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G-structure on sets

X0 set, Bij(X0) group of bijections f : X0 → X0.

X another set, with Bij(X0, X ) 6= ∅.

Bij(X0) acts transitively on Bij(X0, X ) by composition on the right.

G ⊂ Bij(X0) subgroup

Definition
A G-structure on X modeled on X0 is a subset P of Bij(X0, X ) which is
a G-orbit.

(a) p−1 ◦ q : X0 → X0 is in G, for all p, q ∈ P;
(b) p ◦ g : X0 → X is in P, for all p ∈ P and all g ∈ G.

Given a G-structure P on X and a G-structure Q on Y , a map
f : X → Y is G-structure preserving if f ◦ p ∈ Q for all p ∈ P.
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Examples of G-structure

Example (1)
V n-dimensional vector space

A frame is an iso p : Rn → V , FR(V ) ⊂ Bij(Rn, V )
GL(n) acts on the right transitively on FR(V ), hence FR(V ) is a
GL(n)-structure on V .
Conversely, given a GL(n)-structure P ⊂ Bij(Rn, V ) on a set V , there
exists a unique vector space structure on V such that P = FR(V ).
More generally, FRV0(V ) is a GL(V0)-structure on V .

Example (2)
M0, M diffeomorphic differentiable manifolds
Diff(M0, M) ⊂ Bij(M0, M) is a Diff(M0)-structure on M.
Conversely, given a Diff(M0)-structure P ⊂ Bij(M0, M) on a set M,
there exists a unique differentiable structure on M such that
P = Diff(M0, M).
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Strengthening G-structures

Given a G-structure P ⊂ Bij(X0, X ) on X and a subgroup H ⊂ G.

An H-structure Q ⊂ P is a strengthening of P.

Example
Giving an O(n)-structure Q ⊂ FR(V ) is the same as giving a
positive definite inner product on V .
SO(n)-structure Q ⊂ FR(V ) ⇐⇒ inner product + orientation on V
If n = 2m, U(m)-structure Q ⊂ FR(V ) ⇐⇒ real positive definite
inner product on V and an orthogonal complex structure on V
SL(n)-structure Q ⊂ FR(V ) ⇐⇒ a volume form on V
A 1-structure Q ⊂ FR(V ) is an identification of V with Rn.

Given a G-structure P ⊂ Bij(X0, X ) and a subgroup H ⊂ G, there are
[G : H] strengthening H-structures of P.
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Principal spaces

Definition
A principal space consists of a set P 6= ∅, a group G (structural group)
and a free and transitive right action of G on P.

Each p ∈ P gives a bijection βp : G → P, βp(g) = p · g

Example
G = V vector space, a principal space with structural group G is
an affine space parallel to V .
Any group is a principal space with structural group G (right
multiplication)
Given a subgroup H ⊂ G, for all g ∈ G the left coset gH is a
principal space with structural group H.
FRV0(V ) is a principal space with structural group GL(V0).
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Fiber products
A G-space is a set N carrying a left G-action.

Given a principal space P with structural group G and a G-space N,
there is a left G-action on P × N: g · (p, n) = (pg−1, gn).

Definition
The fiber product P ×G N is the quotient (P × N)/G.

For all p ∈ P, the map p̂ : N → P ×G N, p̂(n) = [p, n] is a bijection.

Example
Given a representation ρ : G → GL(V0) (i.e., a left action of G on V0 by
linear isomorphisms) and a G-principal space P, the set:

P̂ ⊂ FRV0(P ×G V0)

consisting of all bijections p̂ : V0 → P ×G V0 is a GL(V0)-structure.
Hence, P ×G V0 has the structure of a vector space.
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Principal fiber bundles

a set P (total space)

a differentiable manifold M (base space)
a map Π : P → M (projection)
a Lie group G (structural group)
a right action of G on P that makes the fiber Px = Π−1(x) a
principal space, for all x ∈ m
a maximal atlas of admissible local sections of Π.

