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Abstract. Given a spacetime (M, g) and a compact connected spacelike non-

degenerate constant mean curvature (CMC) hypersurface Σ, we introduce the
notion of CMC deformation modulus hΣ of Σ. We prove that when hΣ does

not vanish on Σ, there exists a local CMC time function with Σ as a level set,
while Σ is not a leaf of any local CMC foliation when hΣ changes sign on Σ.

1. Introduction

Let (M, g) be a spacetime and consider a (local) time function τ : U → R, defined
on an open subset U of M . We say that τ is a (local) CMC time function if its
level sets, or time slices, Σt = τ−1(t) are constant mean curvature (CMC) spacelike
hypersurfaces of (M, g). In this paper, we study when a given compact spacelike
CMC hypersurface Σ of (M, g) is a level set of a local CMC time function. More
precisely, we provide a sufficient condition for Σ to be a leaf of a local foliation by
spacelike CMC hypersurfaces Σt, whose corresponding mean curvature Ht varies
smoothly with t. In this case, Ht determines a smooth local CMC time function
near Σ, having prescribed time slice Σ. With this purpose, we introduce the concept
of CMC deformation modulus hΣ of Σ, which is a real-valued smooth function on
Σ that contains linearized information on CMC deformations of Σ.

Theorem. Let M be a time-oriented Lorentz manifold with a nondegenerate con-
nected, compact, spacelike CMC hypersurface Σ ⊂ M . Denote by hΣ the CMC
deformation modulus of Σ (see Section 2 for definitions). Then, the following hold:

(i) If hΣ does not vanish on Σ, then there exists ε > 0, a neighborhood U of Σ in
M , and a smooth CMC time function τ : U → (−ε, ε) such that Σ = τ−1(0).
Moreover, if τ and τ ′ are smooth CMC time functions satisfying the above,
then τ ′ = φ ◦ τ where φ is a local diffeomorphism of R.

(ii) If hΣ changes sign on Σ, then there does not exist any local CMC foliation F
around Σ that contains Σ as a leaf.

The proof of the above result uses normal variations of Σ, and an Implicit Func-
tion Theorem for CMC embeddings, see Section 3. By adapting these techniques
to an equivariant setup, we also show that (i) holds for a special class of degenerate
spacelike CMC hypersurfaces, for which the degeneracy originates from ambient
isometries, see Remark 5.1.
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We stress that no global causal assumptions on the spacetime (M, g) are required,
given the local character of the question studied in this paper. However, if (M, g)
satisfies certain global properties (such as Σ being a Cauchy surface), then stronger
conclusions on local CMC time functions having Σ as a time slice can be derived
along the same lines.

The question of existence of foliations of spacetimes by (compact) spacelike
CMC hypersurfaces has been intensively studied in the literature. Some of the
main contributions to this problem were given by Gerhardt in the series of pa-
pers [14, 15, 16, 17]. In [15], an Implicit Function Theorem is used to prove that,
for a given CMC hypersurface foliation around Σ, the mean curvature defines a
smooth function in a neighborhood of Σ, using the assumption that either Σ is
not totally geodesic, or that Ricg(~nΣ, ~nΣ) > 0 somewhere on Σ. Either one of
these assumptions implies that Σ is nondegenerate, see (2.1). It is observed in [18]
that the (local) strong energy condition implies that the constant mean curvature
increases monotonically with time through CMC foliations. Bartnik [10] proved
the existence of CMC compact Cauchy hypersurfaces in cosmological spacetimes1,
extending previous results in [14]. In [16], it is proved that one can find closed
spacelike hypersurfaces with prescribed constant mean curvature in a globally hy-
perbolic Lorentzian manifold with a compact Cauchy hypersurface. The existence
of a foliation by spacelike CMC surfaces of a 3-dimensional globally hyperbolic
spacetime with constant nonpositive curvature is proved in [8]. A similar result
is proved in [9] for 3-dimensional globally hyperbolic spacetimes locally modelled
on the anti-de Sitter space. In [17], the existence of a foliation by spacelike CMC
hypersurfaces of a future end of a globally hyperbolic spacetime having a compact
Cauchy hypersurface is proved, under the assumption either that Ricg is bounded
from below on timelike vectors, or that there exists a future mean curvature barrier.
More recently, the existence of foliations by spacelike CMC hypersurfaces has been
studied in globally hyperbolic spacetimes of constant curvature in [7], see also [5]
for the case of flat spacetimes.

