chooseb0 ∈ B and a homeomorphismh : Eb0 → F . Let us take a closer
look at the operatorδ∗ defined by diagram (3.2.17), in the casen = 1.

For eachf ∈ F , we denote byδf∗ the operator defined by diagram (3.2.17)
takingn = 1 and replacingf0 by f ande0 by h−1(f) in this diagram. We have the
following explicit formula:

(3.2.19) δf∗ ([γ]) =
[
h
(
γ̃(0)

)]
∈ π0(F, f), γ ∈ Ω1

b0(B),

whereγ̃ : I → E is any lifting of γ (i.e., p ◦ γ̃ = γ) with γ̃(1) = h−1(f). The
existence of the lifting̃γ follows from Lemma 3.2.16 withn = 1.

Using (3.2.19), it is easy to see thatδf∗ only depends on the arc-connected
component[f ] of F containingf ; for, if f1, f2 ∈ F andλ : I → F is a continuous
curve withλ(0) = f1 andλ(1) = f2, then, given a liftingγ̃ of γ with γ̃(1) =
h−1(f1), it follows thatµ̃ = γ̃ · (h−1 ◦ λ) is a lifting of µ = γ ◦ ob0 with µ̃(1) =
h−1(f2), and so

δf1∗ ([γ]) =
[
h
(
γ̃(0)

)]
=

[
h
(
µ̃(0)

)]
= δf2∗ ([µ]) = δf2∗ ([γ]).
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Denoting byπ0(F ) the set of arc-connected components ofF (disregarding the
distinguished point) we obtain a map

(3.2.20) π1(B, b0)× π0(F ) −→ π0(F )

given by([γ], [f ]) 7→ δf∗ ([γ]). It follows easily from (3.2.19) that (3.2.20) defines
a left action of the groupπ1(B, b0) on the setπ0(F ).

Let us now fixf0 ∈ F and let us sete0 = h−1(f0); using the long exact
sequence of the fibrationp it follows that the sequence

π1(E, e0)
p∗−−−→ π1(B, b0)

δ∗=δ
f0
∗−−−−−−→ π0(F, f0)

ι∗−−→ π0(E, e0)

is exact. This means that the orbit of the point[f0] ∈ π0(F ) relatively to the action
(3.2.20) is equal to the kernel ofι∗ and that the isotropy group of[f0] is equal to the
image ofp∗; hence the operatorδ∗ induces by passing to the quotient a bijection
between the set of left cosetsπ1(B, b0)/Im(p∗) and the setKer(ι∗).

3.2.21. EXAMPLE . Let p : E → B be a locally trivial fibration with discrete
typical fiberF , i.e.,p is a covering. Chooseb0 ∈ B, e0 ∈ Eb0 and a homeomor-
phismh : Eb0 → F (actually, in the case of discrete fiber, every bijectionh will be
a homeomorphism); setf0 = h(e0).

Sinceπ1(F, f0) = 0, it follows from the long exact sequence of the fibration
that the map

p∗ : π1(E, e0) −→ π1(B, b0)
is injective; we can therefore identifyπ1(E, e0) with the image ofp∗. Observe that
the setπ0(F, f0) may be identified withF .

Under the assumption thatE is arc-connected, we haveπ0(E, e0) = 0, and it
follows from Remark 3.2.20 that the mapδ∗ induces a bijection:

(3.2.21) π1(B, b0)/π1(E, e0)
∼=−−→ F.

Unfortunately, sinceF has no group structure, the bijection (3.2.21) does not give
any information about the group structures ofπ1(E, e0) andπ1(B, b0).

Let us now assume that the fiberF has a group structure and that there exists a
continuous right action:

(3.2.22) E × F 3 (e, f) 7−→ e • f ∈ E

of F onE (sinceF is discrete, continuity of (3.2.22) in this context means conti-
nuity in the second variable); let us also assume that the action (3.2.22) is free, i.e.,
without fixed points, and that its orbits are the fibers ofp. If f0 = 1 is the unit of
F and the homeomorphismh : Eb0 → F is the inverse of the bijection:

βe0 : F 3 f 7−→ e0 • f ∈ Eb0 ,

we will show that the map

(3.2.23) δ∗ : π1(B, b0) −→ π0(F, f0) ∼= F

is a group homomorphism; it will then follow thatIm(p∗) ' π1(E, e0) is a normal
subgroup ofπ1(B, b0) and that the bijection (3.2.21) is an isomorphism of groups.
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Let us show that (3.2.23) is a homomorphism. To this aim, letγ, µ ∈ Ω1
b0

(B)
and letγ̃, µ̃ : I → E be lifts ofγ andµ respectively, with̃γ(1) = µ̃(1) = e0; using
(3.2.19) and identifyingπ0(F, f0) with F we obtain:

δ∗([γ]) = h
(
γ̃(0)

)
, δ∗([µ]) = h

(
µ̃(0)

)
.

Defineγ̂ : I → E by setting:

γ̂(t) = γ̃(t) • h
(
µ̃(0)

)
, t ∈ I;

thenκ̃ = γ̂ · µ̃ is a lifting of κ = γ ·µ with κ̃(1) = e0 and, using again (3.2.19) we
obtain:

δ∗([γ] · [µ]) = h
(
κ̃(0)

)
= h

(
γ̂(0)

)
= h(γ̃(0)) h

(
µ̃(0)

)
= δ∗([γ])δ∗([µ]),

which concludes the argument.

3.2.22. REMARK . The groupsπ1(X,x0) andπ2(X,A, x0) may not be abelian,
in general; however, it can be shown thatπn(X,x0) is always abelian for≥ 2 and
πn(X,A, x0) is always abelian forn ≥ 3 (see for instance [18, Proposition 2.1,
Proposition 3.1, Chapter 4]).

3.2.23. REMARK . Generalizing the result of Proposition 3.1.11, givenn ≥ 1
it is possible to associate to each curveλ : I → X with λ(0) = x0 andλ(1) = x1

an isomorphism:
λ# : πn(X,x0) −→ πn(X,x1);

in particular, ifx0 e x1 belong to the same arc-connected component ofX then
πn(X,x0) is isomorphic toπn(X,x1). The isomorphismλ# is defined by setting:

λ#([φ]) = [ψ],

whereψ is constructed using a homotopyH : φ ∼= ψ such thatHs(t) = λ(t) for
everyt ∈ ∂In and alls ∈ I (for the details, see [18, Theorem 14.1, Chapter 4]).
Then, as in Example 3.1.17, it is possible to show that ifX is contractible, then
πn(X,x0) = 0 for everyn ≥ 0.

If Im(λ) ⊂ A ⊂ X then, givenn ≥ 1, we can also define a bijection of pointed
sets:

λ# : πn(X,A, x0) −→ πn(X,A, x1),
which is a group isomorphism forn ≥ 2 (see [18, Exercises of Chapter 4]).

3.2.1. Applications to the theory of classical Lie groups.In this subsection
we will use the long exact homotopy sequence of a fibration to compute the funda-
mental group and the connected components of the classical Lie groups introduced
in Subsection 2.1.1. All the spaces considered in this section are differentiable
manifolds, hence the notions of connectedness and of arc-connectedness will al-
ways be equivalent (see Exercise 3.2).

We will assume familiarity with the concepts and the notions introduced in
Subsections 2.1.1 and 2.1.2; in particular, without explicit mention, we will make
systematic use of the results of Theorem 2.1.14 and of Corollaries 2.1.9, 2.1.15,
2.1.16 and 2.1.17.
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The relative homotopy groups will not be used in this Section; from Section 3.2
the reader is required to keep in mind the Examples 3.2.6, 3.2.10 and 3.2.21, and,
obviously, Corollary 3.2.17.

In order to simplify the notation,we will henceforth omit the specification of
the basepointx0 when we refer to a homotopy group, or set,πn(X,x0), provided
that the choice of such basepoint is not relevant in the context (see Corollary 3.1.12
and Remark 3.2.23); therefore, we will writeπn(X).

We start with an easy example:

3.2.24. EXAMPLE . Denote byS1 ⊂ C the unit circle; then, the mapp : IR →
S1 given byp(t) = e2πit is a surjective group homomorphism whose kernel is
Ker(p) = Z. It follows thatp is a covering map. Moreover, the action ofZ onIR by
translation is free, and its orbits are the fibers ofp; it follows from Example 3.2.21
that we have an isomorphism:

δ∗ : π1(S1, 1) −→ Z

given byδ∗([γ]) = γ̃(0), whereγ̃ : I → IR is a lifting of γ such that̃γ(1) = 0. In
particular, the homotopy class of the loopγ : I → S1 given by:

(3.2.24) γ(t) = e2πit, t ∈ I,

is a generator ofπ1(S1, 1) ' Z.

3.2.25. EXAMPLE . Let us show that the special unitary groupSU(n) is (con-
nected and) simply connected. First, observe that the canonical action of the group
SU(n+ 1) on Cn+1 restricts to an action ofSU(n+ 1) on the unit sphereS2n+1;
it is easy to see that this action is transitive, and that the isotropy group of the point
en+1 = (0, . . . , 0, 1) ∈ Cn+1 is identified withSU(n). It follows that the quo-
tientSU(n+ 1)/SU(n) is diffeomorphic to the sphereS2n+1; we therefore have a
fibration:

p : SU(n+ 1) −→ S2n+1,

with typical fiberSU(n). Since the sphereS2n+1 is simply connected (see Exam-
ple 3.1.24), the long exact homotopy sequence of the fibrationp gives us:

(3.2.25) π0(SU(n)) −→ π0(SU(n+ 1)) −→ 0

(3.2.26) π1(SU(n)) −→ π1(SU(n+ 1)) −→ 0.

SinceSU(1) = {1} is clearly simply connected, from the exactness of (3.2.25) it
follows by induction onn thatSU(n) is connected. Moreover, from the exactness
of (3.2.26) it follows by induction onn thatSU(n) is simply connected.

3.2.26. EXAMPLE . Let us show now that the unitary groupU(n) is connected,
and thatπ1(U(n)) ' Z for everyn ≥ 1. Consider thedeterminant map

det : U(n) −→ S1;

we have thatdet is a surjective homomorphism of Lie groups, and therefore it is
a fibration with typical fiberKer(det) = SU(n). Keeping in mind thatSU(n)
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is simply connected (see Example 3.2.25), from the fibrationdet we obtain the
following exact sequence:

(3.2.27) 0 −→ π0(U(n)) −→ 0

(3.2.28) 0 −→ π1(U(n), 1) det∗−−−−→ π1(S1, 1) −→ 0

From (3.2.27) we conclude thatU(n) is connected, and from (3.2.28) we obtain
that the map

(3.2.29) det∗ : π1(U(n), 1)
∼=−−→ π1(S1, 1) ∼= Z

is an isomorphism.

3.2.27. EXAMPLE . We will now show that the special orthogonal groupSO(n)
is connected forn ≥ 1. The canonical action ofSO(n + 1) on IRn+1 restricts to
an action ofSO(n + 1) on the unit sphereSn; it is easy to see that this action is
transitive, and that the isotropy group of the pointen+1 = (0, . . . , 0, 1) ∈ IRn+1

is identified withSO(n). It follows that the quotientSO(n+ 1)/SO(n) is diffeo-
morphic to the sphereSn, and we obtain a fibration:

(3.2.30) p : SO(n+ 1) → Sn,

with typical fiberSO(n); then, we have an exact sequence:

π0(SO(n)) −→ π0(SO(n+ 1)) −→ 0

from which it follows, by induction onn, that SO(n) is connected for everyn
(clearly, SO(1) = {1} is connected). The determinant map induces an isomor-
phism between the quotientO(n)/SO(n) and the group{1,−1} ' Z2, from which
it follows thatO(n) has precisely two connected components:SO(n) and its com-
plementary.

3.2.28. EXAMPLE . We now show that the groupGL+(n, IR) is connected. If
we choose any basis(bi)ni=1 of IRn, it is easy to see that there exists a unique
orthonormal basis(ui)ni=1 of IRn such that, for everyk = 1, . . . , n, the vectors
(bi)ki=1 and (ui)ki=1 are a basis of the samek-dimensional subspace ofIRn and
define thesame orientationof this subspace. The vectors(ui)ni=1 can be written
explicitly in terms of the(bi)ni=1; such formula is known as theGram–Schmidt
orthogonalization process.

Given any invertible matrixA ∈ GL(n, IR), we denote byr(A) the matrix
obtained fromA by an application of the Gram-Schmidt orthogonalization process
on its columns; the mapr from GL(n, IR) ontoO(n) is differentiable (but it is not
a homomorphism). Observe that ifA ∈ O(n), thenr(A) = A; for this we say
thatr is aretraction. Denote byT+ the subgroup ofGL(n, IR) consisting of upper
triangular matrices with positive entries on the diagonal, i.e.,

T+ = {(aij)n×n ∈ GL(n, IR) : aij = 0 if i > j, aii > 0, i, j = 1, . . . , n}.
Then, it is easy to see that we obtain a diffeomorphism:

(3.2.31) GL(n, IR) 3 A 7−→
(
r(A), r(A)−1A

)
∈ O(n)× T+.



3.2. THE HOMOTOPY EXACT SEQUENCE OF A FIBRATION 87

We have that (3.2.31) restricts to a diffeomorphism ofGL+(n, IR) ontoSO(n) ×
T+. It follows from Example 3.2.27 thatGL+(n, IR) is connected, and that the
general linear groupGL(n, IR) has two connected components:GL+(n, IR) and
its complementary.

3.2.29. REMARK . Actually, it is possible to show thatGL+(n, IR) is con-
nected by an elementary argument, using the fact that every invertible matrix can
be written as the product of matrices corresponding toelementary row operations.
Then, the mapr : GL(n, IR) → O(n) defined as in Example 3.2.28 gives us an
alternative proof of the connectedness ofSO(n).

3.2.30. EXAMPLE . We will now show that the groupGL(n,C) is connected
and that:

π1(GL(n,C)) ∼= Z.

We use the same idea as in Example 3.2.28; observe that it is possible to define a
Gram-Schmidt orthonormalization process also for bases ofCn. Then, we obtain
a diffeomorphism:

GL(n,C) 3 A 7−→
(
r(A), r(A)−1A

)
∈ U(n)× T+(C),

whereT+(C) denotes the subgroup ofGL(n,C) consisting of those upper triangu-
lar matrices having positive real entries on the diagonal:

T+(C) = {(aij)n×n ∈ GL(n,C) : aij = 0 if i > j,

aii ∈ IR andaii > 0, i, j = 1, . . . , n}.

It follows from Example 3.2.26 thatGL(n,C) is connected and thatπ1(GL(n,C))
is isomorphic toZ for n ≥ 1; more explicitly, we have that the inclusioni : U(n) →
GL(n,C) induces an isomorphism:

i∗ : π1(U(n), 1)
∼=−−→ π1(GL(n,C), 1).

3.2.31. REMARK . Also the connectedness ofGL(n,C) can be proven by a
simpler method, usingelementary row reductionof matrices. Then, the Gram-
Schmidt orthonormalization process gives us an alternative proof of the connect-
edness ofU(n) (see Remark 3.2.29).

3.2.32. EXAMPLE . We will now consider the groupsSL(n, IR) andSL(n,C).
We have a Lie group isomorphism:

SL(n, IR)× IR+ 3 (T, c) 7−→ c T ∈ GL+(n, IR),

whereIR+ = ]0,+∞[ is seen as a multiplicative group; it follows from Exam-
ple 3.2.28 thatSL(n, IR) is connected, and that the inclusioni : SL(n, IR) →
GL+(n, IR) induces an isomorphism:

i∗ : π1(SL(n, IR), 1)
∼=−−→ π1(GL+(n, IR), 1).

The groupπ1(GL+(n, IR)) will be computed in Example 3.2.35 ahead.
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Let us look now at the complex case: forz ∈ C \ {0} we define the diagonal
matrix:

σ(z) =


z

1 0
0 ...

1

 ∈ GL(n,C);

we then obtain a diffeomorphism (which isnot an isomorphism):

SL(n,C)× IR+ × S1 3 (T, c, z) 7−→ σ(cz)T ∈ GL(n,C).

Then, it follows from Example 3.2.30 thatSL(n,C) is connected and that:

π1(GL(n,C)) ∼= Z ∼= Z× π1(SL(n,C)),

from which we get thatSL(n,C) is simply connected.

In order to compute the fundamental group of the special orthogonal group
SO(n) we need the following result:

3.2.33. LEMMA . If Sn ⊂ IRn+1 denotes the unit sphere, then, for everyx0 ∈
Sn, we haveπk(Sn, x0) = 0 for 0 ≤ k < n.

PROOF. Letφ ∈ Ωk
x0

(Sn). If φ is not surjective, then there existsx ∈ Sn with
Im(φ) ⊂ Sn \{x}; butSn \{x} is homeomorphic toIRn by the stereographic pro-
jection, hence[φ] = [ox0 ]. It remains to show that anyφ ∈ Ωk

x0
(Sn) is homotopic

in Ωk
x0

(Sn) to a map which is not surjective.
Let ε > 0 be fixed; it is known that there exists a differentiable1 mapψ : Ik →

IRn+1 such that‖φ(t) − ψ(t)‖ < ε for every t ∈ Ik (see [23, Teorema 10,§5,
Caṕıtulo 7]). Let ξ : IR → [0, 1] be a differentiable map such thatξ(s) = 0 for
|s| ≤ ε andξ(s) = 1 for |s| ≥ 2ε. Defineρ : IRn+1 → IRn+1 by setting

ρ(x) = ξ(‖x− x0‖)(x− x0) + x0, x ∈ IRn+1;

then,ρ is differentiable inIRn+1, ρ(x) = x0 for ‖x−x0‖ ≤ ε and‖ρ(x)−x‖ ≤ 2ε
for everyx ∈ IRn+1. It follows thatρ ◦ ψ : Ik → IRn+1 is a differentiable map
(ρ ◦ ψ)(∂Ik) ⊂ {x0} and‖(ρ ◦ ψ)(t) − φ(t)‖ ≤ 3ε for everyt ∈ Ik. Choosing
ε > 0 with 3ε < 1, then we can define a homotopyH : φ ∼= θ in Ωk

x0
(Sn) by

setting:

Hs(t) =
(1− s)φ(t) + s(ρ ◦ ψ)(t)
‖(1− s)φ(t) + s(ρ ◦ ψ)(t)‖

, t ∈ Ik, s ∈ I,

whereθ(t) = (ρ◦ψ)(t)/‖(ρ◦ψ)(t)‖, t ∈ Ik, is a differentiable map; sincek < n,
it follows thatθ cannot be surjective, because its image has null measure inSn (see
[23, §2, Caṕıtulo 6]). This concludes the proof. �

1The differentiability of a mapψ defined in a non necessarily open subset ofIRk means that the
mapψ admits a differentiable extension to some open subset containing its domain.
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3.2.34. EXAMPLE . The groupSO(1) is trivial, therefore it is simply con-
nected; the groupSO(2) is isomorphic to the unit circleS1 (see Example 3.2.27,
hence:

π1(SO(2)) ∼= Z.
Forn ≥ 3, Lemma 3.2.33 tells us thatπ2(Sn) = 0, and so the long exact homotopy
sequence of the fibration (3.2.30) becomes:

0 −→ π1(SO(n), 1) i∗−−→
∼=

π1(SO(n+ 1), 1) −→ 0

where i∗ is induced by the inclusioni : SO(n) → SO(n + 1); it follows that
π1(SO(n)) is isomorphic toπ1(SO(n+ 1)). We will show next thatπ1(SO(3)) ∼=
Z2, from which it will then follow that

π1(SO(n)) ∼= Z2, n ≥ 3.

Consider the inner productg in the Lie algebrasu(2) defined by

g(X,Y ) = tr(XY ∗), X, Y ∈ su(2),

whereY ∗ denotes here the conjugate transpose of the matrixY andtr(U) denotes
the trace of the matrixU ; consider theadjoint representationof SU(2):

(3.2.32) Ad: SU(2) −→ SO(su(2), g)

given byAd(A) · X = AXA−1 for A ∈ SU(2), X ∈ su(2); it is easy to see
that the linear endomorphismAd(A) of su(2) is actuallyg-orthogonal for every
A ∈ SU(2) and that (3.2.32) is a Lie group homomorphism. Clearly,SO(su(2), g)
is isomorphic toSO(3).

An explicit calculation shows thatKer(Ad) = {Id,−Id}, and since the do-
main and the counterdomain of (3.2.32) have the same dimension, it follows that
the image of (3.2.32) is an open subgroup ofSO(su(2), g); sinceSO(su(2), g) is
connected (Example 3.2.27), we conclude that (3.2.32) is surjective, and so it is
a covering map. SinceSU(2) is simply connected (Example 3.2.25), it follows
from Example 3.2.21 thatπ1(SO(3)) ∼= Z2, keeping in mind the action ofZ2

∼=
{Id,−Id} onSU(2) by translation. The non trivial element ofπ1(SO(3), 1) coin-
cides with the homotopy class of any loop of the formAd◦γ, whereγ : I → SU(2)
is a curve joiningId and−Id.

3.2.35. EXAMPLE . The diffeomorphism (3.2.31) shows that the inclusioni of
SO(n) into GL+(n, IR) induces an isomorphism:

(3.2.33) i∗ : π1(SO(n), 1)
∼=−−→ π1(GL+(n, IR), 1).

It follows from Example 3.2.34 thatπ1(GL+(n, IR)) is trivial for n = 1, it is
isomorphic toZ for n = 2, and it is isomorphic toZ2 for n ≥ 3.

3.2.36. EXAMPLE . We will now look at the symplectic groupSp(2n, IR) and
we will show that it is connected for everyn ≥ 1. Letω be the canonical symplec-
tic form of IR2n and letΛ+ be theGrassmannian of oriented Lagrangiansof the
symplectic space(IR2n, ω), that is:

Λ+ =
{

(L,O) : L ⊂ IR2n is Lagrangian, andO is an orientation ofL
}
.



90 3. ALGEBRAIC TOPOLOGY

We have an action of the symplectic groupSp(2n, IR) on the setΛ+ given by
T ◦ (L,O) = (T (L),O′), whereO′ is the unique orientation ofT (L) that makes
T |L : L→ T (L) positively oriented.

By Remark 1.4.29, we have that the restriction of this action to the unitary
groupU(n) is transitive. Consider the LagrangianL0 = IRn ⊕ {0} and letO be
the orientation ofL0 corresponding to the canonical basis ofIRn; then, the isotropy
group of(L0,O) relative to the action ofU(n) is SO(n). The isotropy group of
(L0,O) relative to the action ofSp(2n, IR) will be denoted bySp+(2n, IR,L0).
In formulas (1.4.7) and (1.4.8) we have given an explicit description of the matrix
representations of the elements ofSp(2n, IR); using these formulas it is easy to see
thatSp+(2n, IR,L0) consists of matrices of the form:

(3.2.34) T =
(
A AS
0 A∗−1

)
, A ∈ GL+(n, IR), S n× n symmetric matrix,

whereA∗ denotes the transpose ofA. It follows that we have a diffeomorphism:

(3.2.35) Sp+(2n, IR,L0) 3 T 7−→ (A,S) ∈ GL+(n, IR)× Bsym(IRn)

whereA andS are defined by (3.2.34). We have the following commutative dia-
grams of bijections:

U(n)/SO(n) ī //

β1 %%KKKKKKKKKK
Sp(2n, IR)/Sp+(2n, IR,L0)

β2
vvlllllllllllllll

Λ+

where the mapsβ1 andβ2 are induced respectively by the actions ofU(n) and
of Sp(2n, IR) on Λ+ and ī is induced by the inclusioni : U(n) → Sp(2n, IR) by
passage to the quotient; we have thatī is a diffeomorphism. Hence, we have a
fibration:

(3.2.36) p : Sp(2n, IR) −→ Sp(2n, IR)/Sp+(2n, IR,L0) ∼= U(n)/SO(n)

whose typical fiber isSp+(2n, IR,L0) ∼= GL+(n, IR) × Bsym(IRn). By Exam-
ple 3.2.28 this typical fiber is connected, and by Example 3.2.26 the base manifold
U(n)/SO(n) is connected. It follows now easily from the long exact homotopy se-
quence of the fibration (3.2.36) that the symplectic groupSp(2n, IR) is connected.

3.2.37. EXAMPLE . We will now show that the fundamental group of the sym-
plectic groupSp(2n, IR) is isomorphic toZ. Using the exact sequence of the fibra-
tion (3.2.36) and the diffeomorphism (3.2.35), we obtain an exact sequence:

(3.2.37) π1(GL+(n, IR)) ι∗−−→ π1(Sp(2n, IR))
p∗−−−→ π1

(
U(n)/SO(n)

)
−→ 0

whereι∗ is induced by the mapι : GL+(n, IR) → Sp(2n, IR) given by:

ι(A) =
(
A 0
0 A∗−1

)
, A ∈ GL+(n, IR).
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We will show first that the mapι∗ is the null map; we have the following commu-
tative diagram (see (3.2.29) and (3.2.33)):

(3.2.38) π1(SO(n)) //

∼=
��

0
**

π1(U(n))

��

det∗
∼=

// π1(S1)

π1(GL+(n, IR)) ι∗
// π1(Sp(2n, IR))

where the unlabeled arrows are induced by inclusion.2 A simple analysis of the
diagram (3.2.38) shows thatι∗ = 0.

Now, the exactness of the sequence (3.2.37) implies thatp∗ is an isomorphism
of π1(Sp(2n, IR)) onto the groupπ1

(
U(n)/SO(n)

)
; let us compute this group.

Consider the quotient map:

q : U(n) −→ U(n)/SO(n);

we have thatq is a fibration. We obtain a commutative diagram:

(3.2.39) π1(SO(n)) //

0 &&MMMMMMMMMMM
π1(U(n))

q∗ //

∼= det∗
��

π1

(
U(n)/SO(n)

)
// 0

π1(S1)

The upper horizontal line in (3.2.39) is a portion of the homotopy exact sequence
of the fibrationq; it follows thatq∗ is an isomorphism. Finally, denoting byi the
inclusion ofU(n) in Sp(2n, IR) we obtain a commutative diagram:

π1(Sp(2n, IR))
p∗
∼= ((RRRRRRRRRRRRR

π1(U(n))

i∗
77oooooooooooo

q∗

∼= // π1

(
U(n)/SO(n)

)
from which it follows thati∗ is an isomorphism:

Z ∼= π1(U(n), 1) i∗−−→
∼=

π1(Sp(2n, IR), 1).

3.3. Singular Homology Groups

In this section we will give a brief exposition of the definition and the basic
properties of the group of (relative and absolute) singular homology of a topologi-
cal spaceX; we will describe the homology exact sequence of a pair of topological
spaces.

For allp ≥ 0, we will denote by(ei)
p
i=1 the canonical basis ofIRp and bye0 the

zero vector ofIRp; by IR0 we will mean the trivial space{0}. Observe that, with
this notations, we will have a small ambiguity due to the fact that, ifq ≥ p ≥ i,

2The inclusion ofU(n) intoSp(2n, IR) depends on the identification ofn×n complex matrices
with 2n× 2n real matrices; see Remark 1.2.9.
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the symbolei will denote at the same time a vector ofIRp and also a vector ofIRq;
however, this ambiguity will be of a harmless sort and, if necessary, the reader may
consider identificationsIR0 ⊂ IR1 ⊂ IR2 ⊂ · · · ⊂ IR∞.

Givenp ≥ 0, thep-th standard simplexis defined as the convex hull∆p of the
set{ei}pi=0 in IRp; more explicitly:

∆p =
{∑p

i=0
tiei :

∑p

i=0
ti = 1, ti ≥ 0, i = 0, . . . , p

}
.

Observe that∆0 is simply the point{0} and∆1 is the unit intervalI = [0, 1]. Let
us fix some terminology concerning the concepts related to free abelian groups:

3.3.1. DEFINITION. If G is an abelian group, then abasis3 of G is a family
(bα)α∈A such that everyg ∈ G is written uniquely in the formg =

∑
α∈A nαbα,

where eachnα is in Z andnα = 0 except for a finite number of indicesα ∈ A.
If G′ is another abelian group, then a homomorphismf : G → G′ is uniquely
determined when we specify its values on the elements of some basis ofG. An
abelian group that admits a basis is said to befree.

If A is any set, thefree abelian groupGA generated byA is the group of all
“almost zero” mapsN : A → Z, i.e.,N(α) = 0 except for a finite number of
indicesα ∈ A; the sum inGA is defined in the obvious way:(N1 + N2)(α) =
N1(α)+N2(α). We then identify eachα ∈ A with the functionNα ∈ GA defined
byNα(α) = 1 andNα(β) = 0 for everyβ 6= α. Then,Gα is indeed a free abelian
group, andA ⊂ GA is a basis ofGA.

3.3.2. DEFINITION. Forp ≥ 0, asingularp-simplexis an arbitrary continuous
map:

T : ∆p −→ X.

