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Abstract. We prove monodromy theorem for local vector fields be-
longing to a sheaf satisfying the unique continuation property. In par-
ticular, in the case of admissible regular sheaves of local fields defined
on a simply connected manifold, we obtain a global extension result for
every local field of the sheaf. This generalizes previous works of No-
mizu [20] for semi-Riemannian Killing fields, of Ledger–Obata [17] for
conformal fields, and of Amores [1] for fields preserving a G-structure
of finite type. The result applies to Finsler and pseudo-Finsler Killing
fields. Some applications are discussed.
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1. Introduction

The question of global extension of locally defined Killing, or confor-
mal fields of a semi-Riemannian manifold appears naturally in several con-Introduction of

this new version
needs a thorough
revision.

texts. For instance, the property of global extendability of local Killing
fields in simply connected Lorentzian manifolds plays a crucial role in the
celebrated result that the isometry group of a compact simply connected
analytic Lorentz manifold is compact, see [4]. Nomizu’s result is often used
in connection with de Rham splitting theorem to obtain that a real-analytic
complete Riemannian manifold M admitting a local parallel field has uni-

versal covering M̃ which splits metrically as N×R, see [5, Theorem C] for
an example. Recently, the question of (unique) extensibility of local Killing
vector fields has been studied in the context of Ricci-flat Lorentz manifolds,
in the setting of the black hole rigidity problem, see [11]. The Killing exten-
sion property is also one of the crucial steps in the proof of the extensibility
of locally homogeneous Lorentz metrics in dimension 3, see [6]. It is to be
expected that an analogous extension property should play an important
role also for more general sheaves of local vector fields defined on a differen-
tiable manifold. The purpose of the present paper is to explore this question
in geometric problems that have not been studied in the literature as of yet,
like for instance in Finsler or pseudo-Finsler manifolds.

Let us recall that the first result in the literature, concerning the existence
of a global extension of local Killing fields defined on a simply-connected
real-analytic Riemannian manifold, was proved by Nomizu in [20]. The
same proof applies to the semi-Riemannian case. The question of extension
of local conformal fields has been studied in Ledger–Obata [17]. A more
conceptual proof of the extendability property was proved by Amores in
[1] for local vector fields whose flow preserves a G-structure of finite type
of an n-dimensional manifold M; here G is a Lie subgroup of GL(n,R).
When G is the orthogonal or the conformal group of some nondegenerate
metric on Rn, then Amores’ result reproduces the classic semi-Riemannian
or conformal case of Nomizu and Ledger–Obata.

Although the class of G-structure automorphisms is quite general, restric-
tion to those of finite type leaves several important examples of geometric
structures out of the theory developed in [1]. Most notably..
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Examples of admissible sheaves that do not come from G-structures
of finite type.

• Finlser and pseudo-Finsler
• See [15, Note 13, p. 332], see also [24]. Examples in Theorem 3

(pseudo-conformal fields on a real hypersurface of Cn which is non-
degenerate) and Theorem 4 (holomorphic fields of a hyperbolic man-
ifold) in [15, p. 332] may work.

Moreover, it is interesting to observe that the sheaf of local vector fields
whose flow preserves any G-structure has always a Lie algebra structure
(see Proposition 5.3), which seems to be unnecessary for the extendability
problem we aim at. Thus, it is natural to extend the results of [1, 17, 20] to
arbitrary vector space valued sheaves of local vector fields.

The starting point of the theory developed here is the observation that a
necessary condition for the extension property of some class of local vector
fields on a manifold M, is that the space of germs of this class of fields
must have the same dimension at each point of M. Namely, if the exten-
sion property holds, then the space of germs at each point has the same
dimension as the space of globally defined vector fields of the given class.
This condition is called regularity in the paper (Definition 3.4); the reader Mention a discus-

sion of the rela-
tions between the
two notions

should be warned that this notion of regularity for sheaves of vector fields
is different from the one given in reference [25, Definition 1.3]. Our main
abstract result (Theorem 3.6) is that, for a certain class of sheaves of lo-
cal vector fields, called admissible, defined on a simply connected manifold,
then the regularity condition is also sufficient to guarantee that local fields
extend (uniquely) to globally defined vector fields. By admissible, we mean
sheaves of vector fields that have two basic properties: bounded rank and
unique continuation, see Subsection 3.1. A sheaf has bounded rank if the
space of germs of its local field has uniformly bounded dimension; it has
the unique continuation property if two of its local fields coincide on their
common domain when they coincide on some non-empty open set.

A proof of Theorem 3.6 is obtained by defining a notion of transport of
germs along curves (Definition 2.1), and then proving existence and fixed
endpoints homotopy invariance of the transport under the regularity as-
sumption (Proposition 3.5). The statement and the proof of Theorem 3.6
have strong analogies with the classical monodromy theorem for analytic
functions on the plane, see for instance [18]. It is interesting to observe that
a somewhat similar procedure had been described in the original article of
Nomizu [20], using a differential equation along smooth curves satisfied by
Killing vector fields. In the abstract framework considered in the present
paper, no such differential equation is available, and one has to resort to
purely topological arguments for the existence of transport of germs along
curves.

The statement of Theorem 3.6 generalizes Nomizu’s result [20] for semi-
Riemannian Killing fields, of Ledger–Obata [17] for conformal fields, and of
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Amores [1] for fields preserving a G-structure of finite type. Namely, the
bounded rank and unique continuation property are proven to hold in the
case of semi-Riemannian Killing fields, in the case of conformal fields, and
also in the case of vector fields whose flow consists of local automorphisms of
a G-structure of finite type (Section 4). It is worth mentioning that the case
of G-structures of finite type is studied here with different methods than the
ones employed in in [1]. More precisely, in the present paper we determine
an explicit characterization of G-fields in terms of compatible connections
(see Proposition 4.1), .....

In addition, the result of Theorem 3.6 applies also to situations of field
preserving some geometric structure which cannot be described in terms
of a G-structure of finite type. The two main examples discussed in this
paper are the case of Finsler and pseudo-Finsler structures, see Section 6
and Section 7.

• Find more examples of G-structures of infinite type that satisfy the
bounded rank and unique continuation property. Homothetic fields?
Affine fields? Projective fields? Curvature collineations? Fields
preserving distributions?

2. An abstract extension problem for sheaves of vector fields

We will discuss here an abstract theory concerning the global extension
property for sheaves of vector fields on differentiable manifolds. Some of the
ideas employed here have their origin in reference [20], where similar results
were obtained in the case of Killing vector fields in Riemannian manifolds,
although our approach does not use differential equations. A central notion
for our theory is a property called unique continuation for sheaves of local
vector fields on a manifold.

2.1. Sheaves with the unique continuation property. Let M be a
differentiable manifold with dim(M) = n, and for all open subset U ⊂ M,
let X(U) denote the sheaf of smooth vector field on U. By smooth we mean
of class C∞, although many of the results of the present paper hold under
less regularity assumptions. Given V ⊂ U and K ∈ X(U), we will denote by
K 7→ K

∣∣
V
∈ X(V) the restriction map.

