G-structures and affine immersions

Paolo Piccione

Departamento de Matemática Instituto de Matemática e Estatística Universidade de São Paulo

1º Congres(s)o Latino-Americano de Grupos de Lie en(m) Geometria

→ 3 → 4 3

æ

<ロ> <回> <回> <回> < 回> < 回>

2 Principal spaces and fiber products

∃ → ∢

G-structures

- 2 Principal spaces and fiber products
- 3 Principal fiber bundles

B b

G-structures

- 2 Principal spaces and fiber products
- 3 Principal fiber bundles
- 4 Connections

3 N

G-structures

- 2 Principal spaces and fiber products
- 3 Principal fiber bundles
- 4 Connections

G-structures

- 2 Principal spaces and fiber products
- Principal fiber bundles
- 4 Connections
- 5 Inner torsion of a *G*-structure
- Immersion theorems

G-structures

- 2 Principal spaces and fiber products
- Principal fiber bundles
- 4 Connections
- 5 Inner torsion of a *G*-structure
 - Immersion theorems

G-structures

- 2 Principal spaces and fiber products
- 3 Principal fiber bundles
- 4 Connections
- 5 Inner torsion of a *G*-structure
- Immersion theorems

Zexamples

 X_0 set, $\operatorname{Bij}(X_0)$ group of bijections $f: X_0 \to X_0$.

 X_0 set, Bij (X_0) group of bijections $f : X_0 \to X_0$. X another set, with Bij $(X_0, X) \neq \emptyset$.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

 X_0 set, $\operatorname{Bij}(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $\operatorname{Bij}(X_0, X) \neq \emptyset$.

 $Bij(X_0)$ acts transitively on $Bij(X_0, X)$ by composition on the right.

イロト イポト イラト イラト

 X_0 set, $\operatorname{Bij}(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $\operatorname{Bij}(X_0, X) \neq \emptyset$.

Bij(X_0) acts transitively on Bij(X_0, X) by composition on the right. $G \subset Bij(X_0)$ subgroup

イロト イポト イラト イラト

 X_0 set, $\operatorname{Bij}(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $\operatorname{Bij}(X_0, X) \neq \emptyset$.

 $\operatorname{Bij}(X_0)$ acts transitively on $\operatorname{Bij}(X_0, X)$ by composition on the right.

 $G \subset \operatorname{Bij}(X_0)$ subgroup

Definition

A *G*-structure on X modeled on X_0 is a subset P of $Bij(X_0, X)$ which is a G-orbit.

< ロ > < 同 > < 回 > < 回

 X_0 set, $\operatorname{Bij}(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $\operatorname{Bij}(X_0, X) \neq \emptyset$.

 $\operatorname{Bij}(X_0)$ acts transitively on $\operatorname{Bij}(X_0, X)$ by composition on the right.

 $G \subset \operatorname{Bij}(X_0)$ subgroup

Definition

A *G*-structure on X modeled on X_0 is a subset P of $Bij(X_0, X)$ which is a *G*-orbit.

(a) $p^{-1} \circ q : X_0 \to X_0$ is in *G*, for all $p, q \in P$;

- 14

イロト イポト イラト イラト

 X_0 set, $\operatorname{Bij}(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $\operatorname{Bij}(X_0, X) \neq \emptyset$.

 $\operatorname{Bij}(X_0)$ acts transitively on $\operatorname{Bij}(X_0, X)$ by composition on the right.

 $G \subset \operatorname{Bij}(X_0)$ subgroup

Definition

A *G*-structure on X modeled on X_0 is a subset P of $Bij(X_0, X)$ which is a *G*-orbit.

(a) $p^{-1} \circ q : X_0 \to X_0$ is in *G*, for all $p, q \in P$; (b) $p \circ g : X_0 \to X$ is in *P*, for all $p \in P$ and all $g \in G$.

-

イロト イポト イラト イラト

 X_0 set, $\operatorname{Bij}(X_0)$ group of bijections $f: X_0 \to X_0$.

X another set, with $\operatorname{Bij}(X_0, X) \neq \emptyset$.

 $\operatorname{Bij}(X_0)$ acts transitively on $\operatorname{Bij}(X_0, X)$ by composition on the right.

 $G \subset \operatorname{Bij}(X_0)$ subgroup

Definition

A *G*-structure on X modeled on X_0 is a subset P of $Bij(X_0, X)$ which is a *G*-orbit.

(a)
$$p^{-1} \circ q : X_0 \to X_0$$
 is in *G*, for all $p, q \in P$;
(b) $p \circ g : X_0 \to X$ is in *P*, for all $p \in P$ and all $g \in G$.

Given a *G*-structure *P* on *X* and a *G*-structure *Q* on *Y*, a map $f: X \rightarrow Y$ is *G*-structure preserving if $f \circ p \in Q$ for all $p \in P$.

Example (1) *V n*-dimensional vector space

< A >

→ Ξ →

Example (1) V *n*-dimensional vector space A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

< 17 ▶

Example (1)

V n-dimensional vector space A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$ GL(n) acts on the right transitively on FR(V), hence FR(V) is a GL(n)-structure on *V*.

・ 同 ト ・ ヨ ト ・ ヨ

Example (1)

V n-dimensional vector space

A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

GL(n) acts on the right transitively on FR(V), hence FR(V) is a GL(n)-structure on V.

Conversely, given a GL(n)-structure $P \subset Bij(\mathbb{R}^n, V)$ on a set V, there exists a unique vector space structure on V such that P = FR(V).

・ 同 ト ・ ヨ ト ・ ヨ

Example (1)

V n-dimensional vector space

A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

GL(n) acts on the right transitively on FR(V), hence FR(V) is a GL(n)-structure on V.

Conversely, given a GL(n)-structure $P \subset Bij(\mathbb{R}^n, V)$ on a set V, there exists a unique vector space structure on V such that P = FR(V). More generally, $FR_{V_0}(V)$ is a $GL(V_0)$ -structure on V.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Example (1)

V n-dimensional vector space

A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

GL(n) acts on the right transitively on FR(V), hence FR(V) is a GL(n)-structure on V.

Conversely, given a GL(n)-structure $P \subset Bij(\mathbb{R}^n, V)$ on a set V, there exists a unique vector space structure on V such that P = FR(V). More generally, $FR_{V_0}(V)$ is a $GL(V_0)$ -structure on V.

Example (2)

M₀, M diffeomorphic differentiable manifolds

Example (1)

V n-dimensional vector space

A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

GL(n) acts on the right transitively on FR(V), hence FR(V) is a GL(n)-structure on V.

Conversely, given a GL(n)-structure $P \subset Bij(\mathbb{R}^n, V)$ on a set V, there exists a unique vector space structure on V such that P = FR(V). More generally, $FR_{V_0}(V)$ is a $GL(V_0)$ -structure on V.

Example (2) M_0 , M diffeomorphic differentiable manifolds $\text{Diff}(M_0, M) \subset \text{Bij}(M_0, M)$ is a $\text{Diff}(M_0)$ -structure on M.

Example (1)

- V n-dimensional vector space
- A *frame* is an iso $p : \mathbb{R}^n \to V$, $FR(V) \subset Bij(\mathbb{R}^n, V)$

GL(n) acts on the right transitively on FR(V), hence FR(V) is a GL(n)-structure on V.

Conversely, given a GL(n)-structure $P \subset Bij(\mathbb{R}^n, V)$ on a set V, there exists a unique vector space structure on V such that P = FR(V). More generally, $FR_{V_0}(V)$ is a $GL(V_0)$ -structure on V.

Example (2)

 M_0 , M diffeomorphic differentiable manifolds $\operatorname{Diff}(M_0, M) \subset \operatorname{Bij}(M_0, M)$ is a $\operatorname{Diff}(M_0)$ -structure on M. Conversely, given a $\operatorname{Diff}(M_0)$ -structure $P \subset \operatorname{Bij}(M_0, M)$ on a set M, there exists a unique differentiable structure on M such that $P = \operatorname{Diff}(M_0, M)$.

Given a *G*-structure $P \subset \text{Bij}(X_0, X)$ on X and a subgroup $H \subset G$.

Given a *G*-structure $P \subset \text{Bij}(X_0, X)$ on *X* and a subgroup $H \subset G$. An *H*-structure $Q \subset P$ is a *strengthening* of *P*.

→ E → < E</p>

< A >

Given a *G*-structure $P \subset \text{Bij}(X_0, X)$ on *X* and a subgroup $H \subset G$. An *H*-structure $Q \subset P$ is a *strengthening* of *P*.

Example

Giving an O(n)-structure Q ⊂ FR(V) is the same as giving a positive definite inner product on V.

< ロ > < 同 > < 回 > < 回

Given a *G*-structure $P \subset \text{Bij}(X_0, X)$ on *X* and a subgroup $H \subset G$. An *H*-structure $Q \subset P$ is a *strengthening* of *P*.

Example

- Giving an O(n)-structure Q ⊂ FR(V) is the same as giving a positive definite inner product on V.
- SO(*n*)-structure $Q \subset FR(V) \iff$ inner product + orientation on V

< ロ > < 同 > < 回 > < 回

Given a *G*-structure $P \subset \text{Bij}(X_0, X)$ on *X* and a subgroup $H \subset G$. An *H*-structure $Q \subset P$ is a *strengthening* of *P*.

Example

- Giving an O(n)-structure Q ⊂ FR(V) is the same as giving a positive definite inner product on V.
- SO(*n*)-structure $Q \subset FR(V) \iff$ inner product + orientation on V
- If n = 2m, U(m)-structure Q ⊂ FR(V) ⇔ real positive definite inner product on V and an orthogonal complex structure on V

イロト イポト イラト イラト

Given a *G*-structure $P \subset \text{Bij}(X_0, X)$ on *X* and a subgroup $H \subset G$. An *H*-structure $Q \subset P$ is a *strengthening* of *P*.

Example

- Giving an O(n)-structure Q ⊂ FR(V) is the same as giving a positive definite inner product on V.
- SO(*n*)-structure $Q \subset FR(V) \iff$ inner product + orientation on V
- If n = 2m, U(m)-structure Q ⊂ FR(V) ⇔ real positive definite inner product on V and an orthogonal complex structure on V
- SL(n)-structure $Q \subset FR(V) \iff$ a volume form on V

< ロ > < 同 > < 回 > < 回 > < 回 > <

Given a *G*-structure $P \subset \text{Bij}(X_0, X)$ on *X* and a subgroup $H \subset G$. An *H*-structure $Q \subset P$ is a *strengthening* of *P*.

Example

- Giving an O(n)-structure Q ⊂ FR(V) is the same as giving a positive definite inner product on V.
- SO(*n*)-structure $Q \subset FR(V) \iff$ inner product + orientation on V
- If n = 2m, U(m)-structure Q ⊂ FR(V) ⇔ real positive definite inner product on V and an orthogonal complex structure on V
- SL(*n*)-structure $Q \subset FR(V) \iff$ a volume form on *V*
- A 1-structure $Q \subset FR(V)$ is an identification of V with \mathbb{R}^n .

Given a *G*-structure $P \subset \text{Bij}(X_0, X)$ on *X* and a subgroup $H \subset G$. An *H*-structure $Q \subset P$ is a *strengthening* of *P*.

Example

- Giving an O(n)-structure Q ⊂ FR(V) is the same as giving a positive definite inner product on V.
- SO(*n*)-structure $Q \subset FR(V) \iff$ inner product + orientation on V
- If n = 2m, U(m)-structure Q ⊂ FR(V) ⇐⇒ real positive definite inner product on V and an orthogonal complex structure on V
- SL(*n*)-structure $Q \subset FR(V) \iff$ a volume form on *V*
- A 1-structure $Q \subset FR(V)$ is an identification of V with \mathbb{R}^n .

Given a *G*-structure $P \subset \text{Bij}(X_0, X)$ and a subgroup $H \subset G$, there are [G : H] strengthening *H*-structures of *P*.

G-structures

- 2 Principal spaces and fiber products
- 3 Principal fiber bundles
- 4 Connections
- 5 Inner torsion of a *G*-structure
- Immersion theorems

7 Examples

Principal spaces

Definition

A principal space consists of a set $P \neq \emptyset$, a group *G* (*structural group*) and a free and transitive right action of *G* on *P*.

