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4 Hamiltonian Mechanics

Physically speaking, Hamiltonian mechanics is a paraphrase (and generaliza-
tion!) of Newton�s second law, popularly expressed as �force equals mass times
acceleration1�. The symplectic formulation of Hamiltonian mechanics can be
retraced (in embryonic form) to the work of Lagrange between 1808 and 1811;
what we today call �Hamilton�s equations�were in fact written down by La-
grange who used the letter H to denote the �Hamiltonian�to honor Huygens2

�not Hamilton, who was still in his early childhood at that time! It is how-
ever undoubtedly Hamilton�s great merit to have recognized the importance of
these equations, and to use them with great e¢ ciency in the study of planetary
motion, and of light propagation.

4.1 Hamiltonian �ows

We will call �Hamiltonian function�(or simply �Hamiltonian�) any real function
H 2 C1(R2nz �Rt) (although most of the properties we will prove remain valid
under the assumption H 2 Ck(R2nz � Rt) with k � 2: we leave to the reader
as an exercise in ordinary di¤erential equations to state minimal smoothness
assumptions for the validity of our results).
The Hamilton equations

_xj(t) = @pjH(x(t); p(t); t) , _pj(t) = �@xjH(x(t); p(t); t); (1)

associated with H are form a (generally non-autonomous) system of 2n dif-
ferential equations. The conditions of existence of the solutions of Hamilton�s
equations, as well as for which initial points they are de�ned, are determined
by the theory of ordinary di¤erential equations (or �dynamical systems�, as it
is now called).
The equations (1) can be written economically as

_z = J@zH(z; t) (2)

where J is the standard symplectic matrix. De�ning the Hamilton vector �eld
by

XH = J@zH = (@pH;�@xH) (3)

1This somewhat unfortunate formulation is due to Kirchho¤.
2See Lagrange�s Mécanique Analytique, Vol. I, pp. 217�226 and 267�270.

1



2

(the operator J@z is often called the symplectic gradient), Hamilton�s equations
are equivalent to

�(XH(z; t); �) + dzH = 0: (4)

In fact, for every z0 2 R2nz ,

�(XH(z; t); z
0) = �h@xH(z; t); x0i � h@pH(z; t); p0i = �h@zH(z; t); z0i

which is the same thing as (4). This formula is the gate to Hamiltonian me-
chanics on symplectic manifolds. In fact, formula (4) can be rewritten concisely
as

iXH
� + dH = 0 (5)

where iXH(�;t) is the contraction operator:

iXH(�;t)�(z)(z
0) = �(XH(z; t); z

0):

The interest of formula (5) comes from the fact that it is intrinsic (i.e. inde-
pendent of any choice of coordinates), and allows the de�nition of Hamilton
vector �elds on symplectic manifolds: if (M;!) is a symplectic manifold and
H 2 C1(M � Rt) then, by de�nition, the Hamiltonian vector �eld XH(�; t) is
the vector �eld de�ned by (5).
One should be careful to note that when the Hamiltonian function H is

e¤ectively time-dependent (which is usually the case) then XH is not a �true�
vector �eld, but rather a family of vector �elds on R2nz depending smoothly on
the parameter t. We can however de�ne the notion of �ow associated to XH :

De�nition 1 Let t 7�! zt be the solution of Hamilton�s equations for H passing
through a point z at time t = 0, and let fHt be the mapping R2nz �! R2nz de�ned
by fHt (z) = zt. The family (fHt ) = (fHt )t2R is called the ��ow determined by
the Hamiltonian function H�or the ��ow determined by the vector �eld XH�.