We denote bySp(X) the free abelian group generated by the set of all singular
p-simplexes inX; the elements inSp(X) are calledsingularp-chains.

If p = 0, we identify the singularp-simplexes inX with the points ofX, and
S0(X) is the free abelian group generated byX. If p < 0, our convention will be
thatSp(X) = {0}.

Each singularp-chain can be written as:

c =
∑

T singular
p-simplex

nT · T,

wherenT ∈ Z andnT = 0 except for a finite number of singularp-simplexes; the
coefficientsnT are uniquely determined byc.

Given a finite dimensional vector spaceV and givenv0, . . . , vp ∈ V , we will
denote bỳ (v0, . . . , vp) the singularp-simplex inV defined by:

(3.3.1) `(v0, . . . , vp)
( p∑
i=0

tiei

)
=

p∑
i=0

tivi,

3An abelian group is aZ-module, and our definition of basis for an abelian group coincides with
the usual definition of basis for a module over a ring.
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where eachti ≥ 0 and
∑p

i=0 ti = 1; observe that̀(v0, . . . , vp) is theunique affine
function that takesei into vi for everyi = 0, . . . , p.

For eachp ∈ Z, we will now define a homomorphism:

∂p : Sp(X) −→ Sp−1(X).

If p ≤ 0 we set∂p = 0. Forp > 0, sinceSp(X) is free, it suffices to define∂p on
a basis ofSp(X); we then define∂p(T ) whenT is a singularp-simplex inX by
setting:

∂p(T ) =
p∑
i=0

(−1)i T ◦ `(e0, . . . , êi, . . . , ep),

whereêi means that the termei is omitted in the sequence.
For eachi = 0, . . . , p, the image of the singular(p − 1)-simplex in IRp

`(e0, . . . , êi, . . . , ep) can be visualized as the face of the standard simplex∆p

which isoppositeto the vertexei.
If c ∈ Sp(X) is a singularp-chain, we say that∂p(c) is its boundary; observe

that if T : [0, 1] → X is a singular1-simplex, then∂1(T ) = T (1)− T (0).
We have thus obtained a sequence of abelian groups and homomorphisms

(3.3.2) · · ·
∂p+1−−−−→ Sp(X)

∂p−−−→ Sp−1(X)
∂p−1−−−−→ · · ·

The sequence (3.3.2) has the property that the composition of two consecutive
arrows vanishes:

3.3.3. LEMMA . For all p ∈ Z, we have∂p−1 ◦ ∂p = 0.

PROOF. If p ≤ 1 the result is trivial; for the casep ≥ 2 it suffices to show that
∂p−1(∂p(T )) = 0 for every singularp-simplexT . Observing that

`(v0, . . . , vq) ◦ `(e0, . . . , êi, . . . , eq) = `(v0, . . . , v̂i, . . . , vq)

we compute as follows:

∂p−1(∂p(T )) =
∑
j<i

(−1)j+i T ◦ `(e0, . . . , êj , . . . , êi, . . . , ep)

+
∑
j>i

(−1)j+i−1 T ◦ `(e0, . . . , êi, . . . , êj , . . . , ep) = 0. �

Let us give the following general definition:

3.3.4. DEFINITION. A chain complexis a familyC = (Cp, δp)p∈Z where each
Cp is an abelian group, and eachδp : Cp → Cp−1 is a homomorphism such that
δp−1 ◦ δp = 0 for everyp ∈ Z. For eachp ∈ Z we define:

Zp(C) = Ker(δp), Bp(C) = Im(δp+1),

and we say thatZp(C),Bp(C) are respectively thegroup ofp-cyclesand thegroup
of p-boundariesof the complexC. Clearly,Bp(C) ⊂ Zp(C), and we can therefore
define:

Hp(C) = Zp(C)/Bp(C);
we say thatHp(C) is thep-th homology groupof the complexC.
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If c ∈ Zp(C) is a p-cycle, we denote byc + Bp(C) its equivalence class in
Hp(C); we say thatc + Bp(C) is thehomology classdetermined byc. If c1, c2 ∈
Zp(C) determine the same homology class (that is, ifc1− c2 ∈ Bp(C)) we say that
c1 andc2 arehomologouscycles.

Lemma 3.3.3 tells us thatS(X) = (Sp(X), ∂p)p∈Z is a chain complex; we
say thatS(X) is thesingular complexof the topological spaceX. We write:

Zp(S(X)) = Zp(X), Bp(S(X)) = Bp(X), Hp(S(X)) = Hp(X);

and we callZp(X),Bp(X) andHp(X) respectively thegroup of singularp-cycles,
thegroup of singularp-boundariesand thep-th singular homology groupof the
topological spaceX.

Clearly,Hp(X) = 0 for p < 0 andH0(X) = S0(X)/B0(X).
We define a homomorphism

(3.3.3) ε : S0(X) −→ Z
by settingε(x) = 1 for every singular0-simplexx ∈ X. It is easy to see that
ε ◦ ∂1 = 0; for, it suffices to see thatε(∂1(T )) = 0 for every singular1-simplexT
in X. We therefore obtain a chain complex:

· · ·
∂p+1−−−−→ Sp(X)

∂p−−−→ Sp−1(X)
∂p−1−−−−→

· · · ∂1−−−→ S0(X) ε−−→ Z −→ 0 −→ · · ·
(3.3.4)

3.3.5. DEFINITION. The homomorphism (3.3.3) is called theaugmentation
map of the singular complexS(X); the chain complex in (3.3.4), denoted by
(S(X), ε) is called theaugmented singular complexof the spaceX. The groups of
p-cycles, ofp-boundaries and thep-th homology group of(S(X), ε) are denoted
by Z̃p(X), B̃p(X) andH̃p(X) respectively; we say that̃Hp(X) is thep-th reduced
singular homology groupof X.

Clearly, forp ≥ 1 we have:

Z̃p(X) = Zp(X), B̃p(X) = Bp(X), H̃p(X) = Hp(X).

From now on we will no longer specify the indexp in the operator∂p, and we will
write more concisely:

∂p = ∂, p ∈ Z.
3.3.6. EXAMPLE . If X = ∅ is the empty set, then obviouslySp(X) = 0 for

everyp ∈ Z, henceHp(X) = 0 for everyp, andH̃p(X) = 0 for everyp 6= −1; on
the other hand, we havẽH−1(X) = Z.

If X is non empty, then any singular0-simplexx0 ∈ X is such thatε(x0) =
1, and soε is surjective; it follows thatH̃−1(X) = 0. Concerning the relation
betweenH0(X) andH̃0(X), it is easy to see that we can identifỹH0(X) with a
subgroup ofH0(X), and that

H0(X) = H̃0(X)⊕ Z · (x0 +B0(X)) ∼= H̃0(X)⊕ Z,
whereZ·(x0+B0(X)) is the subgroup (infinite cyclic) generated by the homology
class ofx0 in H0(X).



3.3. SINGULAR HOMOLOGY GROUPS 95

3.3.7. EXAMPLE . If X is arc-connected and not empty , then any two singular
0-simplexesx0, x1 ∈ X are homologous; indeed, ifT : [0, 1] → X is a continuous
curve fromx0 to x1, thenT is a singular1-simplex and∂T = x1 − x0 ∈ B0(X).
It follows that the homology class of anyx0 ∈ X generatesH0(X), and since
ε(x0) = 1, it follows that no non zero multiple ofx0 is a boundary; therefore:

H0(X) ∼= Z, H̃0(X) = 0.

3.3.8. EXAMPLE . If X is not arc-connected, we can writeX =
⋃
α∈AXα,

where eachXα is an arc-connected component ofX. Then, every singular simplex
in X has image contained in someXα and therefore:

Sp(X) =
⊕
α∈A

Sp(Xα),

from which it follows that:

Hp(X) =
⊕
α∈A

Hp(Xα).

In particular, it follows from Example 3.3.7 that:

H0(X) =
⊕
α∈A

Z.

The reader should compare this fact with Remark 3.2.5.

3.3.9. EXAMPLE . Suppose thatX ⊂ IRn is a star-shaped subset around the
pointw ∈ X. For each singularp-simplexT in X we define a singular(p + 1)-
simplex[T,w] in X in such a way that the following diagram commutes:

I ×∆p

σ

��

τ

''OOOOOOOOOOOOO

∆p+1
[T,w]

// X

whereσ andτ are defined by:

σ(s, t) = (1− s)t+ s ep+1, τ(s, t) = (1− s)T (t) + sw, t ∈ ∆p, s ∈ I;
geometrically, the singular(p + 1)-simplex [T,w] coincides withT on the face
∆p ⊂ ∆p+1, it takes the vertexep+1 onw and it is affine on the segment that joins
t with ep+1 for everyt ∈ ∆p.

The mapT 7→ [T,w] extends to a homomorphism:

Sp(X) 3 c 7−→ [c, w] ∈ Sp+1(X).

It is easy to see that for each singularp-chainc ∈ Sp(X) we have:

(3.3.5) ∂[c, w] =

{
[∂c, w] + (−1)p+1c, p ≥ 1
ε(c)w − c, p = 0;

for, it suffices to consider the case thatc = T is a singularp-simplex, in which case
(3.3.5) follows from an elementary analysis of the definition of[T,w] and of the
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definition of the boundary operator. In particular, we have∂[c, w] = (−1)p+1c for
everyc ∈ Z̃p(X) and thereforec ∈ B̃p(X); we conclude that, ifX is star shaped,
then

H̃p(X) = 0, p ∈ Z.
3.3.10. DEFINITION. Let C = (Cp, δp), C′ = (C′p, δ

′
p) be chain complexes; a

chain map φ : C → C′ is a sequence of homomorphismsφp : Cp → C′p, p ∈ Z,
such that for everyp the diagram

Cp
δp−−−−→ Cp−1

φp

y yφp−1

C′p −−−−→
δ′p

C′p−1

commutes; in general, we will writeφ rather thanφp. It is easy to see that ifφ is
a chain map, thenφ(Zp(C)) ⊂ Zp(C′) andφ(Bp(C)) ⊂ Bp(C′), so thatφ induces
by passage to quotients a homomorphism

φ∗ : Hp(C) −→ Hp(C′);

we say thatφ∗ is themap induced in homologyby the chain mapφ.

Clearly, if φ : C → C′ andψ : C′ → C′′ are chain maps, then also their com-
positionψ ◦ φ is a chain map; moreover,(ψ ◦ φ)∗ = ψ∗ ◦ φ∗, and if Id is the
identity of the complexC, i.e., Idp is the identity ofCp for everyp, thenId∗ is the
identity ofHp(C) for everyp. It follows that if φ is achain isomorphism, i.e.,φp
is an isomorphism for everyp, thenφ∗ is an isomorphism between the homology
groups, and(φ−1)∗ = (φ∗)−1.

If X,Y are topological spaces andf : X → Y is a continuous map, then for
eachp we define a homomorphism:

f# : Sp(X) −→ Sp(Y )

by settingf#(T ) = f ◦ T for every singularp-simplexT in X. It is easy to see
thatf# is a chain map; we say thatf# is thechain map induced byf . It is clear
that, given continuous mapsf : X → Y , g : Y → Z then(g ◦ f)# = g# ◦ f#, and
that if Id is the identity map ofX, thenId# is the identity ofS(X); in particular,
if f is a homeomorphism, thenf# is a chain isomorphism, and(f−1)# = (f#)−1.
We have that the chain mapf# induces a homomorphism

f∗ : Hp(X) −→ Hp(Y )

between the groups of singular homology ofX andY , that will be denoted simply
by f∗.

3.3.11. REMARK . If A is a subspace ofX, then we can identify the set of
singularp-simplexes inA with a subset of the set of singularp-simplexes inX;
thenSp(A) is identified with a subgroup ofSp(X). If i : A → X denotes the
inclusion, theni# is simply the inclusion ofSp(A) into Sp(X). However, observe
that the induced map in homologyi∗ is in generalnot injective, and there exists no
identification ofHp(A) with a subgroup ofHp(X).
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Recall that(X,A) is called a pair of topological spaces whenX is a topological
space andA ⊂ X is a subspace. We define thesingular complexS(X,A) of the
pair (X,A) by setting:

Sp(X,A) = Sp(X)/Sp(A);

the boundary operator ofS(X,A) is defined using the boundary operator ofS(X)
by passage to the quotient. Clearly,S(X,A) is a chain complex; we write

Hp(S(X,A)) = Hp(X,A).

We callHp(X,A) thep-th group of relative homology of the pair(X,A).
If f : (X,A) → (Y,B) is a map of pairs (Definition 3.2.8) then the chain map

f# passes to the quotient and it defines a chain map

f# : S(X,A) −→ S(Y,B)

that will also be denoted byf#; thenf# induces a homomorphism between the
groups of relative homology, that will be denoted byf∗. Clearly, if f : (X,A) →
(Y,B) andg : (Y,B) → (Z,C) are maps of pairs, then(g ◦ f)# = g# ◦ f# and
that if Id is the identity map ofX, thenId# is the identity ofS(X,A); also, if
f : (X,A) → (Y,B) is ahomeomorphism of pairs, i.e.,f is a homeomorphism of
X ontoY with f(A) = B, thenf# is a chain isomorphism.

3.3.12. REMARK . An intuitive way of thinking of the groups of relative ho-
mologyHp(X,A) is to consider them as the reduced homology groupsH̃p(X/A)
of the spaceX/A which is obtained fromX by collapsingall the points ofA to
a single point. This idea is indeed a theorem that holds in the case thatA ⊂ X is
closed and it is adeformation retractof some open subset ofX. The proof of this
theorem requires further development of the theory, and it will be omitted in these
notes (see [31, Exercise 2,§39, Chapter 4]).

3.3.13. EXAMPLE . If A is the empty set, thenS(X,A) = S(X), and there-
foreHp(X,A) = Hp(X) for everyp ∈ Z; for this reason, we will not distinguish
between the spaceX and the pair(X, ∅).

3.3.14. EXAMPLE . The identity map ofX induces a map of pairs:

(3.3.6) q : (X, ∅) −→ (X,A);

thenq# : S(X) → S(X,A) is simply the quotient map. We define

Zp(X,A) = q−1
#

(
Zp(S(X,A))

)
, Bp(X,A) = q−1

#

(
Bp(S(X,A))

)
;

we callZp(X,A) andBp(X,A) respectively thegroup of relativep-cyclesand the
group of relativep-boundariesof the pair(X,A). More explicitly, we have

Zp(X,A) =
{
c ∈ Sp(X) : ∂c ∈ Sp−1(A)

}
= ∂−1(Sp−1(A)),

Bp(X,A) =
{
∂c+ d : c ∈ Sp+1(X), d ∈ Sp(A)

}
= Bp(X) + Sp(A);

Observe that

Zp(S(X,A)) = Zp(X,A)/Sp(A), Bp(S(X,A)) = Bp(X,A)/Sp(A);
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it follows from elementary theory of quotient of groups that:

(3.3.7) Hp(X,A) = Hp(S(X,A)) ∼= Zp(X,A)/Bp(X,A).

Given c ∈ Zp(X,A), the equivalence classc + Bp(X,A) ∈ Hp(X,A) is called
thehomology class determined byc in Hp(X,A); if c1, c2 ∈ Zp(X,A) determine
the same homology class inHp(X,A), i.e., if c1 − c2 ∈ Bp(X,A), we say thatc1
andc2 arehomologous inS(X,A).

3.3.15. EXAMPLE . If X is arc-connected andA 6= ∅, then arguing as in Exam-
ple 3.3.7 we conclude that any two0-simplexes inX are homologous inS(X,A);
however, in this case every point ofA is a singular0-simplex which is homologous
to 0 in S(X,A), hence:

H0(X,A) = 0.
If X is not arc-connected, then we writeX =

⋃
α∈AXα, where eachXα is an

arc-connected component ofX; writing Aα = A ∩ Xα, as in Example 3.3.8 we
obtain:

Sp(X,A) =
⊕
α∈A

Sp(Xα, Aα);

and it follows directly that:

Hp(X,A) =
⊕
α∈A

Hp(Xα, Aα).

In the casep = 0, we obtain in particular that:

H0(X,A) =
⊕
α∈A′

Z,

whereA′ is the subset of indicesα ∈ A such thatAα = ∅.

Our goal now is to build an exact sequence that relates the homology groups
Hp(X) andHp(A) with the relative homology groupsHp(X,A).

3.3.16. DEFINITION. Given chain complexesC, D, E , we say that

(3.3.8) 0 −→ C
φ−−→ D

ψ−−→ E −→ 0

is ashort exact sequenceof chain complexes ifφ andψ are chain maps and if for
everyp ∈ Z the sequence of abelian groups and homomorphisms

0 −→ Cp
φ−−→ Dp

ψ−−→ Ep −→ 0

is exact.

We have the following result of Homological Algebra:

3.3.17. LEMMA (The Zig-Zag Lemma).Given a short exact sequence of chain
complexes(3.3.8), there exists an exact sequence of abelian groups and homomor-
phisms:

(3.3.9) · · · δ∗−−−→ Hp(C)
φ∗−−−→ Hp(D)

ψ∗−−−→ Hp(E) δ∗−−−→ Hp−1(C)
φ∗−−−→ · · ·
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whereφ∗ andψ∗ are induced byφ andψ respectively, and the homomorphismδ∗
is defined by:

(3.3.10) δ∗
(
e+Bp(E)

)
= c+Bp−1(C), e ∈ Zp(E),

wherec ∈ Cp−1 is chosen in such a way thatφ(c) = δd andd ∈ Dp is chosen in
such a way thatψ(d) = e; the definition(3.3.10)does not depend on the arbitrary
choices involved.

PROOF. The proof, based on an exhaustive analysis of all the cases, is elemen-
tary and it will be omitted. The details can be found in [31, §24, Chapter 3]. �

The exact sequence (3.3.9) is known as thelong exact homology sequence
corresponding to the short exact sequence of chain complexes (3.3.8)

Coming back to the topological considerations, if(X,A) is a pair of topologi-
cal spaces, we have a short exact sequence of chain complexes:

(3.3.11) 0 −→ S(A)
i#−−−→ S(X)

q#−−−→ S(X,A) −→ 0

wherei# is induced by the inclusioni : A→ X andq# is induced by (3.3.6).
Then, it follows directly from the Zig-Zag Lemma the following:

3.3.18. PROPOSITION. Given a pair of topological spaces(X,A) then there
exists an exact sequence
(3.3.12)

· · · ∂∗−−−→ Hp(A) i∗−−→ Hp(X)
q∗−−−→ Hp(X,A) ∂∗−−−→ Hp−1(A) i∗−−→ · · ·

wherei∗ is induced by the inclusioni : A → X, q∗ is induced by(3.3.6)and the
homomorphism∂∗ is defined by:

∂∗
(
c+Bp(X,A)

)
= ∂c+Bp−1(A), c ∈ Zp(X,A);

such definition does not depend on the choices involved. IfA 6= ∅ we also have an
exact sequence
(3.3.13)

· · · ∂∗−−−→ H̃p(A) i∗−−→ H̃p(X)
q∗−−−→ Hp(X,A) ∂∗−−−→ H̃p−1(A) i∗−−→ · · ·

whose arrows are obtained by restriction of the corresponding arrows in the se-
quence(3.3.12).

PROOF. The sequence (3.3.12) is obtained by applying the Zig-Zag Lemma to
the short exact sequence (3.3.11). IfA 6= ∅, we replaceS(A) andS(X) by the
corresponding augmented complexes; we then apply the Zig-Zag Lemma and we
obtain the sequence (3.3.13). �

The exact sequence (3.3.12) is known as thelong exact homology sequence of
the pair (X,A); the sequence (3.3.13) is called thelong exact reduced homology
sequence of the pair(X,A).
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3.3.19. EXAMPLE . If A 6= ∅ is homeomorphic to a star-shaped subset ofIRn,
then H̃p(A) = 0 for every p ∈ Z (see Example 3.3.9); hence, the long exact
reduced homology sequence of the pair(X,A) implies that the map:

q∗ : H̃p(X) −→ Hp(X,A)

is an isomorphism for everyp ∈ Z.

Now, we want to show thehomotopical invariance of the singular homology;
more precisely, we want to show that two homotopic continuous maps induce the
same homomorphisms of the homology groups. We begin with an algebraic defin-
ition.

3.3.20. DEFINITION. Let C = (Cp, δp) andC′ = (C′p, δ
′
p) be chain complexes.

Given a chain mapφ, ψ : C → C′ then achain homotopybetweenφ andψ is a
sequence(Dp)p∈Z of homomorphismsDp : Cp → C′p+1 such that

(3.3.14) φp − ψp = δ′p+1 ◦Dp +Dp−1 ◦ δp,

for everyp ∈ Z; in this case we writeD : φ ∼= ψ and we say thatφ andψ are
chain-homotopic.

The following Lemma is a trivial consequence of formula (3.3.14)

3.3.21. LEMMA . If two chain mapsφ andψ are chain-homotopic, thenφ and
ψ induce the same homomorphisms in homology, i.e.,φ∗ = ψ∗. �

Our next goal is to prove that iff andg are two homotopic continuous maps,
then the chain mapsf# andg# are chain-homotopic. To this aim, we consider the
maps:

(3.3.15) iX : X → I ×X, jX : X → I ×X

defined byiX(x) = (0, x) andjX(x) = (1, x) for everyx ∈ X, whereI = [0, 1].
We will show first that the chain maps(iX)# and(jX)# are chain-homotopic:

3.3.22. LEMMA . For all topological spaceX there exists a chain homotopy
DX : (iX)# ∼= (jX)# whereiX andjX are given in(3.3.15); moreover, the asso-
ciationX 7→ DX may be chosen in anaturalway, i.e., in such a way that, given a
continuous mapf : X → Y , then the diagram

(3.3.16)

Sp(X)
(DX)p−−−−→ Sp+1(I ×X)

(f#)p

y y((Id×f)#)p

Sp(Y ) −−−−→
(DY )p

Sp+1(I × Y )

commutes for everyp ∈ Z, whereId× f is given by(t, x) 7→ (t, f(x)).

PROOF. For each topological spaceX and eachp ∈ Z we must define a ho-
momorphism

(DX)p : Sp(X) −→ Sp+1(I ×X);
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for p < 0 we obviously set(DX)p = 0. For p ≥ 0 we denote byIdp the iden-
tity map of the space∆p; then Idp is a singularp-simplex in∆p, and therefore
Idp ∈ Sp(∆p). The construction ofDX must be such that the diagram (3.3.16)
commutes, and this suggests the following definition:

(3.3.17) (DX)p(T ) = ((Id× T )#)p ◦ (D∆p)p(Idp),

for every singularp-simplexT : ∆p → X (observe thatT#(Idp) = T ); hence, we
need to find the correct definition of

(3.3.18) (D∆p)p(Idp) = ap ∈ Sp+1(I ×∆p),

for eachp ≥ 0. Keeping in mind the definition of chain homotopy (see (3.3.14)),
our definition ofap will have to be given in such a way that the identity

(3.3.19) ∂ap = (i∆p)#(Idp)− (j∆p)#(Idp)− (D∆p)p−1 ◦ ∂(Idp)

be satisfied for everyp ≥ 0 (we will omit some index to simplify the notation);
observe that (3.3.19) is equivalent to:

(3.3.20) ∂ap = i∆p − j∆p − (D∆p)p−1 ◦ ∂(Idp).

Let us begin by findinga0 ∈ S1(I×∆0) that satisfies (3.3.20), that is,a0 must
satisfy∂a0 = i∆0 − j∆0 ; we compute as follows:

ε(i∆0 − j∆0) = 0.

SinceH̃0(I × ∆0) = 0 (see Example 3.3.9) we see that it is indeed possible to
determinea0 with the required property.

We now argue by induction; fixr ≥ 1. Suppose thatap ∈ Sp+1(I ×∆p) has
been found forp = 0, . . . , r − 1 in such a way that condition (3.3.20) be satisfied,
where(DX)p is defined in (3.3.17) for every topological spaceX; it is then easy to
see that the diagram (3.3.16) commutes. An easy computation that uses (3.3.16),
(3.3.18) and (3.3.20) shows that:

(3.3.21)
(
(iX)#

)
p
−

(
(jX)#

)
p

= ∂ ◦ (DX)p + (DX)p−1 ◦ ∂,

for p = 0, . . . , r − 1.
Now, we need to determinear that satisfies (3.3.20) (withp = r). It follows

from (3.3.21), where we setX = ∆r andp = r − 1, that:

∂ ◦ (D∆r)r−1 ◦ ∂(Idr)

= (i∆r)# ◦ ∂(Idr)− (j∆r)# ◦ ∂(Idr)− (D∆r)r−2 ◦ ∂ ◦ ∂(Idr)

= ∂(i∆r − j∆r);

(3.3.22)

using (3.3.22) we see directly that

(3.3.23) i∆r − j∆r − (D∆r)r−1 ◦ ∂(Idr) ∈ Zr(I ×∆r).

SinceHr(I × ∆r) = 0 (see Example 3.3.9) it follows that (3.3.23) is anr-
boundary; hence it is possible to choosear satisfying (3.3.20) (withp = r).

This concludes the proof. �

It is now easy to prove the homotopical invariance of the singular homology.
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3.3.23. PROPOSITION. If two continuous mapsf, g : X → Y are homotopic,
then the chain mapsf# andg# are homotopic.

PROOF. Let H : f ∼= g be a homotopy betweenf e g; by Lemma 3.3.22
there exists a chain homotopyDX : iX ∼= jX . Then, it is easy to see that we
obtain a chain homotopy betweenf# andg# by considering, for eachp ∈ Z, the
homomorphism

(H#)p+1 ◦ (DX)p : Sp(X) −→ Sp+1(Y ). �

3.3.24. COROLLARY. If f, g : X → Y are homotopic, thenf∗ = g∗.

PROOF. It follows from Proposition 3.3.23 and from Lemma 3.3.21. �

3.3.1. The Hurewicz’s homomorphism.In this subsection we will show that
the first singular homology groupH1(X) of a topological spaceX can be com-
puted from its fundamental group; more precisely, ifX is arc-connected, we will
show thatH1(X) is theabelianized groupof π1(X).

In the entire subsection we will assume familiarity with the notations and the
concepts introduced in Section 3.1; we will consider a fixed topological spaceX.

Observing that the unit intervalI = [0, 1] coincides with the first standard
simplex∆1, we see that every curveγ ∈ Ω(X) is a singular1-simplex inX; then,
γ ∈ S1(X). We will say that two singular1-chainsc, d ∈ S1(X) arehomologous
whenc − d ∈ B1(X); this terminology will be used also in the case thatc andd
are not necessarily cycles.4

We begin with some Lemmas:

3.3.25. LEMMA . Let γ ∈ Ω(X) and letσ : I → I be a continuous map. If
σ(0) = 0 andσ(1) = 1, thenγ ◦ σ is homologous toγ; if σ(0) = 1 andσ(1) = 0,
thenγ ◦ σ is homologous to−γ.

PROOF. We suppose first thatσ(0) = 0 andσ(1) = 1. Consider the singular
1-simplexesσ and`(0, 1) in I (recall the definition of̀ in (3.3.1)). Clearly,∂

(
σ−

`(0, 1)
)

= 0, i.e.,σ − `(0, 1) ∈ Z1(I); sinceH1(I) = 0 (see Example 3.3.9) it
follows thatσ − `(0, 1) ∈ B1(I). Consider the chain map

γ# : S(I) −→ S(X);

we have thatγ#(σ − `(0, 1)) ∈ B1(X). But

γ#

(
σ − `(0, 1)

)
= γ ◦ σ − γ ∈ B1(X),

from which it follows thatγ is homologous toγ ◦ σ. The caseσ(0) = 1, σ(1) = 0
is proven analogously, observing thatσ + `(0, 1) ∈ Z1(I). �

3.3.26. REMARK . In some situations we will consider singular1-chains given
by curvesγ : [a, b] → X that are defined on an arbitrary closed interval[a, b] (rather
than on the unit intervalI); in this case, with a slight abuse, we will denote byγ ∈
S1(X) the singular1-simplexγ ◦ `(a, b) : I → X; it follows from Lemma 3.3.25
thatγ ◦ `(a, b) is homologous to any reparameterizationγ ◦ σ of γ, whereσ : I →
[a, b] is a continuous map such thatσ(0) = a andσ(1) = b (see also Remark 3.1.4).

4Observe that a singular1-chainc defines a homology class inH1(X) only if c ∈ Z1(X).
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3.3.27. LEMMA . If γ, µ ∈ Ω(X) are such thatγ(1) = µ(0), thenγ · µ is ho-
mologous toγ+µ; moreover, for everyγ ∈ Ω(X) we have thatγ−1 is homologous
to−γ and for everyx0 ∈ X, ox0 is homologous to zero.