マロト イラト イラ

Principal spaces

Definition

A principal space consists of a set $P \neq \emptyset$, a group *G* (*structural group*) and a free and transitive right action of *G* on *P*.

Each $p \in P$ gives a *bijection* $\beta_p : G \to P$, $\left| \beta_p(g) = p \cdot g \right|$

イロト イポト イラト イラト
Definition

A principal space consists of a set $P \neq \emptyset$, a group *G* (*structural group*) and a free and transitive right action of *G* on *P*.

Each
$$oldsymbol{p}\in oldsymbol{P}$$
 gives a *bijection* $eta_{oldsymbol{p}}:oldsymbol{G} o oldsymbol{P}, egin{array}{c} eta_{oldsymbol{p}}(g)=oldsymbol{p}\cdot g \end{array}$

Example

• G = V vector space, a principal space with structural group G is an *affine space* parallel to V.

-

Definition

A principal space consists of a set $P \neq \emptyset$, a group *G* (*structural group*) and a free and transitive right action of *G* on *P*.

Each
$$oldsymbol{p}\in oldsymbol{P}$$
 gives a *bijection* $eta_{oldsymbol{p}}:oldsymbol{G} o oldsymbol{P}, egin{array}{c} eta_{oldsymbol{p}}(g)=oldsymbol{p}\cdot g \end{array}$

Example

- *G* = *V* vector space, a principal space with structural group *G* is an *affine space* parallel to *V*.
- Any group is a principal space with structural group *G* (right multiplication)

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Definition

A principal space consists of a set $P \neq \emptyset$, a group *G* (*structural group*) and a free and transitive right action of *G* on *P*.

Each
$$oldsymbol{p}\in oldsymbol{P}$$
 gives a *bijection* $eta_{oldsymbol{p}}:oldsymbol{G} ooldsymbol{P}, egin{array}{c} eta_{oldsymbol{p}}(g)=oldsymbol{p}\cdot g \end{array}$

Example

- G = V vector space, a principal space with structural group G is an *affine space* parallel to V.
- Any group is a principal space with structural group *G* (right multiplication)
- Given a subgroup $H \subset G$, for all $g \in G$ the left coset gH is a principal space with structural group H.

(日)

Definition

A principal space consists of a set $P \neq \emptyset$, a group *G* (*structural group*) and a free and transitive right action of *G* on *P*.

Each
$$p \in P$$
 gives a *bijection* $\beta_p : G \to P$, $\left[\beta_p(g) = p \cdot g \right]$

Example

- G = V vector space, a principal space with structural group G is an *affine space* parallel to V.
- Any group is a principal space with structural group *G* (right multiplication)
- Given a subgroup $H \subset G$, for all $g \in G$ the left coset gH is a principal space with structural group H.
- $\operatorname{FR}_{V_0}(V)$ is a principal space with structural group $\operatorname{GL}(V_0)$.

A *G-space* is a set *N* carrying a left *G*-action.

< A >

→

A *G*-space is a set *N* carrying a left *G*-action.

Given a principal space *P* with structural group *G* and a *G*-space *N*, there is a left *G*-action on $P \times N$: $g \cdot (p, n) = (pg^{-1}, gn)$.

A *G*-space is a set *N* carrying a left *G*-action.

Given a principal space *P* with structural group *G* and a *G*-space *N*, there is a left *G*-action on $P \times N$: $\boxed{g \cdot (p, n) = (pg^{-1}, gn)}$.

Definition

The fiber product $P \times_G N$ is the quotient $(P \times N)/G$.

・ 同 ト ・ ヨ ト ・ ヨ

A *G*-space is a set *N* carrying a left *G*-action.

Given a principal space *P* with structural group *G* and a *G*-space *N*, there is a left *G*-action on $P \times N$: $g \cdot (p, n) = (pg^{-1}, gn)$.

Definition

The fiber product $P \times_G N$ is the quotient $(P \times N)/G$.

For all $p \in P$, the map $\hat{p} : N \to P \times_G N$, $|\hat{p}(n) = [p, n]|$ is a bijection.

A *G-space* is a set *N* carrying a left *G*-action.

Given a principal space *P* with structural group *G* and a *G*-space *N*, there is a left *G*-action on $P \times N$: $g \cdot (p, n) = (pg^{-1}, gn)$.

Definition

The fiber product $P \times_G N$ is the quotient $(P \times N)/G$.

For all
$$p \in P$$
, the map $\hat{p} : N \to P \times_G N$, $\left[\hat{p}(n) = [p, n] \right]$ is a bijection.

Example

Given a representation $\rho : G \to GL(V_0)$ (i.e., a left action of *G* on V_0 by linear isomorphisms) and a *G*-principal space *P*, the set:

 $\widehat{\boldsymbol{P}} \subset \operatorname{FR}_{V_0}(\boldsymbol{P} \times_{\boldsymbol{G}} V_0)$

consisting of all bijections $\hat{p} : V_0 \to P \times_G V_0$ is a $GL(V_0)$ -structure. Hence, $P \times_G V_0$ has the structure of a vector space.

Outline

G-structures

2 Principal spaces and fiber products

3 Principal fiber bundles

- 4 Connections
- 5 Inner torsion of a *G*-structure
- Immersion theorems

7 Examples

• a set P (total space)

Paolo Piccione (IME-USP)

G-structures and affine immersions

• I > • I > •

- a set P (total space)
- a differentiable manifold *M* (base space)

→ ∃ → < ∃</p>

< A >

- a set P (total space)
- a differentiable manifold M (base space)
- a map $\Pi : P \rightarrow M$ (projection)

4 3 5 4 3

< A

- a set P (total space)
- a differentiable manifold M (base space)
- a map $\Pi : P \rightarrow M$ (projection)
- a Lie group G (structural group)

A B > < B</p>

- a set P (total space)
- a differentiable manifold M (base space)
- a map $\Pi : P \rightarrow M$ (projection)
- a Lie group G (structural group)
- a right action of *G* on *P* that makes the fiber $P_x = \Pi^{-1}(x)$ a principal space, for all $x \in m$

A B + A B +

- a set P (total space)
- a differentiable manifold M (base space)
- a map $\Pi : P \rightarrow M$ (projection)
- a Lie group G (structural group)
- a right action of *G* on *P* that makes the fiber $P_x = \Pi^{-1}(x)$ a principal space, for all $x \in m$
- a maximal atlas of *admissible* local sections of Π.

4 3 5 4 3

- a set P (total space)
- a differentiable manifold M (base space)
- a map $\Pi : P \rightarrow M$ (projection)
- a Lie group G (structural group)
- a right action of *G* on *P* that makes the fiber $P_x = \Pi^{-1}(x)$ a principal space, for all $x \in m$
- a maximal atlas of *admissible* local sections of Π.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth, Π a smooth submersion, P_x a smooth submanifold, every admissible local section $s : U \subset M \to P$ smooth,.

- a set P (total space)
- a differentiable manifold M (base space)
- a map $\Pi : P \rightarrow M$ (projection)
- a Lie group G (structural group)
- a right action of *G* on *P* that makes the fiber $P_x = \Pi^{-1}(x)$ a principal space, for all $x \in m$
- a maximal atlas of *admissible* local sections of Π.

Lemma

There exists a unique differentiable structure on P that makes the action of G on P smooth, Π a smooth submersion, P_x a smooth submanifold, every admissible local section $s : U \subset M \to P$ smooth,.

 $\operatorname{Ver}_{\rho} = \operatorname{Ker}(d\Pi_{\rho}) \subset T_{\rho}P$ vertical space;

canonical isomorphism $d\beta_p(1) : \mathfrak{g} \xrightarrow{\cong} \operatorname{Ver}_p P$.

- 34

・ロト ・同ト ・モト ・モト

• *trivial principal bundle*: *M* manifold, *G* Lie group, P_0 a principal *G*-space, $P = M \times P_0$.

< ロ > < 同 > < 回 > < 回 >

- *trivial principal bundle*: *M* manifold, *G* Lie group, P_0 a principal *G*-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup, Π : G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.

(*) > (*) > (*)

- *trivial principal bundle*: *M* manifold, *G* Lie group, P_0 a principal *G*-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup, Π : G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.
- restriction: $\Pi : P \to M$ principal fiber bundle, $U \subset M$ open subset $P|_U = \Pi^{-1}(U)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- *trivial principal bundle*: *M* manifold, *G* Lie group, P_0 a principal *G*-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup, Π : G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.
- *restriction*: $\Pi : P \to M$ principal fiber bundle, $U \subset M$ open subset $P|_U = \Pi^{-1}(U)$.
- principal subbundles: Π : P → M principal fiber bundle with structural group G, H ⊂ G a Lie subgroup, Q ⊂ P satisfying:

- *trivial principal bundle*: *M* manifold, *G* Lie group, P_0 a principal *G*-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup, Π : G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.
- *restriction*: $\Pi : P \to M$ principal fiber bundle, $U \subset M$ open subset $P|_U = \Pi^{-1}(U)$.
- principal subbundles: □ : P → M principal fiber bundle with structural group G, H ⊂ G a Lie subgroup, Q ⊂ P satisfying:
 - for all x ∈ M, Q_x = P_x ∩ Q is a principal subspace of P_x with structural group H;

イロト イポト イラト イラト 一戸

- *trivial principal bundle*: *M* manifold, *G* Lie group, P_0 a principal *G*-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup, Π : G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.
- *restriction*: $\Pi : P \to M$ principal fiber bundle, $U \subset M$ open subset $P|_U = \Pi^{-1}(U)$.
- principal subbundles: □ : P → M principal fiber bundle with structural group G, H ⊂ G a Lie subgroup, Q ⊂ P satisfying:
 - ▶ for all $x \in M$, $Q_x = P_x \cap Q$ is a principal subspace of P_x with structural group H;
 - ▶ for all $x \in M$, there exists a smooth local section $s : U \to P$ with $x \in U$ and $s(U) \subset Q$.

- *trivial principal bundle*: *M* manifold, *G* Lie group, P_0 a principal *G*-space, $P = M \times P_0$.
- quotient of Lie groups: G Lie group, H ⊂ G closed subgroup, Π : G → G/H projection; for x ∈ G/H, Π⁻¹(x) is a left coset of H in G. H is the structural group.
- *restriction*: $\Pi : P \to M$ principal fiber bundle, $U \subset M$ open subset $P|_U = \Pi^{-1}(U)$.
- *principal subbundles*: $\Pi : P \to M$ principal fiber bundle with structural group $G, H \subset G$ a Lie subgroup, $Q \subset P$ satisfying:
 - ▶ for all $x \in M$, $Q_x = P_x \cap Q$ is a principal subspace of P_x with structural group H;
 - ▶ for all $x \in M$, there exists a smooth local section $s : U \to P$ with $x \in U$ and $s(U) \subset Q$.
- *pull-backs*: $\Pi : P \to M$ principal fiber bundle, $f : M' \to M$ smooth map, $f^*P = \bigcup_{y \in M'} (\{y\} \times P_{f(y)}).$

(日)

G Lie group, $\Pi : P \rightarrow M$ a *G*-principal bundle, *N* a differential *G*-space

4 3 5 4

G Lie group, $\Pi : P \to M$ a *G*-principal bundle, *N* a differential *G*-space *Associated bundle*: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

A B > < B</p>

G Lie group, $\Pi : P \to M$ a *G*-principal bundle, *N* a differential *G*-space Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

A vector bundle consists of:

・ 同 ト ・ ヨ ト ・ ヨ

G Lie group, $\Pi : P \to M$ a *G*-principal bundle, *N* a differential *G*-space Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

A vector bundle consists of:

• a set E (total space)

・ 同 ト ・ ヨ ト ・ ヨ ト

G Lie group, $\Pi : P \to M$ a *G*-principal bundle, *N* a differential *G*-space Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

A vector bundle consists of:

- a set E (total space)
- a differentiable manifold M (base manifold)

→ E → < E</p>

G Lie group, $\Pi : P \to M$ a *G*-principal bundle, *N* a differential *G*-space Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

A vector bundle consists of:

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi : E \to M$ (projection)

・ 同 ト ・ ヨ ト ・ ヨ ト

G Lie group, $\Pi : P \to M$ a *G*-principal bundle, *N* a differential *G*-space Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

A vector bundle consists of:

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi : E \to M$ (projection)
- a finite dimensional vector space E₀ (typical fiber)