A caveat : the usual group property

fH0 = I , fHt � fHt0 = fHt+t0 , (fHt )�1 = fH�t (6)

of �ows only holds when H is time-independent; in general fHt �fHt0 6= fHt+t0 and
(fHt )

�1 6= fH�t (but of course we still have the identity fH0 = I).
For notational and expository simplicity we will implicitly assume (unless

otherwise speci�ed) that for every z0 2 R2nz there exists a unique solution t 7�!
zt of the system (2) passing through z0 at time t = 0. The modi�cations to
diverse statements when global existence (in time or space) does not hold are
rather obvious and are therefore left to the reader.
As we noted in previous subsection the �ow of a time-dependent Hamiltonian

vector �eld is not a one-parameter group; this fact sometimes leads to technical
complications when one wants to perform certain calculations. For this reason
it is helpful to introduce two (related) notions, those of suspended Hamilton
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�ow and time-dependent Hamilton �ow. We begin by noting that Hamilton�s
equations _z = J@zH(z; t) can be rewritten as

d

dt
(z(t); t) = ~XH(z(t); t) (7)

where
~XH = (J@zH; 1) = (@pH;�@xH; 1). (8)

De�nition 2 (i) The vector �eld ~XH on the �extended phase space�

R2n+1z;t � R2nz � Rt

is called the �suspended Hamilton vector �eld�; its �ow ( ~fHt ) is called the the
�suspended Hamilton �ow�determined by H.
(ii) The two-parameter family of mappings R2nz �! R2nz de�ned by the for-

mula
(fHt;t0(z

0); t) = ~fHt�t0 (z
0; t0) (9)

is called the �time-dependent �ow�determined by H.

Notice that by de�nition ~fHt thus satis�es

d
dt
~fHt = ~XH( ~f

H
t ). (10)

The point with introducing ~XH is that it is a true vector �eld on extended
phase-space the while XH is, as pointed out above, rather a family of vector
�elds parametrized by t as soon as H is time-dependent. The system (10)
being autonomous in its own right, the mappings ~fHt satisfy the usual group
properties:

~fHt � ~fHt0 = ~fHt+t0 , ( ~f
H
t )

�1 = ~fH�t , ~fH0 = I: (11)

Notice that the time-dependent �ow has the following immediate interpretation:
fHt;t0 is the mapping R2nz �! R2nz which takes the point z0 at time t0 to the point
z at time t, the motion occurring along the solution curve to Hamilton equations
_z = J@zH(z; t) passing through these two points. Formula (9) is equivalent to

~fHt (z
0; t0) = (fHt+t0;t0(z

0); t+ t0). (12)

Note that it immediately follows from the group properties (11) of the sus-
pended �ow that we have:

fHt;t0 = I , fHt;t0 � fHt0;t00 = fHt;t00 , (fHt;t0)
�1 = fHt0;t (13)

for all times t; t0 and t00. When H does not depend on t we have fHt;t0 = f
H
t�t0 ; in

particular fHt;0 = f
H
t .

Let H be some (possibly time-dependent) Hamiltonian function and fHt =
fHt;0. We say that f

H
t is a free symplectomorphism at a point z0 2 R2nz ifDfHt (z0)

is a free symplectic matrix. Of course fHt is never free at t = 0 since fH0 is the
identity. In Proposition 4 we will give a necessary and su¢ cient condition for
the symplectomorphisms fHt;t0 to be free. Let us �rst prove the following Lemma,
the proof of which makes use of the notion of generating function:
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Lemma 3 The symplectomorphism f : R2nz �! R2nz is free in a neighborhood
U of z0 2 R2nz if and only if Df(z0) is a free symplectic matrix for z0 2 U , that
is, if and only if det(@x=@p0) 6= 0.

Proof. Set z = f(z0); we have

Df(z0) =

264
@x

@x0
(z0)

@x

@p0
(z0)

@p

@x0
(z0)

@p

@p0
(z0)

375
and the symplectic matrix Df(z0) is thus free for z0 2 U if and only if

det
@x

@p0
(z0) 6= 0:

We next make the following crucial observation: since f is a symplectomorphism
we have dp ^ dx = dp0 ^ dx0 and this is equivalent, by Poincaré�s lemma to the
existence of a function G 2 C1(R2nz ) such that

pdx = p0dx0 + dG(x0; p0):