We also study singularities of CMC foliations around a degenerate spacelike CMC
hypersurface. In Section 4, we briefly discuss this question on Robertson–Walker
spacetimes, which provide physically interesting examples of spacetimes foliated by
spacelike CMC (in fact, totally umbilical) hypersurfaces. A natural assumption
in General Relativity is the so-called timelike convergence condition (TCC), i.e.,
Ricg(v, v) ≥ 0 for all timelike vectors v ∈ TM . Assuming the Einstein equations
Ricg − 1

2Rg = 8πT hold, this condition is equivalent to the strong energy condi-

tion T (V, V ) ≥ 1
2 (trT )g(V, V ), and expresses the physical fact that, on average,

gravity attracts. Under the (TCC) assumption, it follows easily from (2.1) that
the Jacobi operator JΣ of any spacelike CMC hypersurface Σ of M is positive-
semidefinite. Moreover, it is positive-definite (and, in particular, non-singular) if
either Ricg(~nΣ, ~nΣ) > 0 somewhere along Σ, or if Σ is not totally geodesic. In the
class of Robertson–Walker spacetimes, if one assumes (TCC), then by a result of
Aĺıas, Romero and Sánchez [1], the unique spacelike CMC hypersurfaces are time
slices. In this situation, the worst scenario is described by an example of Gerhardt
[15], see Example 4.3, which shows that local CMC time functions may fail to exist
around degenerate slices, despite the existence of a global smooth CMC foliation.

1i.e., globally hyperbolic spacetimes having a compact Cauchy surface and satisfying the time-
like convergence condition.
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If (TCC) is no longer assumed, interesting bifurcation phenomena may occur at
degenerate time slices. In Proposition 4.4, we give a bifurcation criterion that al-
lows to construct examples of spacelike CMC hypersufaces (that are not time slices)
collapsing onto degenerate time slices.

Acknowledgement. The authors would like to thank Luis Aĺıas for his invaluable
suggestions on the submanifold theory of Robertson–Walker spacetimes.

2. CMC deformation modulus

2.1. CMC hypersurfaces. Let (Mn+1, g) be a spacetime, i.e., a time-oriented
Lorentz manifold, and let Σn ⊂ M be a smooth connected compact spacelike hy-
persurface without boundary. Denote by ~nΣ the unit future-pointing normal field
to Σ, and by gΣ the induced Riemannian metric on Σ. For all p ∈ Σ, the second
fundamental form of Σ at p is the symmetric bilinear form IIΣ

p on TpΣ defined by

IIΣ
p (X,Y ) := gp

(
∇XY, ~nΣ(p)

)
, where ∇ is the Levi–Civita connection of g. The

sum of its eigenvalues defines a function HΣ(p) := −trgΣ

(
IIΣ
p

)
, called the mean

curvature2 of Σ. If HΣ(p) = 0 for all p, then Σ is said to be a maximal space-
like hypersurface. More generally, if HΣ is constant, then Σ is a constant mean
curvature (CMC) spacelike hypersurface.