-

・ 同 ト ・ ヨ ト ・ ヨ ト

G Lie group, $\Pi : P \to M$ a *G*-principal bundle, *N* a differential *G*-space Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

A vector bundle consists of:

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi: E \to M$ (projection)
- a finite dimensional vector space E₀ (typical fiber)
- a vector space structure on each fiber $E_x = \pi^{-1}$ isomorphic to E_0

イロト イポト イラト イラト ニラー

G Lie group, $\Pi : P \to M$ a *G*-principal bundle, *N* a differential *G*-space Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

A vector bundle consists of:

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi : E \to M$ (projection)
- a finite dimensional vector space E₀ (typical fiber)
- a vector space structure on each fiber $E_x = \pi^{-1}$ isomorphic to E_0
- a maximal atlas of admissible local sections of the fiber bundle $\operatorname{FR}_{E_0}(E) = \bigcup_{x \in M} \operatorname{FR}_{E_0}(E_x).$

G Lie group, $\Pi : P \to M$ a *G*-principal bundle, *N* a differential *G*-space Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

A vector bundle consists of:

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi: E \to M$ (projection)
- a finite dimensional vector space E₀ (typical fiber)
- a vector space structure on each fiber $E_x = \pi^{-1}$ isomorphic to E_0
- a maximal atlas of admissible local sections of the fiber bundle $\operatorname{FR}_{E_0}(E) = \bigcup_{x \in M} \operatorname{FR}_{E_0}(E_x).$

$$\operatorname{FR}_{E_0}(E) imes_{\operatorname{GL}(E_0)} E_0 \cong E, \quad [p, e_0] \mapsto p(e_0) \in E$$

G Lie group, $\Pi : P \to M$ a *G*-principal bundle, *N* a differential *G*-space Associated bundle: $P \times_G N = \bigcup_{x \in M} P_x \times_G N$

Definition

A vector bundle consists of:

- a set E (total space)
- a differentiable manifold M (base manifold)
- a map $\pi: E \to M$ (projection)
- a finite dimensional vector space E₀ (typical fiber)
- a vector space structure on each fiber $E_x = \pi^{-1}$ isomorphic to E_0
- a maximal atlas of admissible local sections of the fiber bundle $\operatorname{FR}_{E_0}(E) = \bigcup_{x \in M} \operatorname{FR}_{E_0}(E_x).$

$$\operatorname{FR}_{E_0}(E) imes_{\operatorname{GL}(E_0)} E_0 \cong E, \quad [p, e_0] \mapsto p(e_0) \in E$$

Def.: A G-structure on E is a G-principal subbundle of FR(E).
Outline

1) G-structures

- 2 Principal spaces and fiber products
- 3 Principal fiber bundles

4 Connections

- 5 Inner torsion of a G-structure
- Immersion theorems

7 Examples

 $\Pi: P \rightarrow M$ principal fiber bundle, *G* structural group

★ ∃ >

< A

 $\Pi: P \rightarrow M$ principal fiber bundle, *G* structural group A principal connection on *P* is a distribution Hor(*P*) \subset *TP*:

→ ∃ → < ∃</p>

 $\Pi: P \rightarrow M$ principal fiber bundle, *G* structural group A *principal connection on P* is a distribution Hor(*P*) \subset *TP*:

• $T_{\rho}P = \operatorname{Hor}_{\rho} \oplus \operatorname{Ver}_{\rho}$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\Pi: P \rightarrow M$ principal fiber bundle, *G* structural group A *principal connection on P* is a distribution Hor(*P*) \subset *TP*:

- $T_{\rho}P = \operatorname{Hor}_{\rho} \oplus \operatorname{Ver}_{\rho}$
- $\operatorname{Hor}_{\rho g} = \operatorname{Hor}_{\rho} \cdot g$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\Pi: P \rightarrow M$ principal fiber bundle, *G* structural group A *principal connection on P* is a distribution Hor(*P*) \subset *TP*:

•
$$T_{\rho}P = \operatorname{Hor}_{\rho} \oplus \operatorname{Ver}_{\rho}$$

•
$$\operatorname{Hor}_{\rho g} = \operatorname{Hor}_{\rho} \cdot g$$

Connection form of Hor: \mathfrak{g} -valued one form ω on P:

$$\operatorname{Ker}(\omega_{\rho}) = \operatorname{Hor}_{\rho}, \quad \omega_{\rho}|_{\operatorname{Ver}_{\rho}} = d\beta_{\rho}(1)^{-1} : \operatorname{Ver}_{\rho} \xrightarrow{\cong} \mathfrak{g}$$

A B > < B</p>

 $\Pi: P \to M$ principal fiber bundle, *G* structural group A *principal connection on P* is a distribution Hor(*P*) \subset *TP*:

•
$$T_{\rho}P = \operatorname{Hor}_{\rho} \oplus \operatorname{Ver}_{\rho}$$

• Hor_{pg} = Hor_p \cdot **g**

Connection form of Hor: \mathfrak{g} -valued one form ω on P:

$$\operatorname{Ker}(\omega_{\rho}) = \operatorname{Hor}_{\rho}, \quad \omega_{\rho}|_{\operatorname{Ver}_{\rho}} = d\beta_{\rho}(1)^{-1} : \operatorname{Ver}_{\rho} \xrightarrow{\cong} \mathfrak{g}$$

G-principal bundles $\Pi : P \to M$, $\Pi' : Q \to M$ with connections $\operatorname{Hor}(P)$ and $\operatorname{Hor}(Q)$ and a morphism of principal bundles $\phi : P \to Q$, then ϕ is *connection preserving* if:

$$\mathrm{d}\phiig(\mathrm{Hor}(\mathcal{P})ig)\subset\mathrm{Hor}(\mathcal{Q})\iff \phi^*(\omega^\mathcal{Q})=\omega^\mathcal{P}$$

Paolo Piccione (IME–USP)

 $\Pi: P \to M$ principal fiber bundle, *G* structural group A *principal connection on P* is a distribution Hor(*P*) \subset *TP*:

•
$$T_{\rho}P = \operatorname{Hor}_{\rho} \oplus \operatorname{Ver}_{\rho}$$

•
$$\operatorname{Hor}_{\rho g} = \operatorname{Hor}_{\rho} \cdot g$$

Connection form of Hor: \mathfrak{g} -valued one form ω on P:

$$\operatorname{Ker}(\omega_{\rho}) = \operatorname{Hor}_{\rho}, \quad \omega_{\rho}|_{\operatorname{Ver}_{\rho}} = d\beta_{\rho}(1)^{-1} : \operatorname{Ver}_{\rho} \stackrel{\cong}{\longrightarrow} \mathfrak{g}$$

G-principal bundles $\Pi : P \to M$, $\Pi' : Q \to M$ with connections Hor(*P*) and Hor(*Q*) and a morphism of principal bundles $\phi : P \to Q$, then ϕ is *connection preserving* if:

$$\mathrm{d}\phi\big(\mathrm{Hor}(\mathcal{P})\big)\subset\mathrm{Hor}(\mathcal{Q})\iff \phi^*(\omega^{\mathcal{Q}})=\omega^{\mathcal{P}}$$

Properties of principal connections

 $\Pi: P \to M$ principal fiber bundle, *G* structural group A *principal connection on P* is a distribution Hor(*P*) \subset *TP*:

•
$$T_{\rho}P = \operatorname{Hor}_{\rho} \oplus \operatorname{Ver}_{\rho}$$

• $\operatorname{Hor}_{\rho g} = \operatorname{Hor}_{\rho} \cdot g$

Connection form of Hor: \mathfrak{g} -valued one form ω on P:

$$\operatorname{Ker}(\omega_{\rho}) = \operatorname{Hor}_{\rho}, \quad \omega_{\rho}|_{\operatorname{Ver}_{\rho}} = d\beta_{\rho}(1)^{-1} : \operatorname{Ver}_{\rho} \xrightarrow{\cong} \mathfrak{g}$$

G-principal bundles $\Pi : P \to M$, $\Pi' : Q \to M$ with connections Hor(*P*) and Hor(*Q*) and a morphism of principal bundles $\phi : P \to Q$, then ϕ is *connection preserving* if:

$$\mathrm{d}\phi\big(\mathrm{Hor}(\mathcal{P})\big)\subset\mathrm{Hor}(\mathcal{Q})\iff \phi^*(\omega^{\mathcal{Q}})=\omega^{\mathcal{P}}$$

Properties of principal connections

can be pushed forward

★ ∃ > < ∃ >

 $\Pi: P \to M$ principal fiber bundle, *G* structural group A *principal connection on P* is a distribution Hor(*P*) \subset *TP*:

•
$$T_{\rho}P = \operatorname{Hor}_{\rho} \oplus \operatorname{Ver}_{\rho}$$

• $\operatorname{Hor}_{\rho g} = \operatorname{Hor}_{\rho} \cdot g$

Connection form of Hor: \mathfrak{g} -valued one form ω on P:

$$\operatorname{Ker}(\omega_{\rho}) = \operatorname{Hor}_{\rho}, \quad \omega_{\rho}|_{\operatorname{Ver}_{\rho}} = d\beta_{\rho}(1)^{-1} : \operatorname{Ver}_{\rho} \stackrel{\cong}{\longrightarrow} \mathfrak{g}$$

G-principal bundles $\Pi : P \to M$, $\Pi' : Q \to M$ with connections Hor(*P*) and Hor(*Q*) and a morphism of principal bundles $\phi : P \to Q$, then ϕ is *connection preserving* if:

$$\mathrm{d}\phi\big(\mathrm{Hor}(\mathcal{P})\big)\subset\mathrm{Hor}(\mathcal{Q})\iff \phi^*(\omega^{\mathcal{Q}})=\omega^{\mathcal{P}}$$

Properties of principal connections

- can be pushed forward
- induce connections on all associated bundles.

Paolo Piccione (IME–USP)

G-structures and affine immersions

Definition

A *connection* on the vector bundle *E* is an \mathbb{R} -bilinear map $\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$

・ 同 ト ・ ヨ ト ・ ヨ

Definition

A *connection* on the vector bundle *E* is an \mathbb{R} -bilinear map $\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$

• $C^{\infty}(M)$ -linear in X

< 同 > < 三 > < 三 >

Definition

A *connection* on the vector bundle *E* is an \mathbb{R} -bilinear map $\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$

- $C^{\infty}(M)$ -linear in X
- Leibnitz rule: $\nabla_X(f\epsilon) = X(f)\epsilon + f\nabla_X\epsilon$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

A *connection* on the vector bundle *E* is an \mathbb{R} -bilinear map $\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$

- $C^{\infty}(M)$ -linear in X
- Leibnitz rule: $\nabla_X(f\epsilon) = X(f)\epsilon + f\nabla_X\epsilon$
- a section $s : U \subset M \to FR(E)$ (*trivialization* of E) defines a connection in $E|_U$: $\nabla_v^s \epsilon = s(x)(d(s^{-1}\epsilon)_x v)$ $x \in U, v \in T_x M$.

くぼう くきり くきり

Definition

A *connection* on the vector bundle *E* is an \mathbb{R} -bilinear map $\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$

- $C^{\infty}(M)$ -linear in X
- Leibnitz rule: $\nabla_X(f\epsilon) = X(f)\epsilon + f\nabla_X\epsilon$
- a section $s : U \subset M \to FR(E)$ (*trivialization* of E) defines a connection in $E|_U$: $\nabla_v^s \epsilon = s(x)(d(s^{-1}\epsilon)_x v)$ $x \in U, v \in T_x M$.
- the difference $\nabla \nabla^s$ defines the *Christoffel tensor*.

 $\Gamma_x^s: T_xM \times E_x \to E_x$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

A *connection* on the vector bundle *E* is an \mathbb{R} -bilinear map $\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$

- $C^{\infty}(M)$ -linear in X
- Leibnitz rule: $\nabla_X(f\epsilon) = X(f)\epsilon + f\nabla_X\epsilon$
- a section $s : U \subset M \to FR(E)$ (*trivialization* of E) defines a connection in $E|_U$: $\nabla_v^s \epsilon = s(x)(d(s^{-1}\epsilon)_x v)$ $x \in U, v \in T_x M$.
- the difference $\nabla \overline{\nabla^s}$ defines the *Christoffel tensor*.

$$\Gamma_x^s:T_xM\times E_x\to E_x$$

 ¬ induces natural connections on all vector bundles obtained with *functorial constructions* from *E*: sums, tensor products, duals, pull-backs, ...