Assume now that Df(z0) is free for z0 2 U ; then the condition det(@x=@p0) 6= 0
implies, by the implicit function theorem, that we can locally solve the equation
x = x(x0; p0) in p0, so that p0 = p0(x; x0) and hence G(x0; p0) is, for (x0; p0) 2 U ,
a function of x; x0 only: G(x0; p0) = G(x0; p0(x; x0)). Calling this function W :

W (x; x0) = G(x0; p0(x; x0))

we thus have

pdx = p0dx0 + dW (x; x0) = p0dx0 + @xW (x; x
0)dx+ @x0W (x; x

0)dx0

which requires p = @xW (x; x0) and p0 = �@x0W (x; x0) and f is hence free in U .
The proof of the converse goes along the same lines and is therefore left to the
reader.

We will use the notations Hpp;Hxp, and Hxx for the matrices of second
derivatives of H in the corresponding variables.

Proposition 4 There exists " > 0 such that fHt is free at z0 2 R2nz for 0 <
jt � t0j � " if and only if detHpp(z0; t0) 6= 0. In particular there exists " > 0
such that fHt (z0) is free for 0 < jtj � " if and only if detHpp(z0; 0) 6= 0.

Proof. Let t 7�! z(t) = (x(t); p(t)) be the solution to Hamilton�s equations

_x = @pH(z; t) , _p = �@xH(z; t)

with initial condition z(t0) = z0. A second order Taylor expansion in t yields

z(t) = z0 + (t� t0)XH(z0; t0) +O((t� t0)2);
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and hence
x(t) = x0 + (t� t0)@pH(z0; t0) +O((t� t0)2).

It follows that

@x(t)

@p
= (t� t0)Hpp(z0; t0) +O((t� t0)2).

hence there exists " > 0 such that @x(t)=@p is invertible in [t0�"; t0[\]t0; t0+"]
if and only if Hpp(z0; t0) is invertible; in view of Lemma 3 this is equivalent to
saying that fHt is free at z0.

Example 5 The result above applies when the Hamiltonian H is of the �phys-
ical type�

H(z; t) =
nX
j=1

1

2mj
p2j + U(x; t)

since we have
Hpp(z0; t0) = diag[

1
2m1

; :::; 1
2mn

].

In this case fHt is free for small non-zero t near each z0 where it is de�ned.

4.2 The variational equation

An essential feature of Hamiltonian �ows is that they consist of symplectomor-
phisms. We are going to give an elementary proof of this property; it relies on
the fact that the mapping t 7�! DfHt;t0(z) is, for �xed t

0, the solution of a dif-
ferential equation, the variational equation, and which plays an important role
in many aspects of Hamiltonian mechanics (in particular the study of periodic
Hamiltonian orbits).

Proposition 6 For �xed z set SHt;t0(z) = Df
H
t;t0(z).

(i) The function t 7�! St;t0(z) satis�es the variational equation

d

dt
SHt;t0(z) = JD

2H(fHt;t0(z); t)S
H
t;t0(z) , S

H
t;t(z) = I (14)

where D2H(fHt;t0(z)) is the Hessian matrix of H calculated at fHt;t0(z);
(ii) We have SHt;t0(z) 2 Sp(n) for every z and t; t0 for which it is de�ned,

hence fHt;t0 is a symplectomorphism.

Proof. Proof of (i). It is su¢ cient to consider the case t0 = 0. Set fHt;0 = f
H
t

and SHt;t0 = St. Taking Hamilton�s equation into account the time-derivative of
the Jacobian matrix St(z) is

d

dt
St(z) =

d

dt
(DfHt (z)) = D

�
d

dt
fHt (z)

�
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that is
d

dt
St(z) = D(XH(f

H
t (z))).

Using the fact that XH = J@zH together with the chain rule, we have

D(XH(f
H
t (z))) = D(J@zH)(f

H
t (z); t)

= JD(@zH)(f
H
t (z); t)

= J(D2H)(fHt (z); t)Df
H
t (z)

hence St(z) satis�es the variational equation (14), proving (i). Proof of (ii).
Set St = St(z) and At = (St)

TJSt; using the product rule together with (14)
we have

dAt
dt

=
d(St)

T

dt
JSt + (St)

TJ
dSt
dt

= (St)
TD2H(z; t)St � (St)TD2H(z; t)St

= 0.