Lemma
There exists a unique differentiable structure on P that makes the
action of G on P smooth, Π a smooth submersion, Px a smooth
submanifold, every admissible local section s : U ⊂ M → P smooth,.

Verp = Ker
(
dΠp

)
⊂ TpP vertical space;

canonical isomorphism dβp(1) : g
∼=−→ VerpP.
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Examples of principal fiber bundles

trivial principal bundle: M manifold, G Lie group, P0 a principal
G-space, P = M × P0.

quotient of Lie groups: G Lie group, H ⊂ G closed subgroup,
Π : G → G/H projection; for x ∈ G/H, Π−1(x) is a left coset of H
in G. H is the structural group.
restriction: Π : P → M principal fiber bundle, U ⊂ M open subset
P|U = Π−1(U).
principal subbundles: Π : P → M principal fiber bundle with
structural group G, H ⊂ G a Lie subgroup, Q ⊂ P satisfying:

I for all x ∈ M, Qx = Px ∩Q is a principal subspace of Px with
structural group H;

I for all x ∈ M, there exists a smooth local section s : U → P with
x ∈ U and s(U) ⊂ Q.

pull-backs: Π : P → M principal fiber bundle, f : M ′ → M smooth
map, f ∗P =

⋃
y∈M′

(
{y} × Pf (y)

)
.
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Associated and vector bundles
G Lie group, Π : P → M a G-principal bundle, N a differential G-space

Associated bundle: P ×G N =
⋃

x∈M Px ×G N

Definition
A vector bundle consists of:

a set E (total space)
a differentiable manifold M (base manifold)
a map π : E → M (projection)
a finite dimensional vector space E0 (typical fiber)
a vector space structure on each fiber Ex = π−1 isomorphic to E0

a maximal atlas of admissible local sections of the fiber bundle
FRE0(E) =

⋃
x∈M FRE0(Ex).

FRE0(E)×GL(E0) E0
∼= E , [p, e0] 7→ p(e0) ∈ E

Def.: A G-structure on E is a G-principal subbundle of FR(E).

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 13 / 33



Associated and vector bundles
G Lie group, Π : P → M a G-principal bundle, N a differential G-space
Associated bundle: P ×G N =

⋃
x∈M Px ×G N

Definition
A vector bundle consists of:

a set E (total space)
a differentiable manifold M (base manifold)
a map π : E → M (projection)
a finite dimensional vector space E0 (typical fiber)
a vector space structure on each fiber Ex = π−1 isomorphic to E0

a maximal atlas of admissible local sections of the fiber bundle
FRE0(E) =

⋃
x∈M FRE0(Ex).

FRE0(E)×GL(E0) E0
∼= E , [p, e0] 7→ p(e0) ∈ E

Def.: A G-structure on E is a G-principal subbundle of FR(E).

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 13 / 33



Associated and vector bundles
G Lie group, Π : P → M a G-principal bundle, N a differential G-space
Associated bundle: P ×G N =

⋃
x∈M Px ×G N

Definition
A vector bundle consists of:

a set E (total space)
a differentiable manifold M (base manifold)
a map π : E → M (projection)
a finite dimensional vector space E0 (typical fiber)
a vector space structure on each fiber Ex = π−1 isomorphic to E0

a maximal atlas of admissible local sections of the fiber bundle
FRE0(E) =

⋃
x∈M FRE0(Ex).

FRE0(E)×GL(E0) E0
∼= E , [p, e0] 7→ p(e0) ∈ E

Def.: A G-structure on E is a G-principal subbundle of FR(E).

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 13 / 33



Associated and vector bundles
G Lie group, Π : P → M a G-principal bundle, N a differential G-space
Associated bundle: P ×G N =

⋃
x∈M Px ×G N

Definition
A vector bundle consists of:

a set E (total space)

a differentiable manifold M (base manifold)
a map π : E → M (projection)
a finite dimensional vector space E0 (typical fiber)
a vector space structure on each fiber Ex = π−1 isomorphic to E0

a maximal atlas of admissible local sections of the fiber bundle
FRE0(E) =

⋃
x∈M FRE0(Ex).