For every connected open subset U, choose F(U) ⊂ X(U), and assume
that this family is a vector sub-sheaf, namely, if K ∈ F(U) and V ⊂ U, then
K|V ∈ F(V) and if a vector field K ∈ X(U), U =

⋃
i∈IUi with K|Ui ∈ F(Ui),

then K ∈ F(U). Elements of F will be called local F-fields.

We say that F has the unique continuation property if, given an open
connected set U ⊂ M and given K ∈ F(U), there exists a non empty open
subset V ⊆ U such that K|V = 0, then K = 0.

The unique continuation property implies that, given connected open sets
U1 ⊂ U2 ⊂M, then the map F(U2) 3 K 7→ K

∣∣
U1
∈ F(U1) is injective, and
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therefore one has a monotonicity property:

dim
(
F(U1)

)
> dim

(
F(U2)

)
, for U1 ⊂ U2 connected. (1)

Given p ∈ M, we define GF
p as the space of germs at p of local F-vector

fields1, also called F-germs at p. More precisely, GF
p is defined as the quo-

tient of the set: ⋃
U

F(U),

where U varies in the family of connected open subsets of M containing p,
by the following equivalence relation ∼=p: for K1 ∈ F(U1) and K2 ∈ F(U2),
K1 ∼=p K2 if K1 = K2 on a non empty connected open subset V ⊆ U1 ∩U2.
For K ∈ F(U), with p ∈ U, we will denote by germp(K) the germ of K at p,

which is defined as the ∼=p-equivalence class of K. It is easy to see that GF
p

is a vector space for all p; moreover, for all p ∈ M and all connected open
neighborhood U of p, the map:

F(U) 3 K 7−→ germp(K) ∈ GF
p (2)

is linear and injective, since if germp(K) = 0, then by definition there exists
V ⊆ U such that K|V = 0 and by the unique continuation property, we have
that K = 0. In particular, if two local F-fields have the same germ at some
p ∈ M, they coincide in any connected open neighborhood of p contained
in their common domain.

We will also use the evaluation map:

evp : GF
p −→ TpM, (3)

defined by evp(g) = Kp, where K is any local F-field around p such that
germp(K) = g.

2.2. Transport of germs of F-fields. We will henceforth assume that F is
a sheaf of local vector fields that satisfies the unique continuation property.
We will now define the notion of transport of germs of F-vector fields along
curves. The reader should note the analogy between this definition and the
classical notion of analytic continuation along a curve in elementary complex
analysis.

Definition 2.1. Let γ : [a, b] →M be a curve, and let g be a distribution
of F-local fields along γ, i.e., a map [a, b] 3 t 7→ gt ∈ GF

γ(t). We say that g

is a transport of F-germs along γ if the following holds: for all t∗ ∈ [a, b],
there exists ε > 0, an open neighborhood U of γ(t∗) and K ∈ F(U) such
that γ(t) ∈ U and gt = germγ(t)(K) for all t ∈ ]t∗ − ε, t∗ + ε[ ∩ [a, b].

It is easy to see that initial conditions identify uniquely transports of
F-germs along continuous curves.

1The space GF
p is also called the stalk of the sheaf F at p.
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Lemma 2.2. If g(1) and g(2) are transports of F-germs along a continuous

path γ : [a, b] → M such that g
(1)
t∗

= g
(2)
t∗

for some t∗ ∈ [a, b], then g(1) =

g(2).

Proof. The set A =
{
t ∈ [a, b] : g

(1)
t = g

(2)
t

}
is open, by the very definition

of transport, and non empty, because t∗ ∈ A. Let us show that it is closed.
Denote by A the closure of A in [a, b], and let t0 ∈ A; let U be a sufficiently
small connected open neighborhood of γ(t0). There exist K1, K2 ∈ F(U)
such that, for t sufficiently close to t0:

germγ(t)K1 = g
(1)
t and germγ(t)K2 = g

(2)
t . (4)

Since t0 is in the closure of A, we can find t ∈ A such that γ(t) ∈ U
and for which (4) holds; in particular, the germs of K1 and K2 at such t

coincide. It follows that K1 = K2 in U, and therefore g
(1)
t0

= germγ(t0)K1 =

germγ(t0)K2 = g
(2)
t0

, i.e., t0 ∈ A and A is closed. �

2.3. Homotopy invariance. We will now show that the notion of trans-
port of germs in invariant by fixed endpoints homotopies.

Proposition 2.3. Let F a sheaf of local fields on a manifold M; assume that
F satisfy the unique continuation property. Let γ : [0, 1] × [a, b] → M be a
continuous map such that γ(s, a) = p and γ(s, b) = q for all s ∈ [0, 1], with
p, q ∈ M two fixed points. For all s ∈ [0, 1] set γs := γ(s, ·) : [a, b] → M.

Fix ga ∈ GF
p , and assume that for all s ∈ [0, 1] there exists a transport g(s)

of F-germs along γs, with g
(s)
a = ga for all s. Then, g

(s)
b ∈ GF

q does not
depend on s.

Proof. It suffices to show that s 7→ g
(s)
b is locally constant on [0, 1]. Fix

s ∈ [0, 1] and choose N ∈ N, U1, . . . UN connected open subsets of U, and
Ki ∈ F(Ui), for i = 1, . . . ,N, such that, setting ti = a+ i

b−a
N , i = 0, . . . ,N:

• γs
(
[ti−1, ti]

)
⊂ Ui;

• germγ(t)(Ki) = gt for all t ∈ [ti−1, ti],

for all i = 1, . . . ,N. Then, given s ′ sufficiently close to s, γs ′
(
[ti−1, ti]

)
⊂ Ui

for all i = 1, . . . ,N. This implies that the local fields Ki can be used to

define a transport g(s
′) of ga along γs ′ . In particular, g

(s ′)
b = KN

(
γ̃(b)

)
=

KN
(
γ(b)

)
= g

(s)
b . This concludes the proof. �

2.4. A monodromy theorem. We are now ready to prove the aimed ex-
tension of the classical monodromy theorem in Complex Analysis for sheaves
of local vector fields satisfying the unique continuation property.

Proposition 2.4. Let F a sheaf of local fields on a manifold M; assume
that F satisfy the unique continuation property. Let p ∈ M be fixed, let U
be a simply connected open neighborhood of p, and let gp ∈ GF

p be a germ of
F-field at p such that for all continuous curve γ : [a, b]→ U with γ(a) = p,



GLOBAL EXTENSION FOR SHEAVES OF LOCAL FIELDS 7

there exists a transport of gp along γ. Then, there exists (a necessarily
unique) K ∈ F(U) such that germp(K) = gp.

Proof. Since U is simply connected, any two continuous curves in U between
two given points are fixed endpoints homotopic. This allows to define a
vector field K on U as follows. Given q ∈ U, choose any continuous path
γ : [a, b] → U with γ(a) = p and γ(b) = q; let gγ be the unique transport
of F-germs along γ such that gγa = gp, which exists by assumption. By
Proposition 2.3, gγb does not depend on γ. Then, we set Kq := evq(g

γ
b),

where ev is the evaluation map defined in (3). It is easy to see that K ∈ F(U),
using the definition of transport. �

Remark 2.5. It is not hard to show that the conclusion of Proposition 2.4
still holds under the weaker assumption that a transport of gp exists along a
family of curves starting at p which is dense, for the compact-open topology,
in the set of continuous paths in U with fixed initial point.