It follows that the matrix At = (St)TJSt is constant in t, hence At(z) = A0(z) =
J so that (St)TJSt = J proving that St 2 Sp(n).
A related result is:

Proposition 7 Let t 7�! Xt be a C1 mapping R �! sp(n) and t 7�! St a
solution of the di¤erential system

d

dt
St = XtSt , S0 = I.

We have St 2 Sp(n) for every t 2 R:

Proof. The condition Xt 2 sp(n) is equivalent to JXt being symmetric. Hence

d

dt
(STt JSt) = S

T
t X

T
t JSt + S

T
t JXtSt = 0

so that STt JSt = S
T
0 JS0 = J and St 2 Sp(n) as claimed.

Hamilton�s equations are covariant (i.e., they retain their form) under sym-
plectomorphisms. Let us begin by proving the following general result about
vector �elds which we will use several times. If X is a vector �eld and f a
di¤eomorphism we denote by Y = f�X the vector �eld de�ned by

Y (u) = D(f�1)(f(u))X(f(u)) = [Df(u)]�1X(f(u)). (15)

(f�X is called the �pull-back�of the vector �eld X by the di¤eomorphism f .)

Lemma 8 Let X be a vector �eld on Rm and ('Xt ) its �ow. Let f be a di¤eo-
morphism Rm �! Rm. The family ('Yt ) of di¤eomorphisms de�ned by

'Yt = f
�1 � 'Xt � f (16)

is the �ow of the vector �eld Y = (Df)�1(X � f).
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Proof. We obviously have 'Y0 = I; in view of the chain rule

d

dt
'Yt (x) = D(f

�1)('Xt (f(x)))X('
X
t (f(x))

= (Df)�1('Yt (x))X(f('
Y
t (x)))

and hence d
dt'

Y
t (x) = Y ('

Y
t (x)) which we set out to prove.

Specializing to the Hamiltonian case, this lemma yields:

Proposition 9 Let f be a symplectomorphism.
(i) We have

XH�f (z) = [Df(z)]
�1(XH � f)(z). (17)

(ii) The �ows (fHt ) and (f
H�f
t ) are conjugate by f :

fH�ft = f�1 � fHt � f (18)

and thus f�XH = XH�f when f is symplectic.

Proof. Let us prove (i); the assertion (ii) will follow in view of Lemma 8 above.
Set K = H � f . By the chain rule

@zK(z) = [Df(z)]
T (@zH)(f(z))

hence the vector �eld XK = J@zK is given by

XK(z) = J [Df(z)]
T@zH(f(z)).

Since Df(z) is symplectic we have J [Df(z)]T = [Df(z)]�1J and thus

XK(z) = [Df(z)]
�1J@zH(f(z))

which is (17).

Remark 10 Proposition 9 can be restated as follows: set (x0; p0) = f(x; p) and
K = H � f ; if f is a symplectomorphism then we have the equivalence

_x0 = @p0K(x
0; p0) and _p0 = �@x0K(x0; p0)

() (19)

_x = @pH(x; p) and _p = �@xH(x; p):

Example 11 For instance, the change of variables (x; p) 7�! (I; �) de�ned by
x =

p
2I cos �, p =

p
2I sin � is symplectic.

An interesting fact is that there is a wide class of Hamiltonian functions
whose time-dependent �ows (fHt ) consist of free symplectomorphisms if t is not
too large (and di¤erent from zero). This is the case for instance when H is of
the �physical�type

H(z; t) =
nX
j=1

1

2mj
(pj �Aj(x; t))2 + U(x; t) (20)

(mj > 0, Aj and U smooth). More generally:
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Lemma 12 There exists " > 0 such that fHt is free at z0 2 R2nz for 0 < jtj � "
if and only if detHpp(z0; 0) 6= 0, and hence, in particular, when H is of the type
(20).