・ 吊 ト イ ラ ト イ ラ ト 二 ラ

Definition

A *connection* on the vector bundle *E* is an \mathbb{R} -bilinear map $\nabla : \Gamma(TM) \times \Gamma(E) \ni (X, \epsilon) \longmapsto \nabla_X \epsilon \in \Gamma(E)$

- $C^{\infty}(M)$ -linear in X
- Leibnitz rule: $\nabla_X(f\epsilon) = X(f)\epsilon + f\nabla_X\epsilon$
- a section $s : U \subset M \to FR(E)$ (*trivialization* of E) defines a connection in $E|_U$: $\nabla_v^s \epsilon = s(x)(d(s^{-1}\epsilon)_x v)$ $x \in U, v \in T_x M$.
- the difference $\nabla \nabla^s$ defines the *Christoffel tensor*.

$$\Gamma_x^s: T_xM \times E_x \to E_x$$

- Connections on E \iff Principal connections on FR(E)

Paolo Piccione (IME–USP)

Curvature and torsion

Curvature tensor of ∇ : R : $\Gamma(TM) \times \Gamma(TM) \times \Gamma(E) \longrightarrow \Gamma(E)$

$$R(X,Y)\epsilon = \nabla_X \nabla_Y \epsilon - \nabla_Y \nabla_X \epsilon - \nabla_{[X,Y]} \epsilon$$

 $R_x: T_x M \times T_x M \times E_x \to E_x$

・ 同 ト ・ ヨ ト ・ ヨ

Curvature and torsion

Curvature tensor of ∇ : $R : \Gamma(TM) \times \Gamma(TM) \times \Gamma(E) \longrightarrow \Gamma(E)$

$$R(X,Y)\epsilon = \nabla_X \nabla_Y \epsilon - \nabla_Y \nabla_X \epsilon - \nabla_{[X,Y]} \epsilon$$

$$R_x: T_xM \times T_xM \times E_x \to E_x$$

Given $\iota : TM \to E$ vector bundle morphism, ι -torsion tensor: $T^{\iota} : \Gamma(TM) \times \Gamma(TM) \to \Gamma(E)$

$$T^{\iota}(X,Y) = \nabla_X \big(\iota(Y)\big) - \nabla_Y \big(\iota(X)\big) - \iota\big([X,Y]\big)$$

 $T_X^{\iota}: T_XM \times T_XM \to E_X$

Paolo Piccione (IME–USP)

< ロ > < 同 > < 回 > < 回 > < 回 > <

Curvature and torsion

Curvature tensor of ∇ : $R : \Gamma(TM) \times \Gamma(TM) \times \Gamma(E) \longrightarrow \Gamma(E)$

$$R(X,Y)\epsilon = \nabla_X \nabla_Y \epsilon - \nabla_Y \nabla_X \epsilon - \nabla_{[X,Y]} \epsilon$$

$$R_x: T_xM \times T_xM \times E_x \to E_x$$

Given $\iota : TM \to E$ vector bundle morphism, ι -torsion tensor: $T^{\iota} : \Gamma(TM) \times \Gamma(TM) \to \Gamma(E)$

$$T^{\iota}(X,Y) = \nabla_X \big(\iota(Y)\big) - \nabla_Y \big(\iota(X)\big) - \iota\big([X,Y]\big)$$

$$T_x^{\iota}: T_xM \times T_xM \to E_x$$

When E = TM, torsion: $T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$.

 ∇ is *symmetric* if T = 0

イロト イポト イラト イラト 一戸

 $\pi_1 : E^1 \to M$ and $\pi_2 : E^2 \to M$ vector bundle. Whitney sum: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection.

→ E → < E</p>

 $\pi_1 : E^1 \to M$ and $\pi_2 : E^2 \to M$ vector bundle. *Whitney sum*: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection. ∇ connection on *E*. Given sections $\epsilon^i \in \Gamma(E^i)$:

→ E → < E</p>

 $\pi_1 : E^1 \to M$ and $\pi_2 : E^2 \to M$ vector bundle. *Whitney sum*: $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection. ∇ connection on *E*. Given sections $\epsilon^i \in \Gamma(E^i)$:

• $\nabla_X^1 \epsilon_1 = \operatorname{pr}_1(\nabla_X \epsilon_1)$ connection in E^1

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\pi_1 : E^1 \to M$ and $\pi_2 : E^2 \to M$ vector bundle. *Whitney sum:* $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection. ∇ connection on *E*. Given sections $\epsilon^i \in \Gamma(E^i)$:

•
$$\nabla_X^1 \epsilon_1 = \operatorname{pr}_1(\nabla_X \epsilon_1)$$
 connection in E^1
• $\nabla_X^2 \epsilon_1 = \operatorname{pr}_2(\nabla_X \epsilon_2)$ connection in E^2

・ 同 ト イ ヨ ト イ ヨ ト

 $\pi_1 : E^1 \to M$ and $\pi_2 : E^2 \to M$ vector bundle. *Whitney sum:* $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection. ∇ connection on *E*. Given sections $\epsilon^i \in \Gamma(E^i)$:

•
$$\nabla_X^1 \epsilon_1 = \operatorname{pr}_1(\nabla_X \epsilon_1)$$
 connection in E^1
• $\nabla_X^2 \epsilon_1 = \operatorname{pr}_2(\nabla_X \epsilon_2)$ connection in E^2

• $\alpha^{1}(X, \epsilon_{2}) = \operatorname{pr}_{1}(\nabla_{X}\epsilon_{2})$, tensor $\alpha_{X}^{1} : T_{X}M \times E_{X}^{2} \to E_{X}^{1}$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\pi_1 : E^1 \to M$ and $\pi_2 : E^2 \to M$ vector bundle. *Whitney sum:* $\pi : E = E_1 \oplus E_2 \to M$, $\operatorname{pr}_i : E \to E^i$ projection. ∇ connection on *E*. Given sections $\epsilon^i \in \Gamma(E^i)$:

•
$$\nabla_X^1 \epsilon_1 = \operatorname{pr}_1(\nabla_X \epsilon_1)$$
 connection in E^1
• $\nabla_X^2 \epsilon_1 = \operatorname{pr}_2(\nabla_X \epsilon_2)$ connection in E^2
• $\alpha_X^1(X, \epsilon_2) = \operatorname{pr}_2(\nabla_X \epsilon_2)$ topsor $\alpha_1^1 : T : M \times E^2$

•
$$\alpha^{2}(X, \epsilon_{2}) = \operatorname{pr}_{1}(\nabla_{X}\epsilon_{2})$$
, tensor $\alpha_{X}^{2}: T_{X}M \times E_{X}^{2} \to E_{X}^{2}$
• $\alpha^{2}(X, \epsilon_{1}) = \operatorname{pr}_{2}(\nabla_{X}\epsilon_{1})$, tensor $\alpha_{X}^{2}: T_{X}M \times E_{X}^{1} \to E_{X}^{2}$

・ 同 ト ・ ヨ ト ・ ヨ ト

r-1

 $\begin{aligned} \pi_1 &: E^1 \to M \text{ and } \pi_2 : E^2 \to M \text{ vector bundle.} \\ \text{Whitney sum: } \pi &: E = E_1 \oplus E_2 \to M, \text{ } \text{pr}_i : E \to E^i \text{ projection.} \\ \nabla \text{ connection on } E. \text{ Given sections } \epsilon^i \in \Gamma(E^i): \\ \bullet \nabla^1_X \epsilon_1 &= \text{pr}_1(\nabla_X \epsilon_1) \text{ connection in } E^1 \\ \bullet \nabla^2_X \epsilon_1 &= \text{pr}_2(\nabla_X \epsilon_2) \text{ connection in } E^2 \\ \bullet \alpha^1(X, \epsilon_2) &= \text{pr}_1(\nabla_X \epsilon_2), \text{ tensor } \alpha^1_X : T_X M \times E^2_X \to E^1_X \end{aligned}$

•
$$\alpha^2(X, \epsilon_1) = \operatorname{pr}_2(\nabla_X \epsilon_1)$$
, tensor $\alpha_X^2 : T_X M \times E_X^1 \to E_X^2$

Gauss equation:

$$\mathrm{pr}_{1}(R(X,Y)\epsilon_{1}) = R_{1}(X,Y)\epsilon_{1} + \alpha^{1}(X,\alpha^{2}(Y,\epsilon_{1})) - \alpha^{1}(Y,\alpha^{2}(X,\epsilon_{1}))$$

.

 $\pi_1 : E^1 \to M \text{ and } \pi_2 : E^2 \to M \text{ vector bundle.}$ Whitney sum: $\pi : E = E_1 \oplus E_2 \to M, \text{ pr}_i : E \to E^i \text{ projection.}$ $\nabla \text{ connection on } E. \text{ Given sections } \epsilon^i \in \Gamma(E^i):$ $\bullet \nabla^1_X \epsilon_1 = \text{pr}_1(\nabla_X \epsilon_1) \text{ connection in } E^1$

• $\nabla_X^2 \epsilon_1 = \operatorname{pr}_2(\nabla_X \epsilon_2)$ connection in E^2

- $\alpha^1(X, \epsilon_2) = \operatorname{pr}_1(\nabla_X \epsilon_2)$, tensor $\alpha_x^1 : T_x M \times E_x^2 \to E_x^1$ • $\alpha^2(X, \epsilon_1) = \operatorname{pr}_2(\nabla_X \epsilon_1)$, tensor $\alpha_x^2 : T_x M \times E_x^1 \to E_x^2$
- $\alpha^{L}(X, \epsilon_{1}) = \operatorname{pr}_{2}(\nabla_{X}\epsilon_{1})$, tensor $\alpha^{L}_{X} : I_{X}M \times E_{X} \to E_{2}^{L}$

Gauss equation:

$$\mathrm{pr}_{1}(R(X,Y)\epsilon_{1}) = R_{1}(X,Y)\epsilon_{1} + \alpha^{1}(X,\alpha^{2}(Y,\epsilon_{1})) - \alpha^{1}(Y,\alpha^{2}(X,\epsilon_{1}))$$

Codazzi equations

$$\begin{aligned} & \operatorname{pr}_2\big(R(X,Y)\epsilon_1\big) = \nabla\alpha^2(X,Y,\epsilon_1) - \nabla\alpha^2(Y,X,\epsilon_1) + \alpha^2\big(T(X,Y),\epsilon_1\big) \\ & \operatorname{pr}_1\big(R(X,Y)\epsilon_2\big) = \nabla\alpha^1(X,Y,\epsilon_2) - \nabla\alpha^1(Y,X,\epsilon_2) + \alpha^1\big(T(X,Y),\epsilon_2\big) \end{aligned}$$

くほう くろう くろう 一足

 $\begin{aligned} \pi_1 &: E^1 \to M \text{ and } \pi_2 : E^2 \to M \text{ vector bundle.} \\ \text{Whitney sum: } \pi &: E = E_1 \oplus E_2 \to M, \text{ } \text{pr}_i : E \to E^i \text{ projection.} \\ \nabla \text{ connection on } E. \text{ Given sections } \epsilon^i \in \Gamma(E^i): \\ \bullet \nabla^1_X \epsilon_1 &= \text{pr}_1(\nabla_X \epsilon_1) \text{ connection in } E^1 \\ \bullet \nabla^2_X \epsilon_1 &= \text{pr}_2(\nabla_X \epsilon_2) \text{ connection in } E^2 \\ \bullet & \alpha^1(X, \epsilon_2) &= \text{pr}_1(\nabla_X \epsilon_2), \text{ tensor } \alpha^1_X : T_X M \times E^2_X \to E^1_X \end{aligned}$

• $\alpha^2(X, \epsilon_1) = \operatorname{pr}_2(\nabla_X \epsilon_1)$, tensor $\alpha_X^2 : T_X M \times E_X^1 \to E_X^2$

Gauss equation:

$$\mathrm{pr}_{1}(R(X,Y)\epsilon_{1}) = R_{1}(X,Y)\epsilon_{1} + \alpha^{1}(X,\alpha^{2}(Y,\epsilon_{1})) - \alpha^{1}(Y,\alpha^{2}(X,\epsilon_{1}))$$

Codazzi equations

$$\begin{aligned} & \operatorname{pr}_2\big(R(X,Y)\epsilon_1\big) = \nabla\alpha^2(X,Y,\epsilon_1) - \nabla\alpha^2(Y,X,\epsilon_1) + \alpha^2\big(T(X,Y),\epsilon_1\big) \\ & \operatorname{pr}_1\big(R(X,Y)\epsilon_2\big) = \nabla\alpha^1(X,Y,\epsilon_2) - \nabla\alpha^1(Y,X,\epsilon_2) + \alpha^1\big(T(X,Y),\epsilon_2\big) \end{aligned}$$

Ricci equation

$$\operatorname{pr}_{2}(R(X,Y)\epsilon_{2}) = R_{2}(X,Y)\epsilon_{2} + \alpha^{2}(X,\alpha^{1}(Y,\epsilon_{2})) - \alpha^{2}(Y,\alpha^{1}(X,\epsilon_{2}))$$

Outline

G-structures

- 2 Principal spaces and fiber products
- 3 Principal fiber bundles
- 4 Connections
- 5 Inner torsion of a G-structure
- 6 Immersion theorems

7 Examples

Inner torsion via principal fiber bundles $\pi: E \to M$ vector bundle, $G \subset GL(k), P \subset FR(E)$ a *G*-structure

- (B) (B

< A >

 $\pi : E \to M$ vector bundle, $G \subset GL(k)$, $P \subset FR(E)$ a *G*-structure $Hor(FR(E)) \subset T(FR(E))$ principal connection.