3. Admissible and regular sheaves

We will now study a class of sheaves for which every germ can be trans-
ported along any curve. This class is defined in terms of two properties:
rank boundedness and regularity.

3.1. Sheaves with bounded rank. We say that F has bounded rank if
there exists a positive integer NF such that:

dim
(
F(U)

)
6 NF,

for all connected open subset U ⊂M. Let us call admissible a sheaf which
has both unique continuation and rank boundedness properties. Examples of
admissible sheaves will be discussed in Section 4. Observe that admissibility
is inherited by sub-sheaves.

Lemma 3.1. Let F be an admissible sheaf of vector fields on M. Then,
given any p ∈ M, there exists a connected open neighborhood U of p such
that the map (2) is an isomorphism. In particular:

dim(GF
p ) = dim

(
F(U)) 6 NF.

Proof. Let us set:

κFp := max
{

dim
(
F(U)

)
: U connected open subset of M containing p

}
.

(5)
If U is any connected neighborhood for which dim

(
F(U)

)
= κFp , then the

map (2) is an isomorphism. This follows easily from the following mono-
tonicity property (1). �

We will assume henceforth that F is an admissible sheaf of local fields on
the manifold M.
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3.2. F-special neighborhoods. A connected open neighborhood U of p as
in Lemma 3.1 will be said to be F-special for p. If U is F-special for p, then
given any gp ∈ GF

p there exists a unique K ∈ F(U) such that germp(K) = gp.

Observe that the number κFp defined in (5) is also given by:

κFp = dim(GF
p ).

Lemma 3.2. Let F be an admissible sheaf of vector fields on M. The
following statements hold:

(i) If U is F-special for p, and U ′ ⊂ U is a connected open subset con-
taining p, then also U ′ is F-special for p. In particular, every point
admits arbitrarily small F-special connected open neighborhoods.

(ii) Assume that p ∈ U and that κFq is constant for q ∈ U. Then, there
exists U ′ ⊂ U containing p which is F-special for all its points.

Proof. For proof of (i), note that if p ∈ U ′ ⊂ U, with U ′ connected, then:

κFp > dim
(
F(U ′)

) by (1)

> dim
(
F(U)

)
= κFp ,

i.e., κFp = dim
(
F(U ′)

)
, and U ′ is F-special for p.

As to the proof of (ii), let U ′ ⊂ U be any F-special open connected
neighborhood of p. Then, for all q ∈ U ′:

κFq = κFp = dim
(
F(U ′)

)
,

i.e., U ′ is F-special for q. �

The interest in open sets which are F-special for all their points is the
following immediate consequence of the definition:

Proposition 3.3. If U is F-special for all its points, then given any p ∈ U
and any g∗ ∈ Fp, there exists a unique K ∈ F(U) such that germp(K) = g∗.
Moreover, if V ⊂ U is any connected open subset, then for all K ∈ F(V)

there exists a unique K̃ ∈ F(U) such that K̃|V = K. �

Definition 3.4. A connected open subset U of M on which κFp is constant

will be called F-regular. An admissible sheaf F will be called regular if κFp
is constant for all p ∈M.

If U is a connected open set which is F-special for all its points, then U is
F-regular. We will now determine under which circumstances the converse
of this statement holds.

3.3. Existence of transport. As to the existence of a transport of F-germs
with given initial conditions, one has to assume regularity for the sheaf F.

Proposition 3.5. Let γ : [a, b]→M be a continuous path, and assume that
κF is constant along γ. Then, given any g∗ ∈ GF

γ(a) there exists a unique

transport [a, b] 3 t 7→ gt ∈ GF
γ(t) of F-germs along γ such that

ga = g∗. (6)
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Proof. Define:

A =
{
t ∈ ]a, b] : ∃ transport of F-germs g along γ|[a,t] satisfying (6)

}
.

Let us show that A = ]a, b]. Since κF is constant in a neighborhood of γ(a),
then by Lemma 3.1, there exists an open neighborhood Ua of γ(a) which is
F-special for γ(a). Then, there exists K ∈ F(Ua) such that germγ(a)K = g∗.

This says that A contains an interval of the form ]a, ε], for some ε > 0.
Arguing as in Lemma 2.2, we can show that A is both open and closed in

]a, b]. Again, openness follows readily from the very definition of transport.
In order to show that A is closed, assume that t0 ∈ A (the closure of A),

and let U be an open neighborhood of γ(t0) which is F-special for γ(t0).
Choose t1 ∈ A such that γ(t1) ∈ U, then there exists K ∈ F(U) such that
germγ(t)(K) = gt for all t sufficiently close to t1. This is because U is also

F-special for all these points γ(t) due to the assumption that κF is constant
along γ. Then, germγ(t)(K) = gt for all t sufficiently close to t0 (more

generally for all t such that γ(t) ∈ U), hence t0 ∈ A and A is closed. Thus,
A = ]a, b], and the existence of transport is proved.

Uniqueness follows directly from Lemma 2.2. �

As a corollary, we can now state the main result of this section.

Theorem 3.6. Let M be a (connected and) simply connected differentiable
manifold, and let F be an admissible and regular sheaf of local fields on M.

Given any connected open subset U ⊂M and any K̃ ∈ F(U), there exists a

unique K ∈ F(M) such that K
∣∣
U

= K̃. Similarly, given any p ∈M and any

gp ∈ GF
p , then there exists a unique K ∈ F(M) such that germp(K) = gp.

Proof. The first statement follows easily from the second, which is proved
as follows. Given any p ∈ M, any germ gp ∈ GF

p , and and any continuous
curve γ in M starting at p, by regularity (Proposition 3.5) there exists a
transport of gp along γ. The existence of the desired field K ∈ F(M) follows
from the monodromy theorem, Proposition 2.4. �

4. On rank boundedness and unique continuation property

4.1. The classical cases: Killing and conformal fields on a semi-
Riemannian manifold.

4.2. Infinitesimal symmetries of a G-structure. Let G be a Lie sub-
group of GL(n), denote by g its Lie algebra, and let Mn be a manifold with
a G-structure P. Recall that this is a G-principal sub-bundle of the frame
bundle FR(TM) of TM.
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4.2.1. G-fields. It is well known that there exists a connection ∇ compatible
with the G-structure,2 i.e., such that the parallel transport of frames of P
belong to P. A (local) vector field K on M is said to be an infinitesimal
symmetry of the G-structure P, or a G-field, if its flow preserves the G-
structure. One can characterize G-fields using a compatible connection; to
this aim, we need to recall a few facts about the lifting of vector fields to
the frame bundle.