Proof. Let t 7�! z(t) be the solution to Hamilton�s equations

_x = @pH(z; t) , _p = �@xH(z; t)

with initial condition z(0) = z0. A second order Taylor expansion at time t = 0
yields

z(t) = z0 + tXH(z0; 0) +O((t)
2)

where XH = J@zH is the Hamiltonian vector �eld of H; in particular

x(t) = x0 + t@pH(z0; 0) +O(t
2)

and hence
@x(t)

@p
= tHpp(z0; 0) +O(t

2)

where Hpp denotes the matrix of derivatives of H in the variables pj . It follows
that there exists " > 0 such that @x(t)=@p is invertible in [�"; 0[\]0; "] if and
only if Hpp(z0; 0) is invertible; in view of Lemma 3 this is equivalent to saying
that fHt is free at z0.

4.3 The group Ham(n)

The group Ham(n) is the connected component of the group Symp(n) of all
symplectomorphisms of (R2nz ; �). Each of its points is the value of a Hamil-
tonian �ow at some time t. The study of the various algebraic and topological
properties of the group Ham(n) is a very active area of current research.
We will say that a symplectomorphism f of the standard symplectic space

(R2nz ; �) is Hamiltonian if there exists a function H 2 C1(R2n+1z;t ;R) and a
number a 2 R such that f = fHa . Taking a = 0 it is clear that the identity is
a Hamiltonian symplectomorphism. The set of all Hamiltonian symplectomor-
phisms is denoted by Ham(n). We are going to see that it is a connected and
normal subgroup of Symp(n); let us �rst prove a preparatory result which is
interesting in its own right:

Proposition 13 Let (fHt ) and (f
K
t ) be Hamiltonian �ows. Then:

fHt f
K
t = fH#Kt with H#K(z; t) = H(z; t) +K((fHt )

�1(z); t): (21)

(fHt )
�1 = f

�H
t with �H(z; t) = �H(fHt (z); t): (22)

Proof. Let us �rst prove (21). By the product and chain rules we have

d

dt
(fHt f

K
t ) = (

d

dt
fHt )f

K
t + (DfHt )f

K
t

d

dt
fKt

= XH(f
H
t f

K
t ) + (Df

H
t )f

K
t �XK(fKt )
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and it thus su¢ ces to show that

(DfHt )f
K
t �XK(fKt ) = XK�(fHt )�1(f

K
t ). (23)

Writing

(DfHt )f
K
t �XK(fKt ) = (DfHt )((fHt )�1fHt fKt ) �XK((fHt )�1fHt fKt )

the equality (23) follows from the transformation formula (17) in Proposition
9. Formula (22) is now an easy consequence of (21), noting that (fHt f

�H
t ) is the

�ow determined by the Hamiltonian

K(z; t) = H(z; t) + �H((fHt )
�1(z); t) = 0;

fHt f
�H
t is thus the identity, so that (fHt )

�1 = f
�H
t as claimed.

Let us now show that Ham(n) is a group, as claimed:

Proposition 14 Ham(n) is a normal and connected subgroup of the group
Symp(n) of all symplectomorphisms of (R2nz ; �).

Proof. Let us show that if f; g 2 Ham(n) then fg�1 2 Ham(n). We begin by
remarking that if f = fHa for some a 6= 0 then we also have f = fH

a

1 where
Ha(z; t) = aH(z; at). In fact, setting ta = at we have

dza

dt
= J@zH

a(za; t)() dza

dta
= J@zH(z

a; ta)

and hence fH
a

t = fHat . We may thus assume that f = f
H
1 and g = fK1 for some

Hamiltonians H and K. Now, using successively (21) and (22) we have

fg�1 = fH1 (f
K
1 )

�1 = fH#
�K

1

hence fg�1 2 Ham(n). That Ham(n) is a normal subgroup of Symp(n) imme-
diately follows from formula (18) in Proposition 9: if g is a symplectomorphism
and f 2 Ham(n) then

fH�g1 = g�1fH1 g 2 Ham(n) (24)

so we are done.
The result above motivates the following de�nition:

De�nition 15 The set Ham(n) of all Hamiltonian symplectomorphisms equipped
with the law fg = f � g is called the group of Hamiltonian symplectomorphisms
of the standard symplectic space (R2nz ; �).