PROOF. We will basically use the same idea that was used in the proof of
Lemma 3.3.25. We have that`

(
0, 1

2

)
+ `

(
1
2 , 1

)
− `(0, 1) ∈ Z1(I) = B1(I);

considering the chain map(γ · µ)# we obtain:

(γ · µ)#
(
`(0, 1

2) + `(1
2 , 1)− `(0, 1)

)
= γ + µ− γ · µ ∈ B1(X),

from which it follows thatγ · µ is homologous toγ + µ. The fact thatγ−1 is
homologous to−γ follows from Lemma 3.3.25; finally, ifT : ∆2 → X denotes
the constant map with valuex0, we obtain∂T = ox0 ∈ B1(X). �

3.3.28. LEMMA . LetK : I × I → X be a continuous map; considering the
curves:

γ1 = K ◦ `
(
(0, 0), (1, 0)

)
, γ2 = K ◦ `

(
(1, 0), (1, 1)

)
,

γ3 = K ◦ `
(
(1, 1), (0, 1)

)
, γ4 = K ◦ `

(
(0, 1), (0, 0)

)
,

we have that the singular1-chainγ1 + γ2 + γ3 + γ4 is homologous to zero.

PROOF. We have thatH1(I × I) = 0 (see Example 3.3.9); moreover

`
(
(0, 0), (1, 0)

)
+ `

(
(1, 0), (1, 1)

)
+ `

(
(1, 1), (0, 1)

)
+ `

(
(0, 1), (0, 0)

)
∈ Z1(I × I) = B1(I × I).

(3.3.24)

The conclusion follows by applyingK# to (3.3.24). �

We now relate the homotopy class and the homology class of a curveγ ∈
Ω(X).

3.3.29. COROLLARY. If γ, µ ∈ Ω(X) are homotopic with fixed endpoints, then
γ is homologous toµ.

PROOF. It suffices to apply Lemma 3.3.28 to a homotopy with fixed endpoints
K : γ ∼= µ, keeping in mind Lemma 3.3.27. �

3.3.30. REMARK . Let A ⊂ X be a subset; ifγ : I → X is a continuous
curve with endpoints inA, i.e.,γ(0), γ(1) ∈ A, then∂γ ∈ S0(A), and therefore
γ ∈ Z1(X,A) defines a homology classγ + B1(X,A) in H1(X,A). It follows
from Lemma 3.3.28 (keeping in mind also Lemma 3.3.27) that ifγ andµ are
homotopic with free endpoints inA (recall Definition 3.1.25) thenγ andµ define
the same homology class inH1(X,A).

3.3.31. REMARK . If γ, µ are freely homotopic loops inX (see Remark 3.1.16)
then it follows easily from Lemma 3.3.28 (keeping in mind also Lemma 3.3.27)
thatγ is homologous toµ.

We define a map:

(3.3.25) Θ: Ω(X) −→ S1(X)/B1(X)
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by settingΘ([γ]) = γ + B1(X) for everyγ ∈ Ω(X); it follows from Corol-
lary 3.3.29 thatΘ is well defined, i.e., it does not depend on the choice of the
representative of the homotopy class[γ] ∈ Ω(X). Then, Lemma 3.3.27 tells us
that:
(3.3.26)

Θ([γ] · [µ]) = Θ([γ]) + Θ([µ]), Θ
(
[γ]−1

)
= −Θ([γ]), Θ([ox0 ]) = 0,

for everyγ, µ ∈ Ω(X) with γ(1) = µ(0) and for everyx0 ∈ X. If γ ∈ Ω(X) is
a loop, thenγ ∈ Z1(X); if we fix x0 ∈ X, we see thatΘ restricts to a map (also
denoted byΘ):

(3.3.27) Θ: π1(X,x0) −→ H1(X).

It follows from (3.3.26) that (3.3.27) is a group homomorphism; this homomor-
phism is known as theHurewicz’s homomorphism. The Hurewicz’s homomor-
phism is natural in the sense that, given a continuous mapf : X → Y with
f(x0) = y0, the following diagram commutes:

π1(X,x0)
Θ−−−−→ H1(X)

f∗

y yf∗
π1(Y, y0) −−−−→

Θ
H1(Y )

If λ : I → X is a continuous curve joiningx0 andx1, then the Hurewicz’s ho-
momorphism fits well together with the isomorphismλ# between the fundamental
groupsπ1(X,x0) andπ1(X,x1) (see Proposition 3.1.11); more precisely, it fol-
lows from (3.3.26) that we have a commutative diagram:

(3.3.28) π1(X,x0)
Θ

&&LLLLLLLLLL

λ#

��

H1(X)

π1(X,x1).
Θ

88rrrrrrrrrr

We are now ready to prove the main result of this subsection. We will first
recall some definitions in group theory.

3.3.32. DEFINITION. If G is a group, thecommutator subgroupof G, denoted
byG′, is the subgroup ofG generated by all the elements of the formghg−1h−1,
with g, h ∈ G. The commutator subgroupG′ is always a normal subgroup5 of
G, and therefore the quotientG/G′ is always a group. We say thatG/G′ is the
abelianized groupof G.

The groupG/G′ is always abelian; as a matter of facts, ifH is a normal sub-
group ofG, then the quotient groupG/H is abelian if and only ifH ⊃ G′.

5actually, the commutator subgroupG′ of G is invariant by every automorphismof G.
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3.3.33. THEOREM. LetX be an arc-connected topological space. Then, for
everyx0 ∈ X, the Hurewicz’s homomorphism(3.3.27)is surjective, and its kernel
is the commutator subgroup ofπ1(X,x0); in particular, the first singular homology
groupH1(X) is isomorphic to the abelianized group ofπ1(X,x0).

PROOF. Since the quotientπ1(X,x0)/Ker(Θ) ∼= Im(Θ) is abelian, it follows
that Ker(Θ) contains the commutator subgroupπ1(X,x0)′, and thereforeΘ de-
fines a homomorphism by passage to the quotient:

Θ: π1(X,x0)/π1(X,x0)′ −→ H1(X);

our strategy will be to show thatΘ is an isomorphism.
For eachx ∈ X, choose a curveηx ∈ Ω(X) such thatηx(0) = x0 and

ηx(1) = x; we are now going to define a homomorphism

Ψ: S1(X) −→ π1(X,x0)/π1(X,x0)′;

sinceπ1(X,x0)/π1(X,x0)′ is abelian and the singular1-simplexes ofX form a
basis ofS1(X) as a free abelian group,Ψ is well defined if we set

Ψ(γ) = q
(
[ηγ(0)] · [γ] · [ηγ(1)]−1

)
, γ ∈ Ω(X),

whereq denotes the quotient map

q : π1(X,x0) −→ π1(X,x0)/π1(X,x0)′.

We are now going to show thatB1(X) is contained in the kernel ofΨ; to this aim,
it suffices to show thatψ(∂T ) is the neutral element ofπ1(X,x0)/π1(X,x0)′ for
every singular2-simplexT in X. We write:

(3.3.29) ∂T = γ0 − γ1 + γ2,

whereγ0 = T ◦ `(e1, e2), γ1 = T ◦ `(e0, e2) andγ2 = T ◦ `(e0, e1). Applying Ψ
to both sides of (3.3.29) we obtain:

Ψ(∂T ) = Ψ(γ0)Ψ(γ1)−1Ψ(γ2)

= q
(
[ηT (e1)] · [γ0] · [γ1]−1 · [γ2] · [ηT (e1)]

−1
)
.

(3.3.30)

Writing [ρ] = [`(e1, e2)] · [`(e2, e0)] · [`(e0, e1)] ∈ Ω(∆2) then (3.3.30) implies
that:

Ψ(∂T ) = q
(
[ηT (e1)] · T∗([ρ]) · [ηT (e1)]

−1
)
;

since[ρ] ∈ π1(∆2, e1), we have that[ρ] = [oe1 ] (see Example 3.1.15), from which
it follows Ψ(∂T ) = q([ox0 ]).

Then, we conclude thatB1(X) ⊂ Ker(Ψ), from which we deduce thatΨ
passes to the quotient and defines a homomorphism

Ψ: S1(X)/B1(X) −→ π1(X,x0)/π1(X,x0)′.

The strategy will now be to show that the restrictionΨ|H1(X) is an inverse forΘ.
Let us computeΘ ◦Ψ; for γ ∈ Ω(X) we have:

(Θ ◦Ψ)(γ) = Θ([ηγ(0)]) + Θ([γ])−Θ([ηγ(1)])

= ηγ(0) + γ − ηγ(1) +B1(X).
(3.3.31)
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Define a homomorphismφ : S0(X) → S1(X) by settingφ(x) = ηx for every
singular0-simplexx ∈ X; then (3.3.31) implies that:

(3.3.32) Θ ◦Ψ = p ◦ (Id− φ ◦ ∂),

wherep : S1(X) → S1(X)/B1(X) denotes the quotient map andId denotes the
identity map ofS1(X). If we restricts both sides of (3.3.32) toZ1(X) and passing
to the quotient we obtain:

Θ ◦Ψ|H1(X) = Id.

Let us now computeΨ ◦Θ; for every loopγ ∈ Ωx0(X) we have:

(Ψ ◦Θ)
(
q([γ])

)
= Ψ(γ) = q([ηx0 ])q([γ])q([ηx0 ])

−1 = q([γ]),

observing thatπ1(X,x0)/π1(X,x0)′ is abelian. It follows that:(
Ψ|H1(X)

)
◦Θ = Id,

which concludes the proof. �

3.3.34. REMARK . If X is arc-connected andπ1(X) is abelian, it follows from
Theorem 3.3.33 that the Hurewicz’s homomorphism is an isomorphism ofπ1(X,x0)
ontoH1(X); this fact “explains” why the fundamental groups with different base-
pointsπ1(X,x0) andπ1(X,x1) can be canonically identified when the fundamen-
tal group of the space is abelian. The reader should compare this observation with
Remark 3.1.13 and with the diagram (3.3.28).

Exercises for Chapter 3

EXERCISE3.1. Prove that every contractible space is arc-connected.

EXERCISE 3.2. Prove that a topological spaceX which is connected and lo-
cally arc-connected is arc-connected. Deduce that a connected (topological) mani-
fold is arc-connected.

EXERCISE 3.3. Let γ ∈ Ω(X) be a loop and letλ ∈ Ω(X) be such that
λ(0) = γ(0); show that the loopsγ andλ−1 · γ · λ are freely homotopic.

EXERCISE3.4. Letf, g : X → Y be homotopic maps and letH : f ∼= g be a
homotopy fromf to g; fix x0 ∈ X and setλ(s) = Hs(x0), s ∈ I. Show that the
following diagram commutes:

π1(Y, f(x0))

λ#∼=

��

π1(X,x0)

f∗
77ooooooooooo

g∗ ''OOOOOOOOOOO

π1(Y, g(x0))
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EXERCISE3.5. A continuous mapf : X → Y is said to be ahomotopy equiv-
alenceif there exists a continuous mapg : Y → X such thatg ◦ f is homotopic to
the identity map ofX andf ◦ g is homotopic to the identity map ofY ; in this case
we say thatg is ahomotopy inversefor f . Show that iff is a homotopy equivalence
thenf∗ : π1(X,x0) → π1(Y, f(x0)) is an isomorphism for everyx0 ∈ X.

EXERCISE 3.6. Show thatX is contractible if and only if the mapf : X →
{x0} is a homotopy equivalence.

EXERCISE 3.7. Prove that a homotopy equivalence induces an isomorphism
in singular homology. Conclude that, ifX is contractible, thenH0(X) ∼= Z and
Hp(X) = 0 for everyp ≥ 1.

EXERCISE 3.8. If Y ⊂ X, a continuous mapr : X → Y is said to be a
retraction if r restricts to the identity map ofY ; in this case we say thatY is a
retract of X. Show that ifr is a retraction thenr∗ : π1(X,x0) → π1(Y, x0) is
surjective for everyx0 ∈ Y . Show also that ifY is a retract ofX then the inclusion
mapi : Y → X induces an injective homomorphismi∗ : π1(Y, x0) → π1(X,x0)
for everyx0 ∈ Y .

EXERCISE 3.9. LetG1, G2 be groups andf : G1 → G2 a homomorphism.

Prove that the sequence0 −→ G1
f−−→ G2 −→ 0 is exact if and only iff is an

isomorphism.

EXERCISE 3.10. Letp : E → B be a locally injective continuous map with
E Hausdorff and letf : X → B be a continuous map defined in a connected
topological spaceX. Givenx0 ∈ X, e0 ∈ E, show that there exists at most one
mapf̂ : X → E with p ◦ f̂ = f andf̂(x0) = e0. Show that ifp is a covering map
then the hypothesis thatE is Hausdorff can be dropped.

EXERCISE3.11. LetX ⊂ IR2 be defined by:

X =
{
(x, sin(1/x)) : x > 0

}
∪

(
{0} × [−1, 1]

)
.

Show thatX is connected but not arc-connected; compute the singular homology
groups ofX.

EXERCISE3.12. Prove the Zig-Zag Lemma (Lemma 3.3.17).

EXERCISE3.13. LetG be a group and letG act on a topological spaceX by
homeomorphisms. We say that such action isproperly discontinuousif for every
x ∈ X there exists a neighborhoodU of x such thatgU ∩ U = ∅ for everyg 6= 1,
wheregU = {g · y : y ∈ U}. Let be given a properly discontinuous action ofG in
X and denote byX/G the set of orbits ofG endowed with the quotient topology.

• Show that the quotient mapp : X → X/G is a covering map with typical
fiberG.

• Show that, ifX is arc-connected, there exists an exact sequence of groups
and group homomorphisms:

0 −→ π1(X)
p∗−−−→ π1(X/G) −→ G −→ 0.
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• If X is simply connected conclude thatπ1(X/G) is isomorphic toG.

EXERCISE3.14. LetX = IR2 be the Euclidean plane; for eachm,n ∈ Z let
gm,n be the homeomorphism ofX given by:

gm,n(x, y) = ((−1)nx+m, y + n).

SetG = {gm,n : m,n ∈ Z}. Show that:

• G is a subgroup of the group of all homeomorphisms ofX;
• show thatX/G is homeomorphic to theKlein bottle;
• show that the natural action ofG in X is properly discontinuous; con-

clude that the fundamental group of the Klein bottle is isomorphic toG;
• show thatG is thesemi-direct product6 of two copies ofZ;
• compute the commutator subgroup ofG and conclude that the first sin-

gular homology group of the Klein bottle is isomorphic toZ⊕ (Z/2Z).

EXERCISE3.15. Prove that ifX andY are arc-connected, thenH1(X×Y ) ∼=
H1(X)⊕H1(Y ).

EXERCISE3.16. Compute the relative homology groupH2(D, ∂D), whereD
is the unit disk{(x, y) ∈ IR2 : x2 + y2 ≤ 1} and∂D is its boundary.

6Recall that a groupG is the (inner) semi-direct product of two subgroupsH andK if G = HK
with H ∩K = {1} andK normal inG.



CHAPTER 4

The Maslov Index

4.1. Index of a Symmetric Bilinear Form

In this section we will define the index and the co-index of a symmetric bilinear
form; in finite dimension, these numbers are respectively the number of negative
and of positive entries of a symmetric matrix when it is diagonalized as in the
Sylvester Inertia Theorem (Theorem 4.1.10). We will show some properties of
these numbers.

In this Section,V will always denote areal vector space, not necessarily finite
dimensional. Recall thatBsym(V ) denotes the space of symmetric bilinear forms
B : V × V → IR. We start with a definition:

4.1.1. DEFINITION. LetB ∈ Bsym(V ); we say thatB is:

• positive definiteif B(v, v) > 0 for all v ∈ V , v 6= 0;
• positive semi-definiteif B(v, v) ≥ 0 for all v ∈ V ;
• negative definiteif B(v, v) < 0 for all v ∈ V , v 6= 0;
• negative semi-definiteif B(v, v) ≤ 0 for all v ∈ V .

We say that a subspaceW ⊂ V is positive with respect toB, or B-positive, if
B|W×W is positive definite; similarly, we say thatW is negative with respect toB,
orB-negative, if B|W×W is negative definite.

The indexof B, denoted byn−(B), is defined by:

(4.1.1) n−(B) = sup
{
dim(W ) : W is aB-negative subspace ofV

}
.

The index ofB can be a non negative integer, or+∞. Theco-indexof B, denoted
by n+(B), is defined as the index of−B:

n+(B) = n−(−B).

Obviously, the co-index ofB can be defined as the supremum of the dimensions
of all B-positive subspaces ofV . When at least one of the numbersn−(B) and
n+(B) is finite, we define thesignatureof B by:

sgn(B) = n+(B)− n−(B).

If B ∈ Bsym(V ) andW ⊂ V is a subspace, then clearly:

(4.1.2) n−(B|W×W ) ≤ n−(B), n+(B|W×W ) ≤ n+(B).

The reader should now recall the definitions ofkernelof a symmetric bilinear form
B, denoted byKer(B), and oforthogonal complementof a subspaceS ⊂ V with
respect toB, denoted byS⊥. Recall also thatB is said to benondegenerateif
Ker(B) = {0}.

109
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Observe that in Section 1.1 we have considered only finite dimensional vector
spaces, but obviously the definitions of kernel, orthogonal complement and nonde-
generacy make sense for symmetric bilinear forms defined on an arbitrary vector
spaceV . However, many results proven in Section 1.1 make anessentialuse of
the finiteness of the vector space (see Example 1.1.12). For instance, observe that
a bilinear form is nondegenerate if and only if its associated linear operator

(4.1.3) V 3 v 7−→ B(v, ·) ∈ V ∗

is injective; ifdim(V ) = +∞, this doesnot imply that (4.1.3) is an isomorphism.

4.1.2. DEFINITION. GivenB ∈ Bsym(V ), thedegeneracyof B, denoted by
dgn(B) is the possibly infinite dimension ofKer(B). We say that a subspace
W ⊂ V is nondegenerate with respect toB, or also thatW isB-nondegenerate, if
B|W×W is nondegenerate.

4.1.3. EXAMPLE . Unlike the case of the index and the co-index (see (4.1.2)),
the degeneracy of a symmetric bilinear formB is notmonotonic with respect to the
inclusion of subspaces. For instance, ifV = IR2 andB is the symmetric bilinear
form:

(4.1.4) B
(
(x1, y1), (x2, y2)

)
= x1x2 − y1y2

thendgn(B) = 0; however, ifW is the subspace generated by the vector(1, 1),
we have:

dgn(B|W×W ) = 1 > 0 = dgn(B).
On the other hand, ifB is defined by

B
(
(x1, y1), (x2, y2)

)
= x1x2

and ifW is the subspaces generated by(1, 0), then

dgn(B|W×W ) = 0 < 1 = dgn(B).

4.1.4. EXAMPLE . If T : V1 → V2 is an isomorphism and ifB ∈ Bsym(V1),
then we can consider the push-forward ofB, T#(B) ∈ Bsym(V2). Clearly,T maps
B-positive subspaces ofV1 into T#(B)-positive subspaces ofV2, andB-negative
subspaces ofV1 into T#(B)-negative subspaces ofV2; moreover,Ker(T#(B)) =
T (Ker(B)). Hence we have:

n+

(
T#(B)

)
= n+(B), n−

(
T#(B)

)
= n−(B), dgn

(
T#(B)

)
= dgn(B).

4.1.5. REMARK . It follows from Proposition 1.1.10 and from remark 1.1.13
that ifW ⊂ V is afinite dimensionalB-nondegenerate subspace, thenV = W ⊕
W⊥, even in the case thatdim(V ) = +∞.

Recall that ifW ⊂ V is a subspace, then thecodimensionofW in V is defined
by:

codimV (W ) = dim(V/W );
this number may be finite even whendim(W ) = dim(V ) = +∞. The codimen-
sion ofW in V coincides with the dimension of any complementary subspace of
W in V .
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The following Lemma and its Corollary are the basic tool for the computation
of indices of bilinear forms:

4.1.6. LEMMA . LetB ∈ Bsym(V ); if Z ⊂ V is a subspace ofV on whichB
is positive semi-definite, then:

n−(B) ≤ codimV (Z).

PROOF. If B is negative definite on a subspaceW , thenW ∩Z = {0}, and so
the quotient mapq : V → V/Z takesW isomorphically onto a subspace ofV/Z.
Hence,dim(W ) ≤ codimV (Z). �

4.1.7. COROLLARY. Suppose thatV = Z ⊕W withB positive semi-definite
onZ and negative definite onW ; thenn−(B) = dim(W ).

PROOF. Clearly,n−(B) ≥ dim(W ).
From Lemma 4.1.6 it follows thatn−(B) ≤ codimV (Z) = dim(W ). �

4.1.8. REMARK . Note that every result concerning the index of symmetric
bilinear forms, like for instance Lemma 4.1.6 and Corollary 4.1.7, admits a cor-
responding version for the co-index of forms. For shortness, we will only state
these results in the version for the index, and we will understand the version for the
co-index. Similarly, results concerning negative (semi-)definite symmetric bilinear
formsB can be translated into results for positive (semi-)definite symmetric forms
by replacingB with −B.

4.1.9. PROPOSITION. If B ∈ Bsym(V ) and V = Z ⊕ W with B positive
definite inZ and negative definite inW , thenB is nondegenerate.

PROOF. Let v ∈ Ker(B); write v = v+ + v− with v+ ∈ Z andv− ∈ W .
Then:

B(v, v+) = B(v+, v+) +B(v−, v+) = 0,(4.1.5)

B(v, v−) = B(v+, v−) +B(v−, v−) = 0;(4.1.6)

from (4.1.5) we get thatB(v+, v−) ≤ 0, and from (4.1.6) we getB(v+, v−) ≥ 0,
from which it followsB(v+, v−) = 0. Then, (4.1.5) impliesv+ = 0 and (4.1.6)
impliesv− = 0. �

4.1.10. THEOREM (Sylvester’s Inertia Theorem).Supposedim(V ) = n <
+∞ and letB ∈ Bsym(V ); then, there exists a basis ofV with respect to which
the matrix form ofB is given by:

(4.1.7) B ∼

 Ip 0p×q 0p×r
0q×p −Iq 0q×r
0r×p 0r×q 0r

 ,

where0α×β, 0α andIα denote respectively the zeroα × β matrix, the zeroα × α
matrix and theα× α identity matrix.

The numbersp, q and r are uniquely determined by the bilinear formB; we
have:

(4.1.8) n+(B) = p, n−(B) = q, dgn(B) = r.
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PROOF. The existence of a basis(bi)ni=1 with respect to whichB has the
canonical form (4.1.7) follows from Theorem 1.1.14, after suitable rescaling of the
vectors of the basis. To prove thatp, q andr are uniquely determined byB, i.e., that
they do not depend on the choice of the basis, it is actually enough to prove (4.1.8).
To this aim, letZ be the subspace generated by the vectors{bi}pi=1 ∪ {bi}ni=p+q+1

andW the subspace generated by{bi}p+qi=p+1; thenV = Z ⊕ W , B is positive
semi-definite inZ and negative definite inW . It follows from Corollary 4.1.7
that n−(B) = dim(W ) = q. Similarly, we getn+(B) = p. It is easy to
see thatKer(B) is generated by the vectors{bi}ni=p+q+1 and we conclude that
dgn(B) = r. �

4.1.11. COROLLARY. LetB ∈ Bsym(V ), withdim(V ) < +∞. If g is an inner
product inV and if T ∈ Lin(V ) is such thatB = g(T ·, ·), then the index (resp.,
the co-index) ofB is equal to the sum of the multiplicities of the negative (resp.,
the positive) eigenvalues ofT ; the degeneracy ofB is equal to the multiplicity of
the zero eigenvalue ofT .

PROOF. SinceT is g-symmetric, there exists ag-orthonormal basis that diag-
onalizesT , and this diagonal matrix has in its diagonal entries the eigenvalues ofT
repeated with multiplicity. In such basis, the bilinear formB is represented by the
same matrix. After suitable rescaling of the vectors of the basis,B will be given in
the canonical form (4.1.7); this operation does not change the signs of the elements
in the diagonal of the matrix that representsB. The conclusion now follows from
Theorem 4.1.10 �

4.1.12. EXAMPLE . The conclusion of Corollary 4.1.11 holds in the more gen-
eral case of a matrixT that representsB in any basis; indeed, observe that any basis
is orthonormal with respect to some inner product ofV . Recall that thedetermi-
nantand thetraceof a matrix are equal respectively to the product and the sum of
its eigenvalues (repeated with multiplicity); in the casedim(V ) = 2 it follows that
the determinant and the trace of a matrix that representsB in any basis determine
uniquely the numbersn−(B), n+(B) anddgn(B).

4.1.13. LEMMA . Suppose thatB ∈ Bsym(V ) is positive semi-definite; then

Ker(B) = {v ∈ V : B(v, v) = 0}.
PROOF. Let v ∈ V with B(v, v) = 0 and letw ∈ V be arbitrary; we need to

show thatB(v, w) = 0. If v andw are linearly dependent, the conclusion is trivial;
otherwise,v andw form the basis of a two-dimensional subspace ofV in which
the restriction ofB is represented by the matrix:

(4.1.9)

(
B(v, v) B(v, w)
B(v, w) B(w,w)

)
.

It follows from Corollary 4.1.11 (see Example 4.1.12) that the determinant of
(4.1.9) is non negative, that is:

B(v, w)2 ≤ B(v, v)B(w,w) = 0,

which concludes the proof. �
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4.1.14. COROLLARY. If B ∈ Bsym(V ) is positive semi-definite and nondegen-
erate, thenB is positive definite. �

We now prove a generalized version of theCauchy–Schwarz inequalityfor
symmetric bilinear forms:

4.1.15. PROPOSITION. LetB ∈ Bsym(V ) and vectorsv, w ∈ V be given. We
have:

• if v, w are linearly dependent or ifv, w generate aB-degenerate two-
dimensional subspace, then

B(v, w)2 = B(v, v)B(w,w);

• if v, w generate aB-positive orB-negative two-dimensional subspace,
then

B(v, w)2 < B(v, v)B(w,w);
• if v, w generate a two-dimensional subspace whereB has index equal to

1, then
B(v, w)2 > B(v, v)B(w,w);

the above possibilities are exhaustive and mutually exclusive.

PROOF. The case thatv andw are linearly dependent is trivial; all the others
follow directly from Corollary 4.1.11 (see also Example 4.1.12), keeping in mind
that the matrix that represents the restriction ofB to the subspace generated byv
andw is given by (4.1.9). �

4.1.16. DEFINITION. GivenB ∈ Bsym(V ), we say that two subspacesV1 and
V2 of V areorthogonal with respect toB, orB-orthogonal, if B(v1, v2) = 0 for all
v1 ∈ V1 and allv2 ∈ V2; a direct sumV = V1 ⊕ V2 with V1 andV2 B-orthogonal
will be called aB-orthogonal decompositionof V .

4.1.17. LEMMA . LetB ∈ Bsym(V ); if V = V1 ⊕ V2 is aB-orthogonal de-
composition ofV and ifB is negative definite (resp., negative semi-definite) inV1

and inV2, thenB is negative definite (resp., negative semi-definite) inV .

PROOF. It is obtained from the following simple computation:

B(v1 + v2, v1 + v2) = B(v1, v1) +B(v2, v2), v1 ∈ V1, v2 ∈ V2. �

4.1.18. DEFINITION. GivenB ∈ Bsym(V ), we say that a subspaceW ⊂ V
is maximal negative with respect toB if W isB-negative and if it is not properly
contained in any otherB-negative subspace ofV . Similarly, we say thatW ⊂ V
is maximal positive with respect toB if W is B-positive and if it is not properly
contained in any otherB-positive subspace ofV .

4.1.19. COROLLARY. LetB ∈ Bsym(V ) andW ⊂ V be a maximal negative
subspace with respect toB. Then, ifZ ⊂ V is a subspace which isB-orthogonal
toW , it follows thatB is positive semi-definite inZ.

PROOF. By Lemma 4.1.17, the sum of any non zeroB-negative subspace of
Z with W would be aB-negative subspace ofV that contains properlyW . The
conclusion follows. �
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Observe that Corollary 4.1.19 can be applied whenn−(B) < +∞ andW is a
B-negative subspace withdim(W ) = n−(B).

4.1.20. COROLLARY. GivenB ∈ Bsym(V ), then

dim(V ) = n+(B) + n−(B) + dgn(B).

PROOF. If either one of the numbersn+(B) or n−(B) is infinite, the result
is trivial. Suppose then that both numbers are finite; letW ⊂ V be aB-negative
subspace withdim(W ) = n−(B) and letZ ⊂ V be aB-positive subspace with
dim(Z) = n+(B). By Proposition 4.1.9 we have thatB is nondegenerate in
Z ⊕W , and it follows from Remark 4.1.5 that

V = Z ⊕W ⊕ (Z ⊕W )⊥.