4.2.2. Lifting G-fields to the frame bundle. Let us recall a notion of lifting
of (local) vector fields defined on a manifold M to (local) vector field in
the frame bundle FR(TM). First, diffeomorphisms of M (or between open
subsets of M) can be naturally lifted to diffeomorphisms of FR(TM) (or
between the corresponding open subsets of FR(TM)); this notion of lifting
preserves the composition of diffeomorphisms. Thus, given a vector field X
in M, the flow of X can be lifted to a flow in FR(M); this is the flow of a

vector field X̃ in FR(TM). An explicit formula for X̃ can be written using
a connection ∇ on TM; for this general computation, we don’t require that
∇ is compatible with P. Observe that ∇ need not be symmetric either, and
we will denote by T its torsion.

If Ft denotes the flow of X and F̃t its lifting, for fixed x ∈ M and p ∈
FR(TM) with π(p) = x, we have:

X̃(p) = d
dt

∣∣
t=0

F̃t(p) =
d
dt

∣∣
t=0

[dFt(x) ◦ p]

for all p ∈ FR(TM) and all x ∈ M. Observe that F̃t(p) = dFt(x) ◦ p is a
frame at the point Ft(x).

The horizontal component of X̃(p) is:

[X̃(p)]hor = dπp
(
X̃(p)

)
= d

dt

∣∣
t=0

[
π(dFt(x) ◦ p)

]
= d

dt

∣∣
t=0

[Ft(x)]| = X(x), (7)

i.e., X̃ is indeed a lifting of X. The vertical component of X̃(p) is:

[X̃(p)]vert =
D
dt

∣∣
t=0

[dFt(x) ◦ p] = D
dt

∣∣
t=0

[dFt(x)] ◦ p; (8)

for this equality, we have used the fact that D
dt commutes with right-composition

with p. We have

D
dt

∣∣
t=0

[dFt(x)v] =
D
dt

∣∣
t=0

d
ds

∣∣
s=0

[
Ft
(
x(s)

)]
,

2Such compatible connection is not symmetric in general. For instance, if G is the
complex general linear subgroup GL(n,C), so that the corresponding G-structure is an
almost complex structure, then there exists a symmetric compatible connection if and
only if the structure is in fact complex.
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where s 7→ x(s) is a smooth curve such that x(0) = x and x ′(0) = v. Then:

D
dt

∣∣
t=0

d
ds

∣∣
s=0

[
Ft
(
x(s)

)]
= D

ds

∣∣
s=0

d
dt

∣∣
t=0

[
Ft
(
x(s)

)]
+ T

(
d
dt

[
Ft
(
x(s)

)]
, d
ds

[
Ft
(
x(s)

)]) ∣∣
s=t=0

= ∇vX(x) + T
(
X(x), v

)
.

Therefore, the vertical component of X̃(p) is:

[X̃(p)]vert = ∇X(x) ◦ p+ T
(
X(x), p ·

)
. (9)

Using formulas (7) and (8), we can write:

X̃ = L(X ◦ π), (10)

where π : FR(TM)→M is the canonical projection and L is a linear first or-
der differential operator from sections of π∗(TM) to sections of T

(
FR(TM)

)
.

4.2.3. Characterization of G-fields. For all x ∈ M, let gx be the Lie subal-
gebra of gl(TxM) that corresponds to the Lie group Gx of automorphisms
of the G-structure of the tangent space TxM. Clearly, gx is isomorphic to g
for all x. Using the lifting of vector fields to the frame bundle, it is not hard
to prove the following:

Proposition 4.1. Let ∇ be a connection on M compatible with the G-
structure P, and let T denote its torsion. A (local) vector field K is a G-field
if and only if ∇K(x) + T(K, ·) ∈ gx for3 all x.

Proof. K is a G-field if and only if the flow of its lifting K̃ preserves the G-

structure P, that is, if and only if K̃ is everywhere tangent to P. Using the
fact that ∇ is compatible with P, one sees that the tangent space to P at
some point p ∈ P is given by the space of vectors whose vertical component
has the form h◦p, with h ∈ gx. Therefore, using formula (9) for the vertical

component of liftings, we have that K̃ is tangent to P if and only if:

∇K(x) + T
(
K(x), .

)
∈ gx,

for all x ∈M. �

4.2.4. Admissibility of the sheaf of G-fields for G-structures of finite type.

Definition 4.2. Given an open subset U ⊂M, let FP(U) be the subspace
of X(U) consisting of all vector fields K satisfying ∇K(x) + T

(
K(x), .

)
∈ gx

for all x ∈ U. This is a sheaf of vector fields in M that will be called the
sheaf of G-vector fields (shortly, G-fields).

It is not hard to prove that that the sheaf of G-fields consists of Lie
algebras. We will give an indirect proof of this fact in Proposition 5.2.

3i.e., the map TxM 3 v 7→ ∇vK+ T(Kx, v) ∈ TxM belongs to gx.
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Given x ∈M, for all j > 1, define the j-th prolongation g
(j)
x of gx as the Lie

algebra:

g
(j)
x =

{
L : TxM

(j+1) −→ TxM multilinear and symmetric :

∀ (v1, . . . , vj) ∈ TxM(j),

the map TxM 3 v 7→ L(v, v1, . . . , vj) ∈ TxM belongs to gx
}
. (11)

In particular, g
(0)
x = gx. The G-structure is said to be of finite type if

g
(j)
x = {0} for some j > 1; this condition is independent of x. The order of a

finite type G structure is the minimum j for which g
(j)
x = {0}. For instance,

when G is some orthogonal group O(n, k) (in which case a G-structure is a
semi-Riemannian structure in M), then the G-structure is of finite type and
it has order 1. If the group G is CO(n, k) (in which case a G-structure is
a semi-Riemannian conformal structure in M), is of finite type and it has
order 2.

Proposition 4.3. Let P be a finite type G-structure on Mn, with order

N > 1. Then, the sheaf FP has rank bounded by n+
∑N−1
j=0 dim

(
g
(j)
x

)
.

Proof. It follows immediately from the corresponding statement on the di-
mension of the automorphism group of a G-structure of finite type. This is
a very classical result, first stated in [7], see also [26, Corollary 4.2, p. 348],
[24], or [15, Theorem 1, p. 333]. �

Proposition 4.3 holds also in the case of G-structures on orbifolds, see [3].

Proposition 4.4. Let P be a G ⊂ GL(n) structure of order N on a dif-
ferentiable manifold Mn, and let X be a G-field. If the N-th order jet of X
vanishes at some point x ∈ M, then X vanishes in a neighborhood of x. If
M is connected, then X vanishes identically.

Proof. The proof is by induction on N.
When N = 0, then G = {1} and P is a global frame (X1, . . . , Xn) of M.

In this case, the property of being a G-field for X means that X commutes
with each one of the Xi’s, i.e., X is invariant by the flow of each Xi. In this

case, the set of zeroes of X is invariant by the flow of the Xi’s. Now, if FXit
denotes the flow of Xi at time t, then, for fixed x ∈M, the map:

(t1, ..., tn) 7−→ FX1t1 ◦ . . . ◦ F
Xn
tn

(x)

is a diffeomorphism of a neighborhood of 0 in Rn onto a neighborhood of x
in M. In order to prove this, it suffices to observe that its derivative at 0
sends the canonical basis of Rn to X1(x), . . . , Xn(x). Thus, if X(x) = 0 and
X is invariant by the flows FXi , then X vanishes in a neighborhood of x.