The topology of Symp(n) is de�ned by specifying the convergent sequences:
we will say that limj!1 fj = f in Symp(n) if and only if for every compact set
K in R2nz the sequences (fjjK) and (D(fjjK)) converge uniformly towards fjK
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and D(fjK), respectively. The topology of Ham(n) is the topology induced by
Symp(n).
We are now gong to prove a deep and beautiful result due to Banyaga.

It essentially says that a path of time-one Hamiltonian symplectomorphisms
passing through the identity at time zero is itself Hamiltonian. It will follow
that Ham(n) is a connected group.
Let t 7�! ft be a path in Ham(n), de�ned for 0 � t � 1 and starting at the

identity: f0 = I. We will call such a a path a one-parameter family of Hamil-
tonian symplectomorphisms. Thus, each ft is equal to some symplectomorphism
fHt
1 . A striking �and not immediately obvious! �fact is that each path t 7�! ft
is itself is the �ow of a Hamiltonian function!

Theorem 16 Let (ft) be a one-parameter family in Ham(n). Then (ft) = (fHt )
where the Hamilton function H is given by

H(z; t) = �
Z 1

0

�(X(uz; t); z)du with X = ( ddtft) � (ft)
�1. (25)

Proof. By de�nition of X we have d
dtft = Xft so that all we have to do is

to prove that X is a (time-dependent) Hamiltonian �eld. For this it su¢ ces
to show that the contraction iX� of the symplectic form with X is an exact
di¤erential one-form, for then iX� = �dH where H is given by (25). The
ft being symplectomorphisms, they preserve the symplectic form � and hence
LX� = 0. In view of Cartan�s homotopy formula we have

LX� = iXd� + d(iX�) = d(iX�) = 0

so that iX� is closed; by Poincaré�s lemma it is also exact.
Let (fHt )0�t�1 and (f

K
t )0�t�1 be two arbitrary paths in Ham(n). The paths

(fHt f
K
t )0�t�1 and (ft)1�t�1 where

ft =

(
fK2t when 0 � t � 1

2

fH2t�1f
K
1 when 1

2 � t � 1

are homotopic with �xed endpoints. Let us construct explicitly a homotopy of
the �rst path on the second, that is, a continuous mapping

h : [0; 1]� [0; 1] �! Ham(n)

such that h(t; 0) = fHt f
K
t and h(t; 1) = ft. De�ne h by h(t; s) = a(t; s)b(t; s)

where a and b are functions

a(t; s) =

(
I for 0 � t � s

2

fH(2t�s)=(2�s) for s
2 � t � 1

b(t; s) =

(
fK2t=(2�s) for 0 � t � 1� s

2

fK1 for s
2 � t � 1

.
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We have a(t; 0) = fHt , b(t; 0) = f
K
t hence h(t; 0) = fHt f

K
t ; similarly

h(t; 1) =

(
fK2t for 0 � t � 1

2

fH2t�1f
K
1 for 1

2 � t � 1

that is h(t; 1) = ft.

4.4 Hamiltonian periodic orbits

Let H 2 C1(R2nz ) be a time-independent Hamiltonian function, and (fHt ) the
�ow determined by the associated vector �eld XH = J@z.

De�nition 17 Let z0 2 R2nz ; the mapping

 : Rt �! R2nz , (t) = fHt (z0)

is called �(Hamiltonian) orbit through z0�. If there exists T > 0 such that
fHt+T (z0) = f

H
t (z0) for all t 2 R one says that the orbit  through z0 is �periodic

with period T�. [The smallest possible period is called �primitive period�].

The following properties are obvious:

� Let , 0 be two orbits of H. Then the ranges Im  and Im 0 are either
disjoint or identical.

� The value of H along any orbit is constant (�theorem of conservation of
energy�)..