< ロ > < 同 > < 回 > < 回 > < 回 > <

 $\pi : E \to M$ vector bundle, $G \subset GL(k)$, $P \subset FR(E)$ a *G*-structure $Hor(FR(E)) \subset T(FR(E))$ principal connection.

If for $p \in P$, $\operatorname{Hor}_{p}(\operatorname{FR}(E)) \subset T_{p}P$, $\operatorname{Hor}|_{P}$ is a principal connection in P.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\pi : E \to M$ vector bundle, $G \subset GL(k)$, $P \subset FR(E)$ a *G*-structure $Hor(FR(E)) \subset T(FR(E))$ principal connection.

If for $p \in P$, $\operatorname{Hor}_{p}(\operatorname{FR}(E)) \subset T_{p}P$, $\operatorname{Hor}|_{P}$ is a principal connection in P.

$$T_{\rho}P \subset T_{\rho}(\operatorname{FR}(E)) = \operatorname{Hor}_{\rho} \oplus \operatorname{Ver}_{\rho} \overset{(\mathrm{d}\Pi_{\rho,\omega_{\rho}})}{\underset{\cong}{\longrightarrow}} T_{x}M \oplus \mathfrak{gl}(\mathbb{R}^{k})$$

→ ∃ → < ∃</p>

 $\pi : E \to M$ vector bundle, $G \subset GL(k)$, $P \subset FR(E)$ a *G*-structure $Hor(FR(E)) \subset T(FR(E))$ principal connection.

If for $p \in P$, $\operatorname{Hor}_{p}(\operatorname{FR}(E)) \subset T_{p}P$, $\operatorname{Hor}|_{P}$ is a principal connection in P.

$$T_{\rho}P \subset T_{\rho}(\operatorname{FR}(E)) = \operatorname{Hor}_{\rho} \oplus \operatorname{Ver}_{\rho} \stackrel{(\mathrm{d}\Pi_{\rho,\omega_{\rho}})}{\cong} T_{X}M \oplus \mathfrak{gl}(\mathbb{R}^{k})$$

Since $d\Pi_p : T_p P \xrightarrow{\cong} T_x M$ and $(d\Pi_p, \omega_p)(T_p P) \cap \mathfrak{gl}(\mathbb{R}^k) = \mathfrak{g}$, there exists $L : T_x M \to \mathfrak{gl}(\mathbb{R}^k)/\mathfrak{g}$ linear s.t.:

 $T_{\mathcal{P}}P\cong\left\{(v,X)\in T_{x}M\oplus\mathfrak{gl}(\mathbb{R}^{k}):L(v)=X+\mathfrak{g}
ight\}$

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\pi : E \to M$ vector bundle, $G \subset GL(k)$, $P \subset FR(E)$ a *G*-structure $Hor(FR(E)) \subset T(FR(E))$ principal connection.

If for $p \in P$, $\operatorname{Hor}_p(\operatorname{FR}(E)) \subset T_pP$, $\operatorname{Hor}|_P$ is a principal connection in P.

$$T_{\rho}P \subset T_{\rho}(\mathrm{FR}(E)) = \mathrm{Hor}_{\rho} \oplus \mathrm{Ver}_{\rho} \stackrel{(\mathrm{d}\Pi_{\rho,\omega_{\rho}})}{\cong} T_{X}M \oplus \mathfrak{gl}(\mathbb{R}^{k})$$

Since $d\Pi_p : T_p P \xrightarrow{\cong} T_x M$ and $(d\Pi_p, \omega_p)(T_p P) \cap \mathfrak{gl}(\mathbb{R}^k) = \mathfrak{g}$, there exists $L : T_x M \to \mathfrak{gl}(\mathbb{R}^k)/\mathfrak{g}$ linear s.t.:

$$\Big| T_{\rho}P \cong \big\{ (v,X) \in T_{x}M \oplus \mathfrak{gl}(\mathbb{R}^{k}) : L(v) = X + \mathfrak{g} \big\}$$

OBS 1:
$$L = 0 \iff T_{\rho}P \cong T_{\chi} \oplus \mathfrak{g} \iff \operatorname{Hor}_{\rho} \subset T_{\rho}P$$

くぼう くきり くきり
Inner torsion via principal fiber bundles

 $\pi : E \to M$ vector bundle, $G \subset GL(k)$, $P \subset FR(E)$ a *G*-structure $Hor(FR(E)) \subset T(FR(E))$ principal connection.

If for $p \in P$, $\operatorname{Hor}_{p}(\operatorname{FR}(E)) \subset T_{p}P$, $\operatorname{Hor}|_{P}$ is a principal connection in P.

$$T_{\rho}P \subset T_{\rho}(\operatorname{FR}(E)) = \operatorname{Hor}_{\rho} \oplus \operatorname{Ver}_{\rho} \stackrel{(\mathrm{d}\Pi_{\rho,\omega_{\rho}})}{\cong} T_{X}M \oplus \mathfrak{gl}(\mathbb{R}^{k})$$

Since $d\Pi_p : T_p P \xrightarrow{\cong} T_x M$ and $(d\Pi_p, \omega_p)(T_p P) \cap \mathfrak{gl}(\mathbb{R}^k) = \mathfrak{g}$, there exists $L : T_x M \to \mathfrak{gl}(\mathbb{R}^k)/\mathfrak{g}$ linear s.t.:

$$T_{\rho}P \cong \left\{ (v,X) \in T_{x}M \oplus \mathfrak{gl}(\mathbb{R}^{k}) : L(v) = X + \mathfrak{g} \right\}$$

OBS 1:
$$L = 0 \iff T_p P \cong T_x \oplus \mathfrak{g} \iff \operatorname{Hor}_p \subset T_p P$$

OBS 2: $\operatorname{Ad}_p : \mathfrak{gl}(\mathbb{R}^k) \xrightarrow{\cong} \mathfrak{gl}(E_x), \operatorname{\overline{Ad}}_p : \mathfrak{gl}(\mathbb{R}^k)/\mathfrak{g} \xrightarrow{\cong} \mathfrak{gl}(E_x)/\mathfrak{g}_x,$
 $\mathfrak{I}_X^P = \overline{Ad}_p \circ L : T_X M \longrightarrow \mathfrak{gl}(E_x)/\mathfrak{g}_x \text{ does not depend on } p! \operatorname{torsion}$

• $\pi: E \to M$ vector bundle

・ 同 ト ・ ヨ ト ・ ヨ

- $\pi: E \to M$ vector bundle
- $G \subset \operatorname{GL}(\mathbb{R}^k)$ Lie subgroup

31.5

- $\pi: E \to M$ vector bundle
- $G \subset \operatorname{GL}(\mathbb{R}^k)$ Lie subgroup
- $P \subset FR(E)$ a *G*-structure on *E*

- $\pi: E \to M$ vector bundle
- $G \subset \operatorname{GL}(\mathbb{R}^k)$ Lie subgroup
- $P \subset FR(E)$ a *G*-structure on *E*
- ∇ connection on *E*

- $\pi: E \to M$ vector bundle
- $G \subset \operatorname{GL}(\mathbb{R}^k)$ Lie subgroup
- $P \subset FR(E)$ a *G*-structure on *E*
- ∇ connection on *E*
- $s: U \rightarrow P$ frame of *E* compatible with *P*, $x \in U$

- $\pi: E \to M$ vector bundle
- $G \subset \operatorname{GL}(\mathbb{R}^k)$ Lie subgroup
- $P \subset FR(E)$ a *G*-structure on *E*
- ∇ connection on *E*
- $s: U \rightarrow P$ frame of *E* compatible with *P*, $x \in U$
- $\Gamma_x : T_x M \to \mathfrak{gl}(E_x)$ Christoffel tensor of ∇ rel. to s

- $\pi: E \to M$ vector bundle
- $G \subset \operatorname{GL}(\mathbb{R}^k)$ Lie subgroup
- $P \subset FR(E)$ a *G*-structure on *E*
- ∇ connection on *E*
- $s: U \rightarrow P$ frame of *E* compatible with *P*, $x \in U$
- $\Gamma_x : T_x M \to \mathfrak{gl}(E_x)$ Christoffel tensor of ∇ rel. to s
- ω connection form of $\operatorname{Hor}(\operatorname{FR}_{E_0}(E))$ and $\bar{\omega} = s^* \omega$

- $\pi: E \to M$ vector bundle
- $G \subset \operatorname{GL}(\mathbb{R}^k)$ Lie subgroup
- $P \subset FR(E)$ a *G*-structure on *E*
- ∇ connection on *E*
- $s: U \rightarrow P$ frame of *E* compatible with *P*, $x \in U$
- $\Gamma_x : T_x M \to \mathfrak{gl}(E_x)$ Christoffel tensor of ∇ rel. to s
- ω connection form of $\operatorname{Hor}(\operatorname{FR}_{E_0}(E))$ and $\bar{\omega} = s^* \omega$

 $\mathfrak{I}_{X}^{P}: T_{X}M \to \mathfrak{gl}(E_{X})/\mathfrak{g}_{X}$ is given by:

 $\pi: E \rightarrow M$ vector bundle with a Riemannian metric g

(a)

 $\pi: E \to M$ vector bundle with a Riemannian metric g ∇ connection on E.

・ 同 ト ・ ヨ ト ・ ヨ

 $\pi: E \to M$ vector bundle with a Riemannian metric g ∇ connection on E.

O(k)-structure of *g*-orthonormal frames of *E*: $P \subset FR(E)$

Image: A Image: A

< A >

 $\pi: E \to M$ vector bundle with a Riemannian metric g ∇ connection on E.

O(*k*)-structure of *g*-orthonormal frames of *E*: $P \subset FR(E)$ Lin(E_x)/ $\mathfrak{so}(E_x) \cong \operatorname{sym}(E_x)$ by the map $T \mapsto \frac{1}{2}(T + T^*)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\pi: E \to M$ vector bundle with a Riemannian metric g ∇ connection on E.

O(k)-structure of *g*-orthonormal frames of $E: P \subset FR(E)$

 $\operatorname{Lin}(E_x)/\mathfrak{so}(E_x) \cong \operatorname{sym}(E_x)$ by the map $T \mapsto \frac{1}{2}(T + T^*)$.

An explicit computation using local sections of *E* that are constant in some orthonormal frame $s: U \rightarrow P$ gives:

$$\Im_{X}^{P}(\boldsymbol{\nu}) = \frac{1}{2} \big(\Gamma(\boldsymbol{\nu}) + \Gamma(\boldsymbol{\nu})^{*} \big) = -\frac{1}{2} \nabla_{\boldsymbol{\nu}} \boldsymbol{g} \in \operatorname{sym}(\boldsymbol{E}_{X})$$

for all $x \in M$, $v \in T_x M$.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\pi: E \to M$ vector bundle with a Riemannian metric g ∇ connection on E.