For the induction step, we need the notion of lifting of vector fields in
M to vector fields in the frame bundle FR(M) that was recalled in Subsec-

tion 4.2.2. Consider the lift X̃ of X to a vector field in FR(M). From formula



GLOBAL EXTENSION FOR SHEAVES OF LOCAL FIELDS 13

(10) it follows readily that if the N-the jet of X vanishes at x, then the jet

of order (N− 1) of X̃ vanishes at every p ∈ FR(TxM).

Now, observe that is X is a G-field, then X̃ is tangent to P. Furthermore,
if some diffeomorphism of M preserves P, then the lifting of such diffeomor-
phism to FR(TM) restricted to P preserves the G(1)-structure P(1) of P,

where P(1) is the first prolongation of P. It follows that the restriction of X̃
to P is a G(1)-field for the G(1)-structure P(1).

For the induction step, assume that P has order k, and that X is a G-field

for P with vanishing N-th jet at x. The field X̃ restricted to P is a G(1)-
field for P(1) which has vanishing jet of order (N − 1) at p, for arbitrary

p ∈ FR(TxM). Since P(1) has order N − 1, the induction hypotheses gives

us that X̃ vanishes identically in a neighborhood of p in P. It follows that
X vanishes in a neighborhood of x in M (the projection onto M of the
neighborhood of p). This concludes the proof of the first statement.

In particular, the result proves that the set of points at which the N-th
order jet of X vanishes is open. Evidently, it is also closed, and therefore if
M is connected, then X vanishes identically. �

Corollary 4.5. The sheaf of local G-fields of a finite order G-structure has
the unique continuation property. �

Remark 4.6 (Local uniqueness vs. analyticity). It is an interesting question
to establish for which G-structures of infinite type, the corresponding sheaf
of local G-fields has the unique continuation property. A natural guess would
be to consider real-analytic structures, this seems to have been claimed in
[1, Proposition 3.2, p. 5]. However, there exist real-analytic G-structures of
infinite type whose sheaf of local G-fields does not have the unique contin-
uation property. Consider for instance a real-analytic symplectic manifold
(M2n,ω). In this case, G is the symplectic group Sp(2n). Given any smooth

local function H : U ⊂ M → R, then its Hamiltonian field ~H has flow that
preserves ω. In particular, two distinct smooth function that coincide on
some non-empty open subset define distinct Hamiltonian fields, that coincide
on that open set.

Observe that, by Corollary 4.5, for G-structure of finite type, local unique-
ness is independent of analyticity, thus, the two properties seem to be logi-
cally independent.

5. On the regularity condition

The central assumption of Theorem 3.6, i.e., that the space of germs of the
admissible sheaf F should have constant dimension along M, is in general
hard to establish. We will present here two situations where such regularity
assumption is satisfied, namely the real-analytic and the transitive case.

5.1. The real-analytic case.
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Here we should prove that real-analyticity implies κ
constant for bounded rank sheaves.

5.2. The transitive case. Given a sheaf of vector fields F on the manifold
M, let D(F) denote the associated pseudo-group of local diffeomorphisms of
M. Recall that this is the pseudo-group generated by the family of all local
diffeomorphisms given by the local flow of elements of F.

Definition 5.1. The sheaf F is said to be full if for every X ∈ F and any
ϕ ∈ D(F), the pull-back ϕ∗(X) belongs to F. Given a complete sheaf F, the
pseudo-group D(F) is said to be transitive if it acts transitively on M, i.e.,
if given any two points x, y ∈M, there exists ϕ ∈ D(F) such that ϕ(x) = y.

As an immediate consequence of the definition, we have the following:

Proposition 5.2. Let F be a full sheaf of local vector fields on M which has
bounded rank. If D(F) is transitive, then F is regular.

Proof. Given x, y ∈ M, and ϕ ∈ D(F) such that ϕ(x) = y, then the pull-
backϕ∗ induces an isomorphism between the space of germs GF

y and GF
x . �

An interesting consequence of fullness is the following result:

Proposition 5.3. Let F be a full sheaf of smooth local vector fields on a
manifold M. Assume that F is closed by C∞-convergence on compact sets.
Then, F is closed by Lie brackets, i.e., F(U) is a Lie algebra for every open
set U ⊂M. This is the case, in particular, for the sheaf of local fields whose
flow preserve a G-structure on M.

Proof. See [25, Remark (b), p. 10]. �

The sheaf F is called transitive if the evaluation map evx : GF
x → TxM is

surjective for all x. In other words, F is transitive if for all x ∈ M and all
v ∈ TxM, there exists a local F-field K defined around x such that Kx = v.
When F is a Lie algebra sheaf, the transitivity of a F implies the transitivity
of D(F).

Proposition 5.4. If F is a full Lie algebras sheaf of local fields on M which
is transitive, then D(F) is transitive.

Proof. See [25, Proposition 1.1 and § 1.3]. �

Proposition 5.4 applies in particular to the sheaf of local vector fields that
are infinitesimal symmetries of a G-structure, see Section 4.2.

5.3. More examples that do not fit into the case of G-structures of
finite type.

• Infinitesimal symmetries of affine manifolds. This can be done using
the fact that affine connections correspond to 1-structures in the
frame bundle Fr(TM), see [24, Section 8.3].
• Infinitesimal symmetries of quasi-complex manifolds. These are ex-

amples of elliptic G-structures.
• Infinitesimal projective symmetries. See below.
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An affine connection defines a global parallelism on the frame bundle. Let
M be an n-dimensional manifold endowed with an affine connection ∇. Let
Fr(TM) denote the frame4 bundle of M, which is the total space of a GL(n)-
principal bundle on M, and it has dimension equal to n2 + n. Denote by
π : Fr(TM) → M the canonical projection. Let us recall how to define a
global parallelism on Fr(TM), i.e., a {1}-structure, using the connection ∇.

Given p ∈ Fr(TM), i.e., p : Rn → TxM is an isomorphism for some x ∈M,
then Tp

(
Fr(TM)

)
admits a splitting into a vertical and a horizontal space,

denoted respectively Verp and Horp. The vertical space Verp is canonical,
and canonically identified with Lin(Rn, TxM). The horizontal space Horp is
defined by the connection ∇, and it is isomorphic to TxM via the differential
dπ(p) : Horp → TxM.

Fix a frame q : Rn
2 → Lin(Rn,Rn). A frame for Verp is given by

p−1 ◦ q : Rn
2 → Verp. A frame for Horp is given by(

dπp
∣∣
Horp

)−1
◦ p : Rn −→ Horp.

Putting these two things together, we obtain a global frame of Fr(TM),
which is determined by the choice of the horizontal distribution.

Clearly, not every global frame of Fr(TM) arises from a connection on M.
On the other hand, if two connections define the same global frame, then
they coincide. Moreover, a smooth diffeomorphism f : M → M is affine,

i.e., it preserves ∇, if and only if the induced5 map f̃ : Fr(TM) → Fr(TM)
preserves the associated global frame.