By Corollary 4.1.19, we have thatB is positive semi-definite and also negative
semi-definite in(Z ⊕W )⊥, henceB vanishes in(Z ⊕W )⊥. It follows now that
Ker(B) = (Z ⊕W )⊥, which concludes the proof. �

4.1.21. COROLLARY. If W ⊂ V is a maximal negative subspace with respect
toB ∈ Bsym(V ), thenn−(B) = dim(W ).

PROOF. If dim(W ) = +∞ the result is trivial; for the general case, it follows
from Remark 4.1.5 thatV = W ⊕W⊥. By Corollary 4.1.19,B is positive semi-
definite inW⊥, and then the conclusion follows from Corollary 4.1.7. �

4.1.22. REMARK . We can now conclude that the “supremum” that appears in
the definition of index in (4.1.1) is in facts amaximum, i.e., there always exists a
B-negative subspaceW ⊂ V with n−(B) = dim(W ). If n−(B) is finite, this
statement is trivial. Ifn−(B) = +∞, it follows from Corollary 4.1.21 that no
finite-dimensional subspace ofV is maximalB-negative. If there were no infinite-
dimensionalB-negative subspace ofV , we could construct a strictly increasing
sequenceW1 ⊂ W2 ⊂ · · · of B-negative subspaces; thenW =

⋃
n≥1Wn would

be an infinite-dimensionalB-negative subspace, in contradiction with the hypoth-
esis.

As a matter of facts, it follows from Zorn’s Lemma that every symmetric bilin-
ear form admits a maximal negative subspace (see Exercise 4.1).

4.1.23. PROPOSITION. LetB ∈ Bsym(V ); if V = V1 ⊕ V2 is aB-orthogonal
decomposition, then:

n+(B) = n+

(
B|V1×V1

)
+ n+

(
B|V2×V2

)
,(4.1.10)

n−(B) = n−
(
B|V1×V1

)
+ n−

(
B|V2×V2

)
,(4.1.11)

dgn(B) = dgn
(
B|V1×V1

)
+ dgn

(
B|V2×V2

)
.(4.1.12)

PROOF. The identity (4.1.12) follows from

Ker(B) = Ker
(
B|V1×V1

)
⊕Ker

(
B|V2×V2

)
.

Let us prove (4.1.11). IfB has infinite index inV1 or in V2 the result is trivial;
suppose then that these indices are finite. LetWi ⊂ Vi be aB-negative subspace
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with n−
(
B|Vi×Vi

)
= dim(Wi), i = 1, 2. By Remark 4.1.5 we can find aB-

orthogonal decompositionVi = Zi ⊕Wi; it follows from Corollary 4.1.19 thatB
must be positive semi-definite inZi. Then:

V = (W1 ⊕W2)⊕ (Z1 ⊕ Z2),

where, by Lemma 4.1.17,B is negative definite inW1 ⊕W2 and positive semi-
definite inZ1 ⊕ Z2. The identity (4.1.11) now follows from Corollary 4.1.7; the
identity (4.1.10) follows by replacingB with −B. �

4.1.24. COROLLARY. LetB ∈ Bsym(V ) and letN ⊂ Ker(B); if W ⊂ V is
any complementary subspace toN then the following identities hold:

n+(B) = n+

(
B|W×W

)
, n−(B) = n−

(
B|W×W

)
,

dgn(B) = dgn
(
B|W×W

)
+ dim(N);

(4.1.13)

if N = Ker(B) thenB is nondegenerate inW .

PROOF. The identities (4.1.13) follow immediately from Proposition 4.1.23,
becauseV = W ⊕ N is aB-orthogonal decomposition. IfN = Ker(B), the
nondegeneracy ofB in W is obvious. �

4.1.25. REMARK . If N is a subspace ofKer(B) then we can define by passing
to the quotient a symmetric bilinear formB ∈ Bsym(V/N):

B(v1 +N, v2 +N) = B(v1, v2), v1, v2 ∈ V.
If W ⊂ V is any subspace complementary toN , we have an isomorphismq :
W → V/N obtained by restriction of the quotient map; moreover,B is the push-
forward ofB|W×W by q. It follows from Corollary 4.1.24 (see also Example 4.1.4)
that

n+(B) = n+

(
B

)
, n−(B) = n−

(
B

)
, dgn(B) = dgn

(
B

)
+ dim(N);

if N = Ker(B) then it follows also thatB is nondegenerate.

4.1.26. EXAMPLE . Lemma 4.1.17 doesnot hold if the subspacesV1 andV2

are notB-orthogonal. For instance, ifV = IR2 and if we consider the symmetric
bilinear formB given in (4.1.4), thenn−(B) = n+(B) = 1, but we can write
IR2 as the direct sum of the subspaces generated respectively byv1 = (0, 1) and
v2 = (1, 2), that are bothB-negative.

In the next proposition we generalize the result of Lemma 4.1.17 by showing
that if V = V1 ⊕ V2, whereV1 andV2 areB-negative subspaces such that the
product of elements ofV1 with elements ofV2 is “relatively small with respect to
their lengths”, thenV isB-negative.

4.1.27. PROPOSITION. LetB ∈ Bsym(V ) and assume thatV is written as the
direct sum ofB-negative subspacesV = V1 ⊕ V2; if for all v1 ∈ V1 andv2 ∈ V2,
with v1, v2 6= 0, it is

(4.1.14) B(v1, v2)2 < B(v1, v1)B(v2, v2)

thenB is negative definite inV .
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PROOF. Let v ∈ V be non zero and writev = v1 + v2, with v1 ∈ V1 and
v2 ∈ V2. We need to show thatB(v, v) < 0, and clearly it suffices to consider the
case that bothv1 andv2 are non zero. In this case, the hypothesis (4.1.14) together
with Proposition 4.1.15 imply that the two-dimensional subspace generated byv1
andv2 isB-negative, which concludes the proof. �

4.1.28. REMARK . It can also be shown a version of Proposition 4.1.27 assum-
ing only thatB is negative semi-definite inV1 and inV2, and that

(4.1.15) B(v1, v2)2 ≤ B(v1, v1)B(v2, v2),

for all v1 ∈ V1, v2 ∈ V2. In this case, the conclusion is thatB is negative semi-
definite inV (see Exercise 4.2).

4.1.1. The evolution of the index of a one-parameter family of symmet-
ric bilinear forms. In this subsection we will study the evolution of the function
n−(B(t)), wheret 7→ B(t) is a one parameter family of symmetric bilinear forms
on a spaceV .

We make the convention that in this subsectionV will always denote afinite
dimensional real vector space:

dim(V ) < +∞.

We choose an arbitrary norm inV denoted by‖ · ‖; we then define thenorm of a
bilinear formB ∈ B(V ) by setting:

‖B‖ = sup
‖v‖≤1
‖w‖≤1

|B(v, w)|.

Observe that, sinceV andB(V ) are finite dimensional, then any norm in these
spaces induces the same topology.

We will first show that the conditionn−(B) ≥ k (for some fixedk) is anopen
condition.

4.1.29. LEMMA . Let k ≥ 0 be fixed; the set of symmetric bilinear formsB ∈
Bsym(V ) such thatn−(B) ≥ k is open inBsym(V ).

PROOF. Let B ∈ Bsym(V ) with n−(B) ≥ k; then, there exists ak-dimen-
sionalB-negative subspaceW ⊂ V . Since the unit sphere ofW is compact, we
have:

sup
v∈W
‖v‖=1

B(v, v) = c < 0;

it now follows directly that ifA ∈ Bsym(V ) and‖A − B‖ < |c|/2 thenA is
negative definite inW , and thereforen−(A) ≥ k. �

4.1.30. COROLLARY. Let k ≥ 0 be fixed; the set of nondegenerate symmetric
bilinear formsB ∈ Bsym(V ) such thatn−(B) = k is open inBsym(V ).

PROOF. If B ∈ Bsym(V ) is nondegenerate andn−(B) = k, thenn+(B) =
dim(V )− k (see Corollary 4.1.20); by Lemma 4.1.29, forA in a neighborhood of
B in Bsym(V ) we haven−(A) ≥ k andn+(A) ≥ dim(V ) − k, from which we
getn−(A) = k anddgn(A) = 0. �
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4.1.31. COROLLARY. Lett 7→ B(t) be a continuous curve inBsym(V ) defined
in some intervalI ⊂ IR; if B(t) is nondegenerate for allt ∈ I, thenn−(B(t)) and
n+(B(t)) are constant inI.

PROOF. By Corollary 4.1.30, the set of instantst ∈ I such thatn−(B(t)) = k
is open inI for eachk = 0, . . . ,dim(V ) fixed. The conclusion follows from the
connectedness ofI. �

Corollary 4.1.31 tells us that the indexn−(B(t)) and the co-indexn+(B(t))
can only change whenB(t) becomes degenerate; in the next Theorem we show
how to compute this change whent 7→ B(t) is of classC1:

4.1.32. THEOREM. LetB : [t0, t1[ → Bsym(V ) be a curve of classC1; write
N = Ker

(
B(t0)

)
. Suppose that the bilinear formB′(t0)|N×N is nondegenerate;

then there existsε > 0 such that fort ∈ ]t0, t0 + ε[ the bilinear formB(t) is
nondegenerate, and the following identities hold:

n+(B(t)) = n+(B(t0)) + n+

(
B′(t0)|N×N

)
,

n−(B(t)) = n−(B(t0)) + n−
(
B′(t0)|N×N

)
.

The proof of Theorem 4.1.32 will follow easily from the following:

4.1.33. LEMMA . LetB : [t0, t1[ → Bsym(V ) be a curve of classC1; write
N = Ker(B(t0)). If B(t0) is positive semi-definite andB′(t0)|N×N is posi-
tive definite, then there existsε > 0 such thatB(t) is positive definite fort ∈
]t0, t0 + ε[.

PROOF. Let W ⊂ V be a subspace complementary toN ; it follows from
Corollary 4.1.24 thatB(t0) is nondegenerate inW , and from Corollary 4.1.14 that
B(t0) is positive definite inW . Choose any norm inV ; since the unit sphere ofW
is compact, we have:

(4.1.16) inf
w∈W
‖w‖=1

B(t0)(w,w) = c0 > 0;

similarly, sinceB′(t0) is positive definite inN we have:

(4.1.17) inf
n∈N
‖n‖=1

B′(t0)(n, n) = c1 > 0.

SinceB is continuous, there existsε > 0 such that

‖B(t)−B(t0)‖ ≤
c0
2
, t ∈ [t0, t0 + ε[ ,

and it follows from (4.1.16) that:

(4.1.18) inf
w∈W
‖w‖=1

B(t)(w,w) ≥ c0
2
> 0, t ∈ [t0, t0 + ε[ .

SinceB is differentiable att0 we can write:

(4.1.19) B(t) = B(t0) + (t− t0)B′(t0) + r(t), with lim
t→t0

r(t)
t− t0

= 0,
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and then, by possibly choosing a smallerε > 0, we get:

(4.1.20) ‖r(t)‖ ≤ c1
2

(t− t0), t ∈ [t0, t0 + ε[ ;

from (4.1.17), (4.1.19) and (4.1.20) it follows:

(4.1.21) inf
n∈N
‖n‖=1

B(t)(n, n) ≥ c1
2

(t− t0), t ∈ ]t0, t0 + ε[ .

From (4.1.18) and (4.1.21) it follows thatB(t) is positive definite inW and inN
for t ∈ ]t0, t0 + ε[; takingc3 = ‖B′(t0)‖+ c1

2 we obtain from (4.1.19) and (4.1.20)
that:

(4.1.22)
∣∣B(t)(w, n)

∣∣ ≤ (t− t0)c3, t ∈ [t0, t0 + ε[ ,

provided thatw ∈ W , n ∈ N and‖w‖ = ‖n‖ = 1. By possibly taking a smaller
ε > 0, putting together (4.1.18), (4.1.21) and (4.1.22) we obtain:

B(t)(w, n)2 ≤ (t− t0)2c23 <
c0c1
4

(t− t0)

≤ B(t)(w,w)B(t)(v, v), t ∈ ]t0, t0 + ε[ ,
(4.1.23)

for all w ∈W , n ∈ N with ‖w‖ = ‖n‖ = 1; but (4.1.23) implies:

B(t)(w, n)2 < B(t)(w,w)B(t)(n, n), t ∈ ]t0, t0 + ε[ ,

for all w ∈ W , n ∈ N non zero. The conclusion follows now from Proposi-
tion 4.1.27. �

PROOF OFTHEOREM 4.1.32. By Theorem 4.1.10 there exists a decomposi-
tion V = V+ ⊕ V− ⊕N whereV+ andV− are respectively aB(t0)-positive and a
B(t0)-negative subspace; similarly, we can writeN = N+ ⊕ N− whereN+ is a
B′(t0)-positive andN− is aB′(t0)-negative subspace. Obviously:

n+(B(t0)) = dim(V+), n−(B(t0)) = dim(V−),

n+

(
B′(t0)|N×N

)
= dim(N+), n−

(
B′(t0)|N×N

)
= dim(N−);

applying Lemma 4.1.33 to the restriction ofB to V+ ⊕ N+ and to the restriction
of −B to V− ⊕N− we conclude that there existsε > 0 such thatB(t) is positive
definite inV+ ⊕ N+ and negative definite inV− ⊕ N− for t ∈ ]t0, t0 + ε [;the
conclusion now follows from Corollary 4.1.7 and from Proposition 4.1.9. �

4.1.34. COROLLARY. If t 7→ B(t) ∈ Bsym(V ) is a curve of classC1 defined in
a neighborhood of the instantt0 ∈ IR and ifB′(t0)|N×N is nondegenerate, where
N = Ker

(
B(t0)

)
, then forε > 0 sufficiently small we have:

n+(B(t0 + ε))− n+(B(t0 − ε)) = sgn
(
B′(t0)|N×N

)
.

PROOF. It follows from Theorem 4.1.32 that forε > 0 sufficiently small we
have:

(4.1.24) n+(B(t0 + ε)) = n+(B(t0)) + n+

(
B′(t0)|N×N

)
;

applying Theorem 4.1.32 to the curvet 7→ B(−t) we obtain:

(4.1.25) n+(B(t0 − ε)) = n+(B(t0)) + n−
(
B′(t0)|N×N

)
.
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The conclusion follows by taking the difference of (4.1.24) and (4.1.25). �

We will need auniform versionof Theorem 4.1.32 for technical reasons:

4.1.35. PROPOSITION. LetX be a topological space and let be given a con-
tinuous map

X × [t0, t1[ 3 (λ, t) 7−→ Bλ(t) = B(λ, t) ∈ Bsym(V )

differentiable int, such that∂B∂t is also continuous inX × [t0, t1[.
Write Nλ = Ker

(
Bλ(t0)

)
; assume thatdim(Nλ) does not depend onλ ∈

X and thatB′
λ0

(t0) = ∂B
∂t (λ0, t0) is nondegenerate inNλ0 for someλ0 ∈ X .

Then, there existsε > 0 and a neighborhoodU of λ0 in X such thatB′
λ(t0) is

nondegenerate onNλ and such thatBλ(t) is nondegenerate onV for everyλ ∈ U
and for everyt ∈ ]t0, t0 + ε[.

PROOF. We will show first that the general case can be reduced to the case that
Nλ does not depend onλ ∈ X . To this aim, letk = dim(Nλ), that by hypothesis
does not depend onλ. Since the kernel of a bilinear form coincides with the kernel
of its associated linear operator, it follows from Proposition 2.4.10 that the map
λ 7→ Nλ ∈ Gk(V ) is continuous inX ; now, using Proposition 2.4.6 we find a
continuous mapA : U → GL(V ) defined in a neighborhoodU of λ0 in X such that
for all λ ∈ U, the isomorphismA(λ) takesNλ0 ontoNλ. Define:

Bλ(t) = A(λ)#
(
Bλ(t)

)
= Bλ(t)

(
A(λ)·, A(λ) ·

)
,

for all λ ∈ U and allt ∈ [t0, t1[. Then,Ker
(
Bλ(t0)

)
= Nλ0 for all λ ∈ U; more-

over, the mapB defined inU × [t0, t1[ satisfies the hypotheses of the Proposition,
and the validity of the thesis forB will imply the validity of the thesis also forB.

The above argument shows that there is no loss of generality in assuming that:

Ker(Bλ(t0)) = N,

for all λ ∈ X . We split the remaining of the proof into two steps.

(1) Suppose thatBλ0(t0) is positive semi-definite and thatB′
λ0

(t0) is positive
definite inN .

LetW be a subspace complementary toN in V ; thenBλ0(t0) is positive
definite inW . It follows thatBλ(t0) is positive definite inW and thatB′

λ(t0)
is positive definite inN for all λ in a neighborhoodU of λ0 in X . Observe
that, by hypothesis,Ker(Bλ(t0)) = N for all λ ∈ U. Then, for allλ ∈
U, Lemma 4.1.33 gives us the existence of a positive numberε(λ) such that
Bλ(t) is positive definite for allt ∈ ]t0, t0 + ε(λ)[; we only need to look more
closely at the estimates done in the proof of Lemma 4.1.33 to see that it is
possible to chooseε > 0 independently ofλ, whenλ runs in a sufficiently
small neighborhood ofλ0 in X .

The only estimate that is delicate appears in (4.1.20). Formula (4.1.19) de-
fines now a functionrλ(t); for eachλ ∈ U, we apply the mean value inequality



120 4. THE MASLOV INDEX

to the functiont 7→ σ(t) = Bλ(t)− tB′
λ(t0) and we obtain:

‖σ(t)− σ(t0)‖ = ‖rλ(t)‖ ≤ (t− t0) sup
s∈[t0,t]

‖σ′(s)‖

= (t− t0) sup
s∈[t0,t]

‖B′
λ(s)−B′

λ(t0)‖.

With the above estimate it is now easy to get the desired conclusion.

(2) Let us prove the general case.
Keeping in mind thatKer(Bλ(t0)) = N does not depend onλ ∈ X ,

we repeat the proof of Theorem 4.1.32 replacingB(t0) byBλ(t0), B′(t0) by
B′
λ0

(t0) andB(t) by Bλ(t); we use step (1) above instead of Lemma 4.1.33
and the proof is completed.

�

4.1.36. EXAMPLE . Theorem 4.1.32 and its Corollary 4.1.34do not holdwith-
out the hypothesis thatB′(t0) be nondegenerate inN = Ker(B(t0)); counterex-
amples are easy to produce by considering diagonal matricesB(t) ∈ Bsym(IRn).
A naive analysis of the case in which the bilinear formsB(t) are simultaneously
diagonalizable would suggest the conjecture that whenB′(t0) is degenerate in
Ker(B(t0)) then it would be possible to determine the variation of the co-index
of B(t) whent passes throught0 by using higher order terms on the Taylor ex-
pansion ofB(t)|N×N aroundt = t0. The following example show that this isnot
possible.

Consider the curvesB1, B2 : IR→ Bsym(IR2) given by:

B1(t) =
(

1 t
t t3

)
, B2(t) =

(
1 t2

t2 t3

)
;

we haveB1(0) = B2(0) andN = Ker
(
B1(0)

)
= Ker

(
B2(0)

)
= {0} ⊕ IR.

Observe thatB1(t)|N×N = B2(t)|N×N for all t ∈ IR, so that the Taylor expansion
of B1 coincides with that ofB2 in N ; on the other hand, forε > 0 sufficiently
small, we have:

n+(B1(ε))− n+(B1(−ε)) = 1− 1 = 0,

n+(B2(ε))− n+(B2(−ε)) = 2− 1 = 1.

Our next goal is to prove that the basis provided by Sylvester’s Inertia Theorem
can be written as a differentiable function of the parametert whenB(t) depends
differentiably ont. Towards this goal, we consider the action of the general linear
groupGL(V ) in the spaceBsym(V ) given by:
(4.1.26)

GL(V )× Bsym(V ) 3 (T,B) 7−→ T#(B) = B(T−1·, T−1·) ∈ Bsym(V );

it follows from Sylvester’s Inertia Theorem (Theorem 4.1.10) that the orbits of this
action are the sets:

Bp,qsym(V ) = {B ∈ Bsym(V ) : n+(B) = p, n−(B) = q},
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with p+ q = 0, 1, . . . ,dim(V ). Moreover, forp andq fixed, the sets

{B ∈ Bsym(V ) : n+(B) ≥ p, n−(B) ≥ q} and

{B ∈ Bsym(V ) : n+(B) ≤ p, n−(B) ≤ q}

are respective an open and a closed subset ofBsym(V ), by Lemma 4.1.29. It fol-
lows that the setBp,qsym(V ) is locally closed inBsym(V ). From these observation
we deduce the following

4.1.37. LEMMA . The setBp,qsym(V ) is a connected embedded submanifold of
Bsym(V ) for any integersp, q ≥ 0 with p+ q = 0, 1, . . . ,dim(V ).

PROOF. The fact thatBp,qsym(V ) is an embedded submanifold ofBsym(V ) fol-
lows from Theorem 2.1.12. The connectedness ofBp,qsym(V ) follows from the fact
that the restriction of the action (4.1.26) toGL+(V ) is still transitive inBp,qsym(V );
this last statement follows from the fact that, once an orientation has been fixed
in V , the basis(bi)ni=1 given by the Sylvester’s Inertia Theorem can be chosen
positively oriented (possibly replacingb1 with −b1). �

4.1.38. COROLLARY. The set of nondegenerate symmetric bilinear forms in
V is an open subset ofBsym(V ) whose (arc-)connected components are the sets

Bk,n−ksym (V ), k = 0, 1, . . . , n, wheren = dim(V ).

PROOF. It follows from Corollary 4.1.30 and Lemma 4.1.37. �

We finally obtain the desired extension of Sylvester’s Inertia Theorem:

4.1.39. PROPOSITION. Given a curveB : [a, b] → Bsym(V ) of classCk (0 ≤
k ≤ +∞) such that the integersn−(B(t)) andn+(B(t)) do not depend ont ∈
[a, b], then there exist mapsbi : [a, b] → V of classCk, i = 1, . . . , n, such that for
eacht ∈ [a, b] the vectors(bi(t))ni=1 form a basis ofV in whichB(t) assumes the
canonical form(4.1.7).

PROOF. Let p andq be such thatn+(B(t)) = p, n−(B(t)) = q for all t ∈
[a, b]; keeping in mind the transitive action (4.1.26) ofGL(V ) on Bp,qsym(V ), it
follows from Corollary 2.1.15 that, forB0 ∈ Bp,qsym(V ) fixed, the map

GL(V ) 3 T 7−→ T#(B0) = B0(T−1·, T−1·) ∈ Bp,qsym(V )

is a differentiable fibration. It follows from Remark 2.1.18 that there exists a map
T : [a, b] → GL(V ) of classCk such thatT (t)#(B0) = B(t) for all t ∈ [a, b].
Choosing a basis(bi)ni=1 of V with respect to whichB0 has the canonical form
(4.1.7), we definebi(t) = T (t) · bi for i = 1, . . . , n andt ∈ [a, b]. This concludes
the proof. �

4.2. Definition and Computation of the Maslov Index

In this section we will introduce the Maslov index (relative to a fixed La-
grangian subspaceL0) of a curve in the Lagrangian Grassmannian of a symplectic
space(V, ω); this index is an integer number that corresponds to a sort of algebraic
count of the intersections of this curve with the subsetΛ≥1(L0).
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The definition of Maslov index will be given in terms of relative homology, and
we will therefore assume familiarity with the machinery introduced in Section 3.3.
We will use several properties of the Lagrangian GrassmannianΛ that were dis-
cussed in Section 2.5 (especially from Subsection 2.5.1). It will be needed to com-
pute the fundamental group ofΛ, and to this aim we will use the homotopy long
exact sequence of a fibration, studied in Section 3.2. This computation follows the
same line of the examples that appear in Subsection 3.2.1; following the notations
of that subsection, we will omit for simplicity the specification of the basepoint of
the fundamental groups studied. As a matter of facts, all the fundamental groups
that will appear are abelian, so that the fundamental groups corresponding to dif-
ferent choices of basepoint can be canonically identified (see Corollary 3.1.12 and
Remarks 3.1.13 and 3.3.34). Finally, in order to relate the fundamental group ofΛ
with its first singular homology group we will use the Hurewicz’s homomorphism,
presented in Subsection 3.3.1.

Throughout this section we will consider a fixed symplectic space(V, ω), with
dim(V ) = 2n; we will denote byΛ the Lagrangian Grassmannian of this sym-
plectic space. All the curves considered will be tacitly meant to be “continuous
curves”; moreover, we will often use the fact that any two Lagrangian subspaces
admit a common complementary Lagrangian subspace (see Remark 2.5.18).

We know that the Lagrangian GrassmannianΛ is diffeomorphic to the quotient
U(n)/O(n) (see Corollary 2.5.12). Consider the homomorphism:

d = det2 : U(n) −→ S1,

whereS1 ⊂ C denotes the unit circle; ifA ∈ O(n) then clearlydet(A) = ±1,
henceO(n) ⊂ Ker(d). It follows thatd induces, by passing to the quotient, a map:

(4.2.1) d̄ : U(n)/O(n) −→ S1,

given byd̄(A ·O(n)) = det2(A). We have the following:

4.2.1. PROPOSITION. The fundamental group of the Lagrangian Grassmannian
Λ ∼= U(n)/O(n) is infinite cyclic; more explicitly, the map(4.2.1)induces an iso-
morphism:

d̄∗ : π1

(
U(n)/O(n)

) ∼=−−→ π1(S1) ∼= Z.

PROOF. It follows from Corollary 2.1.16 that̄d is a fibration with typical fiber
Ker(d)/O(n). It is easy to see that the action ofSU(n) on Ker(d)/O(n) by left
translation is transitive, and that the isotropy group of the class1 · O(n) of the
neutral element isSU(n) ∩ O(n) = SO(n); it follows from Corollary 2.1.9 that
we have a diffeomorphism

SU(n)/SO(n) ∼= Ker(d)/O(n)

induced by the inclusion ofSU(n) in Ker(d). SinceSU(n) is simply connected
andSO(n) is connected, it follows easily from the homotopy long exact sequence
of the fibrationSU(n) → SU(n)/SO(n) thatSU(n)/SO(n) is simply connected.
Then,Ker(d)/O(n) is also simply connected, and the homotopy exact sequence
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of the fibrationd̄ becomes:

0 −→ π1

(
U(n)/O(n)

) d̄∗−−−→
∼=

π1(S1) −→ 0

This concludes the proof. �

4.2.2. COROLLARY. The first singular homology groupH1(Λ) of Λ is infinite
cyclic.

PROOF. SinceΛ is arc-connected andπ1(Λ) is abelian, it follows from Theo-
rem 3.3.33 that the Hurewicz’s homomorphism is an isomorphism:

�(4.2.2) Θ: π1(Λ)
∼=−−→ H1(Λ)

4.2.3. COROLLARY. For a fixed LagrangianL0 ∈ Λ, the inclusion

q : (Λ, ∅) −→ (Λ,Λ0(L0))

induces an isomorphism:

(4.2.3) q∗ : H1(Λ)
∼=−−→ H1(Λ,Λ0(L0));

in particular,H1(Λ,Λ0(L0)) is infinite cyclic.

PROOF. It follows from Remark 2.5.3 and from Example 3.3.19. �

Let ` : [a, b] → Λ be a curve with endpoints inΛ0(L0), i.e., `(a), `(b) ∈
Λ0(L0); then, ` defines a relative homology class inH1(Λ,Λ0(L0)) (see Re-
marks 3.3.30 and 3.3.26). Our goal is now to show that the transverse orientation
of Λ1(L0) given in Definition 2.5.19 induces a canonical choice of a generator of
the infinite cyclic groupH1(Λ,Λ0(L0)). Once this choice is made, we will be able
to associate an integer number to each curve inΛ with endpoints inΛ0(L0).

4.2.4. EXAMPLE . If we analyze the steps that lead us to the conclusion that
H1(Λ,Λ0(L0)) is isomorphic toZ we can compute explicitly a generator for this
group. In first place, the curve

[π2 ,
3π
2 ] 3 t 7−→ A(t) =


eit

i 0
0 ...

i

 ∈ U(n)

projects onto a closed curveA(t) = A(t) ·O(n) in U(n)/O(n); moreover,

(4.2.4) [π2 ,
3π
2 ] 3 t 7−→ det2

(
A(t)

)
= (−1)n−1e2it

is a generator of the fundamental group of the unit circleS1. It follows from Propo-
sition 4.2.1 thatA defines a generator of the fundamental group ofU(n)/O(n).
Denoting byΛ(IR2n) the Lagrangian Grassmannian of the symplectic spaceIR2n

endowed with the canonical symplectic form, it follows from Proposition 2.5.11
that a diffeomorphismU(n)/O(n) ∼= Λ(IR2n) is given explicitly by:

U(n)/O(n) 3 A ·O(n) 7−→ A
(
IRn ⊕ {0}n

)
∈ Λ(IR2n).
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The LagrangianA(t)
(
IRn ⊕ {0}n

)
is generated by the vectors1

{e1 cos(t) + en+1 sin(t), en+2, . . . , e2n},
where(ej)2nj=1 denotes the canonical basis ofIR2n.