FRE0(E)×GL(E0) E0
∼= E , [p, e0] 7→ p(e0) ∈ E

Def.: A G-structure on E is a G-principal subbundle of FR(E).

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 13 / 33



Associated and vector bundles
G Lie group, Π : P → M a G-principal bundle, N a differential G-space
Associated bundle: P ×G N =

⋃
x∈M Px ×G N

Definition
A vector bundle consists of:

a set E (total space)
a differentiable manifold M (base manifold)

a map π : E → M (projection)
a finite dimensional vector space E0 (typical fiber)
a vector space structure on each fiber Ex = π−1 isomorphic to E0

a maximal atlas of admissible local sections of the fiber bundle
FRE0(E) =

⋃
x∈M FRE0(Ex).

FRE0(E)×GL(E0) E0
∼= E , [p, e0] 7→ p(e0) ∈ E

Def.: A G-structure on E is a G-principal subbundle of FR(E).

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 13 / 33



Associated and vector bundles
G Lie group, Π : P → M a G-principal bundle, N a differential G-space
Associated bundle: P ×G N =

⋃
x∈M Px ×G N

Definition
A vector bundle consists of:

a set E (total space)
a differentiable manifold M (base manifold)
a map π : E → M (projection)

a finite dimensional vector space E0 (typical fiber)
a vector space structure on each fiber Ex = π−1 isomorphic to E0

a maximal atlas of admissible local sections of the fiber bundle
FRE0(E) =

⋃
x∈M FRE0(Ex).

FRE0(E)×GL(E0) E0
∼= E , [p, e0] 7→ p(e0) ∈ E

Def.: A G-structure on E is a G-principal subbundle of FR(E).

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 13 / 33



Associated and vector bundles
G Lie group, Π : P → M a G-principal bundle, N a differential G-space
Associated bundle: P ×G N =

⋃
x∈M Px ×G N

Definition
A vector bundle consists of:

a set E (total space)
a differentiable manifold M (base manifold)
a map π : E → M (projection)
a finite dimensional vector space E0 (typical fiber)

a vector space structure on each fiber Ex = π−1 isomorphic to E0

a maximal atlas of admissible local sections of the fiber bundle
FRE0(E) =

⋃
x∈M FRE0(Ex).

FRE0(E)×GL(E0) E0
∼= E , [p, e0] 7→ p(e0) ∈ E

Def.: A G-structure on E is a G-principal subbundle of FR(E).

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 13 / 33



Associated and vector bundles
G Lie group, Π : P → M a G-principal bundle, N a differential G-space
Associated bundle: P ×G N =

⋃
x∈M Px ×G N

Definition
A vector bundle consists of:

a set E (total space)
a differentiable manifold M (base manifold)
a map π : E → M (projection)
a finite dimensional vector space E0 (typical fiber)
a vector space structure on each fiber Ex = π−1 isomorphic to E0

a maximal atlas of admissible local sections of the fiber bundle
FRE0(E) =

⋃
x∈M FRE0(Ex).

FRE0(E)×GL(E0) E0
∼= E , [p, e0] 7→ p(e0) ∈ E

Def.: A G-structure on E is a G-principal subbundle of FR(E).

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 13 / 33



Associated and vector bundles
G Lie group, Π : P → M a G-principal bundle, N a differential G-space
Associated bundle: P ×G N =

⋃
x∈M Px ×G N

Definition
A vector bundle consists of:

a set E (total space)
a differentiable manifold M (base manifold)
a map π : E → M (projection)
a finite dimensional vector space E0 (typical fiber)
a vector space structure on each fiber Ex = π−1 isomorphic to E0

a maximal atlas of admissible local sections of the fiber bundle
FRE0(E) =

⋃
x∈M FRE0(Ex).