5.4. Local projective vector fields. The projective transformations ap-
pear as a natural generalization of the affine ones. While in the affine trans-
formations the connection of a pseudo-Riemannian manifold is preserved, the
projective transformation focus its attention on the geodesics of such a space.
Formally, an automorphism f : M → M from a pseudo-Riemannian mani-
fold (M,g) is a projective transformation if maps bijectively pre-geodesics
onto pre-geodesics. As happen with the affine transformations, the projec-
tive ones determine a Lie group of bounded dimension (see [16, Chapter IV,
Theorem 6.1]). A vector field K is a (local) projective vector field (or an
infinitesimal projective transformation) if its flow defines locally a projec-
tive transformation. These vector fields come characterized by the following
equation, which is a clear generalization of (??)

(LK∇) (X, Y) = ΩK(X)Y −ΩK(Y)X (12)

for all X, Y ∈ X(M) and some one-form ΩK determined by K. Then, the
sheaf of projective vector fields has bounded rank, and we can obtain the
following extension result (compare with Theorem ??).

4By a frame of an N-dimensional vector space V, we mean an isomorphism q : RN → V.
5The induced map f̃ is defined by f̃(p) = df(x) ◦ p, where p : Rn → TxM.
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Theorem 5.5. If (M,g) is a (connected and) simply connected analytic
pseudo-Riemannian manifold, then any local projective vector field extends
globally.

6. Killing and conformal fields for Finsler manifolds

Let (M,F) be a Finsler manifold with F : TM → [0,+∞), namely, a
continuous positive homogeneous function which is smooth away from the
zero section and such that the fundamental tensor defined as

gv(u,w) =
1

2

∂2

∂t∂s
F(v+ tu+ sw)2|t=s=0

for every v ∈ TM and u,w ∈ Tπ(v)M, is positive definite. Let us recall
that the Chern connection associated to a Finsler metric can be seen as a
family of affine connections, namely, for every non-null vector field V on an
arbitrary open subset U ⊂M, we can define an affine connection ∇V in U,
which is torsion-free and almost g-compatible (see for example [12]). The
Chern connection also determines a covariant derivative along any curve
γ : [a, b]→M, which depends on a non-null reference vector W and which
we will denote as DWγ . Let us define a local Killing (resp. conformal) vector
field of (M,F) as a vector field K such that the flow of K gives local isometries
(resp. conformal maps) for every t ∈ R where it is defined. Let us begin by
giving a characterization of (local) Killing and conformal vector fields.

Proposition 6.1. Let (M,F) be a Finsler manifold and K a vector field in
an open subset U ⊂M. Then

(i) K is Killing if and only if gv(v,∇vvK) = 0 for every v ∈ π−1(U).
(ii) K is conformal if and only if there exists a function f : U → (0,+∞)

such that gv(v,∇vvK) = f(π(v))F(v)2 for every v ∈ π−1(U),
where π : TM→M is the canonical projection.

Proof. Given v ∈ π−1(U), let γ : [−1, 1]→ U be a curve such that γ̇(0) = v.
Now let φs be the flow of K in the instant s ∈ R for s small enough in
such a way that the flow is defined for that instant along γ. Define the
two-parameter Λ(t, s) = φs(γ(t)), denote = d

dtΛ(t, s) and βt(s) = Λ(t, s).

By definition β̇t(s) = K. We have that

d

ds
F(γ̇s(t))

2 = 2gγ̇s(D
γ̇s
βt
γ̇s, γ̇s) = 2gγ̇s(D

γ̇s
γs
K, γ̇s). (13)

Here we have used [12, Proposition 3.2]. Observe that K is Killing if and
only if F(γ̇(t)) = F(γ̇s(t)) for every curve γ. By the above equation this is
equivalent to gv(∇vvK, v) = 0 for every v ∈ π−1(U). When K is conformal,
we have that F(γ̇s(t))

2 = h(s, γ(t))F(γ̇(t))2 and then

2gv(∇vvK, v) = f(π(v))F(v)2

where f(p) = ∂h
∂s (0, p). Moreover, if K satisfies an equation of this type for

some function f, then if we define h(s, p) =
∫s
0 f(φµ(p))dµ, we deduce that
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the flow φs is conformal with F(φ∗s(v))
2 = h(s, π(v))F(v)2. This concludes

the proof of part (ii). �

In order to see that local Killing and conformal vector fields of Finsler
manifolds constitute and admissible sheaf, we need to introduce an average
Riemannian metric associated to a Finsler metric. There are several notions
of Riemannian metric (see [8, 19]). We will consider the following one. Let
us define Bp = {v ∈ TpM : F(v) 6 1} and let Ω be the unique one-form (or
density) such that Bp has volume equal to 1 for every p ∈ M. Then we
define the volume form on Sn at u ∈ Sn−1 as

ω(η1, η2, . . . , ηn−1) = Ω(η1, η2, . . . , ηn−1, u)

for every η1, η2, . . . , ηn−1 ∈ TuSn−1. Then the average Riemannian metric
is defined as

gR(v,w) :=

∫
u∈Sn−1

gu(v,w)ω. (14)

The first observation about the average Riemannian metric is that if φ : U ⊂
M→ V ⊂M is a (local) isometry (resp. conformal map) of (M,F), then it is
also a (local) isometry (resp. conformal map) of (M,gR), and in particular,
if K is a local Killing (resp. conformal) vector field of (M,F), then it is also
a local Killing (resp. conformal) vector field of (M,gR). This implies that
the sheaf of local Killing (resp. conformal) vector fields of a Finsler manifold
is admissible, so that Theorem 3.6 aplies whenever M is simply-connected
and the sheaf of local Killing (resp. conformal) vector fields is regular. This
happens for example when the manifold is analytic.

Proposition 6.2. Let (M,F) be a simply-connected analytic Finslerian man-
ifold. Then every local Killing (resp. conformal) vector field can be extended
to a unique Killing (resp. conformal) vector field defined on the whole man-
ifold M.

Proof. As we have seen above that the sheaf of local Killing (resp. confor-
mal) vector fields of a Finsler manifold is admissible, we only have to show
that it is regular and to apply Theorem 3.6. Let p ∈ M be an arbitrary
point and choose an analytic system of coordinates (U,ϕ) such that p ∈ U
and U is simply-connected. Let X̃ be a local Killing (resp. conformal) vec-

tor field of (M,F) in some open subset Ũ ⊂ U. In order to show that the

sheaf is regular in p, we only need to show that X̃ extends to a local Killing
(resp. conformal) vector field of (M,F) in U. As X̃ is also a local Killing
(resp. conformal) vector field of the average Riemannian metric given in

(14), then X̃ can be extended to a local Killing (resp. conformal) vector
field X of gR defined on U. Let us show that X is also a local Killing (resp.
conformal) vector field of (M,F). Given any vector v ∈ π−1(U), let V be
the vector field obtained as the inverse image by ϕ∗ of the constant vec-
tor field ϕ(v) in ϕ(U). Now observe that in the case that X̃ is conformal,

the function f : Ũ → (0,+∞) in part (ii) of Proposition 6.1 is given by
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f(p) = gV(∇VVX,V)/F(V)2, and thus, f extends analitically to U. Then

gV(∇VVX,V) = 0 (resp. gV(∇VVX,V) = f(π(V))F(V)2), because it is an ana-

lytic equation in U that is zero in Ũ, so it has to be zero in all U. As this
can be done for any v ∈ π−1(U), we conclude by Proposition 6.1 that X is
local Killing (resp. conformal) for (M,F), as required. �

6.1. Applications. Thanks to previous results, we are able to give a nice
characterization of the homogeneity of Finsler manifolds. For this, we
first need the following technical lemma, which is well known on Semi-
Riemannian Geometry

Lemma 6.3. On a complete Finslerian Manifold M every global Killing
vector field K is complete.