If Σ is a compact spacelike CMC hypersurface, let ∆Σ = −divgΣ
grad be the

positive definite Laplace–Beltrami operator of the metric gΣ, and define the Jacobi
operator JΣ on the space of C2-functions ψ : Σ→ R by

(2.1) JΣ(ψ) := ∆Σψ +
(
‖IIΣ‖2 + Ricg(~nΣ, ~nΣ)

)
ψ,

where Ricg is the Ricci curvature of g, and ‖IIΣ‖ is the Hilbert–Schmidt norm of

IIΣ. It is well-known that JΣ is a self-adjoint elliptic operator, and that for all
k ≥ 2 and α ∈ (0, 1), JΣ : Ck,α(Σ) → Ck−2,α(Σ) is a Fredholm operator of index
0. A C2-map ψ on Σ is a Jacobi field along Σ if JΣψ = 0. By elliptic regularity,
Jacobi fields are smooth. A compact spacelike CMC hypersurface Σ is said to be
nondegenerate if ψ = 0 is the only Jacobi field along Σ, i.e., if ker JΣ = {0}. By
Fredholmness, this is equivalent to JΣ being invertible.

2.2. Definition of the CMC deformation modulus. If Σ is a nondegenerate
compact spacelike CMC hypersurface, then JΣ is invertible, hence there exists a
unique (smooth) function hΣ on Σ satisfying JΣ(hΣ) = 1, which we call the CMC
deformation modulus of Σ.

A geometric interpretation of hΣ can be given as follows. Given a smooth 1-
parameter family {Σs}s∈(−ε,ε) of spacelike CMC hypersurfaces of M , with Σ0 = Σ,

let V = d
ds

∣∣
s=0

Σs be the corresponding variational field along Σ, and let ψV =

g(V,~nΣ) be its normal component. Denoting by hs the mean curvature of Σs, we
have JΣψV = d

ds

∣∣
s=0

hs. Thus, hΣ can be interpreted as the normal component
ψV of the variational vector field V associated to a variation of Σ by spacelike
hypersurfaces Σs that, to first order, have constant mean curvature hs = HΣ + s.

2We use the convention of a negative sign for the definition of the mean curvature, see for
instance [2, p. 470]. This choice is irrelevant in the paper.
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2.3. CMC time functions. A smooth (local) function T on M is a time function
if its gradient ∇τ is everywhere timelike and future directed. In particular, dτ 6= 0
everywhere, and the level sets τ−1(t) are embedded spacelike hypersurfaces of M ,
called time slices. A time function τ is called a CMC time function (cf. [7]) if its
time slices are CMC hypersurfaces.

Given a foliation F by spacelike CMC surfaces of an open subset U of M , one
defines the mean curvature function HF associated to F on U by setting HF (p)
equal to the mean curvature of the unique leaf of F through p. This is a continuous
mapping, however, as observed in [15], it may fail to be a time function even in
spacetimes where the strong energy condition holds.

3. Proof of Main Theorem

The set E2,α(Σ,M) of C2,α-submanifolds of M that are diffeomorphic to Σ, or,
equivalently, the set of unparametrized embeddings3 of Σ in M , has the structure
of a topological manifold. A sufficiently small neighborhood of Σ in E2,α(Σ,M) is
parametrized by maps f in a neighborhood U of 0 in the Banach space C2,α(Σ),
using the correspondence f 7→ xf , where

(3.1) xf (p) = expp
(
f(p) · ~nΣ(p)

)
,

and exp is the exponential map of (M, g). Details of this construction can be found
in [4]. The map H : U → C0,α(Σ) that to each f ∈ U associates the mean curvature
of xf is smooth and its differential at f = 0 is identified with the Jacobi operator
JΣ : C2,α(Σ)→ C0,α(Σ). The nondegeneracy assumption implies that this operator
is invertible, and thus H is a local diffeomorphism near f = 0. Set h0 = H(0); this
is the mean curvature of Σ. By the Inverse Function Theorem, there exists ε > 0
and a smooth map (h0 − ε, h0 + ε) 3 h 7→ fh ∈ U such that H(fh) = h and, if f is
sufficiently close to 0 and H(f) = h ∈ (h0 − ε, h0 + ε), then f = fh. Using again
elliptic regularity, one sees that fh is smooth for all h ∈ (h0 − ε, h0 + ε).