FRE0(E)×GL(E0) E0
∼= E , [p, e0] 7→ p(e0) ∈ E

Def.: A G-structure on E is a G-principal subbundle of FR(E).

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 13 / 33



Associated and vector bundles
G Lie group, Π : P → M a G-principal bundle, N a differential G-space
Associated bundle: P ×G N =

⋃
x∈M Px ×G N

Definition
A vector bundle consists of:

a set E (total space)
a differentiable manifold M (base manifold)
a map π : E → M (projection)
a finite dimensional vector space E0 (typical fiber)
a vector space structure on each fiber Ex = π−1 isomorphic to E0

a maximal atlas of admissible local sections of the fiber bundle
FRE0(E) =

⋃
x∈M FRE0(Ex).

FRE0(E)×GL(E0) E0
∼= E , [p, e0] 7→ p(e0) ∈ E

Def.: A G-structure on E is a G-principal subbundle of FR(E).

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 13 / 33



Associated and vector bundles
G Lie group, Π : P → M a G-principal bundle, N a differential G-space
Associated bundle: P ×G N =

⋃
x∈M Px ×G N

Definition
A vector bundle consists of:

a set E (total space)
a differentiable manifold M (base manifold)
a map π : E → M (projection)
a finite dimensional vector space E0 (typical fiber)
a vector space structure on each fiber Ex = π−1 isomorphic to E0

a maximal atlas of admissible local sections of the fiber bundle
FRE0(E) =

⋃
x∈M FRE0(Ex).

FRE0(E)×GL(E0) E0
∼= E , [p, e0] 7→ p(e0) ∈ E

Def.: A G-structure on E is a G-principal subbundle of FR(E).
Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 13 / 33



Outline

1 G-structures

2 Principal spaces and fiber products

3 Principal fiber bundles

4 Connections

5 Inner torsion of a G-structure

6 Immersion theorems

7 Examples

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 14 / 33



Principal connections
Π : P → M principal fiber bundle, G structural group

A principal connection on P is a distribution Hor(P) ⊂ TP:
TpP = Horp ⊕ Verp

Horpg = Horp · g
Connection form of Hor: g-valued one form ω on P:

Ker(ωp) = Horp, ωp|Verp = dβp(1)−1 : Verp
∼=−→ g

G-principal bundles Π : P → M, Π′ : Q → M with connections Hor(P)
and Hor(Q) and a morphism of principal bundles φ : P → Q, then φ is
connection preserving if:

dφ
(
Hor(P)

)
⊂ Hor(Q) ⇐⇒ φ∗(ωQ) = ωP

Properties of principal connections
can be pushed forward
induce connections on all associated bundles
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Connections on vector bundles

Definition
A connection on the vector bundle E is an R-bilinear map
∇ : IΓ(TM)× IΓ(E) 3 (X , ε) 7−→ ∇X ε ∈ IΓ(E)

C∞(M)-linear in X
Leibnitz rule: ∇X (f ε) = X (f )ε + f∇X ε

a section s : U ⊂ M → FR(E) (trivialization of E) defines a
connection in E |U : ∇s

vε = s(x)
(
d(s−1ε)xv

)
x ∈ U, v ∈ TxM.

the difference ∇−∇s defines the Christoffel tensor:
Γs

x : TxM × Ex → Ex

∇ induces natural connections on all vector bundles obtained with
functorial constructions from E : sums, tensor products, duals,
pull-backs, ...

Connections on E ⇐⇒ Principal connections on FR(E)
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Curvature and torsion
Curvature tensor of ∇: R : IΓ(TM)× IΓ(TM)× IΓ(E) −→ IΓ(E)

R(X , Y )ε = ∇X∇Y ε−∇Y∇X ε−∇[X ,Y ]ε

Rx : TxM × TxM × Ex → Ex

Given ι : TM → E vector bundle morphism, ι-torsion tensor:
T ι : IΓ(TM)× IΓ(TM) → IΓ(E)

T ι(X , Y ) = ∇X
(
ι(Y )

)
−∇Y

(
ι(X )

)
− ι
(
[X , Y ]

)
T ι

x : TxM × TxM → Ex

When E = TM, torsion: T (X , Y ) = ∇X Y −∇Y X − [X , Y ].