The proof follows by using the same arguments as in the Semi-Riemannian
case (see [21, Proposition 9.30] for instance), and taking into account that
the Jacobi fields are well-enough behaved on the Finslerian settings (see
[13, Section 3.4 ], specially Proposition 3.13 and Lemma 3.14). With this
previous result at hand, we are in conditions to prove the following charac-
terization:

Theorem 6.4. Let M be a (connected and) simply-connected, complete
Finslerian manifold. Then, M is homogeneous if, and only if, the following
two conditions hold:

(i) κFp is constant on M and;
(ii) for some point p0 ∈M and all v ∈ Tp0M there exists a local Killing

vector field V such that V(p0) = v.

Proof. Let us begin with the right implication. As the Finslerian manifold
is homogeneous, the pseudo-group D(F) associated to the full sheaf F of
local Killing vector fields is transitive, and so, Proposition 5.2 ensures (i).
For (ii) recall that, for each v ∈ Tp0M we can consider ε > 0 and a 1-
parameter family of isometries {ψt}t∈(−ε,ε) : M → M with ψ0(p0) = p0

and ∂
∂t |t=0(ψt(p0)) = v. Then, V(p) = ∂

∂t |t=0(ψt(p)) is a Killing vector
field with V(p0) = v, and so, (ii) is satisfied.

For the left implication, let us assume that (i) and (ii) hold. As κFp is
constant, the sheaf of local Killing vector fields F, which is an admissible
sheaf, is also a regular one. Then, as M is simply-connected, Theorem 3.6
ensures that any local Killing vector field extends globally. Moreover, from
previous Lemma, such a global Killing vector fields are complete, and so,
the pseudo-group D(F) is truly a group.

Now, let us define the following subset of M

M ′ = {p ∈M : p = ψ(p0) for some ψ ∈ D(F)},

i.e., the orbit of the point p0 under the action of the group D(F). As the
natural map ϕp0 : D(F)→M which takes an element ψ ∈ D(F) to ψ(p0) is
regular, the subset M ′ is a submanifold of M. Moreover, from construction,
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it is also a complete submanifold, as it is homogeneous respect the induced
Finsler metric (observe that [21, Remark 9.37] is also true for the Finsler
case). Finally, let us prove that M ′ contains an open set of M. In fact, for
all v ∈ Tp0M, let us denote by V the global Killing vector field such that
V(p0) = v (recall (ii)). Then, if we denote by ψV : R → M the flow of V
with ψV(0) = p0, the set

U := {p ∈M : p = ψV(1) for some v ∈ Tp0M }

is open for M and it is contained in M ′, as each ψV belongs to D(F).
In conclusion, M ′ is a complete and homogeneous submanifold of M with
dimension n. Therefore, M ′ =M, and so, M is an homogeneous Finslerian
manifold.

�

7. Pseudo-Finsler local Killing fields

Let us now consider infinitesimal symmetries of another type of structure
that cannot be described in terms of a finite order G-structure: pseudo-
Finsler structure. These structures are the indefinite counterpart to Finsler
structures, in the same way Lorentzian or pseudo-Riemannian metrics are
the indefinite counterpart to Riemannian metrics. A precise definition will
be given below. Let us observe here that, unlike the Finsler (i.e., positive
definite) case, the construction of average metrics is not possible in this
situation, and we have to resort to a different type of construction, based
on the notion of Sasaki metrics.

7.1. Conic pseudo-Finsler structures. Let us recall that a pseudo-Finsler
structure (or a conic pseudo-Finsler structure) on a (connected) manifold
M consists of an open subset T ⊂ T0M, where T0M denotes the tangent
bundle with its zero section removed, and a smooth function L : T → R

satisfying the following properties:

(i) for all p ∈M, the intersection Tp = T∩TpM is a non empty open cone
of the tangent space TpM;

(ii) L(tv) = t2L(v) for all v ∈ T and all t > 0;

(iii) for all v ∈ T, the Hessian gv(u,w) = 1
2
∂2

∂t∂sL(v + tu + sw)|t=s=0
nondegenerate.

By continuity, the fundamental tensor gv has constant index, which is called
the index of the pseudo-Finsler structure. The case when T = T0M and the
index of gv is zero, i.e., gv is positive definite for all v, is the standard
Finsler structure. When gv does not depend on v, then we have a standard
pseudo-Riemannian manifold. As in the classical Finsler metrics, we can
define the associated Chern connection as a family of affine connection (see
for example [12]).
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7.2. Pseudo-Finsler isometries. An isometry of the pseudo-Finsler struc-
ture (M,T, L) is a diffeomorphism f of M, with df(T) = T and L ◦ df = L.
The notion of local isometry is defined similarly. Clearly, the set Iso(M,T, L)
of such pseudo-Finsler isometries is a group with respect to composition, and
one has a natural action of Iso(M,T, L) on M. It is proved in [9] that this
action makes Iso(M,T, L) into a Lie transformation group of M. In Appen-
dix A we will show that dim (Iso(M,T, L)) 6 1

2n(n+1), where n = dim(M).
By a similar argument, we will show here that the same inequality holds for
the dimension of the space of germs of infinitesimal symmetries of a pseudo-
Finsler manifold, see Proposition 7.1.

Given a pseudo-Finsler structure (M,T, L) of index k, there is an associ-
ated pseudo-Riemannian metric of index 2k on the manifold T, called the
Sasaki metric of (M,T, L), that will be denoted by gL, and which is defined
as follows. Let π : TM → M be the canonical projection. The geodesic
spray of L defines a horizontal distribution on T, i.e., a rank n distribution
on T which is everywhere transversal to the canonical vertical distribution.
Equivalently, the horizontal distribution associated to L can be defined us-
ing the Chern connection of the pseudo-Finsler structure. In particular, a
vector X ∈ TTM is horizontal iff Dαπ(α)α(0) = 0, where D is the covariant

derivative induced by the Chern connection, and α : (−ε, ε) → TM is a
curve (transversal to the fibers) such that α̇(0) = X. For p ∈M and v ∈ Tp,

let us denote by Verv = Ker(dπv) and HorFv the corresponding subspaces
of TvT. One has a canonical identification iv : TpM → HorLv (given by the
differential at v of the inclusion TpM ↪→ TM); moreover, the restriction of

dπv : HorLv → TpM is an isomorphism. The Sasaki metric gL is defined by
the following properties:

• on Verv, g
L is the push-forward of the fundamental tensor gv by the

isomorphism iv : TpM→ Verv;

• on HorLv , gL is the pull-back of the fundamental tensor gv by the
isomorphism dπv : HorLv → TpM;

• Verv and HorLv are gL-orthogonal.