The choice of a symplectic basis(bj)2nj=1 of V induces a diffeomorphism ofΛ
ontoΛ(IR2n) in an obvious way. Consider the Lagrangian`(t) given by:

(4.2.5) `(t) = IR
(
b1 cos(t) + bn+1 sin(t)

)
+

2n∑
j=n+2

IRbj ;

then, the curve

(4.2.6) [π2 ,
3π
2 ] 3 t 7−→ `(t) ∈ Λ

is a generator ofπ1(Λ). By the definition of the Hurewicz’s homomorphism (see
(3.3.25)) we have that the same curve (4.2.6) defines a generator ofH1(Λ); since
the isomorphism (4.2.3) is induced by inclusion, we have that the curve (4.2.6) is
also a generator ofH1(Λ,Λ0(L0)).

4.2.5. LEMMA . Let A ∈ Sp(V, ω) be a symplectomorphism of(V, ω) and
consider the diffeomorphism (also denoted byA) of Λ induced by the action ofA;
then the induced homomorphism in homology:

A∗ : Hp(Λ) −→ Hp(Λ)

is the identity map for allp ∈ Z.

PROOF. SinceSp(V, ω) is arc-connected, there exists a curve

[0, 1] 3 s 7−→ A(s) ∈ Sp(V, ω)

such thatA(0) = A andA(1) = Id. Define

[0, 1]× Λ 3 (s, L) 7−→ Hs(L) = A(s) · L ∈ Λ;

thenH : A ∼= Id is a homotopy. The conclusion follows from Corollary 3.3.24.�

4.2.6. COROLLARY. LetL0 ∈ Λ be a Lagrangian subspace of(V, ω) and let
A ∈ Sp(V, ω, L0) (recall (2.5.15)); then the homomorphism

A∗ : H1(Λ,Λ0(L0)) −→ H1(Λ,Λ0(L0))

is the identity map.

PROOF. It follows from Lemma 4.2.5 and from the following commutative
diagram:

H1(Λ)
A∗=Id //

q∗ ∼=
��

H1(Λ)

q∗∼=
��

H1(Λ,Λ0(L0)) A∗
// H1(Λ,Λ0(L0))

whereq∗ is given in (4.2.3). �

1The complex matrixA(t) must be seen as a linear endomorphism ofIR2n; therefore, we need
the identification ofn× n complex matrices with2n× 2n real matrices (see Remark 1.2.9).
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4.2.7. EXAMPLE . Consider a Lagrangian decomposition(L0, L1) of V and let
L be an element in the domain of the chartϕL0,L1 , i.e.,L ∈ Λ0(L1). It follows
directly from the definition ofϕL0,L1 (see (2.5.3)) that the kernel of the symmetric
bilinear formϕL0,L1(L) ∈ Bsym(L0) isL0 ∩ L, that is:

(4.2.7) Ker
(
ϕL0,L1(L)

)
= L0 ∩ L.

Then, we obtain that for eachk = 0, . . . , n the LagrangianL belongs toΛk(L0) if
and only if the kernel ofϕL0,L1(L) has dimensionk, that is:

ϕL0,L1

(
Λ0(L1) ∩ Λk(L0)

)
= {B ∈ Bsym(L0) : dgn(B) = k}.

In particular, we haveL ∈ Λ0(L0) if and only ifϕL0,L1(L) is nondegenerate.

4.2.8. EXAMPLE . Let t 7→ `(t) be a curve inΛ differentiable att = t0 and let
(L0, L1) be a Lagrangian decomposition ofV with `(t0) ∈ Λ0(L1). Then, fort
in a neighborhood oft0 we also havè(t) ∈ Λ0(L1) and we can therefore define
β(t) = ϕL0,L1(`(t)) ∈ Bsym(L0). Let us determine the relation betweenβ′(t0)
and`′(t0); by Lemma 2.5.7 we have:

β′(t0) = dϕL0,L1(`(t0)) · `′(t0) =
(
ηL1

`(t0),L0

)
∗ · `

′(t0).

SinceηL1

`(t0),L0
fixes the points ofL0 ∩ `(t0), we obtain in particular that the sym-

metric bilinear formsβ′(t0) ∈ Bsym(L0) and`′(t0) ∈ Bsym(`(t0)) coincide on
L0 ∩ `(t0).

4.2.9. LEMMA . LetL0 ∈ Λ be a fixed Lagrangian; assume given two curves

`1, `2 : [a, b] −→ Λ

with endpoints inΛ0(L0). Suppose that there exists a Lagrangian subspaceL1 ∈ Λ
complementary toL0 such thatΛ0(L1) contains the images of both curves`1, `2;
if we have

(4.2.8) n+

(
ϕL0,L1(`1(t))

)
= n+

(
ϕL0,L1(`2(t))

)
,

for t = a andt = b, then the curves̀1, `2 are homologous inH1(Λ,Λ0(L0)).

PROOF. It follows from (4.2.8) and from Corollary 4.1.38 that there exist
curves:

σ1, σ2 : [0, 1] −→ Bsym(L0)
such thatσ1(t) andσ2(t) are nondegenerate for allt ∈ [0, 1] and also:

σ1(0) = ϕL0,L1(`1(a)), σ1(1) = ϕL0,L1(`2(a)),

σ2(0) = ϕL0,L1(`1(b)), σ2(1) = ϕL0,L1(`2(b)).

Definemi = ϕ−1
L0,L1

◦ σi, i = 1, 2; it follows from Example 4.2.7 thatm1 and
m2 have image in the setΛ0(L0) and therefore they are homologous to zero in
H1(Λ,Λ0(L0)). Consider the concatenation` = m−1

1 · `1 · m2; it follows from
Lemma 3.3.27 that̀1 and` are homologous inH1(Λ,Λ0(L0)). We have that̀
and`2 are curves inΛ0(L1) with the same endpoints, and sinceΛ0(L1) is homeo-
morphic to the vector spaceBsym(L0) it follows that` and`2 are homotopic with
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fixed endpoints. By Corollary 3.3.29 we have that` and`2 are homologous, which
concludes the proof. �

4.2.10. DEFINITION. Let ` : [a, b] → Λ be a curve of classC1. We say that
` intercepts transversallythe setΛ≥1(L0) at the instantt = t0 if `(t0) ∈ Λ1(L0)
and `′(t0) 6∈ T`(t0)Λ1(L0); we say that such transverse intersection ispositive
(resp.,negative) if the class of̀ ′(t0) in the quotientT`(t0)Λ/T`(t0)Λ1(L0) defines
a positively oriented (resp., a negatively oriented) basis (recall Definition 2.5.19).

From Theorem 2.5.16 it follows that` interceptsΛ≥1(L0) transversally at the
instantt = t0 if and only if `(t0) ∈ Λ1(L0) and the symmetric bilinear form
`′(t0) is non zero in the spaceL0 ∩ `(t0); such intersection will be positive (resp.,
negative) if`′(t0) is positive definite (resp., negative definite) inL0 ∩ `(t0).

4.2.11. LEMMA . LetL0 ∈ Λ be a Lagrangian subspace and let

`1, `2 : [a, b] −→ Λ

be curves of classC1 with endpoints inΛ0(L0) that interceptΛ≥1(L0) only once;
suppose that such intersection is transverse and positive. Then, we have that`1
and`2 are homologous inH1(Λ,Λ0(L0)), and either one of these curves defines a
generator ofH1(Λ,Λ0(L0)) ∼= Z.

PROOF. Thanks to Lemma 3.3.25, we can assume that`1, `2 interceptΛ1(L0)
at the same instantt0 ∈ ]a, b[. By Proposition 1.4.38 there exists a symplecto-
morphismA ∈ Sp(V, ω, L0) such thatA(`1(t0)) = `2(t0). It follows from Corol-
lary 4.2.6 thatA◦`1 and`1 are homologous inH1(Λ,Λ0(L0)); note that alsoA◦`1
interceptsΛ≥1(L0) only at the instantt0 and that such intersection is transverse and
positive (see Proposition 2.5.20).

The above argument shows that there is no loss of generality in assuming
`1(t0) = `2(t0). By Lemma 3.3.27, it is enough to show that the restriction
`1|[t0−ε,t0+ε] is homologous tò 2|[t0−ε,t0+ε] for someε > 0. Let L1 ∈ Λ be a
common complementary Lagrangian to`1(t0) andL0; for t in a neighborhood of
t0 we can writeβi(t) = ϕL0,L1 ◦ `i(t), i = 1, 2. By Example 4.2.8 we have that
β′i(t0) and `′i(t0) coincide inL0 ∩ `i(t0) = Ker

(
βi(t0)

)
(see (4.2.7)); since by

hypothesis̀ ′
i(t0) is positive definite in the unidimensional spaceL0 ∩ `i(t0), it

follows from Theorem 4.1.32 (see also (4.1.25)) that forε > 0 sufficiently small
we have

(4.2.9) n+

(
βi(t0 + ε)

)
= n+

(
βi(t0)

)
+ 1, n+

(
βi(t0 − ε)

)
= n+

(
βi(t0)

)
.

Sinceβ1(t0) = β2(t0), it follows from (4.2.9) that

n+

(
β1(t0 + ε)

)
= n+

(
β2(t0 + ε)

)
, n+

(
β1(t0 − ε)

)
= n+

(
β2(t0 − ε)

)
,

for ε > 0 sufficiently small. Now, it follows from Lemma 4.2.9 that the curve
`1|[t0−ε,t0+ε] is homologous to the curvè2|[t0−ε,t0+ε] in H1(Λ,Λ0(L0)). This
concludes the proof of the first statement of the thesis.

To prove the second statement it suffices to exhibit a curve` that has a unique
intersection withΛ≥1(L0), being such intersection transverse and positive, so that
` defines a generator ofH1(Λ,Λ0(L0)). Let (bj)2nj=1 be a symplectic basis ofV
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such that(bj)nj=1 is a basis ofL0 (see Lemma 1.4.35); consider the generator` of
H1(Λ,Λ0(L0)) described in (4.2.5) and (4.2.6). It is easy to see that` intercepts
Λ≥1(L0) only at the instantt = π andL0 ∩ `(π) is the unidimensional space
generated byb1; moreover, an easy calculation shows that:

(4.2.10) `′(π)(b1, b1) = ω(bn+1, b1) = −1;

it follows that`−1 has a unique intersection withΛ≥1(L0) and that this intersection
is transverse and positive. By Lemma 3.3.27, the curve`−1 is also a generator of
H1(Λ,Λ0(L0)), which concludes the proof. �

4.2.12. DEFINITION. LetL0 ∈ Λ be a fixed Lagrangian; we define an isomor-
phism

(4.2.11) µL0 : H1(Λ,Λ0(L0))
∼=−−→ Z

as follows: choose a curvèof classC1 in Λ with endpoints inΛ0(L0) such that̀
has a unique intersection withΛ≥1(L0) and such that this intersection is transverse
and positive. DefineµL0 by requiring that the homology class of` be taken into
the element1 ∈ Z; by Lemma 4.2.11 the isomorphism (4.2.11) is well defined, i.e.,
independent of the choice of the curve`.

Suppose now that̀ : [a, b] → Λ is an arbitrary curve with endpoints in
Λ0(L0), then we denote byµL0(`) ∈ Z the integer number that corresponds to
the homology class of̀ by the isomorphism (4.2.11); the numberµL0(`) is called
theMaslov indexof the curvè relative to the LagrangianL0.

In the following Lemma we list some of the properties of the Maslov index:

4.2.13. LEMMA . Let ` : [a, b] → Λ be a curve with endpoints inΛ0(L0); then
we have:

(1) if σ : [a′, b′] → [a, b] is a continuous map withσ(a′) = a, σ(b′) = b then
µL0(` ◦ σ) = µL0(`);

(2) if m : [a′, b′] → Λ is a curve with endpoints inΛ0(L0) such that̀ (b) =
m(a′), thenµL0(` ·m) = µL0(`) + µL0(m);

(3) µL0

(
`−1

)
= −µL0(`);

(4) if Im(`) ⊂ Λ0(L0) thenµL0(`) = 0;
(5) if m : [a, b] → Λ is homotopic tò with free endpoints inΛ0(L0) (see

Definition 3.1.25) thenµL0(`) = µL0(m);
(6) there exists a neighborhoodU of ` inC0([a, b],Λ) endowed with the com-

pact-open topology such that, ifm ∈ U has endpoints inΛ0(L0), then
µL0(`) = µL0(m).

PROOF. Property (1) follows from Lemma 3.3.25; Properties (2) and (3) fol-
low from Lemma 3.3.27. Property (4) follows immediately from the definition of
the groupH1(Λ,Λ0(L0)) (see (3.3.7)). Property (5) follows from Remark 3.3.30
and Property (6) follows from Theorem 3.1.27 and from Property (5). �

4.2.14. EXAMPLE . The Maslov indexµL0(`) can be seen as theintersec-
tion numberof the curve` with the subsetΛ≥1(L0) ⊂ Λ; indeed, it follows
from Lemma 4.2.13 (more specifically, from Properties (2), (3) and (4)) that if
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` : [a, b] → Λ is a curve of classC1 with endpoints inΛ0(L0) that has only trans-
verse intersections withΛ≥1(L0) then the Maslov indexµL0(`) is the number of
positive intersections of̀ with Λ≥1(L0) minus the number of negative intersec-
tions of` with Λ≥1(L0). As a matter of facts, these numbers are finite (see Exam-
ple 4.2.17 below). In Corollary 4.2.18 we will give a generalization of this result.

We will now establish an explicit formula for the Maslov indexµL0 in terms
of a chartϕL0,L1 of Λ:

4.2.15. THEOREM. LetL0 ∈ Λ be a Lagrangian subspace and let` : [a, b] →
Λ be a given curve with endpoints inΛ0(L0). If there exists a LagrangianL1 ∈ Λ
complementary toL0 such that the image of̀ is contained inΛ0(L1), then the
Maslov indexµL0(`) of ` is given by:

µL0(`) = n+

(
ϕL0,L1(`(b))

)
− n+

(
ϕL0,L1(`(a))

)
.

PROOF. By Lemma 4.2.9, it suffices to determine for eachi, j = 0, 1, . . . , n a
curveβi,j : [0, 1] → Bsym(L0) such that:

n+

(
βi,j(0)

)
= i, dgn

(
βi,j(0)

)
= 0,(4.2.12)

n+

(
βi,j(1)

)
= j, dgn

(
βi,j(1)

)
= 0(4.2.13)

and such that the curvèi,j = ϕ−1
L0,L1

◦ βi,j satisfiesµL0(`i,j) = j − i. If i = j,
we simply takeβi,i to be any constant curve such thatβi,i(0) is nondegenerate and
such thatn+

(
βi,i(0)

)
= i.

Property (3) in the statement of Lemma 4.2.13 implies that there is no loss of
generality in assumingi < j. Let us start with the casej = i+1; choose any basis
of L0 and defineβi,i+1(t) as the bilinear form whose matrix representation in this
basis is given by:

βi,i+1(t) ∼ diag(1, 1, . . . , 1︸ ︷︷ ︸
i times

, t− 1
2 ,−1,−1, . . . ,−1︸ ︷︷ ︸

n−i−1 times

), t ∈ [0, 1],

wherediag(α1, . . . , αn) denotes the diagonal matrix with entriesα1, . . . , αn.
Then, we have:

n+

(
βi,i+1(0)

)
= i, dgn

(
βi,i+1(0)

)
= 0,

n+

(
βi,i+1(1)

)
= i+ 1, dgn

(
βi,i+1(1)

)
= 0;

moreoverβi,i+1(t) is degenerate only att = 1
2 and the derivativeβ′i,i+1(

1
2) is

positive definite in the unidimensional spaceKer
(
βi,i+1(1

2)
)
. It follows from Ex-

amples 4.2.7 and 4.2.8 that`i,i+1 interceptsΛ≥1(L0) only att = 1
2 , and that such

intersection is transverse and positive. By definition of Maslov index, we have:

µL0(`i,i+1) = 1;

and this completes the construction of the curveβi,j in the casej = i+ 1.
Let us look now at the casej > i + 1. For eachi = 0, . . . , n, let Bi ∈

Bsym(L0) be a nondegenerate symmetric bilinear form withn+(Bi) = i; choose
any curveβ̃i,i+1 : [0, 1] → Bsym(L0) with β̃i,i+1(0) = Bi andβ̃i,i+1(1) = Bi+1
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for i = 0, . . . , n − 1. It follows from Lemma 4.2.9 and from the first part of the
proof that˜̀i,i+1 = ϕ−1

L0,L1
◦ β̃i,i+1 satisfiesµL0

(˜̀
i,i+1

)
= 1; for j > i+ 1 define:

βi,j = β̃i,i+1 · β̃i+1,i+2 · · · · · β̃j−1,j .

Then, the curveβi,j satisfies (4.2.12), (4.2.13) and from Property (2) in the state-
ment of Lemma 4.2.13 it follows thatµL0(`i,j) = j − i.

This concludes the proof. �

4.2.16. DEFINITION. Given a curvet 7→ `(t) ∈ Λ of classC1 we say that
` has anondegenerate intersectionwith Λ≥1(L0) at the instantt = t0 if `(t0) ∈
Λ≥1(L0) and`′(t0) is nondegenerate inL0 ∩ `(t0).

4.2.17. EXAMPLE . If a curve` in Λ has a nondegenerate intersection with
Λ≥1(L0) at the instantt = t0, then this intersection isisolated, i.e.,`(t) ∈ Λ0(L0)
for t 6= t0 sufficiently close tot0. To see this, choose a common complementary
LagrangianL1 ∈ Λ to L0 and`(t0) and apply Theorem 4.1.32 to the curveβ =
ϕL0,L1 ◦ `, keeping in mind Examples 4.2.7 and 4.2.8.

SinceΛ≥1(L0) is closed inΛ, it follows that if a curvè : [a, b] → Λ has only
nondegenerate intersections withΛ≥1(L0), then`(t) ∈ Λ≥1(L0) only at a finite
number of instantst ∈ [a, b].

We have the following corollary to Theorem 4.2.15:

4.2.18. COROLLARY. LetL0 ∈ Λ be a Lagrangian subspace and let be given a
curve` : [a, b] → Λ of classC1 with endpoints inΛ0(L0) that has only nondegen-
erate intersections withΛ≥1(L0). Then,̀ (t) ∈ Λ≥1(L0) only at a finite number of
instantst ∈ [a, b] and the following identity holds:

µL0(`) =
∑
t∈[a,b]

sgn
(
`′(t)|(L0∩`(t))×(L0∩`(t))

)
.

PROOF. It follows from Example 4.2.17 that̀(t) ∈ Λ≥1(L0) only at a finite
number of instantst ∈ [a, b]. Let t0 ∈ ]a, b[ be such that̀(t0) ∈ Λ≥1(L0); keeping
in mind Property (2) and (4) in the statement of Lemma 4.2.13, it suffices to prove
that:

µL0

(
`|[t0−ε,t0+ε]

)
= sgn

(
`′(t0)|(L0∩`(t0))×(L0∩`(t0))

)
,

for ε > 0 sufficiently small. Choose a common complementaryL1 ∈ Λ of L0

and`(t0); for t in a neighborhood oft0 we can writeβ(t) = ϕL0,L1(`(t)). The
conclusion now follows from Theorem 4.2.15 and from Corollary 4.1.34, keeping
in mind Examples 4.2.7 and 4.2.8. �

In Example 4.2.17 we have seen that a nondegenerate intersection of a curve`
of classC1 with Λ≥1(L0) at an instantt0 is isolated, i.e., there existsε > 0 such
that `(t) 6∈ Λ≥1(L0) for t ∈ [t0 − ε, t0[ ∪ ]t0, t0 + ε]. For technical reasons, we
will need (in Proposition 5.2.8) a slightly stronger result and we will prove next
that the choice of suchε > 0 can be madeuniformlywith respect to a parameter.
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4.2.19. LEMMA . LetX be a topological space and suppose that it is given a
continuous map:

X × [t0, t1[ 3 (λ, t) 7−→ `λ(t) = `(λ, t) ∈ Λ

which is differentiable in the variablet and such that∂`∂t : X × [t0, t1[→ TΛ is
also continuous. Fix a LagrangianL0 ∈ Λ; suppose thatdim(`(λ, t0) ∩ L0) is
independent ofλ ∈ X and that the curvèλ0 = `(λ0, ·) has a nondegenerate
intersection withΛ≥1(L0) at t = t0 for someλ0 ∈ X . Then, there existsε > 0
and a neighborhoodU of λ0 in X such that, for allλ ∈ U, `λ has a nondegenerate
intersection withΛ≥1(L0) at t0 and such that̀ (λ, t) ∈ Λ0(L0) for all λ ∈ U and
all t ∈]t0, t0 + ε].

PROOF. Choose a common complementary LagrangianL1 of L0 and`(λ0, t0)
and defineβ(λ, t) = ϕL0,L1(`(λ, t)) for t in a neighborhood oft0 andλ in a neigh-
borhood ofλ0 in X . Then,β is continuous, it is differentiable int, and the deriva-
tive ∂β

∂t is continuous. The conclusion follows now applying Proposition 4.1.35 to
the mapβ, keeping in mind Examples 4.2.7 and 4.2.8. �

4.2.20. REMARK . A more careful analysis of the definition of the transverse
orientation ofΛ1(L0) in Λ (Definition 2.5.19) shows that the choice of the sign
made for the isomorphismµL0 is actually determined by the choice of a sign in
the symplectic formω. More explicitly, if we replaceω by −ω, which does not
affect the definition of the setΛ, then we obtain a change of sign for the isomor-
phismsρL0,L1 andρL (defined in formulas (1.4.11) and (1.4.13)). Consequently,
this change of sign induces a change of sign in the chartsϕL0,L1 (defined in formula
(2.5.3)) and in the isomorphism (2.5.12) that identifiesTLΛ with Bsym(L).

The conclusion is that changing the sign ofω causes an inversion of the trans-
verse orientation ofΛ1(L0) in Λ, which inverts the sign of the isomorphismµL0 .

4.2.21. REMARK . The choice of a Lagrangian subspaceL0 ∈ Λ defines an
isomorphism:

(4.2.14) µL0 ◦ q∗ : H1(Λ)
∼=−−→ Z,

whereq∗ is given in (4.2.3). We claim that this isomorphism does not indeed
depend on the choice ofL0; for, let L′0 ∈ Λ be another Lagrangian subspace.
By Corollary 1.4.28, there exists a symplectomorphismA ∈ Sp(V, ω) such that
A(L0) = L′0; we have the following commutative diagram (see Lemma 4.2.5):

H1(Λ)
A∗=Id //

q∗
��

H1(Λ)

q∗
��

H1(Λ,Λ0(L0))
A∗ //

µL0
&&LLLLLLLLLLL

H1(Λ,Λ0(L′0))

µL′0xxrrrrrrrrrrr

Z
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where the commutativity of the lower triangle follows from Remark 2.5.21. This
proves the claim. Observe that ifγ : [a, b] → Λ is a loop, i.e.,γ(a) = γ(b), then,
sinceγ defines a homology class inH1(Λ),we obtain the equality:

µL0(γ) = µL′0(γ),

for any pair of Lagrangian subspacesL0, L
′
0 ∈ Λ.

4.2.22. REMARK . Let J be a complex structure inV compatible withω; con-
sider the inner productg = ω(·, J ·) and the Hermitian productgs in (V, J) defined
in (1.4.10). Let̀ 0 ∈ Λ be a Lagrangian subspace; Proposition 2.5.11 tells us that
the map

(4.2.15) U(V, J, gs)/O
(
`0, g|`0×`0

)
3 A ·O

(
`0, g|`0×`0

)
7−→ A(`0) ∈ Λ

is a diffeomorphism. As in (4.2.1), we can define a map

d̄ : U(V, J, gs)/O
(
`0, g|`0×`0

)
−→ S1

obtained from
d = det2 : U(V, J, gs) −→ S1

by passage to the quotient; then the mapd̄ induces an isomorphism̄d∗ of the fun-
damental groups. Indeed, by Remark 1.4.30 we can find a basis ofV that puts
all the objects(V, ω, J, g, gs, `0) simultaneously in their canonical forms, and then
everything works as in Proposition 4.2.1. The isomorphismd̄∗ together with the
diffeomorphism (4.2.15) and the choice of (3.2.24) (or, equivalently, of (4.2.4)) as
a generator ofπ1(S1) ∼= H1(S1) produce an isomorphism (see also (4.2.2)):

u = uJ,`0 : H1(Λ)
∼=−−→ Z;

this isomorphism does not indeed depend on the choice ofJ and of `0. To see
this, choose another complex structureJ ′ in V compatible withω and another
Lagrangian subspacè′0 ∈ Λ; we then obtain an isomorphismu′ = uJ ′,`′0 . From
Remark 1.4.30 it follows that there exists a symplectomorphismA ∈ Sp(V, ω) that
takes̀ 0 onto`′0 and that isC-linear from(V, J) into (V, J ′); then, it is easy to see
that the following diagram commutes:

H1(Λ)
u

""E
EE

EE
EE

EE

A∗

��

Z

H1(Λ)
u′

<<yyyyyyyyy

By Lemma 4.2.5 we have thatA∗ = Id and the conclusion follows.
As a matter of facts, formula (4.2.10) shows that the isomorphismu has the

opposite sign of the isomorphism (4.2.14) obtained by using the transverse orien-
tation ofΛ1(L0) in Λ.
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Exercises for Chapter 4

EXERCISE 4.1. Prove that every symmetric bilinear formB ∈ Bsym(V ) ad-
mits a maximal negative subspace.

EXERCISE 4.2. Suppose thatB ∈ Bsym(V ), with V = V1 ⊕ V2 andB is
negative semi-definite inV1 and inV2. If the inequality (4.1.15) holds for allv1 ∈
V1 andv2 ∈ V2, thenB is negative semi-definite inV .

EXERCISE 4.3. LetV be ann-dimensional real vector space,B ∈ Bsym(V )
a symmetric bilinear form and assume that the matrix representation ofB in some
basis{v1, . . . , vn} of V is given by:(

X Z
Z∗ Y

)
,

whereX is ak × k symmetric matrix andY is a (n − k) × (n − k) symmetric
matrix. Prove that, ifX is invertible, then:

n−(B) = n−(X) + n−(Y − Z∗X−1Z), dgn(B) = dgn(Y − Z∗X−1Z),

and n+(B) = n+(X) + n+(Y − Z∗X−1Z).

EXERCISE4.4. LetV be a finite dimensional real vector space and letU,Z ∈
Bsym(V ) be nondegenerate symmetric bilinear forms onV such thatU −Z is also
nondegenerate. Prove thatU−1 − Z−1 is nondegenerate and that:

n−(Z)− n−(U) = n−(Z−1 − U−1)− n−(U − Z).

EXERCISE4.5. Consider the spaceIR2n endowed with its canonical symplec-
tic form ω; define an isomorphismO : IR2n → IR2n by O(x, y) = (x,−y), for
all x, y ∈ IRn. Show thatO#(ω) = −ω and conclude thatO induces a diffeomor-
phism of the Lagrangian GrassmannianΛ to itself. Show that the homomorphism:

O∗ : H1(Λ) −→ H1(Λ)

is equal to minus the identity map (compare with Remark 4.2.20).

EXERCISE 4.6. LetL0 ∈ Λ be a Lagrangian in the symplectic space(V, ω)
and letA : [a, b] → Sp(V, ω, L0), ` : [a, b] → Λ be continuous curves such that
`(a), `(b) ∈ Λ0(L0). Prove that the curvè̃= A ◦ ` : [a, b] → Λ is homologous to
` in H1(Λ,Λ0(L0)).

EXERCISE 4.7. LetL0 be a Lagrangian subspace of(V, ω) and letL1, ` :
[a, b] → Λ be curves such that:

• L1(t) is transverse toL0 and to`(t) for all t ∈ [a, b];
• `(a) and`(b) are transverse toL0.

Show that the Maslov indexµL0(`) of the curvè is equal to:

µL0(`) = n+

(
ϕL0,L1(b)(`(b))

)
− n+

(
ϕL0,L1(a)(`(a))

)
.
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EXERCISE 4.8. LetL0, L1, L2, L3 ∈ Λ be four Lagrangian subspaces of the
symplectic space(V, ω), with L0 ∩ L1 = L0 ∩ L2 = L0 ∩ L3 = L2 ∩ L3 = {0}.
Recall the definition of the mapρL0,L1 : L1 → L∗0 given in (1.4.11), the definition
of pull-back of a bilinear form given in Definition 1.1.2 and the definition of the
chartϕL0,L1 of Λ given in (2.5.3). Prove that the following identity holds:

ϕL0,L1(L3)− ϕL1,L0(L2) = (ρL0,L1)
#

(
ϕL0,L3(L2)−1

)
.

EXERCISE4.9. As in Exercise 4.8, prove that the following identity holds:

n+

(
ϕL0,L3(L2)

)
= n+

(
ϕL1,L0(L3)− ϕL1,L0(L2)

)
.