∇ is symmetric if T = 0
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Gauss, Codazzi and Ricci equations
π1 : E1 → M and π2 : E2 → M vector bundle.
Whitney sum: π : E = E1 ⊕ E2 → M, pri : E → E i projection.

∇ connection on E . Given sections εi ∈ IΓ(E i):
∇1

X ε1 = pr1
(
∇X ε1

)
connection in E1

∇2
X ε1 = pr2

(
∇X ε2

)
connection in E2

α1(X , ε2) = pr1
(
∇X ε2

)
, tensor α1

x : TxM × E2
x → E1

x
α2(X , ε1) = pr2

(
∇X ε1

)
, tensor α2

x : TxM × E1
x → E2

x
Gauss equation:

pr1
(
R(X , Y )ε1

)
= R1(X , Y )ε1 + α1(X , α2(Y , ε1)

)
− α1(Y , α2(X , ε1)

)
Codazzi equations

pr2
(
R(X , Y )ε1

)
= ∇α2(X , Y , ε1)−∇α2(Y , X , ε1) + α2(T (X , Y ), ε1

)
pr1
(
R(X , Y )ε2

)
= ∇α1(X , Y , ε2)−∇α1(Y , X , ε2) + α1(T (X , Y ), ε2

)
Ricci equation

pr2
(
R(X , Y )ε2

)
= R2(X , Y )ε2 + α2(X , α1(Y , ε2)

)
− α2(Y , α1(X , ε2)

)
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Inner torsion via principal fiber bundles
π : E → M vector bundle, G ⊂ GL(k), P ⊂ FR(E) a G-structure

Hor
(
FR(E)

)
⊂ T

(
FR(E)

)
principal connection.

If for p ∈ P, Horp
(
FR(E)

)
⊂ TpP, Hor|P is a principal connection in P.

TpP ⊂ Tp
(
FR(E)

)
= Horp ⊕ Verp

(dΠp,ωp)
−→∼= TxM ⊕ gl(Rk )

Since dΠp : TpP
∼=−→ TxM and (dΠp, ωp)(TpP) ∩ gl(Rk ) = g, there

exists L : TxM → gl(Rk )/g linear s.t.:

TpP ∼=
{
(v , X ) ∈ TxM ⊕ gl(Rk ) : L(v) = X + g

}
OBS 1: L = 0 ⇐⇒ TpP ∼= Tx ⊕ g ⇐⇒ Horp ⊂ TpP

OBS 2: Adp : gl(Rk )
∼=−→ gl(Ex), Adp : gl(Rk )/g

∼=−→ gl(Ex)/gx ,

IP
x = Adp ◦ L : TxM −→ gl(Ex)/gx does not depend on p!

inner
torsion
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Inner torsion via vector bundles

π : E → M vector bundle

G ⊂ GL(Rk ) Lie subgroup
P ⊂ FR(E) a G-structure on E
∇ connection on E
s : U → P frame of E compatible with P, x ∈ U
Γx : TxM → gl(Ex) Christoffel tensor of ∇ rel. to s
ω connection form of Hor

(
FRE0(E)

)
and ω̄ = s∗ω

IP
x : TxM → gl(Ex)/gx is given by:

TxM
ω̄x

//

IP
x

++

Γx &&LLLLLLLLLLL gl(Rk )
quotient

//

Adp

��

gl(Rk )/g
Adp

// gl(Ex)/gx

gl(Ex)
quotient

77
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An example

π : E → M vector bundle with a Riemannian metric g

∇ connection on E .
O(k)-structure of g-orthonormal frames of E : P ⊂ FR(E)

Lin(Ex)/so(Ex) ∼= sym(Ex) by the map T 7→ 1
2(T + T ∗).