In other words, there is a unique smooth deformation of Σ by a family h 7→ Σh of
smooth spacelike CMC hypersurfaces of M , with Σh having mean curvature equal
to h, and Σh0

= Σ. Consider the variational vector field V along Σ corresponding to
the family Σh, given by V = ψ ·~nΣ, where ψ = d

dh

∣∣
h=h0

fh. Then, since H(fh) = h,

1 =
d

dh

∣∣∣
h=h0

H(fh) = JΣ(ψ),

hence ψ = hΣ is the CMC deformation modulus of Σ. We now prove (i) and (ii):

(i) Assume that hΣ does not vanish on Σ. Since Σ is compact, the map Σ×R 3
(p, h) 7→

(
p, fh(p)

)
∈ Σ × R gives a diffeomorphism from a neighborhood of

Σ × {h0} in Σ × R onto a neighborhood of Σ × {0} in Σ × R. Moreover, by
compactness, Σ×R 3 (p, t) 7→ expp

(
t·~nΣ(p)

)
∈M also gives a diffeomorphism

from a neighborhood of Σ × {0} in Σ × R onto a tubular neighborhood of
Σ in M . The composition of these two maps gives a diffeomorphism from
Σ × (h0 − ε, h0 + ε) to a tubular neighborhood U of Σ in M . Under such
diffeomorphism, the hypersurfaces Σh correspond to the slices Σ × {h}, and
hence form a foliation of U . Moreover, the projection Σ × R → R defines a
smooth map τ̃ on U whose level hypersurfaces are the CMC submanifolds Σh.
Clearly, dτ̃ 6= 0 and, since Σh is spacelike, ∇τ̃ is timelike. If hΣ is positive,

3i.e., embeddings modulo reparametrizations.
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then ∇τ has the same direction as ~nΣ, i.e., future-directed, and therefore T̃ is
a time function. In this case, the desired time function is given by τ := τ̃−h0.
If hΣ is negative, the desired time function is τ := h0− τ̃ . Uniqueness follows
easily from the uniqueness of a CMC perturbation of Σ, since any two local
CMC time functions having Σ as a level hypersurface must have the same
level hypersurfaces and are hence equivalent.

(ii) Assume that hΣ changes sign on Σ. By the above application of the Inverse
Function Theorem, any spacelike CMC hypersurface Σ′ diffeomorphic and
sufficiently close to Σ must coincide with one of the Σh. Thus, any local CMC
foliation F that contains Σ as a leaf must also contain some Σh as a leaf, with h
arbitrarily close to h0. We claim that Σh and Σ intersect for h close to h0, and
hence such a foliation F cannot exist. Indeed, the CMC deformation modulus
of Σ is hΣ = d

dh

∣∣
h=h0

fh, where Σ 3 p 7→ expp
(
fh(p) ·~nΣ(p)

)
parametrizes the

family Σh, see (3.1). Since hΣ changes sign on Σ, it follows that Σh intersects
Σ for h close to h0. �

4. Bifurcation in Robertson–Walker spacetimes

We now discuss a phenomenon of lack of local uniqueness of a CMC foliation
around a degenerate CMC hypersurface. The appropriate mathematical framework
is obtained from bifurcation theory. As a paradigmatic example, let us consider a
simple class of models given by Robertson–Walker spacetimes. Assume (M0, g0) is
a compact n-dimensional Riemannian manifold, I ⊂ R is an open interval, and
α : I → R+ is a smooth function. The Robertson–Walker spacetime with data
(M0, g0, I, α) is the product manifold M = I ×M0 endowed with the time-oriented
Lorentz metric tensor g defined by:

(4.1) g = −dt2 + α(t)2 g0.

The unit timelike vector ∂t is a globally defined conformal field, and it is assumed
to give the positive time-orientation of (M, g).

Robertson–Walker spacetimes are well-known models in the literature, and pro-
vide a class of examples of Lorentz manifolds with a natural foliation by spacelike
CMC hypersurfaces, given by the time slices Σt = {t} ×M0, t ∈ I. In fact, Σt are
totally umbilical hypersurfaces (i.e., their second fundamental form is a multiple
of the induced metric); in particular, they have constant mean curvature.4 For all
p ∈ Σt and v, w ∈ TpΣt, one has:

IIΣt
p (v, w) = −α′α g0(v, w) = −α2(logα)′ g0(v, w).