EXERCISE4.10. Let(L0, L1) be a Lagrangian decomposition of the symplec-
tic space(V, ω) and let` : [a, b] → Λ be a continuous curve with endpoints in
Λ0(L0). Suppose that there exists a LagrangianL∗ ∈ Λ such thatIm(`) ⊂ Λ0(L∗).
Prove that the Maslov indexµL0(`) is given by the following formula:

µL0(`) = n−
(
ϕL1,L0(`(b))− ϕL1,L0(L∗)

)
− n−

(
ϕL1,L0(`(a))− ϕL1,L0(L∗)

)
.

EXERCISE4.11. Define the following symplectic formω in IR4n:

ω
(
(v1, w1), (v2, w2)

)
= ω(v1, v2)− ω(w1, w2), v1, w1, v2, w2 ∈ IR2n.

whereω is the canonical symplectic form ofIR2n. Prove thatA ∈ Lin(IR2n, IR2n)
is a symplectomorphism of(IR2n, ω) if and only if its graphGr(A) is a Lagrangian
subspace of(IR4n, ω). Show that the mapSp(2n, IR) 3 A 7→ Gr(A) ∈ Λ(IR4n, ω)
is a diffeomorphism onto an open subset.

EXERCISE4.12. Prove that the set
{
T ∈ Sp(2n, IR) : T (L0) ∩ L0 = {0}

}
is

an open dense subset ofSp(2n, IR) with two connected components.

EXERCISE4.13. Define:

Γ+ =
{
T ∈ Sp(2n, IR) : det(T − Id) > 0

}
;

Γ− =
{
T ∈ Sp(2n, IR) : det(T − Id) < 0

}
.

Prove thatΓ+ andΓ− are open and connected subsets ofSp(2n, IR) (see Exer-
cise 4.15 for more properties of the setsΓ+ andΓ−).

EXERCISE4.14. Consider the set:

E =
{
T ∈ Sp(2n, IR) : det(T − Id) 6= 0, T (L0) ∩ L0 = {0}

}
.

Prove thatE is a dense open subset ofSp(2n, IR) having2(n+1) connected com-

ponents. Prove that each connected component contains an elementT =
(
A B
C D

)
with A = 0 andB in diagonal form.

EXERCISE4.15. Recall from Exercise 4.13 the definition of the setsΓ+,Γ− ⊂
Sp(2n, IR). Prove thatA ∈ Γ+ ∪ Γ− if and only if Gr(A) is a Lagrangian in
Λ0(∆) ⊂ Λ(IR4n, ω), where∆ is thediagonalof IR4n = IR2n ⊕ IR2n. Conclude
that any loop inΓ+ ∪ Γ− is homotopic to a constant inSp(2n, IR).



CHAPTER 5

Some Applications to Differential Systems

5.1. Symplectic Differential Systems

In this section we will always consider the symplectic spaceIRn ⊕ IRn∗ en-
dowed with its canonical symplectic formω. Recall from Subsection 2.1.1 that
the Lie algebrasp(IRn ⊕ IRn∗, ω) can be identified with the set of2n × 2n real
matricesX of the form:

(5.1.1) X =
(
A B
C −A∗

)
, B, C symmetric,

whereA,B,C are n × n matrices andA∗ is the transpose ofA. The matri-
cesA,B,C andA∗ can be identified with linear operatorsA ∈ Lin(IRn), B ∈
Lin(IRn∗, IRn), C ∈ Lin(IRn, IRn∗) andA∗ ∈ Lin(IRn∗); we can also identifyB
with a symmetric bilinear form inIRn∗ andC with a symmetric bilinear form in
IRn.

We will be interested in homogeneous systems of linear differential equations
of the form:

(5.1.2)
d
dt

(
v(t)
α(t)

)
= X(t)

(
v(t)
α(t)

)
, t ∈ [a, b],

whereX : [a, b] → sp(IRn ⊕ IRn∗, ω), v : [a, b] → IRn eα : [a, b] → IRn∗. For all
t ∈ [a, b], the linear operatorX(t) determines operatorsA(t),B(t) andC(t) as in
(5.1.1); we can then rewrite (5.1.2) more concisely in the form:

(5.1.3)

{
v′ = Av +Bα,

α′ = Cv −A∗α,

where the variablet is omitted for simplicity.

5.1.1. DEFINITION. A homogeneous linear system of differential equations of
the form (5.1.3), whereA : [a, b] → Lin(IRn), B : [a, b] → Bsym(IRn∗) and
C : [a, b] → Bsym(IRn) are smooth functions andB(t) is nondegenerate for all
t ∈ [a, b] is called asymplectic differential system. If X(t) denotes the matrix
defined byA(t), B(t) andC(t) as in (5.1.1), we say thatX is the coefficient
matrix of the symplectic system (5.1.3), and the mapsA, B andC will be called
thecomponentsof X.

In general, we will identify the symplectic differential system (5.1.3) with its
coefficient matrixX; for instance, we will say that(v, α) is a solution ofX mean-
ing that(v, α) is a solution of (5.1.3), or, equivalently, of (5.1.2).

134
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In the rest of this section we will consider a fixed symplectic differential system
X : [a, b] → sp(IRn ⊕ IRn∗, ω) with componentsA,B andC.

5.1.2. REMARK . SinceB(t) is nondegenerate for allt, then its index does not
depend ont, and so we can write:

n−(B(t)) = n−(B(t)−1) = k, t ∈ [a, b].

Recall that the linear operatorB(t)−1 can be identified with a symmetric bilinear
form in IRn, which is the push-forward of the bilinear formB(t) by the linear
operatorB(t).

Given a smooth mapv : [a, b] → IRn, there exists at most one mapα : [a, b] →
IRn∗ such that(v, α) is a solution ofX; for, the invertibility ofB(t) allows to solve
the first equation of (5.1.3) forα in terms ofv. We can therefore define forany
smooth mapv : [a, b] → IRn a smooth mapαv : [a, b] → IRn∗ by the following
formula:

(5.1.4) αv(t) = B(t)−1
(
v′(t)−A(t)v(t)

)
.

5.1.3. DEFINITION. Given a smooth mapv : [a, b] → IRn, we say thatv is a
solutionof the symplectic differential systemX if (v, αv) is a solution ofX.

From the elementary theory of ordinary linear differential equations we know
that, givenv0 ∈ IRn andα0 ∈ IRn∗, there exists a unique solution(v, α) of X
in [a, b] satisfyingv(a) = v0 andα(a) = α0 (see for instance [4, Theorem 5.1,
Chapter 1]); therefore we have a well defined linear isomorphism:

Φ(t) : IRn ⊕ IRn∗ → IRn ⊕ IRn∗

such that
Φ(t)

(
(v(a), α(a)

)
=

(
v(t), α(t)

)
,

for any solution(v, α) of X. We then obtain a smooth curve[a, b] 3 t 7→ Φ(t) ∈
GL(IRn ⊕ IRn∗) that satisfies:

(5.1.5) Φ′(t) = X(t) ◦ Φ(t), for all t ∈ [a, b] and Φ(a) = Id.

5.1.4. DEFINITION. The mapΦ determined by (5.1.5) is called thefundamen-
tal matrix of the symplectic differential systemX.

SinceX takes values in the Lie algebra of the symplectic group, it follows from
(5.1.5) thatΦ takes values in the symplectic group (see Remark 2.1.4), that is, the
fundamental matrix of the symplectic differential systemX is a differentiable map:

Φ: [a, b] −→ Sp(IRn ⊕ IRn∗, ω).

The fact thatΦ(t) is a symplectomorphism is expressed by the following identity

(5.1.6) ω
(
(v(t), αv(t)), (w(t), αw(t))

)
= αw(t) ·v(t)−αv(t) ·w(t) = constant,

for any solutionsv andw of X.
Let `0 ⊂ IRn ⊕ IRn∗ be Lagrangian subspace; let us consider the following

initial condition for the system (5.1.3):

(5.1.7) (v(a), α(a)) ∈ `0.



136 5. APPLICATIONS

Recalling Exercise 1.11, there exists a bijection between the set of Lagrangian
subspaces̀0 ⊂ IRn⊕IRn∗ and the set of pairs(P, S), whereP ⊂ IRn is a subspace
andS ∈ Bsym(P ) is a symmetric bilinear form; such bijection is determined by
the identity:

(5.1.8) `0 =
{
(v, α) ∈ IRn ⊕ IRn∗ : v ∈ P, α|P + S(v) = 0

}
,

whereS is identified with a linear operatorS : P → P ∗. In terms of the pair
(P, S), the initial condition (5.1.7) can be rewritten in the form:

(5.1.9) v(a) ∈ P, α(a)|P + S
(
v(a)

)
= 0.

5.1.5. DEFINITION. We call (5.1.7) (respectively, (5.1.9)) theLagrangian ini-
tial conditiondetermined by the Lagrangian`0 (respectively, by the pair(P, S)); if
(v, α) is a solution ofX that satisfies (5.1.7), or, equivalently, (5.1.9), we say that
(v, α) is asolution of the pair(X, `0), or also that(v, α) is a(X, `0)-solution. We
will denote byV = V(X, `0) the set of solutions of(X, `0), that is:

(5.1.10) V(X, `0) = V =
{
v : v is a solution of(X, `0)

}
.

Clearly,V is a subspace of the space of all mapsv : [a, b] → IRn; moreover:

dim(V) = dim(`0) = n.

We will fix for the rest of the section a Lagrangian`0 ⊂ IRn ⊕ IRn∗ and we
will denote by(P, S) the pair corresponding tò0 as in (5.1.8).

For eacht ∈ [a, b] we define the following subspace ofIRn:

(5.1.11) V[t] =
{
v(t) : v ∈ V

}
⊂ IRn;

It is easy to see that:

(5.1.12) V[a] = P.

It follows directly from (5.1.6) that, given solutionsv andw of (X, `0), then:

αv(t) · w(t) = αw(t) · v(t),

for eacht ∈ [a, b]; then, ifv is a solution of(X, `0) with v(t) = 0, the functional
αv(t) annihilates the spaceV[t]. Conversely, ifα0 ∈ IRn∗ is a functional that
annihilatesV[t], it follows from (5.1.6) that ifv is the unique solution ofX such
thatv(t) = 0 andαv(t) = α0, then

0 = ω
(
(v(t), αv(t)), (w(t), αw(t))

)
= ω

(
(v(a), αv(a)), (w(a), αw(a))

)
,

for all (X, `0)-solutionw; hence,(v(a), αv(a)) isω-orthogonal tò 0 and therefore
v is a solution of(X, `0). These observations show that the annihilator ofV[t] is
given by:

(5.1.13) V[t]o =
{
αv(t) : v ∈ V andv(t) = 0

}
,

for all t ∈ [a, b]; keeping in mind (5.1.4), it follows directly from (5.1.13) that the
orthogonal complement ofV[t] with respect toB(t)−1 is given by:

(5.1.14) V[t]⊥ = B(t)
(
V[t]o

)
=

{
v′(t) : v ∈ V andv(t) = 0

}
.



5.1. SYMPLECTIC DIFFERENTIAL SYSTEMS 137

5.1.6. DEFINITION. We say thatt ∈ ]a, b] is a focal instantfor the pair(X, `0)
(or that t is a (X, `0)-focal instant) if there exists a non zero solutionv ∈ V of
(X, `0) such thatv(t) = 0; the dimension of the space of solutionsv ∈ V such that
v(t) = 0 is called themultiplicity of the focal instantt, and it is denoted bymul(t).
Thesignatureof the focal instantt, denoted bysgn(t), is defined as the signature
of the restriction of the symmetric bilinear formB(t)−1 to the spaceV[t]⊥, that is:

sgn(t) = sgn
(
B(t)−1|V[t]⊥×V[t]⊥

)
,

where the orthogonal complementV[t]⊥ is taken relatively to the bilinear form
B(t)−1. We say that the focal instantt is nondegenerateif B(t)−1 is nondegenerate
on V[t]⊥. If t ∈ ]a, b] is not a(X, `0)-focal instant, we definemul(t) = 0 and
sgn(t) = 0; if the pair(X, `0) has only a finite number of focal instants, we define
thefocal indexof (X, `0) as the integer number:

ifoc(X, `0) = ifoc =
∑
t∈]a,b]

sgn(t).

5.1.7. REMARK . For all t ∈ ]a, b] we have:

(5.1.15) mul(t) = dim
(
V[t]o

)
= codimIRnV[t],

and in particulart is (X, `0)-focal if and only ifV[t] 6= IRn; indeed, it follows from
(5.1.13) that the map{

v ∈ V : v(t) = 0
}
3 v 7−→ αv(t) ∈ V[t]o ⊂ IRn∗

is an isomorphism. Keeping in mind Remark 5.1.2, we see that the symmetric
bilinear formB(t)−1|V[t]⊥×V[t]⊥ is the push-forward ofB(t)|V[t]o×V[t]o by the iso-
morphism

B(t)|V[t]o : V[t]o −→ V[t]⊥;
Then, we conclude that the signature of a(X, `0)-focal instantt coincides with:

sgn(t) = sgn
(
B(t)|V[t]o×V[t]o

)
;

moreover, a focal instantt is nondegenerate if and only ifV[t]o is a nondegenerate
subspace forB(t). Observe also that Corollary 1.1.11 implies that a focal instantt
is nondegenerate if and only ifB(t)−1 is nondegenerate inV[t].

5.1.8. DEFINITION. We say that the Lagrangian initial condition determined
by the Lagrangian subspace`0 (or, equivalently, by the pair(P, S)) is nondegen-
erateif the bilinear formB(a)−1 is nondegenerate onP . In this case, we also say
that the pair(X, `0) has anondegenerate initial condition.

5.1.9. REMARK . In Definition 5.1.6 we have explicitly excluded the possibility
thatt = a be a(X, `0)-focal instant. Nevertheless, if we admit for the moment the
terminology of Definition 5.1.6 also fort = a, we see that the nondegeneracy for
the initial condition determined bỳ0 is indeed equivalent to the nondegeneracy of
t = a as a focal instant. Arguing as in Remark 5.1.7 we see that the nondegeneracy
of the initial condition determined bỳ0 is equivalent to the nondegeneracy of
B(a) in the annihilator ofP in IRn, and also to the nondegeneracy ofB(a)−1 in
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P⊥, where the orthogonal complement is taken with respect toB(a)−1. Observe
that if P = IRn, which is equivalent tò0 being transversal to{0}n ⊕ IRn∗, or if
P = {0}, which is equivalent tò0 = {0}n⊕ IRn∗, then automatically(X, `0) has
nondegenerate initial condition.

5.1.10. EXAMPLE . If g : [a, b] → Bsym(IRn) andR : [a, b] → Lin(IRn) are
differentiable maps withg(t) nondegenerate andR(t) a g(t)-symmetric operator
for all t, then the homogeneous linear differential equation:

(5.1.16) g(t)−1
(
g(t) · v′(t)

)′ = R(t) · v(t), t ∈ [a, b],

is called aMorse-Sturm equation. If g is constant, then (5.1.16) can be written in
a simplified form:

(5.1.17) v′′(t) = R(t) · v(t), t ∈ [a, b].

Definingα(t) = g(t) · v′(t), we can rewrite (5.1.16) as a system of differential
equations:

(5.1.18)
d
dt

(
v(t)
α(t)

)
=

(
0 g(t)−1

g(t)◦R(t) 0

) (
v(t)
α(t)

)
, t ∈ [a, b].

The system (5.1.18) is a symplectic differential system, withA(t) = 0, B(t) =
g(t)−1 andC(t) = g(t) ◦ R(t). In general, any symplectic differential systemX
with A = 0 will be identified with a Morse–Sturm equation withg(t) = B(t)−1

andR(t) = B(t) ◦ C(t).

5.2. The Maslov Index of a Symplectic Differential System

In this section we show that ifX is a symplectic differential system and`0
is a Lagrangian subspace ofIRn ⊕ IRn∗, then we can associate in a natural way
a curve in the Lagrangian GrassmannianΛ to the pair(X, `0), and under suitable
hypotheses we can associate aMaslov indexto the pair(X, `0). We will always
denote byL0 the Lagrangian subspace:

L0 = {0}n ⊕ IRn∗ ⊂ IRn ⊕ IRn∗

and byΛ the Lagrangian Grassmannian of the symplectic spaceIRn ⊕ IRn∗ en-
dowed with its canonical symplectic structure. As usual, we will denote byA, B
andC the components ofX and byΦ its fundamental matrix.

We define a differentiable curvè: [a, b] → Λ by setting:

(5.2.1) `(t) = Φ(t)(`0),

for all t ∈ [a, b]; more explicitly, we have:

(5.2.2) `(t) = {(v(t), αv(t)) : v ∈ V}.
Observe that̀(a) = `0; keeping in mind (5.2.2) and (5.1.13) we see that:

(5.2.3) L0 ∩ `(t) = {0}n ⊕ V[t]o,

for all t ∈ [a, b]. We have the following:

5.2.1. LEMMA . An instantt ∈ ]a, b] is (X, `0)-focal if and only if`(t) ∈
Λ≥1(L0); moreover,̀ (t) ∈ Λk(L0) if and only ifmul(t) = k.
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PROOF. It follows easily from (5.2.3) and (5.1.15). �

Lemma 5.2.1 is a first indication that the properties of the focal instants of the
pair (X, `0) may be investigated by looking at the intersections of the curve` with
Λ≥1(L0). In order to make more explicit the relations between the focal instants
of (X, `0) and such intersections we now compute the derivative of`.
The linearization of the natural action of the symplectic groupSp(IRn⊕ IRn∗, ω)

in the Lagrangian GrassmannianΛ gives us an anti-homomorphism of the Lie al-
gebrasp(IRn ⊕ IRn∗, ω) into the Lie algebra of differentiable vector fields inΛ.
These concepts were defined in Subsection 2.1.3, and we will use here the notations
of that subsection.

The identity (5.1.5) tells us thatΦ is an integral curve of the time-dependent
vector field(t, g) 7→ X(t)R(g) in the Lie groupSp(IRn ⊕ IRn∗, ω); from Re-
mark 2.1.22 and from (5.2.1) it then follows that` is an integral curve of the time-
dependent vector field(t,m) 7→ X(t)∗(m) in Λ, i.e.,

(5.2.4) `′(t) = X(t)∗(`(t)),

for all t ∈ [a, b]. Proposition 2.5.9 gives us:

(5.2.5) X(t)∗(L) = ω(X(t)·, ·)|L×L,
for all L ∈ Λ. Then, putting together (5.2.4) and (5.2.5) we obtain:

`′(t)
(
(0, α), (0, β)

)
= ω

(
X(t)(0, α), (0, β)

)
= ω

(
(B(t)α,−A(t)∗α), (0, β)

)
= B(t)(α, β),

(5.2.6)

for any(0, α), (0, β) ∈ L0 ∩ `(t). We have therefore shown the following:

5.2.2. LEMMA . For all t ∈ [a, b], the restriction of the symmetric bilinear form
B(t) ∈ Bsym(IRn∗) to V[t]o coincides with the push-forward of the restriction of
`′(t) ∈ Bsym(`(t)) toL0 ∩ `(t) by the isomorphism:

L0 ∩ `(t) 3 (0, α) 7−→ α ∈ V[t]o

PROOF. It follows from (5.2.3) and (5.2.6). �

5.2.3. COROLLARY. An(X, `0)-focal instantt ∈ ]a, b] is nondegenerate if and
only if ` has a nondegenerate intersection withΛ≥1(L0) at the instantt; moreover,

sgn(t) = sgn
(
`′(t)|L0∩`(t)

)
.

Also, the pair(X, `0) has nondegenerate initial condition if and only if` either
has a nondegenerate intersection withΛ≥1(L0) at the instantt = a or `(a) 6∈
Λ≥1(L0).

PROOF. It follows from Remark 5.1.7 and Remark 5.1.9. �

5.2.4. COROLLARY. If t0 ∈ ]a, b] is a nondegenerate(X, `0)-focal instant,
then it is isolated, i.e., no instantt 6= t0 sufficiently close tot0 is (X, `0)-focal.
Moreover, if the initial condition of(X, `0) is nondegenerate, then there are no
(X, `0)-focal instants in a neighborhood oft = a. If (X, `0) has nondegenerate
initial condition and if it has only nondegenerate focal instants, then(X, `0) has
only a finite number of focal instants.
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PROOF. It follows from Corollary 5.2.3, Lemma 5.2.2 and Example 4.2.17.
�

We now want to define the Maslov index of a pair(X, `0); essentially, it will be
defined as the Maslov indexµL0(`) of the curvè . The problem is thatµL0(`) only
makes sense if̀ has endpoints inΛ0(L0); assuming thatt = b is not a(X, `0)-
focal instant, we have that`(b) ∈ Λ0(L0) (see Lemma 5.2.1). However, in general
`(a) = `0 may be inΛ≥1(L0); to overcome this problem the idea is to “erase” a
short initial portion of the curvè. More precisely, let us give the following:

5.2.5. DEFINITION. If the pair(X, `0) has nondegenerate initial condition and
if the final instantt = b is not (X, `0)-focal, then we define theMaslov index
imaslov(X, `0) of the pair(X, `0) by setting:

imaslov(X, `0) = imaslov = µL0

(
`|[a+ε,b]

)
,

whereε > 0 is chosen in such a way that there are no(X, `0)-focal instants in the
interval[a, a+ ε].

From Corollary 5.2.4 it follows that, indeed, there existsε > 0 such that
(X, `0) does not have focal instants in the interval[a, a + ε]. Moreover, the de-
finition of imaslov does not depend on the choice ofε (see Exercise 5.4).

Generically, the Maslov indeximaslov(X, `0) can be thought as a sort ofalge-
braic countof the focal instants of(X, `0):

5.2.6. PROPOSITION. Suppose that(X, `0) has nondegenerate initial condi-
tion and thatt = b is not (X, `0)-focal. If (X, `0) has only nondegenerate focal
instants, then the focal index coincides with the Maslov index:

ifoc(X, `0) = imaslov(X, `0).

PROOF. It follows directly from Corollary 4.2.18 and Corollary 5.2.3. �

5.2.7. EXAMPLE . If B(t) is positive definite for some (hence for all)t ∈ [a, b]
then (X, `0) automatically has nondegenerate initial condition; moreover, every
(X, `0)-focal instantt ∈ ]a, b] is nondegenerate andsgn(t) = mul(t). Hence, if
t = b is not(X, `0)-focal, it follows from Proposition 5.2.6 that

imaslov(X, `0) =
∑
t∈]a,b[

mul(t) < +∞.

One of the fundamental properties of the Maslov index of a pair is itsstability;
we have the following:

5.2.8. PROPOSITION. Let X be a topological space and assume that for all
λ ∈ X it is given a symplectic differential systemXλ such that the map:

X × [a, b] 3 (λ, t) 7−→ Xλ(t) ∈ sp(IRn ⊕ IRn∗, ω)

is continuous; let̀ 0 : X → Λ be a continuous curve in the Lagrangian Grass-
mannian such thatdim(L0 ∩ `0(λ)) does not depend onλ ∈ X . If for some
λ0 ∈ X the pair (Xλ0 , `0(λ0)) has nondegenerate initial condition andt = b is
not (Xλ0 , `0(λ0))-focal, then there exists a neighborhoodU of λ0 in X such that
for all λ ∈ U we have:
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• (Xλ, `0(λ)) has nondegenerate initial condition;
• the instantt = b is not(Xλ, `0(λ))-focal;
• imaslov(Xλ, `0(λ)) = imaslov(Xλ0 , `0(λ0)).

PROOF. Denote byΦλ the fundamental matrix of the symplectic differential
systemXλ. It follows from standard theory on continuous dependence with respect
to a parameter of solutions of differential equations that the map(λ, t) 7→ Φλ(t) is
continuous inX × [a, b]. Define`λ(t) = Φλ(t)(`0(λ)); then clearly(λ, t) 7→ `λ(t)
is a continuous map inX × [a, b] and it follows from (5.2.4) that also(λ, t) 7→
`′λ(t) is continuous inX × [a, b]. In particular,sinceΛ0(L0) is open, we have
that `λ(b) ∈ Λ0(L0) for λ in a neighborhood ofλ0 in X , and therefore for such
values ofλ the instantt = b is not(Xλ, `0(λ))-focal (see Lemma 5.2.1). Keeping
in mind Corollary 5.2.3, it follows directly from Lemma 4.2.19 that there exists
ε > 0 and a neighborhoodU of λ in X such that(Xλ, `0(λ)) has nondegenerate
initial condition, and such that there are no(Xλ, `0(λ))-focal instants in the interval
[a, a+ ε] for all λ ∈ U. Hence,

imaslov(Xλ, `0(λ)) = µL0

(
`λ|[a+ε,b]

)
for all λ in a neighborhood ofλ0 in X . It follows from Remark 3.1.20 that the
mapλ 7→ `λ ∈ C0([a+ ε, b],Λ) is continuous when we considerC0([a+ ε, b],Λ)
endowed with the compact-open topology. By Property (6) in the statement of
Lemma 4.2.13 we conclude thatimaslov(Xλ, `0(λ)) is constant whenλ runs in a
neighborhood ofλ0 in X ; this concludes the proof. �

5.2.9. COROLLARY. Suppose that it is given a sequence(Xn)n≥1 of differen-
tiable mapsXn : [a, b] → sp(IRn ⊕ IRn∗, ω) that converges uniformly to a differ-
entiable mapX; assume thatX andXn are symplectic differential systems for all
n. Let also be given a sequence(`n0 ) of Lagrangian subspaces that converges to
somè 0 ∈ Λ, wheredim(L0 ∩ `n0 ) = dim(L0 ∩ `0) for all n. Then, if(X, `0) has
nondegenerate initial condition and ift = b is not a(X, `0)-focal instant, then for
all n sufficiently large also(Xn, `

n
0 ) has nondegenerate initial condition andt = b

is not(Xn, `
n
0 )-focal, and:

imaslov(Xn, `
n
0 ) = imaslov(X0, `0).

PROOF. Consider the topological spaceX = IN ∪ {+∞}, whereU ⊂ X is
open if and only ifU ⊂ IN orX \U is a finite subset ofIN . SettingX+∞ = X, then
it is easy to see that the hypotheses of Proposition 5.2.8 are satisfied forλ0 = +∞.
The conclusion follows. �

5.3. The Maslov Index of semi-Riemannian Geodesics and Hamiltonian
Systems

In this section we show how the theory of symplectic differential systems
appears in several fields of geometry. In Subsection 5.3.1 we show how every
geodesic in a semi-Riemannian manifold determines in a natural way a Morse-
Sturm equation; such system is essentially obtained from the Jacobi equation along
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the geodesic through a parallel trivialization of the tangent bundle of the semi-
Riemannian manifold along the geodesic. In Subsection 5.3.2 we show that sym-
plectic differential systems appear also as linearizations of Hamiltonian systems;
we develop the theory in a very abstract and general formalism, using arbitrary
symplectic manifolds. Finally, in Subsection 5.3.3 we give references for some
further developments of the theory.

5.3.1. Geodesics in a semi-Riemannian manifold.LetM be a differentiable
manifold; asemi-Riemannian metricin M is a differentiable(2, 0)-tensor fieldg
such that for everym ∈ M , gm is a nondegenerate symmetric bilinear form on
TmM . The pair(M, g) is called asemi-Riemannian manifold; whengm is positive
definite for everym ∈ M we say thatg is aRiemannian metricand that(M, g) is
a Riemannian manifold. It is well known that there exists a uniqueconnection∇
on the tangent bundleTM of M which is torsion-free and such thatg is parallel;
such connection is called theLevi-Civita connection. Thecurvature tensorof ∇ is
defined by:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

for every differentiable vector fieldsX,Y, Z in M . Given a differentiable curve
γ : I → M defined in some intervalI ⊂ IR and given a differentiable vector field
v : I → TM along γ, i.e., v(t) ∈ Tγ(t)M for everyt ∈ I, then we denote by
Dv
dt (or just byv′) the covariant derivative ofv alongγ; a geodesicis defined as
a differentiable curveγ : I → M whose derivativeγ′ is parallel, i.e.,γ′′ = 0.
A differentiable vector fieldv along a geodesicγ : [a, b] → M is called aJacobi
vector fieldif it satisfies the differential equation:

(5.3.1)
D2

dt2
v(t) = R

(
γ′(t), v(t)

)
γ′(t), t ∈ [a, b];

equation (5.3.1) is known as theJacobi equation. Setdim(M) = n and chose
parallel vector fieldsZi : [a, b] → TM alongγ, i = 1, . . . , n such that(Zi(t))ni=1
form a basis ofTγ(t)M for some (and hence for all)t ∈ [a, b]; we say that(Zi)ni=1
is a parallel trivialization of the tangent bundleTM alongγ. The parallel trivi-
alization(Zi)ni=1 induces a bijection between the set of differentiable vector fields
v : [a, b] → TM alongγ and the set of differentiable mapsv : [a, b] → IRn given
by:

(5.3.2) v(t) =
n∑
i=1

vi(t)Zi(t), t ∈ [a, b],

wherev(t) = (v1(t), . . . , vn(t)) ∈ IRn; taking the covariant derivative alongγ on
both sides of (5.3.2) we get that ifv corresponds tov then the covariant derivative
v′ of v corresponds to the (standard) derivativev′ of v by means of the bijection
induced by the parallel trivialization. For eacht ∈ [a, b] we define a nondegenerate
symmetric bilinear formg(t) ∈ Bsym(IRn) and a linear operatorR(t) ∈ Lin(IRn)
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whose matrices with respect to the canonical basis ofIRn satisfy the identities:

gij(t) = g
(
Zi(t), Zj(t)

)
, R

(
γ′(t), Zj(t)

)
γ′(t) =

n∑
i=1

Rij(t)Zi(t),

for everyi, j = 1, . . . , n. Observe that, since bothg and the vector fieldsZi are
parallel, thesymmetric bilinear formg(t) does not depend ont; moreover, standard
symmetry properties of the curvature tensor imply thatR(t) is g-symmetric for
everyt ∈ [a, b]. We can therefore consider the Morse-Sturm equation:

(5.3.3) v′′(t) = R(t)v(t), t ∈ [a, b];

moreover, it is easy to see thata vector fieldv alongγ is a Jacobi vector field iff the
mapv : [a, b] → IRn defined by(5.3.2)is a solution of(5.3.3). In Example 5.1.10
we have mentioned that every Morse-Sturm equation can be identified with a sym-
plectic differential systemX with componentsA(t) = 0, B(t) = g(t)−1 and
C(t) = g ◦R(t); observe thatαv(t) = g(v(t)) ∈ IRn∗ for everyt.