O(k)-structure of *g*-orthonormal frames of $E: P \subset FR(E)$

 $\operatorname{Lin}(E_x)/\mathfrak{so}(E_x) \cong \operatorname{sym}(E_x)$ by the map $T \mapsto \frac{1}{2}(T+T^*)$.

An explicit computation using local sections of *E* that are constant in some orthonormal frame $s: U \rightarrow P$ gives:

$$\mathfrak{I}_{X}^{P}(\nu) = \frac{1}{2} \big(\Gamma(\nu) + \Gamma(\nu)^{*} \big) = -\frac{1}{2} \nabla_{\nu} g \in \operatorname{sym}(E_{X})$$

for all $x \in M$, $v \in T_x M$.

Lemma

 $\mathfrak{I}_{x}^{P} = 0$ iff g is ∇ -parallel.

< ロ > < 同 > < 回 > < 回 >

Outline

G-structures

- 2 Principal spaces and fiber products
- 3 Principal fiber bundles
- 4 Connections
- 5 Inner torsion of a *G*-structure

Immersion theorems

7 Examples

Problem. Given objects:

3

A (1) > A (2) > A

Problem. Given objects:

• *M* an *n*-dimensional differentiable manifold

A 35 A 4

Problem. Given objects:

- M an n-dimensional differentiable manifold
- \overline{M} an \overline{n} -dimensional differentiable manifold

- B- 6

Problem. Given objects:

- M an n-dimensional differentiable manifold
- \overline{M} an \overline{n} -dimensional differentiable manifold

• $\pi: E \to M$ a vector bundle over M with typical fiber \mathbb{R}^k , $\bar{n} = n + k$

Problem. Given objects:

- M an n-dimensional differentiable manifold
- \overline{M} an \overline{n} -dimensional differentiable manifold
- $\pi: E \to M$ a vector bundle over M with typical fiber \mathbb{R}^k , $\bar{n} = n + k$
- $\widehat{\nabla}$ a connection on $\widehat{E} = TM \oplus E$

Problem. Given objects:

- M an n-dimensional differentiable manifold
- \overline{M} an \overline{n} -dimensional differentiable manifold
- $\pi: E \to M$ a vector bundle over M with typical fiber \mathbb{R}^k , $\bar{n} = n + k$
- $\widehat{\nabla}$ a connection on $\widehat{E} = TM \oplus E$
- $\overline{\nabla}$ a connection on $T\overline{M}$

Problem. Given objects:

- M an n-dimensional differentiable manifold
- \overline{M} an \overline{n} -dimensional differentiable manifold
- $\pi: E \to M$ a vector bundle over M with typical fiber \mathbb{R}^k , $\bar{n} = n + k$
- $\widehat{\nabla}$ a connection on $\widehat{E} = TM \oplus E$
- $\overline{\nabla}$ a connection on $T\overline{M}$

Definition

An *affine immersion* of $(M, E, \widehat{\nabla})$ into $(\overline{M}, \overline{\nabla})$ is a pair (f, L), where $f: M \to \overline{M}$ is a smooth map, $L: \widehat{E} \to f^*T\overline{M}$ is a connection preserving vector bundle isomorphism with: $[L_x|_{T_xM} = df_x, \forall x \in M.]$

Problem. Given objects:

- M an n-dimensional differentiable manifold
- \overline{M} an \overline{n} -dimensional differentiable manifold
- $\pi: E \to M$ a vector bundle over M with typical fiber \mathbb{R}^k , $\bar{n} = n + k$
- $\widehat{\nabla}$ a connection on $\widehat{E} = TM \oplus E$
- $\overline{\nabla}$ a connection on $T\overline{M}$

Definition

An *affine immersion* of $(M, E, \widehat{\nabla})$ into $(\overline{M}, \overline{\nabla})$ is a pair (f, L), where $f: M \to \overline{M}$ is a smooth map, $L: \widehat{E} \to f^*T\overline{M}$ is a connection preserving vector bundle isomorphism with: $[L_x|_{T_xM} = df_x, \forall x \in M.]$

Uniqueness: If *M* is connected, given (f^1, L^1) and (f^2, L^2) with $f^1(x_0) = f^2(x_0)$ and $L^1(x_0) = L^2(x_0)$, then $(f^1, L^1) = (f^2, L^2)$.

-

 (M, ∇) affine manifold

→ E → < E</p>

< A >

- (M, ∇) affine manifold
- $G \subset GL(n)$ Lie subgroup,

★ 3 → < 3</p>

- (M, ∇) affine manifold
- $G \subset \operatorname{GL}(n)$ Lie subgroup,
- $P \subset FR(TM)$ a *G*-structure.

4 3 5 4 3

- (M, ∇) affine manifold
- $G \subset GL(n)$ Lie subgroup,
- $P \subset FR(TM)$ a *G*-structure.

For $x \in M$, $G_x \subset GL(T_xM)$ subgroup of *G*-structure preserving endomorphisms, $g_x = Lie(G_x)$.

★ 3 → < 3</p>

- (M, ∇) affine manifold
- $G \subset GL(n)$ Lie subgroup,
- $P \subset FR(TM)$ a *G*-structure.

For $x \in M$, $G_x \subset GL(T_xM)$ subgroup of *G*-structure preserving endomorphisms, $g_x = Lie(G_x)$.

 $\sigma: T_{X}M \to T_{y}M \text{ }G\text{-structure preserving,}$ $\mathcal{I}_{\sigma}: \operatorname{GL}(T_{X}M) \ni T \mapsto \sigma \circ T \circ \sigma^{-1} \in \operatorname{GL}(T_{y}M).$ $\operatorname{Ad}_{\sigma}: \mathfrak{gl}(T_{X}M) \to \mathfrak{gl}(T_{y}M) \Longrightarrow \qquad \overline{\operatorname{Ad}_{\sigma}: \mathfrak{gl}(T_{X}M)/\mathfrak{g}_{X} \to \mathfrak{gl}(T_{y}M)/\mathfrak{g}_{y}.}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

 (M, ∇, P) is *infinitesimally homogeneous* if for all $\sigma : T_x M \to T_y M$ *G*-structure preserving:

- $\overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{x}^{P} = \mathfrak{I}_{y}^{P} \circ \sigma$
- T_x is σ -related with T_y
- R_x is σ -related to R_y .

A B > < B</p>

Definition

 (M, ∇, P) is *infinitesimally homogeneous* if for all $\sigma : T_x M \to T_y M$ *G*-structure preserving:

- $\overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{x}^{P} = \mathfrak{I}_{y}^{P} \circ \sigma$
- T_x is σ -related with T_y
- R_x is σ -related to R_y .

Theorem

 (M, ∇, P) is infinitesimally homogeneous iff \mathfrak{I}^P , T and R are constant in frames of the G-structure P.

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem (part 1)

Paolo Piccione (IME-USP)

G-structures and affine immersions

Unicamp, June 2006 27 / 33

< 同 > < 三 > < 三

Theorem (part 1)

(Mⁿ, ∇, P) affine manifold with G-structure P infinitesimally homogeneous;

∃ → < ∃</p>

Theorem (part 1)

- (Mⁿ, ∇, P) affine manifold with G-structure P infinitesimally homogeneous;
- Mⁿ differentiable manifold, π : E → M vector bundle with typical fiber ℝ^k, n
 = n + k;

Theorem (part 1)

- (Mⁿ, ∇, P) affine manifold with G-structure P infinitesimally homogeneous;
- Mⁿ differentiable manifold, π : E → M vector bundle with typical fiber ℝ^k, n
 = n + k;

Theorem (part 1)

- (Mⁿ, ∇, P) affine manifold with G-structure P infinitesimally homogeneous;
- Mⁿ differentiable manifold, π : E → M vector bundle with typical fiber ℝ^k, n
 = n + k;
- $\widehat{P} \subset \operatorname{FR}(\widehat{E})$ a G-structure on \widehat{E} .
Theorem (part 2)

э

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

イロト イポト イラト イラ

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

• $\overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{X}^{\widehat{P}} = \mathfrak{I}^{\overline{P}} \circ \sigma|_{T_{X}M};$

★ ∃ →

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

- $\overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{X}^{\widehat{P}} = \mathfrak{I}^{\overline{P}} \circ \sigma|_{T_{X}M};$
- \hat{T}_x is σ -related with \overline{T}_y ;

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

- $\overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{X}^{\widehat{P}} = \mathfrak{I}^{\overline{P}} \circ \sigma|_{\mathcal{T}_{X}M};$
- \widehat{T}_x is σ -related with \overline{T}_y ;
- \widehat{R}_x is σ -related with \overline{R}_y .

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

- $\overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{X}^{\widehat{P}} = \mathfrak{I}^{\overline{P}} \circ \sigma|_{\mathcal{T}_{X}M};$
- \widehat{T}_x is σ -related with \overline{T}_y ;
- \widehat{R}_x is σ -related with \overline{R}_y .

Then, for all $x_0 \in M$, $y_0 \in M$, $\sigma_0 : \widehat{E}_x \to T_{y_0}\overline{M}$ G-structure preserving, there exist a locally defined affine immersion (f, L) of (M, E, ∇) into $(\overline{M}, \overline{\nabla})$ with $f(x_0) = y_0$, $L(x_0) = \sigma_0$, and such that L is G-structure preserving.

イロト イポト イラト イラト

Theorem (part 2)

Assume that for all $x \in M$, $y \in \overline{M}$ and $\sigma : \widehat{E}_x \to T_y \overline{M}$ G-structure preserving:

- $\overline{\mathrm{Ad}}_{\sigma} \circ \mathfrak{I}_{X}^{\widehat{P}} = \mathfrak{I}^{\overline{P}} \circ \sigma|_{\mathcal{T}_{X}M};$
- \widehat{T}_x is σ -related with \overline{T}_y ;
- \widehat{R}_x is σ -related with \overline{R}_y .

Then, for all $x_0 \in M$, $y_0 \in M$, $\sigma_0 : \widehat{E}_x \to T_{y_0}\overline{M}$ G-structure preserving, there exist a locally defined affine immersion (f, L) of (M, E, ∇) into $(\overline{M}, \overline{\nabla})$ with $f(x_0) = y_0$, $L(x_0) = \sigma_0$, and such that L is G-structure preserving.

If *M* is simply connected and $(\overline{M}, \overline{\nabla})$ is geodesically complete, then the affine immersion is global.

イロト イポト イラト イラト

Outline

G-structures

- 2 Principal spaces and fiber products
- 3 Principal fiber bundles
- 4 Connections
- 5 Inner torsion of a *G*-structure
- Immersion theorems

Manifolds with constant sectional curvature $(\overline{M}^{\overline{n}}, \overline{g})$ Riemannian manifold with constant sectional curvature

A 30 M

 $(\overline{M}^n, \overline{g})$ Riemannian manifold with constant sectional curvature O(n)-structure $\overline{P} \subset FR(T\overline{M})$ given by orthonormal frames

 $(\overline{M}^n, \overline{g})$ Riemannian manifold with constant sectional curvature O(n)-structure $\overline{P} \subset FR(T\overline{M})$ given by orthonormal frames

 $\overline{\nabla}$ Levi–Civita connection of $\overline{g} \Longrightarrow \overline{T} = 0$ and $\mathfrak{I}^{\overline{P}} = 0$

 $(\overline{M}^n, \overline{g})$ Riemannian manifold with constant sectional curvature O(n)-structure $\overline{P} \subset FR(T\overline{M})$ given by orthonormal frames $\overline{\nabla}$ Levi–Civita connection of $\overline{g} \Longrightarrow \overline{T} = 0$ and $\mathfrak{I}^{\overline{P}} = 0$ Every isometry preserves the curvature, hence $(\overline{M}, \overline{\nabla}, P)$ is infinitesimally symmetric.

 $(\overline{M}^n, \overline{g})$ Riemannian manifold with constant sectional curvature O(n)-structure $\overline{P} \subset FR(T\overline{M})$ given by orthonormal frames $\overline{\nabla}$ Levi–Civita connection of $\overline{g} \Longrightarrow \overline{T} = 0$ and $\mathfrak{I}^{\overline{P}} = 0$ Every isometry preserves the curvature, hence $(\overline{M}, \overline{\nabla}, P)$ is infinitesimally symmetric.