An explicit computation using local sections of E that are constant in
some orthonormal frame s : U → P gives:

IP
x (v) = 1

2

(
Γ(v) + Γ(v)∗

)
= −1

2∇v g ∈ sym(Ex)

for all x ∈ M, v ∈ TxM.

Lemma
IP

x = 0 iff g is ∇-parallel.

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 22 / 33



An example

π : E → M vector bundle with a Riemannian metric g
∇ connection on E .

O(k)-structure of g-orthonormal frames of E : P ⊂ FR(E)

Lin(Ex)/so(Ex) ∼= sym(Ex) by the map T 7→ 1
2(T + T ∗).

An explicit computation using local sections of E that are constant in
some orthonormal frame s : U → P gives:

IP
x (v) = 1

2

(
Γ(v) + Γ(v)∗

)
= −1

2∇v g ∈ sym(Ex)

for all x ∈ M, v ∈ TxM.

Lemma
IP

x = 0 iff g is ∇-parallel.

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 22 / 33



An example

π : E → M vector bundle with a Riemannian metric g
∇ connection on E .
O(k)-structure of g-orthonormal frames of E : P ⊂ FR(E)

Lin(Ex)/so(Ex) ∼= sym(Ex) by the map T 7→ 1
2(T + T ∗).

An explicit computation using local sections of E that are constant in
some orthonormal frame s : U → P gives:

IP
x (v) = 1

2

(
Γ(v) + Γ(v)∗

)
= −1

2∇v g ∈ sym(Ex)

for all x ∈ M, v ∈ TxM.

Lemma
IP

x = 0 iff g is ∇-parallel.

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 22 / 33



An example

π : E → M vector bundle with a Riemannian metric g
∇ connection on E .
O(k)-structure of g-orthonormal frames of E : P ⊂ FR(E)

Lin(Ex)/so(Ex) ∼= sym(Ex) by the map T 7→ 1
2(T + T ∗).

An explicit computation using local sections of E that are constant in
some orthonormal frame s : U → P gives:

IP
x (v) = 1

2

(
Γ(v) + Γ(v)∗

)
= −1

2∇v g ∈ sym(Ex)

for all x ∈ M, v ∈ TxM.

Lemma
IP

x = 0 iff g is ∇-parallel.

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 22 / 33



An example

π : E → M vector bundle with a Riemannian metric g
∇ connection on E .
O(k)-structure of g-orthonormal frames of E : P ⊂ FR(E)

Lin(Ex)/so(Ex) ∼= sym(Ex) by the map T 7→ 1
2(T + T ∗).

An explicit computation using local sections of E that are constant in
some orthonormal frame s : U → P gives:

IP
x (v) = 1

2

(
Γ(v) + Γ(v)∗

)
= −1

2∇v g ∈ sym(Ex)

for all x ∈ M, v ∈ TxM.

Lemma
IP

x = 0 iff g is ∇-parallel.

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 22 / 33



An example

π : E → M vector bundle with a Riemannian metric g
∇ connection on E .
O(k)-structure of g-orthonormal frames of E : P ⊂ FR(E)

Lin(Ex)/so(Ex) ∼= sym(Ex) by the map T 7→ 1
2(T + T ∗).

An explicit computation using local sections of E that are constant in
some orthonormal frame s : U → P gives:

IP
x (v) = 1

2

(
Γ(v) + Γ(v)∗

)
= −1

2∇v g ∈ sym(Ex)

for all x ∈ M, v ∈ TxM.

Lemma
IP

x = 0 iff g is ∇-parallel.

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 22 / 33



Outline

1 G-structures

2 Principal spaces and fiber products

3 Principal fiber bundles

4 Connections

5 Inner torsion of a G-structure

6 Immersion theorems

7 Examples

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 23 / 33



Affine immersions

Problem. Given objects:

M an n-dimensional differentiable manifold
M an n̄-dimensional differentiable manifold
π : E → M a vector bundle over M with typical fiber Rk , n̄ = n + k
∇̂ a connection on Ê = TM ⊕ E
∇ a connection on TM

Definition

An affine immersion of (M, E , ∇̂) into (M,∇) is a pair (f , L), where
f : M → M is a smooth map, L : Ê → f ∗TM is a connection preserving
vector bundle isomorphism with: Lx |Tx M = dfx , ∀ x ∈ M.