A (local) vector field X on M whose flow consists of (local) isometries for
the pseudo-Finsler structure (M,T, L) will be called a (local) Killing field of
(M,T, L).

7.3. Lifting of isometries and Killing fields. If f is a (local) isometry of
(M,T, L), then df is a local isometry of the pseudo-Riemannian manifold T

endowed with the Sasaki metric gL. This is proved in [9], see Appendix A.
The lifting f 7→ df of pseudo-Finsler isometries preserves the composition

of diffeomorphisms. Thus, given a (local) vector field X in M, the flow of

X can be lifted to a flow in TM; this is the flow of a (local) vector field X̃
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in TM. If X is a Killing field of (M,T, L), then X̃ is tangent to T,6 and we

obtain (by restriction) a vector field on T. Clearly, the flow of X̃ consists

of gL-isometries, so that X̃ is a (local) Killing vector field of the pseudo-

Riemannian manifold (T, gL). An explicit formula for X̃ can be written
using local coordinates and an auxiliary symmetric connection on M. If Ft
denotes the flow of X and F̃t = dFt its lifting, we have:

X̃(v) = d
dt

∣∣
t=0

F̃t(v) =
d
dt

∣∣
t=0

dFt(v)

for all v ∈ T and all x ∈ M. The curve t 7→ dFt(v) projects onto the curve

t 7→ Ft(x) in M, so that the horizontal component of X̃(v) is:[
X̃(v)

]
hor

= X(x). (15)

Using the auxiliary connection, let us compute the vertical component of

X̃(v) by: [
X̃(v)

]
ver

= D
dt

∣∣
t=0

[
dFt(v)

]
= ∇vX. (16)

7.4. The sheaf of local pseudo-Finsler Killing fields. Let FpF denote
the sheaf of local Killing fields of (M,T, L). Using the relations between the
pseudo-Finsler structure and the associated Sasaki metric, we can prove the
following:

Proposition 7.1. Let (M,T, L) be a pseudo-Finsler manifold, with n =
dim(M). Then:

(a) FpF has bounded rank: for all open connected subset U ⊂M

dim
(
FpF(U)

)
6 1
2n(n+ 1);

(b) FpF has the unique continuation property.

Proof. Denote by FpR(gL) the sheaf of local Killing fields of the pseudo-
Riemannian manifold (T, gL), where gL is the Sasaki metric of (M,T, L).

Given a connected open subset U ⊂M, denote by Ũ = π−1(U) ∩ T, where

π : TM→M is the canonical projection. Then, Ũ is a connected open subset

of T. Given X ∈ FpF(U), let X̃ ∈ X(Ũ) be the lifting of X. As we have seen

in Subsection 7.3, X̃ ∈ FpR(gL)(Ũ), and the maps X 7→ X̃ gives an injective

linear map from FpF(U) to X̃ ∈ FpR(gF)(Ũ). Injectivity follows easily from

the fact that, for v ∈ Ũ and x = π(v), then the vertical horizontal component

of X̃(v) is X(x). Then, rank boundedness and unique continuation property
for the sheaf FpF follow immediately from the corresponding properties of

FpR(gL). �

6M. A: esto no lo he entendido bien. Creo que el punto crucial aqui es que el flujo de
X̃ preserva τ. Que el campo X̃ sea tangente a τ no quiere decir nada, pues τ es un abierto
de TM, no?
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Corollary 7.2. Let (M,T, L) be a simply connected pseudo-Finsler mani-
fold. If (M,T, L) is either locally homogeneous, or real-analytic, then every
local Killing field for (M,T, L) admits a global extension.

Proof. By Proposition 7.1, the sheaf of local Killing fields of (M,τ, L) is
admissible. The conclusion will follow from Theorem 3.6, once we show
that the sheaf is regular. Consider any point p ∈ M and an open (simply-
connected) subset U which contains p and it admits a coordinate system.
Now let q ∈ U and K a local Killing field of (M,τ, L) defined in U ′ ⊂ U,

with q ∈ U ′ and K̃, the lift to TM which is a local Killing field of (TM, gL).
Observe that as the sheaf of local Killing fields of a pseudo-Riemannian
manifold is admissible and regular (when all the data is analytic), then

K̃ can be extended to a Killing field K̂ in Ũ = π−1(U). Let us see that

K̂ is a projectable vector field. Observe that a vector field X in TM is
projectable if and only if H([X,V]) = 0 for every vertical vector field V, where
H denotes the projection to the horizontal subspace. Moreover in π−1(U)
we can consider the vertical partial vectors ∂yi of the natural coordinates

(x, y). Then we know that H([K̂, ∂yi ]) = 0 in π−1(U ′) for i = 1, . . . , n. As

H([K̂, ∂yi ]) is analytic, it has to be zero in U, and this implies that K̂ is

projectable. This means that the flow of K̂ sends vertical spaces to vertical
spaces, and as it is given by local isometries of (TM, gL), horizontal spaces

to horizontal spaces. This implies that the flow of the projection π∗(K̂) acts
by local isometries and then it is a local Killing field of (M,τ, L) in U that
extends K. �

Appendix A. Dimension of the group of pseudo-Finsler
isometries

Let (M,T, L) be a pseudo-Finsler structure of index k, as defined in Sec-
tion 7, and let gL be the associated Sasaki metric on T.

It is proved in [9, Lemma 1] that, given any C2-diffeomorphism f :M→
M, one has the following commutative diagrams:

Tv(TM)
d2f //

dπ

��

Tdf(v)(TM)

dπ

��
TpM

df
// Tf(p)M

TpM
df //

iv
��

Tf(p)M

idf(v)

��
Verv

d2f

// Verd2f(v)

(17)

Using this diagram, it is proved in [9] that if f is an isometry of (M,T, L),
then df : T → T is an isometry of gL.

We have the canonical upper bound on the dimension of the isometry
group of a pseudo-Finsler structure.

The map f 7→ df gives a natural injection of Iso(M,T, L) into the isometry
group of the Sasaki pseudo-Riemannian metric gL. Since dim(T) = 2n, then
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we have dim (Iso(M,T, L)) 6 n(2n + 1), where n = dim(M). However, the
following sharper estimate holds:

Proposition A.1. Let (Mn,T, L) be a pseudo-Finsler manifold. Then, the
Lie group Iso(M,T, L) has dimension less than or equal to 1

2n(n+ 1).

Proof. Using (17), one sees that using the identifications iv : TpM
∼=−→ Verv

and dπv : HorFv
∼=−→ TpM, for all f ∈ Iso(M,T, L), both restrictions of d(df)

to Verv and to HorFv of d(df)v coincide with dfv : TpM → Tf(p)M. This

gives dim
(
Iso(M,T, L)

)
6 1
2n(n+ 1). �
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