Consider now a submanifoldP ⊂ M ; thesecond fundamental formof P at a
point p ∈ P in a normal directionn ∈ TpP

⊥ (where the orthogonal complement
is taken with respect tog) is the symmetric bilinear formSn onTpP defined by:

Sn(v, w) = g(∇vW,n), v, w ∈ TpP,

whereW is any differential vector field which is tangent toP and such thatW (p) =
w. Suppose now that we have a geodesicγ : [a, b] → M with γ(a) ∈ P and
γ′(a) ∈ Tγ(a)P⊥; a vector fieldv : [a, b] → TM alongγ is called aP-Jacobi field
if v is Jacobi and satisfy the condition:

v(a) ∈ P and g
(
v′(a), ·

)
|Tγ(a)P + Sγ′(a)

(
v(a), ·

)
= 0 ∈ Tγ(a)P∗.

The basis(Zi(a))ni=1 of Tγ(a)M induces an isomorphism fromTγ(a)M to IRn

which takesTγ(a)P onto some subspaceP ⊂ IRn; moreover, there exists a unique
symmetric bilinear formS ∈ Bsym(P ) which is the push-forward ofSγ′(a) by (the
restriction of) such isomorphism. The pair(P, S) therefore defines a Lagrangian
subspacè0 ⊂ IRn⊕IRn∗ as in (5.1.8); it is easily seen that a vector fieldv alongγ
isP-Jacobi if and only if the corresponding mapv : [a, b] → IRn defined by (5.3.2)
is a solution of(X, `0). In semi-Riemannian geometry one usually defines that a
point γ(t), t ∈ ]a, b] is P-focal alongγ when there exists a non zeroP-Jacobi
vector fieldv alongγ such thatv(t) = 0; the dimension of the space ofP-Jacobi
fieldsv alongγ such thatv(t) = 0 is called themultiplicity of theP-focal point
γ(t). Moreover, for eacht ∈ ]a, b] one considers the space:

J[t] =
{
v(t) : v isP-Jacobi alongγ

}
⊂ Tγ(t)M.

Thesignatureof theP-focal pointγ(t) is defined as the signature of the restriction
of the metricg to the orthogonal complementJ[t]⊥ of J[t]; theP-focal pointγ(t)
is callednondegenerateif the spaceJ[t]⊥ (or equivalently,J[t]) is nondegenerate
for g. When there are only a finite number ofP-focal points alongγ we define the
focal indexof the geodesicγ with respect toP as the sum of the signatures of the
P-focal points alongγ. The following facts are obvious:
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• an instantt ∈ ]a, b] is (X, `0)-focal iff γ(t) is aP-focal point; the multi-
plicity and signature oft as a(X, `0)-focal instant or ofγ(t) as aP-focal
point coincide;

• the focal index of the pair(X, `0) coincide with the focal index of the
geodesicγ with respect toP;

• a (X, `0)-focal instantt ∈ ]a, b] is nondegenerate if and only if theP-
focal pointγ(t) is non-degenerate;

• the initial condition of(X, `0) is nondegenerate if and only ifTγ(a)P is a
nondegenerate subspace forg.

If g is nondegenerate onTγ(a)P and if γ(b) is not aP-focal point we define
the Maslov indexof the geodesicγ with respect toP as the Maslov index of the
pair (X, `0). From Proposition 5.2.6 it follows immediately the following:

5.3.1. PROPOSITION. Let γ : [a, b] → M be a geodesic starting orthogonally
to a submanifoldP ⊂ M ; suppose that the metricg is nondegenerate onTγ(a)P
and that there are only nondegenerateP-focal points alongγ. Then, ifγ(b) is not
P-focal, the Maslov index ofγ coincides with the focal index ofγ with respect to
P. �

Observe that if(M, g) is Riemannian then the focal index of a geodesicγ
is simply the sum of the multiplicities of theP-focal points alongγ; this (non-
negative) integer is sometimes called thegeometric indexof the geodesicγ. The
geometric index of a geodesic is one of the numbers which enters into the statement
of the celebratedMorse Index Theorem.

A semi-Riemannian manifold(M, g) is calledLorentzianif the metricg has
index 1 at every point; four-dimensional Lorentzian manifolds are mathematical
models for general relativistic spacetimes. A vectorv ∈ TM is said to betime-
like, lightlike or spacelikerespectively wheng(v, v) is negative, zero or positive.
Similarly, we say that a geodesicγ is timelike, lightlike or spacelike whenγ′(t) is
respectively timelike, lightlike or spacelike for allt. We have the following:

5.3.2. LEMMA . Let γ : [a, b] → M be a timelike or a lightlike (non constant)
geodesic in a Lorentzian manifold(M, g) starting orthogonally to a submanifold
P ⊂ M ; assume thatg is nondegenerate onTγ(a)P (which is always the case ifγ
is timelike). Then, for everyt ∈ ]a, b] the spaceJ[t] is g-positive.

PROOF. Setv(t) = (t−a)γ′(t); thenv is aP-Jacobi field and thereforeγ′(t) ∈
J[t] for t ∈ ]a, b]]. It follows thatJ[t] is contained in the orthogonal complement
of IRγ′(t); if γ is timelike, this implies thatg is positive definite onJ[t]. If γ
is lightlike we still have to show thatγ′(t) is not in J[t]; observe first that, since
Tγ(a)P is g-nondegenerate it cannot beγ′(a) ∈ Tγ(a)P and therefore it cannot be

Tγ(a)P⊥ ⊂
(
IRγ′(a)

)⊥
; hence we can find a Jacobi fieldv alongγ with v(a) = 0

andv′(a) orthogonal toTγ(a)P but not orthogonal toγ′(a). Thenv is aP-Jacobi
field and it cannot be thatv(t) is orthogonal toγ′(t); for, s 7→ g(v(s), γ′(s)) is
an affine map which vanishes ats = a and hence it cannot have another zero at
s = t, since this would implyg(v, γ′) ≡ 0 andg(v′(a), γ′(a)) = 0. This proves
thatγ′(t) 6∈ J[t]⊥ and completes the proof. �



5.3. SEMI-RIEMANNIAN GEODESICS AND HAMILTONIAN SYSTEMS 145

5.3.3. COROLLARY. Under the hypotheses of Lemma 5.3.2, the geometric in-
dex and the focal index ofγ with respect toP coincide. �

5.3.2. Hamiltonian systems.In this subsection we will consider the follow-
ing setup. Let(M, ω) be asymplectic manifold, i.e.,M is a smooth manifold and
ω is a smooth closed skew-symmetric nondegenerate two-form onM, so thatωm
is a = symplectic form onTmM for eachm ∈ M . We setdim(M) = 2n. Let
H : U 7→ IR be a smooth function defined in an open setU ⊆ IR ×M; we will
call such function aHamiltonianin (M, ω). For eacht ∈ IR, we denote byHt the
mapm 7→ H(t,m) defined in the open setUt ⊆ M consisting of thosem ∈ M
such that(t,m) ∈ U . We denote by~H the smooth time-dependent vector field
in M defined bydHt(m) = ω( ~H(t,m), ·) for all (t,m) ∈ U ; let F denote the
maximal flow of the vector field~H defined on an open set ofIR× IR×M taking
values inM, i.e., for eachm ∈ M andt0 ∈ IR, the curvet 7→ F (t, t0,m) is a
maximal integral curve of~H andF (t0, t0,m) = m. This means thatF (·, t0,m) is
a maximal solution of the equation:

d
dt
F (t, t0,m) = ~H(t, F (t, t0,m)), F (t0, t0,m) = m.

Recall thatF is a smooth map; we also writeFt,t0 for the mapm 7→ F (t, t0,m);
observe thatFt,t0 is a diffeomorphism between open subsets ofM.

We recall that asymplectic chart in M is a local chart(q, p) taking values
in IRn ⊕ IRn∗ whose differential at each point is a symplectomorphism from the
tangent space ofM to IRn ⊕ IRn∗ endowed with the canonical symplectic struc-
ture. We writeq = (q1, . . . , qn) andp = (p1, . . . , pn); we denote by{ ∂

∂qi
, ∂
∂pj
},

i, j = 1, . . . , n the corresponding local referential ofTM, and by{dqi,dpj} the
local referential ofTM∗. By Darboux’s Theorem, there always exists an atlas of
symplectic charts.

In a given symplectic chart(q, p), we have:

ω =
n∑
i=1

dqi ∧ dpi, ~H =
n∑
i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
.

LetP be aLagrangian submanifoldofM, i.e.,TmP is a Lagrangian subspace
of TmM for everym ∈ P. We fix an integral curveΓ : [a, b] 7→ M of ~H, so
thatΓ(t) = F (t, a,Γ(a)) for all t ∈ [a, b]. We also say thatΓ is asolution of the
Hamilton equation, i.e., in a symplectic chartΓ(t) = (q(t), p(t)):

(5.3.4)


dq
dt

=
∂H

∂p
,

dp
dt

= −∂H
∂q

.

We assume thatΓ starts atP, that isΓ(a) ∈ P. Finally, we will consider a fixed
smooth distributionL in M such thatLm is a Lagrangian subspace ofTmM for
all m ∈M.
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The basic example to keep in mind for the above setup is the case whereM is
the cotangent bundleTM∗ of some smooth manifoldM endowed with the canon-
ical symplectic structure,P is the annihilatorTP o of some smooth submanifold
P of M , andL is the distribution consisting of thevertical subspaces, i.e., the
subspaces tangent to the fibers ofTM∗.

The Hamiltonian flowFt,t0 is a symplectomorphism:

5.3.4. PROPOSITION. The symplectic formω is invariant by the Hamiltonian
flowF , i.e.,F ∗t,t0ω = ω for all (t, t0).

In the case of a time-independent Hamiltonian, the result of Proposition 5.3.4
follows easily from the formula for theLie derivativeof forms:

L ~H = d i ~H + i ~H d.

For the general case, the proof is based on the following elementary Lemma which
says how to compute the derivative of the pull-back of forms by a one-parameter
family of functions:

5.3.5. LEMMA . LetG be a smooth map on an open subset ofIR ×M taking
values inM and letη be a smoothr-form onM. For eacht ∈ IR, denote byGt
the mapm 7→ G(t,m) and byG̃tη the(r− 1)-form on an open subset ofM given
by:

(G̃tη)m = dGt(m)∗ iv ηG(t,m),

wherev = d
dtG(t,m) and iv is the interior product(or contractionin the first

variable) of a form with the vectorv. Then, for allm ∈M we have:

(5.3.5)
d
dt

(G∗t η)m = d(G̃tη)m + G̃t(dη)m.

PROOF. The two sides of equality (5.3.5) areIR-linear maps ofη which have
the same behavior with respect to exterior derivative and exterior products. More-
over, they agree on0-forms. The conclusion follows from the fact that, locally,
everyr-form is a linear combination of products of derivatives of0-forms. �

PROOF OFPROPOSITION5.3.4. We fix an instantt0 ∈ IR; we consider the
mapG(t,m) = F (t, t0,m) and we apply Lemma 5.3.5 toη = ω. Observe that,
for eacht, the1-form G̃tω is equal toG∗t (dHt). From (5.3.5), we get:

d
dt

(F ∗t,t0ω)m = 0,

and soF ∗t,t0ω is independent oft. The conclusion follows from the fact thatFt0,t0
is the identity map. �

A sextuplet(M, ω,H,L,Γ,P) where(M, ω) is a symplectic manifold,H is
a (time-dependent) Hamiltonian function defined on an open subset ofIR×M, L
is a smooth distribution of Lagrangians inM, Γ : [a, b] 7→ M is an integral curve
of ~H andP is a Lagrangian submanifold ofM with Γ(a) ∈ P, will be calleda set
of data for the Hamiltonian problem.

We give some more basic definitions.
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5.3.6. DEFINITION. A vector fieldρ alongΓ in M is said to be asolution for
the linearized Hamilton (LinH) equationsif it satisfies:

(5.3.6) ρ(t) = dFt,a(Γ(a)) ρ(a).

We also say thatρ is aP-solutionfor the (LinH) equations if in addition it satisfies
ρ(a) ∈ TΓ(a)P.

5.3.7. DEFINITION. A point Γ(t), t ∈]a, b] is said to be aP-focal pointalong
Γ if there exists a non zeroP-solutionρ for the (LinH) equations such thatρ(t) ∈
LΓ(t). Themultiplicity of aP-focal pointΓ(t) is the dimension of the vector space
of suchρ’s.

5.3.8. DEFINITION. A symplecticL-trivialization of TM alongΓ is a smooth
family of symplectomorphismsφ(t) : IRn ⊕ IRn∗ 7→ TΓ(t)M such that, for all
t ∈ [a, b], φ(t)(L0) = LΓ(t), whereL0 = {0} ⊕ IRn∗.

The existence of symplecticL-trivializations alongΓ is easily established with
elementary arguments, using the fact thatTM restricts to a trivial vector bundle
alongΓ.

We will be interested also in the quotient bundleTM/L and its dual bundle.
We have an obvious canonical identification of the dual(TM/L)∗ with the anni-
hilatorLo ⊂ TM∗; moreover, using the symplectic form, we will identifyLo with
L by the isomorphism:

(5.3.7) TmM3 ρ 7→ ω(·, ρ) ∈ TmM∗, m ∈M.

A symplecticL-trivializationφ induces a trivialization of the quotient bundle
TM/L alongΓ, namely, for eacht ∈ [a, b] we define an isomorphismZt : IRn 7→
TΓ(t)M/LΓ(t):

(5.3.8) Zt(x) = φ(t)(x, 0) + LΓ(t), x ∈ IRn.

Given a symplecticL-trivialization φ of TM alongΓ, we define a smooth
curveΦ : [a, b] 7→ Sp(2n, IR) by:

(5.3.9) Φ(t) = φ(t)−1 ◦ dFt,a(Γ(a)) ◦ φ(a).

The fact thatΦ(t) is a symplectomorphism follows from Proposition 5.3.4.
We now define a smooth curveX : [a, b] 7→ sp(2n, IR) by setting:

(5.3.10) X(t) = Φ′(t)Φ(t)−1;

As customary, the components of the matrixX will be denoted byA,B andC.
Finally, we define a Lagrangian subspace`0 of IRn ⊕ IRn∗ by:

(5.3.11) `0 = φ(a)−1(TΓ(a)P).

5.3.9. DEFINITION. The canonical bilinear formof (M, ω,H,L,Γ,P) is a
family of symmetric bilinear formsHL(t) on (TΓ(t)M/LΓ(t))∗ ' LoΓ(t) ' LΓ(t)

given by:

(5.3.12) HL(t) = Zt ◦B(t) ◦ Z∗t ,
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whereZ is the trivialization ofTM/L relative to some symplecticL-trivialization
φ of TM andB is the upper-rightn × n block of the mapX in (5.3.10). In
Exercise 5.5 the reader is asked to prove that the right hand side of (5.3.12) does
not depend on the choice of the symplecticL-trivialization ofTM.

We say that the set of data(M, ω,H,L,Γ,P) is nondegenerateif HL(t) is
nondegenerate for allt ∈ [a, b]. In this case, we can also define the symmetric
bilinear formHL(t)−1 onTΓ(t)M/LΓ(t).

Given a nondegenerate set of data(M, ω,H,L,Γ,P), let us consider the pair
(X, `0) defined by (5.3.10) and (5.3.11). It is easily seen that the submanifoldP
and the spaceP defined bỳ 0 as in (5.1.8) are related by the following:

Za(P ) = π(TΓ(a)P),

whereπ : TΓ(a)M 7→ TΓ(a)M/LΓ(a) is the quotient map. We set:

(5.3.13) P0 = π(TΓ(a)P).

To define the signature of aP-focal point alongΓ, we need to introduce the
following space:
(5.3.14)

V[t] =
{
ρ(t) : ρ is aP-solution of the (LinH) equation

}
∩ LΓ(t), t ∈ [a, b].

Using the isomorphism (5.3.7), it is easy to see thatV[a] is identified with the
annihilator(TΓ(a)P+La)o. It is easily seen that a pointΓ(t) isP-focal if and only
if V[t] is not zero and that the dimension ofV[t] is precisely the multiplicity of
Γ(t).

5.3.10. DEFINITION. Let Γ(t) be aP-focal point along the solutionΓ. The
signaturesgn(Γ(t)) is the signature of the restriction ofHL(t) to V[t] ⊂ Lt ' Lot .
Γ(t) is said to be a nondegenerateP-focal point if such restriction is nondegen-
erate. IfΓ has only a finite number ofP-focal points, we define thefocal index
ifoc(Γ) as:

(5.3.15) ifoc(Γ) =
∑
t∈ ]a,b]

sgn(Γ(t)).

5.3.11. DEFINITION. Given a set of data(M, ω,H,L,Γ,P) such that:

• HL(a)−1 is nondegenerate onP0 = π
(
TΓ(a)P

)
, whereπ : TΓ(a)M →

TΓ(a)M/LΓ(a) is the quotient map;
• Γ(b) is not aP-focal point.

We define theMaslov indeximaslov(Γ) as the Maslov index of any pair(X, `0)
associated to it by a symplecticL-trivialization ofTM alongΓ.

5.3.3. Further developments.In this short subsection we indicate some re-
cent results by the authors of this book that contain further development of the
theory of the Maslov index and its applications to semi-Riemannian geometry and
Hamiltonian system.
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In [29] prove the stability of the geometric index for timelike and lightlike
Lorentzian geodesics (that follows from Corollary 5.3.3), it is given a counterex-
ample to the equality of the Maslov index and of the focal index of a geodesic
in the case that there are degenerate focal points. It is also studied the problem
of characterizing those curves of Lagrangians that arise from the Jacobi equation
along a semi-Riemannian geodesic.

In [12] it is proven a Lorentzian extension of the Morse Index Theorem for
geodesics of all causal character in a stationary Lorentzian manifoldM, or, more
generally, for geodesics that admit a timelike Jacobi field. It is considered the case
of a geodesic with initial endpoint variable in a submanifoldP of M. Moreover,
under suitable compactness assumptions it is developed an infinite dimensional
Morse theory for geodesics with fixed endpoints in a stationary Lorentzian mani-
fold. A version of the index theorem for periodic geodesics in stationary Lorentzian
manifolds is proven in [25]. The Morse Index Theorem for timelike or lightlike
geodesics in any Lorentzian manifold is proven in [2, 8]; for the case of both end-
points variable see [34].

In [36] the authors develop the Morse Index Theorem for the general case of a
non periodic solution of a possibly time-dependent Hamiltonian system; it is used
a suitable assumption that generalize the assumption of stationarity for the metric
used in [12].

A general version of the semi-Riemannian Morse Index Theorem is proven in
[45]; the Maslov index is proven to be equal to the difference of the index and of
the coindex of suitable restrictions of the index form.

Exercises for Chapter 5

EXERCISE 5.1. Consider the symplectic differential system given in formula
(5.1.3) and initial condition (5.1.7), withX : [a, b] → sp(IRn ⊕ IRn∗, ω) real-
analytic. 1 Prove that either every instantt ∈ ]a, b] is (X, `0)-focal, or else there
are only a finite number of(X, `0)-focal instants. Prove that if the initial condition
is nondegenerate, then there are only a finite number of(X, `0)-focal instants.

1A mapf : U → IRn defined in an open subsetU ⊂ IRm is said to bereal-analyticif for all
x0 ∈ U , in a neighborhood ofx0 we can writef as the sum of apower seriescentered atx0, i.e.,

f(x) =
X

λ

aλ(x1 − x0
1)

λ1 · · · (xm − x0
m)λm ,

for x nearx0, whereλ = (λ1, . . . , λm) runs over the set of allm-tuples of non negative integer
numbers. A power series centered atx0 and convergent in a neighborhood ofx0, converges ab-
solutely and uniformly in a (possibly smaller) neighborhood ofx0. It follows that the series above
can be differentiated termwise; in particular, every real-analytic function isC∞, and the coefficient
aλ is given by theTaylor’s formula:

aλ =
1

λ1! · · ·λm!

∂|λ|f

∂xλ1
1 . . . ∂xλm

m

(x0
1, . . . , x

0
m),

where|λ| = λ1 + · · ·+λm. It follows easily from the two formulas above that the set of points ofU
wheref and all its partial derivatives are zero is open and closed inU . In particular,a real-analytic
function on a connected domain which is zero in a non empty open set is identically zero.
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EXERCISE 5.2. Consider the isomorphismO : IRn ⊕ IRn∗ → IRn ⊕ IRn∗

defined byO(v, α) = (v,−α); in terms of matrices:

O =
(

I 0
0 −I

)
,

whereI denotes then× n identity matrix. Define:

Xop = O ◦X ◦ O;

prove thatXop is a symplectic differential system and compute its components
Aop, Bop andCop, and its fundamental matrixΦop. The systemXop is called the
opposite symplectic differential system ofX. Characterize the solutions ofXop in
terms of those ofX.

EXERCISE5.3. In the notations of Exercise 5.2, prove thatO : IRn ⊕ IRn∗ →
IRn ⊕ IRn∗ is not a symplectomorphism (with respect to the canonical symplectic
structure), but it takes Lagrangian subspaces into Lagrangian subspaces. Given
`0 ∈ Λ(IRn ⊕ IRn∗, ω), denote bỳ op

0 the LagrangianO(`0), which is called the
opposite Lagrangian subspace of`0. Denote by(P, S) and(P op, Sop) respectively
the pair associated tò0 and to the opposite Lagrangian subspace`op0 . Determine
the relation betweenP andP op and betweenS andSop; prove that(X, `0) has
a nondegenerate initial condition if and only if(Xop, `op0 ) does, and, in this case,
find the relation between the focal index (whenever defined) and the Maslov index
of (X, `0) and of(Xop, `op

0 ).

EXERCISE5.4. Prove that, in Definition 5.2.5, the Maslov index of the curve
`|[a+ε,b] does not depend on the choice ofε > 0 provided that there are no(X, `0)-
focal instants in the interval]a, a+ ε].

EXERCISE5.5. Show that the symmetric bilinear formHL introduced in 5.3.9
does not indeed depend on the choice of the symplectic trivialization.



APPENDIX A

Answers and Hints to the exercises

A.1. From Chapter 1

Exercise 1.1.The naturality of the isomorfism (1.1.1) means that:

Lin(V,W ∗)
∼=−−−−→ B(V,W )

Lin(L,M∗)

y yB(L,M)

Lin(V1,W
∗
1 ) −−−−→

∼=
B(V1,W1)

whereL ∈ Lin(V1, V ), M ∈ Lin(W1,W ) and the horizontal arrows in the dia-
gram are suitable versions of the isomorphism (1.1.1).

Exercise 1.2.WriteB = Bs + Ba, with Bs(v, w) = 1
2

(
B(v, w) + B(w, v)

)
andBa(v, w) = 1

2

(
B(v, w)−B(w, v)

)
.

Exercise 1.3.Use formula (1.2.1).

Exercise 1.4.Everyv ∈ V can be written uniquely asv =
∑

j∈J zjbj , where
zj = xj + i yj , xj , yj ∈ IR; thereforev can be written uniquely as a linear combi-
nation of thebj ’s and of theJ(bj)’s asv =

∑
j∈J xjbj + yjJ(bj).

Exercise 1.5.The uniqueness follows from the fact thatι(V ) generatesV C as
a complex vector space. For the existence definef̃(v) = f ◦ ι−1 ◦ <(v) + i f ◦
ι−1 ◦=(v), where< and= are the real part and the imaginary part operator relative
to the real formι(V ) of V C.

Exercise 1.6.Use Proposition 1.3.3 to get mapsφ : V C
1 → V C

2 andψ : V C
2 →

V C
1 such thatφ ◦ ι1 = ι2 andψ ◦ ι2 = ι1; the uniqueness of Proposition 1.3.3 gives

the uniqueness of theφ. Using twice again the uniqueness in Proposition 1.3.3,
one concludes thatψ ◦ φ = Id andφ ◦ ψ = Id.

Exercise 1.7. If Z = UC, then obviouslyc(Z) ⊂ Z. Conversely, ifc(Z) ⊂ Z
then<(Z) and=(Z) are contained inU = Z ∩ V . It follows easily thatZ = UC.

Exercise 1.8. In the case of multi-linear operators, diagram (1.3.2) becomes:

V C
1 × · · · × V C

p

f̃

%%
V1 × · · · × Vp

ι1×···×ιr

OO

f
// W

151
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The identities (1.3.5) still hold whenTC is replaced byTC; observe that the
same conclusion doesnot hold for the identities (1.3.3) and (1.3.4).

Lemma 1.3.10 generalizes to the case of multi-linear operators; observe that
such generalization gives us as corollary natural isomorphisms between the com-
plexification of the tensor, exterior and symmetric powers ofV and the correspond-
ing powers ofV C.

Lemma 1.3.11 can be directly generalized to the case thatS is an anti-linear,
multi-linear or sesquilinear operator; in the anti-linear (respectively, sesquilinear)
TC must be replaced byTC (respectively, byTCs). For aC-multilinear operator
S : V C

1 × · · · × V C
p → V C (or if p = 2 andS is sesquilinear) the condition thatS

preserves real formsbecomes:

S(V1 × · · · × Vp) ⊂ V,

while the condition ofcommuting with conjugationbecomes:

S(c·, . . . , c·) = c ◦ S.

Exercise 1.9. If B ∈ B(V), thenB(v, v) = −B(iv, iv).

Exercise 1.10.Use (1.4.4).

Exercise 1.11.Set2n = dim(V ) and letP ⊂ L1 be a subspace andS ∈
Bsym(P ) be given. To see that the second term in (1.4.14) defines ann-dimensional
subspace ofV choose any complementary subspaceW of P in L1 and observe that
the map:

L 3 v + w 7−→
(
v, ρL1,L0(w)|Q

)
∈ P ⊕Q∗, v ∈ L1, w ∈ L0,

is an isomorphism. To show thatL is isotropic, hence Lagrangian, one uses the
symmetry ofS:
(A.1.1)
ω(v1+w1, v2+w2) = ρL1,L0(w1)·v2−ρL1,L0(w2)·v1 = S(v1, v2)−S(v2, v1) = 0,

for all v1, v2 ∈ L1, w1, w2 ∈ L0 with v1 + w1, v2 + w2 ∈ L.
Conversely, letL be any Lagrangian; setP = π1(L), whereπ1 : V → L1 is

the projection relative to the direct sum decompositionV = L0 ⊕ L1. If v ∈ P
andw1, w2 ∈ L0 are such thatv+w1, v+w2 ∈ L, thenw1 −w2 ∈ L∩L0; since
P ⊂ L+L0, it follows that the functionalsρL1,L0(w1) andρL1,L0(w2) coincide in
P . Conclude that if one choosesw ∈ L0 such thatv + w ∈ L, then the functional
S(v) = ρL1,L0(w)|P ∈ P ∗ does not depend on the choice ofw. One obtains a
linear mapS : P 7→ P ∗; using the fact thatL is isotropic the computation (A.1.1)
shows thatS is symmetric. The uniqueness of the pair(P, S) is trivial.

Exercise 1.12.The equalityT (0, α) = (0, β) holds iffBα = 0 and−A∗α =
β. If B is invertible, then clearly the only solution isα = 0; conversely, ifB is not
invertible, then there exists a non zero solutionα of the equations.