Thus, the mean curvature ht of Σt is given by

(4.2) ht = −trα2g0

(
IIΣt
)

= n(logα)′,

and the squared norm of IIΣt is

(4.3)
∥∥IIΣt

∥∥2
= n

(
(logα)′

)2
.

Furthermore, a direct calculation gives

(4.4) Ricg(∂t, ∂t) = −nα
′′

α
= −n

((
(logα)′

)2
+ (logα)′′

)
.

4An explicit computation of the second fundamental form and the mean curvature of Σt can be
found in [2]. See [1] for details on the mean curvature of more general graphs in Robertson–Walker

spacetimes.
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From (2.1), it follows that the Jacobi operator J t of Σt is given by

(4.5) J t = ∆α2g0
− n(logα)′′ = 1

α2 ∆g0 − n(logα)′′.

Thus, a time slice Σt0 is a degenerate spacelike CMC hypersurface if and only if
λ0 = n

(
α′′(t0)α(t0)− α′(t0)2

)
is an eigenvalue of the Laplace operator ∆g0

.

Remark 4.1. The timelike convergence condition (TCC) holds in a Robertson–
Walker spacetime if and only if

α′′ ≤ 0, and Ric0 ≥ (n− 1)
(
αα′′ − α′2

)
,

where Ric0 is the Ricci tensor of the Riemannian manifold (M0, g0), see [1]. Under
the (TCC) assumption, it is proved in [1] that a compact spacelike CMC hypersur-
face in essentially any Robertson–Walker spacetime must be a time slice Σt. It is
also worth recalling that, even under the (TCC) assumption, a time slice Σt may
fail to be nondegenerate (see Example 4.3 below).

Remark 4.2. Suppose (M4, g) is a Robertson–Walker spacetime that satisfies the
Einstein equations Ricg − 1

2Rg = 8πT . The stress-energy tensor T is said to have
the form of a perfect fluid if there exists a future-directed timelike unit vector
field U on M and functions ρ and p on M such that T = (ρ + p)ωU ⊗ ωU + pg,
where ωU := g(U, ·) is the 1-form dual to U . The functions ρ and p are respec-
tively called energy density and pressure. Assume (M0, g0) has constant sectional
curvature and the Robertson–Walker spacetime (M, g), given by (4.1), is a per-
fect fluid solution to the Einstein equation satisfying the strong energy condition.
If ht0 > 0 for some t0, then the interval I has a finite left-endpoint tinitial with
t0 − 1

ht0
< tinitial < t0, such that α(t) > 0 and ρ′(t) ≤ 0 on (tinitial, t0), and every

timelike geodesic normal to the time slice {t} ×M0 is past incomplete. Moreover,
if limt→tinitial

α(t) = 0 and limt→tinitial
α′(t) = ∞, then tinitial is called a big bang,

in which case limt→tinitial
ρ(t) = ∞. The notion of big crunch can be analogously

defined, corresponding to a finite right-endpoint tfinal with similar properties.

Example 4.3. The following model is discussed in [15, Section 3] as an example of
a spacetime satisfying the big bang and big crush hypotheses and (TCC), which is
foliated by spacelike CMC hypersurfaces and has exactly one totally geodesic leaf,
on which the derivative of the mean curvature function vanishes. In particular, the
mean curvature function fails to be a time function.

The example is a Robertson–Walker spacetime with data:

• (M0, g0) is the n-dimensional round sphere, n ≥ 2;
• I = (−ε, ε), with ε ∈ (0, 1];

• α(t) = ef(t), with f(t) = −
∫ t

0

s3

ε2 − s2
ds =

1

2
t2 +

ε2

2
log(ε2− t2)− ε2 log ε.