Uniqueness: If M is connected, given (f 1, L1) and (f 2, L2) with
f 1(x0) = f 2(x0) and L1(x0) = L2(x0), then (f 1, L1) = (f 2, L2).
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Infinitesimally homogeneous manifolds – 1

(M,∇) affine manifold

G ⊂ GL(n) Lie subgroup,

P ⊂ FR(TM) a G-structure.

For x ∈ M, Gx ⊂ GL(TxM) subgroup of G-structure preserving
endomorphisms, gx = Lie(Gx).

σ : TxM → TyM G-structure preserving,
Iσ : GL(TxM) 3 T 7→ σ ◦ T ◦ σ−1 ∈ GL(TyM).

Adσ : gl(TxM) → gl(TyM) =⇒ Adσ : gl(TxM)/gx → gl(TyM)/gy .
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Infinitesimally homogeneous manifolds – 2

Definition
(M,∇, P) is infinitesimally homogeneous if for all σ : TxM → TyM
G-structure preserving:

Adσ ◦ IP
x = IP

y ◦ σ

Tx is σ-related with Ty

Rx is σ-related to Ry .

Theorem
(M,∇, P) is infinitesimally homogeneous iff IP , T and R are constant
in frames of the G-structure P.
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The immersion theorem – 1

Theorem (part 1)

(M
n̄
,∇, P) affine manifold with G-structure P infinitesimally

homogeneous;
Mn differentiable manifold, π : E → M vector bundle with typical
fiber Rk , n̄ = n + k;
∇̂ connection on Ê = TM ⊕ E with ι-torsion T̂ , ι : TM ⊕ E → TM
inclusion;
P̂ ⊂ FR(Ê) a G-structure on Ê.
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Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 27 / 33



The immersion theorem – 1

Theorem (part 1)

(M
n̄
,∇, P) affine manifold with G-structure P infinitesimally

homogeneous;
Mn differentiable manifold, π : E → M vector bundle with typical
fiber Rk , n̄ = n + k;
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Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 27 / 33



The immersion theorem – 2

Theorem (part 2)

Assume that for all x ∈ M, y ∈ M and σ : Êx → TyM G-structure
preserving:

Adσ ◦ I
bP
x = IP ◦ σ|Tx M ;

T̂x is σ-related with T y ;

R̂x is σ-related with Ry .

Then, for all x0 ∈ M, y0 ∈ M, σ0 : Êx → Ty0M G-structure preserving,
there exist a locally defined affine immersion (f , L) of (M, E ,∇) into
(M,∇) with f (x0) = y0, L(x0) = σ0, and such that L is G-structure
preserving.
If M is simply connected and (M,∇) is geodesically complete, then the
affine immersion is global.
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Manifolds with constant sectional curvature
(M

n
, g) Riemannian manifold with constant sectional curvature

O(n)-structure P ⊂ FR(T M) given by orthonormal frames
∇ Levi–Civita connection of g =⇒ T = 0 and IP = 0
Every isometry preserves the curvature, hence (M,∇, P) is
infinitesimally symmetric.
(Mn, g) Riemannian manifolds endowed with a connection ∇
π : E → M Riemannian vector bundle with typical fiber Rk , k = n − n,
and metric gE , endowed with a connection ∇E

Metric ĝ = g ⊕ gE and connection ∇̂ on Ê = TM ⊕ E .
P̂ ⊂ FR(Ê) is the O(n)-structure of g-orthonormal frames.

relating T̂ and T = 0 means:
I symmetry of the second fundamental form
I ∇ symmetric

relating I
bP with IP = 0 means: ∇̂ĝ = 0.

relating R̂ with R: Gauss, Codazzi and Ricci equations.
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relating R̂ with R: Gauss, Codazzi and Ricci equations.