 (M^n,g) Riemannian manifolds endowed with a connection ∇

 $(\overline{M}^n, \overline{g})$ Riemannian manifold with constant sectional curvature O(n)-structure $\overline{P} \subset FR(T\overline{M})$ given by orthonormal frames $\overline{\nabla}$ Levi–Civita connection of $\overline{g} \Longrightarrow \overline{T} = 0$ and $\Im^{\overline{P}} = 0$ Every isometry preserves the curvature, hence $(\overline{M}, \overline{\nabla}, P)$ is infinitesimally symmetric.

 (M^n, g) Riemannian manifolds endowed with a connection $\nabla \pi : E \to M$ Riemannian vector bundle with typical fiber \mathbb{R}^k , $k = \overline{n} - n$, and metric g_E , endowed with a connection ∇^E

 $(\overline{M}^n, \overline{g})$ Riemannian manifold with constant sectional curvature O(n)-structure $\overline{P} \subset FR(T\overline{M})$ given by orthonormal frames $\overline{\nabla}$ Levi–Civita connection of $\overline{g} \Longrightarrow \overline{T} = 0$ and $\Im^{\overline{P}} = 0$ Every isometry preserves the curvature, hence $(\overline{M}, \overline{\nabla}, P)$ is infinitesimally symmetric.

 (M^n, g) Riemannian manifolds endowed with a connection $\nabla \pi : E \to M$ Riemannian vector bundle with typical fiber \mathbb{R}^k , $k = \overline{n} - n$, and metric g_E , endowed with a connection ∇^E Metric $\hat{g} = g \oplus g^E$ and connection $\hat{\nabla}$ on $\hat{E} = TM \oplus E$.

 $(\overline{M}^n, \overline{g})$ Riemannian manifold with constant sectional curvature O(n)-structure $\overline{P} \subset FR(T\overline{M})$ given by orthonormal frames $\overline{\nabla}$ Levi–Civita connection of $\overline{g} \Longrightarrow \overline{T} = 0$ and $\Im^{\overline{P}} = 0$ Every isometry preserves the curvature, hence $(\overline{M}, \overline{\nabla}, P)$ is infinitesimally symmetric.

 (M^n, g) Riemannian manifolds endowed with a connection $\nabla \pi : E \to M$ Riemannian vector bundle with typical fiber \mathbb{R}^k , $k = \overline{n} - n$, and metric g_E , endowed with a connection ∇^E Metric $\widehat{g} = g \oplus g^E$ and connection $\widehat{\nabla}$ on $\widehat{E} = TM \oplus E$. $\widehat{P} \subset FR(\widehat{E})$ is the O(*n*)-structure of *g*-orthonormal frames.

 $(\overline{M}^n, \overline{g})$ Riemannian manifold with constant sectional curvature O(n)-structure $\overline{P} \subset FR(T\overline{M})$ given by orthonormal frames $\overline{\nabla}$ Levi–Civita connection of $\overline{g} \Longrightarrow \overline{T} = 0$ and $\Im^{\overline{P}} = 0$ Every isometry preserves the curvature, hence $(\overline{M}, \overline{\nabla}, P)$ is infinitesimally symmetric.

 (M^n, g) Riemannian manifolds endowed with a connection $\nabla \pi : E \to M$ Riemannian vector bundle with typical fiber \mathbb{R}^k , $k = \overline{n} - n$, and metric g_E , endowed with a connection ∇^E Metric $\widehat{g} = g \oplus g^E$ and connection $\widehat{\nabla}$ on $\widehat{E} = TM \oplus E$. $\widehat{P} \subset FR(\widehat{E})$ is the O(*n*)-structure of *g*-orthonormal frames.

• relating \widehat{T} and $\overline{T} = 0$ means:

- symmetry of the second fundamental form
- V symmetric

く 伺 ト く ラ ト く ラ ト

 $(\overline{M}^n, \overline{g})$ Riemannian manifold with constant sectional curvature O(n)-structure $\overline{P} \subset FR(T\overline{M})$ given by orthonormal frames $\overline{\nabla}$ Levi–Civita connection of $\overline{g} \Longrightarrow \overline{T} = 0$ and $\mathfrak{I}^{\overline{P}} = 0$ Every isometry preserves the curvature, hence $(\overline{M}, \overline{\nabla}, P)$ is infinitesimally symmetric.

 (M^n, g) Riemannian manifolds endowed with a connection $\nabla \pi : E \to M$ Riemannian vector bundle with typical fiber \mathbb{R}^k , $k = \overline{n} - n$, and metric g_E , endowed with a connection ∇^E Metric $\widehat{g} = g \oplus g^E$ and connection $\widehat{\nabla}$ on $\widehat{E} = TM \oplus E$. $\widehat{P} \subset FR(\widehat{E})$ is the O(n)-structure of *g*-orthonormal frames.

• relating \hat{T} and $\overline{T} = 0$ means:

- symmetry of the second fundamental form
- ▶ ∇ symmetric

• relating $\widehat{\mathfrak{I}}^{\widehat{P}}$ with $\widehat{\mathfrak{I}}^{\overline{P}} = 0$ means: $\widehat{\nabla}\widehat{g} = 0$.

4 周 2 4 3 2 4 3 2 5 1

 $(\overline{M}^n, \overline{g})$ Riemannian manifold with constant sectional curvature O(n)-structure $\overline{P} \subset FR(T\overline{M})$ given by orthonormal frames $\overline{\nabla}$ Levi–Civita connection of $\overline{g} \Longrightarrow \overline{T} = 0$ and $\Im^{\overline{P}} = 0$ Every isometry preserves the curvature, hence $(\overline{M}, \overline{\nabla}, P)$ is infinitesimally symmetric.

 (M^n, g) Riemannian manifolds endowed with a connection $\nabla \pi : E \to M$ Riemannian vector bundle with typical fiber \mathbb{R}^k , $k = \overline{n} - n$, and metric g_E , endowed with a connection ∇^E Metric $\widehat{g} = g \oplus g^E$ and connection $\widehat{\nabla}$ on $\widehat{E} = TM \oplus E$. $\widehat{P} \subset FR(\widehat{E})$ is the O(*n*)-structure of *g*-orthonormal frames.

• relating \hat{T} and $\overline{T} = 0$ means:

- symmetry of the second fundamental form
- ▶ ∇ symmetric

• relating $\mathfrak{I}^{\widehat{P}}$ with $\mathfrak{I}^{\overline{P}} = 0$ means: $\widehat{\nabla}\widehat{g} = 0$.

• relating \widehat{R} with \overline{R} : Gauss, Codazzi and Ricci equations.

Let \overline{M} be a manifold and $\overline{P} \subset FR(TM)$ a U(*n*)-structure:

< A >

→

Let \overline{M} be a manifold and $\overline{P} \subset FR(TM)$ a U(*n*)-structure:

• g Riemannian metric on M

< A

(4) (E) (b)

Let \overline{M} be a manifold and $\overline{P} \subset FR(TM)$ a U(*n*)-structure:

- g Riemannian metric on M
- a quasi-complex orthogonal structure J on TM

• = • •

Let \overline{M} be a manifold and $\overline{P} \subset FR(TM)$ a U(*n*)-structure:

- g Riemannian metric on M
- a quasi-complex orthogonal structure J on TM

Frames $p \in \overline{P}$ are isometries $p : \mathbb{R}^{2m} \cong \mathbb{C}^m \to T_x M$ that are \mathbb{C} -linear.

Let \overline{M} be a manifold and $\overline{P} \subset FR(TM)$ a U(*n*)-structure:

- g Riemannian metric on M
- a quasi-complex orthogonal structure J on TM

Frames $p \in \overline{P}$ are isometries $p : \mathbb{R}^{2m} \cong \mathbb{C}^m \to T_x M$ that are \mathbb{C} -linear. $\mathfrak{u}(T_x M) = \{T \in \mathfrak{so}(T_x M) : TJ_x = J_x T\}$

A B M A B M

Let \overline{M} be a manifold and $\overline{P} \subset FR(TM)$ a U(*n*)-structure:

- g Riemannian metric on M
- a quasi-complex orthogonal structure J on TM

Frames $p \in \overline{P}$ are isometries $p : \mathbb{R}^{2m} \cong \mathbb{C}^m \to T_x M$ that are \mathbb{C} -linear. $\mathfrak{u}(T_x M) = \{T \in \mathfrak{so}(T_x M) : TJ_x = J_x T\}$ $\mathfrak{u}(T_x M) \subset \mathfrak{so}(T_M) \subset \operatorname{Lin}(T_x M)$, hence: $\overline{\operatorname{Lin}(T_x M)/\mathfrak{u}(T_x M)} \cong [\operatorname{Lin}(T_x M)/\mathfrak{so}(T_x M)] \oplus [\mathfrak{so}(T_x M)/\mathfrak{u}(T_x M)]$

くほう くろう くろう 一足

Let \overline{M} be a manifold and $\overline{P} \subset FR(TM)$ a U(*n*)-structure:

- g Riemannian metric on M
- a quasi-complex orthogonal structure J on TM

Frames $p \in \overline{P}$ are isometries $p : \mathbb{R}^{2m} \cong \mathbb{C}^m \to T_x M$ that are \mathbb{C} -linear. $\mathfrak{u}(T_x M) = \{T \in \mathfrak{so}(T_x M) : TJ_x = J_x T\}$ $\mathfrak{u}(T_x M) \subset \mathfrak{so}(T_M) \subset \operatorname{Lin}(T_x M)$, hence:

 $\operatorname{Lin}(T_{X}M)/\mathfrak{u}(T_{X}M) \cong [\operatorname{Lin}(T_{X}M)/\mathfrak{so}(T_{X}M)] \oplus [\mathfrak{so}(T_{X}M)/\mathfrak{u}(T_{X}M)]$

 $\operatorname{Lin}(T_{X}M) \ni T \longmapsto \left(\frac{T+T^{*}}{2}, \left[\frac{T-T^{*}}{2}, J\right]\right)$

・ 吊 ト イ ラ ト イ ラ ト 二 ラ

Let \overline{M} be a manifold and $\overline{P} \subset FR(TM)$ a U(*n*)-structure:

- g Riemannian metric on M
- a quasi-complex orthogonal structure J on TM

Frames $p \in \overline{P}$ are isometries $p : \mathbb{R}^{2m} \cong \mathbb{C}^m \to T_x M$ that are \mathbb{C} -linear. $\mathfrak{u}(T_x M) = \{T \in \mathfrak{so}(T_x M) : TJ_x = J_x T\}$ $\mathfrak{u}(T_x M) \subset \mathfrak{so}(T_M) \subset \operatorname{Lin}(T_x M)$, hence:

 $\operatorname{Lin}(T_{X}M)/\mathfrak{u}(T_{X}M) \cong [\operatorname{Lin}(T_{X}M)/\mathfrak{so}(T_{X}M)] \oplus [\mathfrak{so}(T_{X}M)/\mathfrak{u}(T_{X}M)]$

$$\operatorname{Lin}(T_{X}M) \ni T \longmapsto \left(\frac{T+T^{*}}{2}, \left[\frac{T-T^{*}}{2}, J\right]\right)$$

$$\mathfrak{I}_{x}^{P}(v) = \left(-\frac{1}{2}\nabla_{v}g, \nabla_{v}J + \frac{1}{2}\left[\nabla_{v}g, J\right]\right)$$

for all $x \in M$, $v \in T_x M$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let \overline{M} be a manifold and $\overline{P} \subset FR(TM)$ a U(*n*)-structure:

- g Riemannian metric on M
- a quasi-complex orthogonal structure J on TM

Frames $p \in \overline{P}$ are isometries $p : \mathbb{R}^{2m} \cong \mathbb{C}^m \to T_x M$ that are \mathbb{C} -linear. $\mathfrak{u}(T_x M) = \{T \in \mathfrak{so}(T_x M) : TJ_x = J_x T\}$ $\mathfrak{u}(T_x M) \subset \mathfrak{so}(T_M) \subset \operatorname{Lin}(T_x M)$, hence:

 $\operatorname{Lin}(T_{X}M)/\mathfrak{u}(T_{X}M) \cong [\operatorname{Lin}(T_{X}M)/\mathfrak{so}(T_{X}M)] \oplus [\mathfrak{so}(T_{X}M)/\mathfrak{u}(T_{X}M)]$

$$\operatorname{Lin}(T_{X}M) \ni T \longmapsto \left(\frac{T+T^{*}}{2}, \left[\frac{T-T^{*}}{2}, J\right]\right)$$
$$\mathfrak{I}_{X}^{P}(v) = \left(-\frac{1}{2}\nabla_{v}g, \nabla_{v}J + \frac{1}{2}\left[\nabla_{v}g, J\right]\right)$$

for all $x \in M$, $v \in T_x M$.