Using (4.2), the mean curvature ht of the slice Σt = {t} × Sn is given by

ht = n(logα)′ = nf ′ = − n t3

ε2 − t2
,

which vanishes exactly at t = 0. Thus, Σ0 is totally geodesic, and it is the unique
maximal leaf of the foliation. Moreover, since h′t = 0 at t = 0, the maximal leaf
Σ0 is degenerate and ht is not a time function. Notice also that h′t > 0 for t 6= 0,
hence ht is a strictly increasing function on (−ε, ε).
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If Σt0 is nondegenerate, then the CMC deformation modulus hΣt0 is well-defined.
In Robertson–Walker spacetimes, it follows from (4.5) that hΣt0 exists if and only
if α′′(t0)α(t0) − α′(t0)2 6= 0, which is equivalent to h′t0 6= 0. In this case, hΣt0 is

the constant function − α(t0)2

n
(
α′′(t0)α(t0)−α′(t0)2

) . For the spacetime in Example 4.3, a

direct computation shows that α′′(0)α(0) − α′(0)2 = 0, so the CMC deformation
modulus hΣ0 is not defined.

Let us now give a criterion to establish when local uniqueness of CMC hyper-
surfaces fails around a degenerate time slice Σt0 , using bifurcation techniques.

Proposition 4.4. Let (Mn, g) be a Robertson–Walker spacetime with I = (−ε, ε).
Suppose that for some t0 ∈ I the time slice Σt0 is a degenerate spacelike CMC
hypersurface, i.e., λ0 = n

(
α′′(t0)α(t0) − α′(t0)2

)
is an eigenvalue of the Laplace

operator ∆g0 . Furthermore, assume that the following hold:

(i) the mean curvature function t 7→ ht is locally injective near t = t0;
(ii) the function I 3 t 7→ λ0 − n

(
α′′(t)α(t)− α′(t)2

)
∈ R changes sign at t = t0;

(iii) λ0 has odd multiplicity as an eigenvalue of ∆g0
.

Then, there exists a bifurcating branch of spacelike CMC hypersurfaces for the
family {Σt}t∈I issuing at Σt0 , i.e., there are spacelike CMC hypersurfaces of (M, g)
that are diffeomorphic to M0, arbitrarily close to Σt0 , and that do not belong to the
family {Σt}t∈I .

Proof. The result is obtained as an application of a classical bifurcation theorem for
families of Fredholm operators, see for instance [19, Theorem II.4.4]. The functional
framework is as in Section 3. Namely, a sufficiently small neighborhood of Σt0 in the
space of submanifolds of M diffeomorphic to Σt0 is identified with a neighborhood U
of the Banach space C2,α(Σt0). To each map f ∈ U , one associates the embedding
xf : Σt0 → M defined using the normal exponential map along Σt0 . Consider the
nonlinear map F : U ×R→ C0,α(Σt0) defined by:

F (f, µ) = Hxf
− µ,

where Hxf
∈ C0,α(Σt0) is the mean curvature function of xf . Clearly, F (f, µ) = 0

if and only if xf has constant mean curvature equal to µ.
Consider the 1-parameter family of constant functions ft = t− t0 on Σt0 . Recall-

ing (3.1) and keeping in mind that the vector field ∂t = ~nΣt0
is geodesic, we have

xft(Σt0) = Σt for all t. Assumption (i) guarantees the existence of a continuous
map µ 7→ t(µ), giving a bijection from a neighborhood of µ0 = ht0 to a neighbor-
hood of t0 in R, such that F (ft(µ), µ) = 0 for all µ near µ0. Thus, the existence of
a bifurcating branch for the family of spacelike CMC hypersurfaces {Σt}t∈I issu-
ing at Σt0 is equivalent to the existence of a bifurcating branch of solutions to the
equation F (f, µ) = 0 for the continuous path µ 7→ ft(µ) issuing at µ0.