The �rst property follows from the uniqueness of the solutions of Hamilton�s
equations, and the second from the chain rule, setting (t) = (x(t); p(t)):

d

dt
H((t)) = h@xH((t)); _x(t)i+ h@pH((t)); _p(t)i

= �h _p(t); _x(t)i+ h _x(t); _p(t)i
= 0

where we have taken into account Hamilton�s equations.
Assume now that  is a periodic orbit through z0. We will use the notation

St(z0) = Df
H
t (z0).

De�nition 18 Let  : t 7�! fHt (z0) be a a periodic orbit with period T . The
symplectic matrix ST (z0) = DfHT (z0) is called �monodromy matrix�. The eigen-
values of ST (z0) are called the �Floquet multipliers�of .

The following property is well-known in Floquet theory:
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Lemma 19 (i) Let ST (z0) be the monodromy matrix of the periodic orbit .
We have

St+T (z0) = St(z0)ST (z0) (26)

for all t 2 R. In particular SNT (z0) = ST (z0)N for every integer N . (ii) Mon-
odromy matrices corresponding to the choice of di¤erent origins on the periodic
orbit are conjugate of each other in Sp(n) hence the Floquet multipliers do not
depend on the choice of origin on the periodic orbit; (iii) Each periodic orbit
has an even number > 0 of Floquet multiplier equal to one.

Proof. Proof of (i). The mappings fHt form a group, hence, taking into account
the equality fHT (z0) = z0:

fHt+T (z0) = f
H
t (f

H
T (z0))

so that by the chain rule,

DfHt+T (z0) = Df
H
t (f

H
T (z0))Df

H
T (z0)

that is (26) since fHT (z0) = z0. Proof of (ii).Evidently the orbit through any
point z(t) of the periodic orbit  is also periodic. We begin by noting that if z0
and z1 are points on the same orbit  then there exists t0 such that z0 = fHt0 (z1).
We have

fHt (f
H
t0 (z1)) = f

H
t0 (f

H
t (z1))

hence, applying the chain rule of both sides of this equality,

DfHt (f
H
t0 (z1))Df

H
t0 (z1) = Df

H
t0 (f

H
t (z1))Df

H
t (z1).

Choosing t = T we have fHt (z0) = z0 and hence

ST (f
H
t0 (z1))St0(z1) = St0(z1)ST (z1)

that is, since fHt0 (z1) = z0,

ST (z0)St0(z1) = St0(z1)ST (z1).

It follows that the monodromy matrices ST (z0) and ST (z1) are conjugate and
thus have the same eigenvalues. Proof of (iii). We have, using the chain rule
together with the relation fHt � fHt0 = fHt+t0

d

dt0
fHt (f

H
t0 (z0))

����
t0=0

= Dft(z0)XH(z0) = XH(f
H
t (z0))

hence ST0(z0)XH(z0) = XH(z0) setting t = T ; XH(z0) is thus an eigenvector of
ST (z0) with eigenvalue one; the Lemma follows the eigenvalues of a symplectic
matrix occurring in quadruples (�; 1=�; ��; 1=��).

The following theorem is essentially due to Poincaré:
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Theorem 20 Let E0 = H(z0) be the value of H along a periodic orbit 0. As-
sume that 0 has exactly two Floquet multipliers equal to one. Then there exists
a unique smooth 1-parameter family (E) of periodic orbits of E with period
T parametrized by the energy E, and each E is isolated on the hypersurface
�E = fz : H(z) = Eg among those periodic orbits having periods close to the
period T0 of 0 Moreover limE!E0 T = T0.

One shows, using �normal form�techniques that when the conditions of the
theorem above are ful�lled, the monodromy matrix of 0 can be written as

ST (z0) = S
T
0

�
U 0

0 ~S(z0)

�
S0

with S0 2 Sp(n), ~S(z0) 2 Sp(n � 1) and U is of the type
�
1 �
0 1

�
for some real

number �; the 2(n�1)�2(n�1) symplectic matrix ~S(z0) is called the stability
matrix of the isolated periodic orbit 0. It plays a fundamental role not only in
the study of periodic orbits, but also in semiclassical mechanics.