Theorem

 $\mathfrak{I}^{P} = 0$ iff (M, g, J) is Kähler.

Let \overline{M} be a manifold and $\overline{P} \subset FR(TM)$ a U(*n*)-structure:

- g Riemannian metric on M
- a quasi-complex orthogonal structure J on TM

Frames $p \in \overline{P}$ are isometries $p : \mathbb{R}^{2m} \cong \mathbb{C}^m \to T_x M$ that are \mathbb{C} -linear. $\mathfrak{u}(T_x M) = \{T \in \mathfrak{so}(T_x M) : TJ_x = J_x T\}$ $\mathfrak{u}(T_x M) \subset \mathfrak{so}(T_M) \subset \operatorname{Lin}(T_x M)$, hence:

 $\operatorname{Lin}(T_{X}M)/\mathfrak{u}(T_{X}M) \cong [\operatorname{Lin}(T_{X}M)/\mathfrak{so}(T_{X}M)] \oplus [\mathfrak{so}(T_{X}M)/\mathfrak{u}(T_{X}M)]$

$$\operatorname{Lin}(T_{X}M) \ni T \longmapsto \left(\frac{T+T^{*}}{2}, \left[\frac{T-T^{*}}{2}, J\right]\right)$$
$$\mathfrak{I}_{X}^{P}(v) = \left(-\frac{1}{2}\nabla_{v}g, \nabla_{v}J + \frac{1}{2}\left[\nabla_{v}g, J\right]\right)$$

for all $x \in M$, $v \in T_x M$.

Theorem

 $\mathfrak{I}^{P} = 0$ iff (M, g, J) is Kähler. (M, ∇, P) is infinitesimally homogeneous iff g has constant holomorphic curvature.

Paolo Piccione (IME–USP)

G-structures and affine immersions

$$G = \begin{pmatrix} SO(n-1) & \vdots \\ \dots & 1 \end{pmatrix}$$

G-structure \overline{P} in $T\overline{M}$: orthonormal frames $[e_1, \ldots, e_{n-1}, \xi]$

$$G = \begin{pmatrix} \mathrm{SO}(n-1) & \vdots \\ \dots & 1 \end{pmatrix}$$

G-structure \overline{P} in $T\overline{M}$: orthonormal frames ϵ

$$\boldsymbol{e}_1,\ldots,\boldsymbol{e}_{n-1},\boldsymbol{\xi}$$

 $G_{x} = \left\{ A \in \operatorname{SO}(T_{x}\overline{M}) : A(\xi) = \xi \right\}$

$$G = \begin{pmatrix} \mathrm{SO}(n-1) & \vdots \\ \dots & 1 \end{pmatrix},$$

G-structure \overline{P} in $T\overline{M}$: orthonormal frames $| e_1, \ldots, e_{n-1}, \xi \rangle$

 $G_{x} = \left\{ A \in \operatorname{SO}(T_{x}\overline{M}) : A(\xi) = \xi \right\}$

$$\mathfrak{g}_{X}=\big\{L\in\mathfrak{so}(T_{X}M):L(\xi)=0\big\}$$

$$G = \begin{pmatrix} \mathrm{SO}(n-1) & \vdots \\ \dots & 1 \end{pmatrix},$$

G-structure \overline{P} in $T\overline{M}$: orthonormal frames $| e_1, \ldots, e_{n-1}, \xi \rangle$

$$G_{x} = \left\{ A \in \operatorname{SO}(T_{x}\overline{M}) : A(\xi) = \xi \right\}$$

$$\mathfrak{g}_{X}=\big\{L\in\mathfrak{so}(T_{X}M):L(\xi)=0\big\}$$

 $\mathfrak{gl}(T_{X}\overline{M})/\mathfrak{g}_{X}\cong \operatorname{sym}(T_{X}\overline{M})\oplus\xi_{X}^{\perp}$

$$L + \mathfrak{g}_{X} \longmapsto \left(\frac{1}{2}(L + L^{*}), \frac{1}{2}(L - L^{*})\xi\right)$$

$$G = \begin{pmatrix} \mathrm{SO}(n-1) & \vdots \\ \dots & 1 \end{pmatrix},$$

G-structure \overline{P} in $T\overline{M}$: orthonormal frames $e_1, \ldots, e_{n-1}, \xi$

 $\mathfrak{gl}(T_{x}\overline{M})/\mathfrak{g}_{x}\cong \operatorname{sym}(T_{x}\overline{M})\oplus\xi_{x}^{\perp}$

$$L + \mathfrak{g}_{X} \longmapsto \left(\frac{1}{2}(L + L^{*}), \frac{1}{2}(L - L^{*})\xi\right)$$

$$\mathfrak{I}_{X}^{\overline{P}}(\mathbf{v}) = \left(-\frac{1}{2}\nabla_{\mathbf{v}}\mathbf{g}, \nabla_{\mathbf{v}}\xi + \frac{1}{2}\nabla_{\mathbf{v}}\mathbf{g}\right)$$

$$G = \begin{pmatrix} \mathrm{SO}(n-1) & \vdots \\ \dots & 1 \end{pmatrix},$$

G-structure \overline{P} in $T\overline{M}$: orthonormal frames $e_1, \ldots, e_{n-1}, \xi$

$$G_x = \left\{ A \in \mathrm{SO}(T_x \overline{M}) : A(\xi) = \xi \right\} \ \left| \ g_x =$$

$$\mathfrak{g}_{X}=\big\{L\in\mathfrak{so}(T_{X}M):L(\xi)=0\big\}$$

$$\mathfrak{gl}(T_x\overline{M})/\mathfrak{g}_x\cong \operatorname{sym}(T_x\overline{M})\oplus\xi_x^{\perp}$$

$$L + \mathfrak{g}_{X} \longmapsto \left(\frac{1}{2}(L + L^{*}), \frac{1}{2}(L - L^{*})\xi\right)$$

$$\mathfrak{I}_{X}^{\overline{P}}(\mathbf{v}) = \left(-\frac{1}{2}\nabla_{\mathbf{v}}\mathbf{g}, \nabla_{\mathbf{v}}\xi + \frac{1}{2}\nabla_{\mathbf{v}}\mathbf{g}\right)$$

Lemma

 $\mathfrak{I}^{\overline{P}} = 0$ iff g and ξ are parallel.

Paolo Piccione (IME–USP)
An example with non vanishing inner torsion $(\overline{M}^n, \overline{g})$ Riemannian manifold, $\xi \in \Gamma(T\overline{M})$ unit vector field.

$$G = \begin{pmatrix} \mathrm{SO}(n-1) & \vdots \\ \dots & 1 \end{pmatrix},$$

G-structure \overline{P} in $T\overline{M}$: orthonormal frames $e_1, \ldots, e_{n-1}, \xi$

$$G_{X} = \left\{ A \in \operatorname{SO}(T_{X}\overline{M}) : A(\xi) = \xi \right\} \qquad g_{X} = \left\{ L \in \mathfrak{so}(T_{X}M) : L(\xi) \in \mathfrak{so}(T_{X}M) \right\}$$

 $\mathfrak{gl}(T_x\overline{M})/\mathfrak{g}_x\cong \operatorname{sym}(T_x\overline{M})\oplus \xi_x^{\perp}$

$$L + \mathfrak{g}_{X} \longmapsto \left(\frac{1}{2}(L + L^{*}), \frac{1}{2}(L - L^{*})\xi\right)$$

$$\mathfrak{I}_{X}^{\overline{P}}(\mathbf{v}) = \left(-\frac{1}{2}\nabla_{\mathbf{v}}\mathbf{g}, \nabla_{\mathbf{v}}\xi + \frac{1}{2}\nabla_{\mathbf{v}}\mathbf{g}\right)$$

Lemma

 $\mathfrak{I}^{\overline{P}} = 0$ iff g and ξ are parallel. $(\overline{M}, \overline{\nabla}, \overline{P})$ is infinitesimally homogeneous iff R and $\nabla \xi$ can be written in terms of g and ξ only.

Paolo Piccione (IME–USP)

G-structures and affine immersions

 $(\overline{M}, \overline{g})$ 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil₃, $\widetilde{PSL_2(\mathbb{R})}$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

★ 3 → < 3</p>

 $(\overline{M}, \overline{g})$ 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil₃, $\widetilde{PSL_2(\mathbb{R})}$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

Geometrical structure: Riemannian fibrations over a 2-dim. space form. Fibers are geodesics, the vertical field ξ is Killing.

 $(\overline{M}, \overline{g})$ 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil₃, $\widetilde{PSL_2(\mathbb{R})}$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

Geometrical structure: Riemannian fibrations over a 2-dim. space form. Fibers are geodesics, the vertical field ξ is Killing.

Classified by two constants: κ curvature of the base, τ bundle curvature: $\overline{\nabla}_{v}\xi = \tau v \times \xi$ (Obs.: needs orientation!)

・ 同 ト イ ヨ ト イ ヨ ト

 $(\overline{M}, \overline{g})$ 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil₃, $\widetilde{PSL_2(\mathbb{R})}$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

Geometrical structure: Riemannian fibrations over a 2-dim. space form. Fibers are geodesics, the vertical field ξ is Killing.

Classified by two constants: κ curvature of the base, τ bundle curvature: $\overline{\nabla}_{v}\xi = \tau v \times \xi$ (Obs.: needs orientation!)

•
$$\tau = 0$$
, then $\overline{M} = \mathbb{M}^2(\kappa) \times \mathbb{R}$

• $\kappa > 0 \Longrightarrow$ Berger spheres

$$\kappa = \mathbf{0} \Longrightarrow \operatorname{Nil}_{\mathbf{3}}$$

$$\kappa < \mathbf{0} \Longrightarrow \mathrm{PSL}_2(\mathbb{R})$$

- 4 回 5 4 日 5 4 日 5 - 三日

 $(\overline{M},\overline{g})$ 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil₃, $\widetilde{PSL_2(\mathbb{R})}$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

Geometrical structure: Riemannian fibrations over a 2-dim. space form. Fibers are geodesics, the vertical field ξ is Killing.

Classified by two constants: κ curvature of the base, τ bundle curvature: $\overline{\nabla}_{v}\xi = \tau v \times \xi$ (Obs.: needs orientation!)

•
$$\tau = 0$$
, then $\overline{M} = \mathbb{M}^2(\kappa) \times \mathbb{R}$

• $\kappa > 0 \Longrightarrow$ Berger spheres

$$\ \ \, \kappa = \mathbf{0} \Longrightarrow \mathrm{Nil}_{\mathbf{3}}$$

• $\kappa < 0 \Longrightarrow \widetilde{PSL_2(\mathbb{R})}$

 \overline{R} computed explicitly: formula involving only \overline{g} e ξ

・ 吊 ト イ ラ ト イ ラ ト 二 ラ

 $(\overline{M},\overline{g})$ 3-dimensional homogeneous manifold with 4-dim. isometry group (includes: Berger spheres, Heisenberg space Nil₃, $\widetilde{PSL_2(\mathbb{R})}$, products $\mathbb{S}^2 \times \mathbb{R}$, $\mathbb{H}^2 \times \mathbb{R}$)

Geometrical structure: Riemannian fibrations over a 2-dim. space form. Fibers are geodesics, the vertical field ξ is Killing.

Classified by two constants: κ curvature of the base, τ bundle curvature: $\overline{\nabla}_{v}\xi = \tau v \times \xi$ (Obs.: needs orientation!)

•
$$\tau = 0$$
, then $\overline{M} = \mathbb{M}^2(\kappa) \times \mathbb{R}$

• $\kappa > 0 \Longrightarrow$ Berger spheres

$$\kappa = \mathbf{0} \Longrightarrow \mathrm{Nil}_{\mathbf{3}}$$

• $\kappa < 0 \Longrightarrow \widetilde{PSL_2(\mathbb{R})}$

 \overline{R} computed explicitly: formula involving only $\overline{g} \in \xi$ Infinitesimally homogeneous SO(n - 1)-structure with non vanishing $\mathfrak{I}^{\overline{F}}$