SinceB∗D is symmetric, then so isB∗−1(B∗D)B−1 = DB−1. Moreover,
sinceDB−1 is symmetric, then so isA∗DB−1A; substitutingA∗D = (Id +
B∗C)∗, we get that the matrix(Id+B∗C)∗B−1A = (Id+C∗B)B−1A = B−1A+
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C∗A is symmetric. SinceC∗A is symmetric, thenB−1A is symmetric. Finally,
substitutingC = B∗−1(D∗A− Id) and using the fact thatDB−1 = B∗−1D∗, we
getC−DB−1A−B−1 = B∗−1D∗A−B∗−1−DB−1A−B−1 = −B∗−1−B−1,
which is clearly symmetric.

Exercise 1.13.T ∗ is symplectic iff, in the matrix representations with respect
to a symplectic basis, it isTωT ∗ = ω; this is easily established using the equalities
T ∗ωT = ω andω2 = −Id.

Exercise 1.14.Clearly, if P,O ∈ Sp(2n, IR) thenM = PO ∈ Sp(2n, IR).
Conversely, recall from (1.4.6) thatM is symplectic if and only ifM = ω−1M∗J ;
applying this formula toM = PO we get:

PO = ω−1P ∗O∗ω = ω−1P ∗ω · ω−1O∗ω.

Sinceω is an orthogonal matrix, thenω−1P ∗ω is again symmetric and positive
definite, whileω−1O∗ω is orthogonal. By the uniqueness of the polar decomposi-
tion, we getP = ω−1P ∗ω andO = ω−1O∗ω which, by (1.4.6), implies that both
P andO are symplectic.

Exercise 1.15.Use Remark 1.4.7: a symplectic mapT : V1⊕V2 → V must be
injective. Use a dimension argument to find a counterexample to the construction
of a symplectic map on a direct sum whose values on each summand is prescribed.

Exercise 1.16ω(Jv, Jw) = ω(J2w, v) = −ω(w, v) = ω(v, w).

Exercise 1.17.If J is g-anti-symmetricg(Jv, Jw) = −g(v, J2w) = g(v, w).

Exercise 1.18.Use induction ondim(V) and observe that thegs-orthogonal
complement of an eigenspace ofV is invariant byT . Note that ifT is Hermitian,
the its eigenvalues are real; ifT is anti-Hermitian, then its eigenvalues are pure
imaginary.

Exercise 1.19.The linearity ofρL0,L1 is obvious. Sincedim(L1) = dim(L∗0),
it suffices to show thatρL0,L1 is surjective. To this aim, chooseα ∈ L∗0 and
extendα to the uniqueα̃ ∈ V ∗ such thatα̃(w) = 0 for all w ∈ L1. Sinceω
is nondegenerate onV , there existsv ∈ V such thatα̃ = ω(v, ·). SinceL1 is
maximal isotropic it must bev ∈ L1, andρL0,L1 is surjective.

Exercise 1.20.Clearly,π(L) is isotropic in(S⊥/S, ω). Now, to compute the
dimension ofπ(L) observe that:

dim
(
π(L ∩ S⊥)

)
= dim(L ∩ S⊥)− dim(L ∩ S),

(L ∩ S)⊥ = L⊥ + S⊥ = L+ S⊥,

dim(L ∩ S) + dim
(
(L ∩ S)⊥

)
= dim(V ),

1
2
dim(S1/S) =

1
2
dim(V )− dim(S) = dim(L)− dim(S).

The conclusion follows easily.
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A.2. From Chapter 2

Exercise 2.1.Suppose thatX is locally compact, Hausdorff and second count-
able. Then, one can writeX as a countable union of compact setsKn, n ∈ IN ,
such thatKn is contained in the interiorint(Kn+1) ofKn+1 for all n. SetC1 = K1

andCn = Kn \ int(Kn−1) for n ≥ 2. LetX =
⋃
λ Uλ be an open cover ofX; for

eachn, coverCn with a finite number of open setsVµ such that

• eachVµ is contained in someUλ;
• eachVµ is contained inCn−1 ∪ Cn ∪ Cn+1.

It is easily seen thatX =
⋃
µ Vµ is a locally finite open refinement of{Uλ}λ.

Now, assume thatX is locally compact, Hausdorff, paracompact, connected
and locally second countable. We can find a locally finite open coverX =

⋃
λ Uλ

such that eachUλ has compact closure. Construct inductively a sequence of com-
pact setsKn, n ≥ 1, in the following way:K1 is any non empty compact set,Kn+1

is the union (automatically finite) of allUλ such thatUλ ∩Kn is non empty. Since
Kn ⊂ int(Kn+1), it follows that

⋃
nKn is open; since

⋃
nKn is the union of a

locally finite family of closed sets, then
⋃
nKn is closed. SinceX is connected,

X =
⋃
nKn. EachKn can be covered by a finite number of second countable

open sets, henceX is second countable.

Exercise 2.2.Let p ∈ P be fixed; by the local form of immersions there exist
open setsU ⊂ M andV ∈ N , with f0(p) ∈ V ⊂ U , and a differentiable map
r : U → V such thatr|V = Id. Sincef0 is continuous, there exists a neighborhood
W of p in P with f0(W ) ⊂ V . Then,f0|W = r ◦ f |W .

Exercise 2.3.LetA1 andA2 be differentiable atlases forN which induce the
topologyτ and such that the inclusionsi1 : (N,A1) →M andi2 : (N,A2) →M
are differentiable immersions. Apply the result of Exercise 2.2 withf = i1 and
with f = i2; conclude thatId : (N,A1) → (N,A2) is a diffeomorphism.

Exercise 2.4.The proof follows from the following characterization of local
closedness:S is locally closed in the topological spaceX if and only if every point
p ∈ S has a neighborhoodV in X such thatV ∩ S is closed inV .

Exercise 2.5.From (2.1.14) it follows easily that the curve:

t 7−→ exp(tX) ·m
is an integral line ofX∗.

Exercise 2.6.Repeat the argument in Remark 2.2.5, by observing that the
union of a countable family ofpropersubspaces ofIRn is apropersubset ofIRn.
To see this use the Baire’s Lemma.

Exercise 2.7. It is the subgroup ofGL(n, IR) consisting of matrices whose
lower left (n− k)× k block is zero.

Exercise 2.8.Setk = dim(L ∩ L0). Consider a (not necessarily symplectic)
basis(bi)2ni=1 of V such that(bi)ni=1 is a basis ofL0 and(bi)2n−ki=n−k+1 is a basis ofL.
Define an extension ofB by settingB(bi, bj) = 0 if either i or j does not belong
to {n− k + 1, . . . , 2n− k}.
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Exercise 2.9.The proof can be done in three steps:

• choose a partitiona = t0 < t1 < · · · < tk = b of the interval[a, b]
such that for alli = 1, . . . , k − 1 the portionγ|[ti−1,ti+1] of γ has image
contained in an open setUi ⊂ B on which the fibration is trivial (an
argument used in the proof of Theorem 3.1.23);

• observe that a trivializationαi of the fibration over the open setUi induces
a bijection between the lifts ofγ|[ti−1,ti+1] and the mapsf : [ti−1, ti+1] →
F ;

• constructγ : [a, b] → E inductively: assuming that a liftγi of γ|[a,ti] is
given, define a liftγi+1 of γ|[a,ti+1] in such a way thatγi+1 coincides with
γi on the interval[a, ti−1 + ε] for someε > 0 (use the local trivialization
αi and a local chart inF ).

Exercise 2.10.The map is differentiable because it is the inverse of a chart.
Using the technique in Remark 2.3.4, one computes the differential of the map
T 7→ Gr(T ) as:

Lin(IRn, IRm) 3 Z 7−→ q ◦ Z ◦ π1|Gr(T ) ∈ TGr(T )Gn(n+m),

whereπ1 is the first projection of the decompositionIRn ⊕ IRm andq : IRm →
IRn+m/Gr(T ) is given by:

q(x) = (0, x) +Gr(T ).

Exercise 2.11.Use the result of Exercise 2.9 and the fact thatGL(n, IR) is the
total space of a fibration overGk(n).

Exercise 2.12.An isomorphismA ∈ GL(n, IR) acts on the element(W,O) ∈
G+
k (n) and produces the element(A(W ),O′) whereO′ is the unique orientation

onA(W ) which makes

A|W : (W,O) −→ (A(W ),O′)

a positively oriented isomorphism. The transitivity is proven using an argument
similar to the one used in the proof of Proposition 2.4.2.

Exercise 2.13.FixL0 is a closed subgroup ofSp(V, ω), hence it is a Lie sub-
group. LetL1, L

′
1 ∈ Λ0(L0) be given. Fix a basisB of L0; this basis extends in a

unique way to a symplectic basisB1 in such a way that the lastn vectors of such
basis are inL1 (see the proof of Lemma 1.4.35). Similarly,B extends in a unique
way to a symplectic basisB′1 whose lastn vectors are inL′1. The unique symplec-
tomorphismT of (V, ω) which fixesL0 and mapsL1 ontoL′1 is determined by the
condition thatT mapsB1 toB′1.

Exercise 2.14.Use (1.4.7) and (1.4.8) on page 21.

Exercise 2.15.Use formulas (2.5.6) and (2.5.7) on page 56: chooseL̃1 ∈ Λ
with L̃1 ∩ L0 = {0} and setB̃ = ϕL0,L̃1

(L). Now, solve forL1 the equation:

B = ϕL0,L1

(
ϕ−1
L0,L̃1

(B̃)
)

=
(
B̃−1 − (ρL0,L̃1

)#
(
(ϕL̃1,L0

(L1)
))−1

.
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A.3. From Chapter 3

Exercise 3.1.A homotopyH between the identity ofX and a constant map
f ≡ x0 drags any given point ofX to x0.

Exercise 3.2.For eachx0 ∈ X, the set
{
y ∈ X : ∃ a continuous curveγ :

[0, 1] → X with γ(0) = x0, γ(1) = y
}

is open and closed, sinceX is locally
arc-connected.

Exercise 3.3.Defineλs(t) = λ((1 − s)t) andHs = (λ−1
s · γ) · λs. Observe

thatH1 is a reparameterization ofγ.

Exercise 3.4. If [γ] ∈ π1(X,x0) thenH induces a free homotopy between the
loopsf ◦ γ andg ◦ γ in such a way that the base point travels through the curveλ;
use Exercise 3.3.

Exercise 3.5.Using the result of Exercise 3.4, it is easily seen thatg∗ ◦ f∗ and
f∗ ◦ g∗ are isomorphisms.

Exercise 3.6.The inclusion of{x0} in X is a homotopy inverse forf iff X is
contractible.

Exercise 3.7. If g is a homotopy inverse forf , then it follows from Corol-
lary 3.3.24 thatg∗ ◦ f∗ = Id andf∗ ◦ g∗ = Id.

Exercise 3.8. It follows from r∗ ◦ i∗ = Id.

Exercise 3.9.Do you really need a hint for this Exercise?

Exercise 3.10.If f̂1 and f̂2 are such thatp ◦ f̂1 = p ◦ f̂2 = f then the set
{x : f̂1(x) = f̂2(x)} is open (becausep is locally injective) and closed (becauseE
is Hausdorff).

Exercise 3.11.X is connected because it is the closure of the graph off(x) =
sin(1/x), x > 0, which is connected. The two arc-connected components ofX
are the graph off and the segment{0} × [−1, 1]. Both connected components are
contractible, henceH0(X) ∼= Z⊕ Z, andHp(X) = 0 for all p ≥ 1.

Exercise 3.12.See [31, §24, Chapter 3].

Exercise 3.13.First, if U ⊂ X is open thenp(U) is open inX/G since
p−1(p(U)) =

⋃
g∈G gU ; moreover, ifU is such thatgU ∩ U = ∅ for everyg 6= 1

thenp is a trivial fibration over the open setp(U). This proves thatp is a covering
map. The other statements follow from the long exact homotopy sequence ofp and
more specifically from Example 3.2.21.

Exercise 3.14.The restriction of the quotient mapp : X → X/G to the unit
squareI2 is still a quotient map sinceI2 is compact andX/G is Hausdorff; this
gives the more familiar construction of the Klein bottle. To see that the action of
G onX is properly discontinuous take for everyx ∈ X = IR2 the open setU (see
Exercise 3.13) as an open ball of radius1

2 .

Exercise 3.15.Use Example 3.2.10 and Theorem 3.3.33.
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Exercise 3.16.Use the exact sequence0 = H2(D) −→ H2(D, ∂D) −→
H1(∂D) −→ H1(D) = 0.

A.4. From Chapter 4

Exercise 4.1. It follows from Zorn’s Lemma, observing that the union of any
increasing net ofB-negative subspaces isB-negative.

Exercise 4.2.The proof is analogous to that of Proposition 4.1.27, observing
that ifv1, v2 ∈ V are linearly independent vectors such thatB(vi, vi) ≤ 0, i = 1, 2,
and such that (4.1.5) holds, thenB is negative semi-definite in the two-dimensional
subspace generated byv1 andv2 (see Example 4.1.12).

Exercise 4.3.Let V1 be thek-dimensional subspace ofV generated by the
vectors{v1, . . . , vk} andV2 be the(n − k)-dimensional subspace generated by
{vk+1, . . . , vn}; sinceX is invertible, thenB|V1×V1 is nondegenerate, hence, by
Propositions 1.1.10 and 4.1.23,n±(B) = n±(B|V1×V1) + n±(B|V ⊥1 ×V ⊥1

). One
computes:

V ⊥
1 =

{
(−X−1Zw2, w2) : w2 ∈ V2

}
,

andB|V ⊥1 ×V ⊥1
is represented by the matrixY − Z∗X−1Z.

Exercise 4.4.SetW = V ⊕ V and define the nondegenerate symmetric bi-
linear formB ∈ Bsym(W ) byB((a1, b1), (a2, b2)) = Z(a1, a2) − U(b1, b2). Let
∆ ⊂ W denote the diagonal∆ = {(v, v) : v ∈ V }; identifying V with ∆ by
v → (v, v), one computes easilyB|∆ = Z − U , which is nondegenerate. More-
over, identifingV with ∆⊥ by V 3 V → (v, U−1Zv) ∈ ∆⊥, it is easily seen that
B|∆⊥ = Z(Z−1 − U−1)Z. The conclusion follows.

Exercise 4.5.ComputeO∗ on a generator ofH1(Λ).

Exercise 4.6.The map[0, 1] × [a, b] 3 (s, t) 7→ A((1 − s)t + sa) · `(t) ∈
Λ is a homotopy with free endpoints between˜̀ and the curveA(a) ◦ `. Using
Remark 3.3.30 one gets that˜̀andA(a) ◦ ` are homologous inH1(Λ,Λ0(L0)); the
conclusion follows from Corollary 4.2.6.

Exercise 4.7.Using the result of Exercise 2.13 we find a curveA : [a, b] →
Sp(V, ω) such thatA(t)(L2) = L1(t) for all t and for some fixedL2 ∈ Λ0(L0);
it is easily seen thatϕL0,L1(t)(`(t)) = ϕL0,L2

(
A(t)−1(`(t))

)
. The conclusion

follows from Theorem 4.2.15 and Exercise 4.6.

Exercise 4.8.Using formula (2.5.11) one obtains:

(A.4.1) ϕL3,L0(L2) = −(ρL0,L3)
#

(
ϕL0,L3(L2)−1

)
;

from (2.5.5) it follows that:

(A.4.2) ϕL1,L0 ◦ (ϕL3,L0)
−1(B) = ϕL1,L0(L3) +

(
ηL0
L1,L3

)#(B) ∈ B(L1),

for any symmetric bilinear formB ∈ B(L3). It is easy to see that:

(A.4.3) ρL0,L3 ◦ η
L0
L1,L3

= ρL0,L1 ;
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and the conclusion follows by settingB = ϕL3,L0(L2) in (A.4.2) and then using
(A.4.1) and (A.4.3).

Exercise 4.9.See Examples 4.1.4 and 1.1.4.

Exercise 4.10.By Theorem 4.2.15, it is

µL0(`) = n+

(
ϕL0,L∗(`(b))

)
− n+

(
ϕL0,L∗(`(a))

)
;

Conclude using the result of Exercise 4.9 whereL3 = L∗, settingL2 = `(a) and
thenL2 = `(b).

Exercise 4.11.Use Exercise 2.10.

Exercise 4.12.Observe that the mapp : Sp(IRn ⊕ IRn∗, ω) → Λ given by
p(T ) = T ({0} ⊕ IRn∗) is a fibration; the set in question is the inverse image by
p of the dense subsetΛ0(L0) of Λ (see Remark 2.5.18). The reader can prove
a general result that the inverse image by the projection of a dense subset of the
basis of a fibration is dense in the total space. For the connectedness matter see the
suggested solution of Exercise 4.13 below.

Exercise 4.13andExercise 4.14. These are the hardest problems on the book.
The basic idea is the following; write every symplectic matrix

T =
(
A B
C D

)
with B invertible as a product of the form:

T =
(

0 B
−B∗−1 D

) (
I 0
U I

)
,

with D = S ◦B andS,U symmetricn× n matrices. Observe that the set of sym-
plectic matricesT with B invertible is diffeomorphic to the set of triples(S,U,B)
in Bsym(IRn)×Bsym(IRn)×GL(n, IR). Using also some density arguments (like
the result of Exercise 4.12) the reader should be able to complete the details.

Exercise 4.15.The mapΦ : Sp(2n, IR) → Λ(IR4n) given byΦ(t) = Gr(T )
induces a map

Φ∗ : π1

(
Sp(2n, IR)

) ∼= Z −→ π1(Λ(IR4n) ∼= Z
)

which is injective (it is the multiplication by2, up to a sign). This is easily
checked by computingΦ∗ on a generator ofπ1

(
Sp(2n, IR)

)
(see Remarks 4.2.21

and 4.2.22). It follows that if a loop inSp(2n, IR) has image byΦ which is con-
tractible inΛ(IR4n) then the original loop is contractible inSp(2n, IR). Now, use
thatΛ0(∆) is diffeomorphic to a Euclidean space.

A.5. From Chapter 5

Exercise 5.1. If X is real-analytic, then also the fundamental matrixt 7→ Φ(t)
is real-analytic in[a, b]. If (bi)ni=1 is a basis of the Lagrangiaǹ0, then the(X, `0)-
focal instants are the zeroes in]a, b] of the real-analytic function:

[a, b] 3 t 7−→ det
(
(π1 ◦ Φ(t)) · b1, . . . , (π1 ◦ Φ(t)) · bn

)
,
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whereπ1 : IRn ⊕ IRn∗ → IRn denotes the projection onto the first coordinate. If
the initial condition is nondegenerate, then by Corollary 5.2.4 there are no(X, `0)-
focal instants in a neighborhood oft = a.

Exercise 5.2.Aop = A,Bop = −B, Cop = −C and

(A.5.1) Φop = O ◦ Φ ◦ O.
Moreover,(v, α) is a solution ofXop iff O◦(v, α) = (v,−α) is a solution ofXop.

Exercise 5.3. It is O#(ω) = −ω, which proves thatO is not a symplec-
tomorphism, but it takes Lagrangian subspaces into Lagrangian subspaces. It is
P op = P , Sop = −S, ifoc(Xop, `op0 ) = −ifoc(X, `0) and imaslov(Xop, `op0 ) =
−imaslov(X, `0). For the focal indexes, it suffices to observe that(X, `0) and
(Xop, `op

0 ) have the same focal instants, with the same multiplicity but opposite
signature. As to the Maslov indexes, one first observe that, using (A.5.1), the curve
`op is given byO ◦ `; O gives a diffeomorphism of the Lagrangian Grassmannian
Λ, O(L0) = L0 and soO leavesΛ0(L0) invariant. One gets an isomorphism
O∗ : H1(Λ,Λ0(L0)) → H1(Λ,Λ0(L0)); it follows from the result of Exercise 4.5
thatO∗ = −Id.

Exercise 5.4. If 0 < ε < ε′ and if there are no(X, `0)-focal instants in]a, a+
ε′], then`|[a+ε,a+ε′] is a curve inΛ0(L0), and thereforeµL0

(
`|[a+ε,a+ε′]

)
= 0.

Exercise 5.5.See [36], in the remarks after Definition 3.1.6.
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Ed é subito sera (S. Quasimodo), ix
elementary row operation with matrices, 87
embedding, 33
equation

Morse–Sturm, 138
equivariant isomorphism, 39
equivariant map, 39
exact sequence

of pointed sets, 77

fibration, 41, 79
base of, 79
fiber over an element, 79
lifting of a map, 81
local trivialization of, 41, 79
total space of, 79
typical fiber of, 79

first set of homotopy of a pair of topological
spaces, 75

focal index, 137
of a geodesic, 143

focal instant, 137
multiplicity of, 137
nondegenerate, 137
signature of, 137

free abelian group, 92
generated by a set, 92

freely homotopic loops, 69
f -related vector fields, 42
Frobenius Theorem, 35
functor, 11

exact, 11
fundamental group of a topological space w.

basepoint, 67
fundamental groupoid of a topological

space, 67

general linear group, 36
geodesic, 142

focal index of, 143
geometric index of, 144
lightlike, 144
spacelike, 144
timelike, 144

geometric index of a geodesic, 144
G-equivariant map, 39
Gk(n), 44
Gram–Schmidt orthogonalization process,

86
Grassmannian, 32–63

of oriented subspaces, 64
Grassmannian ofk-dimensional subspaces

of IRn, 44
Grassmannian of oriented Lagrangians, 89
group ofp-boundaries of a chain complex,

93
group ofp-cycles of a chain complex, 93
group of homology of a chain complex, 93
group of relativep-boundaries of a pair, 97
group of relativep-cycles of a pair, 97
group of singularp-boundaries of a

topological space, 94
group of singularp-cycles of a topological

space, 94
groups of relative homology of a pair, 97
groups of singular homology of a topological

space, 94

Hamilton equation, 145
Hamiltonian function, 145



INDEX 165

Hermitian form, 13
Hermitian matrix, 10
Hermitian product, 13

canonical ofCn, 14
holomorphic function, 16
holomorphic subspace ofV C, 15
homogeneous coordinates, 47
homogeneous manifold, 40
homogeneous manifolds, 38–42
homologous cycles, 94
homologous relative cycles, 98
homology class determined by a cycle, 94
homology class determined by a relative

cycle, 98
homotopic maps, 65
homotopy, 65

with fixed endpoints, 65
homotopy equivalence, 107
homotopy groups of a topological space, 75
homotopy inverse, 107
homotopy of curves with free endpoint in a

set, 72
Hurewicz’s homomorphism, 104

index of a symmetric bilinear form, 109
inner product, 23

canonical ofIRn, 14
invariant subspace, 4
involution of a set, 10
isomorphism determined by a common

complementary, 45
isotropy group, 38

Jacobi
equation, 142
vector field, 142

Klein bottle, 108

Lagrangian Grassmannian, 54
Lagrangian initial condition, 136

nondegenerate, 137
Lagrangian submanifold, 145
Lagrangian subspace

opposite, 150
Lebesgue number of an open covering of a

compact metric space, 71
left-invariant vector field on a Lie group, 34
Levi-Civita connection, 142
Lie algebra, 34
Lie bracket, 34
Lie derivative, 146
Lie group, 34

action of, 40

linearization, 43
exponential map, 35
homomorphism of, 34
left invariant vector field on, 34
left-invariant distribution in a, 35
left-translation in a, 34
right invariant vector field on, 34
right-invariant distribution in a, 35
right-translation in a, 34
time-dependent right invariant vector field

on, 44
Lie subgroup, 35
lift of a curve to a fiber bundle, 42
lightlike

geodesic, 144
vector, 144

linear operator
B-Hermitian, 14
B-anti-Hermitian, 14
B-unitary operator, 14
anti-linear extension, 13
anti-symmetric, 3
complexification of, 11
graph of, 22, 44
normal w. resp. to a bilinear form, 4

diagonalization of, 31
orthogonal, 3
symmetric, 3
transpose, 2
transpose w. resp. to a bilinear form, 3

linearized Hamilton (LinH) equations, 147
local section, 34
locally arc-connected topological space, 70
locally closed subset, 41
locally trivial fibration, 79

local trivialization of, 79
typical fiber of, 79

long exact homotopy sequence of a pair, 78
long exact homology sequence, 99
long exact homology sequence of a pair, 99
long exact homotopy sequence of a fibration,

82
long exact reduced homology sequence of a

pair, 99
Lorentzian manifold, 144

manifold, 32
map of pointed sets, 75

kernel of, 75
Maslov index, 121–131

of a curve inΛ with endpoints inΛ0(L0),
relative to a LagrangianL0, 127

of a geodesic, 144



166 INDEX

Maslov index of a pair(X, `0), 140
matrix representation

of bilinear operators, 2
of linear operators, 2

maximal negative subspace w. resp. to a
symmetric bilinear form, 113

maximal positive subspace w. resp. to a
symmetric bilinear form, 113

Morse Index Theorem, 144
Morse–Sturm equation, 138

natural action ofGL(n, IR) onGk(n), 50
nondegenerate
P-focal point, 143

nondegenerate intersection of a curve inΛ
with Λ≥1(L0), 129

normal bundle, 61
n-th absolute homotopy group, 75
n-th relative homotopy group, 75
null measure, 61

opposite symplectic differential system, 150
orbit, 38
oriented Lagrangian, 25, 89
orthogonal complement of a subspace, 4
orthogonal goup, 37
orthogonal matrix, 37

P-focal point, 143
multiplicity of, 143
signature of, 143

P-Jacobi field, 143
pair of topological spaces, 73

homeomorphism of, 97
map between pairs, 76

parallel trivialization, 142
partial binary operation, 66
pointed set, 75

distinguished element of, 75
null, 75
null map of, 75

polar form of an invertible matrix, 30
positive Hermitian product, 13
power series, 149
pull-back, 3
push-forward, 3

quotient differentiable structure, 34
quotient property for differentiable maps, 34

real form in a complex space, 9
conjugation operator associated to, 9
imaginary part operator associated to, 9
real part operator associated to, 9

real projective line, 47
real projective space, 46
real-analytic function, 149
realification of a complex vector space, 6
reduced singular homology group of a

topological space, 94
reduction of scalars, 6
relative boundary of a pair, 97
relative cycle of a pair, 97
relative homotopy groups of a pair of

topological spaces, 75
reparameterization of a curve, 66
retract, 107
retraction, 107
retraction ofGL(n, IR) ontoO(n), 86
Riemannian

manifold, 142
metric, 142

right-invariant vector field on a Lie group, 34

second countability axiom, 32
second fundamental form, 143
semi-direct product, 108
semi-locally simply connected space, 71
semi-Riemannian

manifold, 142
connection of, 142

metric, 142
sesquilinear form, 13

anti-Hermitian, 13
Hermitian, 13

short exact sequence of chain complexes, 98
signature of a symmetric bilinear form, 109
simply connected topological space, 69
singular chain

boundary of, 93
singular chain in a topological space, 92
singular complex of a pair, 97
singular complex of a topological space, 94
singular homology groups, 94
singular simplex in a topological space, 92
spacelike

geodesic, 144
vector, 144

special linear group, 36
special orthogonal group, 37
special unitary group, 37
square summable sequence, 5
standard simplex, 92
star-shaped subset ofIRn, 69
submanifold

almost embedded, 33
embedded, 33
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immersed, 33
sympectic group, 37
symplecticL-trivialization, 147
symplectic chart, 145
symplectic differential system, 134

coefficient matrix of, 134
focal instant of, 137

multiplicity of, 137
nondegenerate, 137
signature of, 137

fundamental matrix of, 135
Lagrangian initial condition for, 136

nondegenerate, 137
Maslov index of, 140
opposite, 150

symplectic form
canonical ofIRn ⊕ IRn∗, 20
canonical ofIR2n, 20
complex structure compatible with, 23

symplectic forms, 18–29
symplectic manifold, 145

symplectic chart of, 145
symplectic map, 19
symplectic matrix, 21
symplectic space, 18
ω-orthogonal subspace of, 21
isotropic subspace of, 22
Lagrangian decomposition of, 26
Lagrangian subspace of, 22
maximal isotropic subspace of, 22
symplectic group of, 20

symplectic spaces, 1–29
direct sum of, 21

symplectic subspace, 19
symplectic vector space

symplectic basis of, 19
symplectomorphism, 19

Taylor’s formula, 149
time-dependent right invariant vector field,

44
timelike

geodesic, 144
vector, 144

topology of uniform convergence on
compact sets, 70

trace of an endomorphism, 17
transition function, 32
transverse interception of a curve inΛ with

Λ≥1(L0), 126
transverse orientation, 61

unit n-dimensional cube (In), 73

initial face of, 73
unitary group, 37

Vector field
along a curve, 142

volume form, 20

zero-th set of homotopy of a topol. space, 75
Zig-Zag Lemma, 98