The result of [19, Theorem II.4.4] applies in this situation to obtain the desired
conclusion. The derivative of ∂F∂f (ft(µ), µ) : C2,α(Σt0)→ C0,α(Σt0) is identified with

the Jacobi operator J t(µ), which is Fredholm of index 0. This operator is singular at
µ = µ0. Assumption (ii) implies that for µ 6= µ0 near µ0, then J t(µ) is non-singular;
this follows easily from the fact that the eigenvalues of ∆g0

is a discrete subset of
R. Finally, assumptions (ii) and (iii) imply the odd crossing number assumption in
[19, Theorem II.4.4], which yields the existence of a bifurcating branch of solutions
of the equation F (f, µ) = 0. �
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Example 4.5. Let (M0, g0) be a compact Riemannian manifold whose Laplace–
Beltrami operator has an infinite number of eigenvalues with odd multiplicity. For
instance, the Laplace–Beltrami operator of the round sphere Sn has eigenvalues
λk = k(k + n− 1), with multiplicity

(
n+k
n

)
−
(
n+k−2
n

)
, see [11, Chapter 3, C], and,

for every n, there exist infinitely many λk with odd multiplicity, e.g., λ2m, m ≥ 0,
when n = 3. Given an interval I ⊂ R, let α : I → R+ be a smooth function such that
g(t) = α(t)α′′(t)−α′(t)2 is strictly increasing on I, with inf g = 0 and sup g = +∞.
Then, the Robertson–Walker spacetime with data (M0, g0, I, α) has infinitely many
degenerate time slices at which bifurcation occurs, by Proposition 4.4.

5. Final remarks

Remark 5.1. Important classes of spacetimes, such as Bianchi spacetimes, Gowdy
spacetimes, or U(1)-symmetric vacuum Einstein spacetimes have a (local) isometry
group of positive dimension, see [6] for a review of the global properties of these
models. The presence of symmetries of the spacetime (M, g) determines an obstruc-
tion to the nondegeneracy assumption of the CMC hypersurface Σ. More precisely,
if K is a local Killing vector field defined in a neighborhood of Σ, which is not
everywhere tangent to Σ, then the map ψK = g(K,~nΣ) is a nontrivial Jacobi field
along Σ. We call such a function ψK a Killing–Jacobi field along Σ. A compact
spacelike CMC hypersurface Σ is called equivariantly nondegenerate if every Jacobi
field along Σ is Killing–Jacobi.

It is an interesting question to extend part (i) of our main Theorem to the more
general case of equivariantly nondegenerate CMC hypersurfaces. This is possible
under the further assumptions that Σ is the boundary of a pre-compact open subset
Ω ofM , and that every Killing-Jacobi field ψK along γ is generated by a local Killing
field whose domain contains Ω. Under these circumstances, one still has solutions
for the equation JΣ(ψ) = 1. Namely, the constant function 1 is L2-orthogonal to
the kernel of JΣ, which consists of the Killing–Jacobi fields ψK :∫

Σ

ψK dΣ =

∫
Σ

g(K,~nΣ) dΣ =

∫
Ω

divg(K) = 0.

Since JΣ is symmetric with respect to the L2-inner product, it follows that 1 is in
the image of JΣ, which implies that the set of solutions of the equation JΣ(ψ) = 1
is an affine subspace of C2,α(Σ), parallel to ker JΣ. It is not hard to show that the
proof in Section 3 holds under the assumption that some solution ψ of JΣ(ψ) = 1
does not vanish on Σ. In this case, a sufficiently small tubular neighborhood of Σ
in M is foliated by a smooth family of CMC hypersurfaces. As to the uniqueness,
in this situation one has to consider a weaker notion that accounts for the flow (by
isometries) of the Killing fields, see [12] for details.

Remark 5.2. In the bifurcation result of Proposition 4.4, assumption (iii) is unnec-
essary if one assumes that Σt0 is the boundary of a compact domain of M . Namely,
in this situation one can use a variational approach to the CMC problem obtained
by extremizing area with respect to volume-preserving variations. For variational
bifurcation, it suffices to assume a jump of the Morse index, not necessarily by an
odd number, which is guaranteed by assumption (ii) alone.
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