Paolo Piccione (IME–USP) G-structures and affine immersions Unicamp, June 2006 30 / 33



Manifolds with constant sectional curvature
(M

n
, g) Riemannian manifold with constant sectional curvature

O(n)-structure P ⊂ FR(T M) given by orthonormal frames
∇ Levi–Civita connection of g =⇒ T = 0 and IP = 0
Every isometry preserves the curvature, hence (M,∇, P) is
infinitesimally symmetric.

(Mn, g) Riemannian manifolds endowed with a connection ∇
π : E → M Riemannian vector bundle with typical fiber Rk , k = n − n,
and metric gE , endowed with a connection ∇E
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P̂ ⊂ FR(Ê) is the O(n)-structure of g-orthonormal frames.

relating T̂ and T = 0 means:
I symmetry of the second fundamental form
I ∇ symmetric

relating I
bP with IP = 0 means: ∇̂ĝ = 0.
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P̂ ⊂ FR(Ê) is the O(n)-structure of g-orthonormal frames.

relating T̂ and T = 0 means:
I symmetry of the second fundamental form
I ∇ symmetric

relating I
bP with IP = 0 means: ∇̂ĝ = 0.
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Kähler manifolds
Let M be a manifold and P ⊂ FR(TM) a U(n)-structure:

g Riemannian metric on M
a quasi-complex orthogonal structure J on TM

Frames p ∈ P are isometries p : R2m ∼= Cm → TxM that are C-linear.
u(TxM) =

{
T ∈ so(TxM) : TJx = JxT

}
u(TxM) ⊂ so(TM) ⊂ Lin(TxM), hence:
Lin(TxM)/u(TxM) ∼= [Lin(TxM)/so(TxM)]⊕ [so(TxM)/u(TxM)]

Lin(TxM) 3 T 7−→
(T+T∗

2 ,
[T−T∗

2 , J
])

IP
x (v) =

(
−1

2∇v g,∇v J + 1
2 [∇v g, J]

)
for all x ∈ M, v ∈ TxM.

Theorem
IP = 0 iff (M, g, J) is Kähler. (M,∇, P) is infinitesimally homogeneous
iff g has constant holomorphic curvature.
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An example with non vanishing inner torsion
(M

n
, g) Riemannian manifold, ξ ∈ IΓ(T M) unit vector field.

G =

(
SO(n − 1)

...
. . . 1

)
,

G-structure P in T M: orthonormal frames e1, . . . , en−1, ξ

Gx =
{

A ∈ SO(TxM) : A(ξ) = ξ
}

gx =
{

L ∈ so(TxM) : L(ξ) = 0
}

gl(TxM)/gx ∼= sym(TxM)⊕ ξ⊥x L + gx 7−→
(1

2(L + L∗), 1
2(L− L∗)ξ

)
IP

x (v) =
(
− 1

2∇v g,∇vξ + 1
2∇v g

)
Lemma

IP = 0 iff g and ξ are parallel. (M,∇, P) is infinitesimally
homogeneous iff R and ∇ξ can be written in terms of g and ξ only.
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3-dimensional homogeneous manifolds (B. Daniel)

(M, g) 3-dimensional homogeneous manifold with 4-dim. isometry
group (includes: Berger spheres, Heisenberg space Nil3, ˜PSL2(R),
products S2 ×R, H2 ×R)

Geometrical structure: Riemannian fibrations over a 2-dim. space
form. Fibers are geodesics, the vertical field ξ is Killing.

Classified by two constants: κ curvature of the base, τ bundle
curvature: ∇vξ = τv × ξ (Obs.: needs orientation!)

τ = 0, then M =M2(κ)×R
τ 6= 0:

I κ > 0 =⇒ Berger spheres
I κ = 0 =⇒ Nil3
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