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Abstract

The primal-dual scheme has been used to provide approximation algorithms for many problems.

Goemans and Williamson gave a (2− 1

n−1
)-approximation for the Prize-Collecting Steiner Tree

Problem that runs in O(n3 logn) time. Their algorithm applies the primal-dual scheme once for

each of the n vertices of the graph. We present a primal-dual algorithm that runs in O(n2 log n),

as it applies this scheme only once, and achieves the slightly better ratio of 2− 2

n
. We also show

a tight example for the analysis of the algorithm and discuss briefly a couple of other algorithms

described in the literature.

Keywords: approximation algorithms; primal-dual method; prize-collecting Steiner tree

1 Introduction

The Prize-Collecting Steiner Tree Problem is an extension of the Steiner Tree Problem where each

vertex left out of the tree pays a penalty. The goal is to find a tree that minimizes the sum of

its edge costs and the penalties for the vertices left out of the tree. The problem has applications

in network design and has been used to approximate other problems, such as the k-Steiner tree

(finding a minimum tree spanning k vertices) and the survivable network problem [2, 8].

The best approximation algorithms known for the Prize-Collecting Steiner Tree Problem are

based on the primal-dual scheme. Different linear programming formulations of the problem may

lead to different algorithms. In this paper we present one such formulation and use it in the design

of a new approximation algorithm.

Consider a graph G = (V,E), a function c from E to Q≥ and a function π from V to Q≥. (Here,

Q≥ denotes the set of non-negative rationals.) The Prize-Collecting Steiner Tree (PCST)

Problem consists of the following: given G, c, and π, find a tree T in G such that

∑

e∈ET

ce +
∑

v∈V \VT

πv

is minimum. (We denote by VH the vertex set and by EH the edge set of a graph H.) The rooted

variant of the problem requires T to contain a given root vertex.

∗ This is a corrected and improved version of a paper by the same auhors [5] published in 2007.
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do Matão 1010, 05508-090 São Paulo/SP, Brazil. E-mail: {pf,cris,cef,coelho}@ime.usp.br. Research supported

in part by PRONEX/CNPq 664107/1997-4 (Brazil).
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Goemans and Williamson [10, 11] used the primal-dual scheme to derive a (2 − 1
n−1)-

approximation for the rooted PCST, where n := |V |. Trying all possible choices for the root, they

obtained a (2− 1
n−1)-approximation for the (unrooted) PCST. The resulting algorithm, which we

call GW, runs in time O(n3 log n). Johnson, Minkoff and Phillips [12] proposed a variant of the

algorithm that runs the primal-dual scheme only once, resulting in a O(n2 log n) time bound. They

claimed that their variant, which we refer to as JMP, achieves the same approximation ratio as

algorithm GW. Unfortunately, their claim does not hold, as we show below. Cole et al. [3] proposed

a faster implementation of the GW algorithm, which also runs the primal-dual scheme only once

and produces a (2 + 1/poly(n))-approximation for the (unrooted) PCST.

This paper contains two results. The main one is a modification of the GW algorithm based on

a somewhat different linear program. We show that this new algorithm achieves a ratio of 2 − 2
n
.

It requires only one run of the primal-dual scheme, resulting in a O(n2 log n) time bound. We also

present a family of graphs which proves that the given analysis is tight. The second result is an

example where the JMP algorithm achieves an approximation ratio of only 2, which shows that

the 2− 1
n−1 ratio claimed by Johnson, Minkoff and Phillips does not hold.

Our new algorithm slightly improves the best known approximation ratio for the PCST prob-

lem. Though the improvement is small, the algorithm seems interesting and might be used in the

design of a better algorithm. Its behavior is not very different from that of JMP, but it stops

earlier, thereby achieving a better ratio.

The paper is organized as follows. The next section introduces some notation and preliminaries.

Section 3 describes the new algorithm. The analysis of the algorithm is given in Sections 4 and 5.

Section 6 comments on the running time of the algorithm. Section 7 discusses the JMP algorithm

and its variant for the rooted PCST. The so-called pruning phase of the algorithms is briefly

discussed in Section 8.

2 Notation and preliminaries

For any subset F of E, let c(F ) :=
∑

e∈F ce. For any subset S of V , let π(S) :=
∑

v∈S πv. If T

is a subgraph of G, we shall abuse notation and write π(T ) and π(T ) to mean π(VT ) and π(VT )

respectively. (Of course, VT denotes V \ VT .) Similarly, we shall write c(T ) to mean c(ET ). Hence,

the goal of PCST(G, c, π) is to find a tree T in G such that c(T ) + π(T ) is minimum.

For any subset L of V , let δL stand for the set of edges of G with one end in L and the other

in L. Given a subgraph H of G, let δHL := EH ∩ δL. For any collection L of subsets of V and any

e in E, let

L(e) := {L ∈ L : e ∈ δL} .
For any subset S of V and any collection L of subsets of V , let

L[S] := {L ∈ L : L ⊆ S} and LS := {L ∈ L : L ⊇ S} .

A collection L of subsets of V is laminar if, for any two elements L1 and L2 of L, either L1∩L2 = ∅
or L1 ⊆ L2 or L1 ⊇ L2. The collection of all maximal elements of L shall be denoted by L∗ and

the union of all sets in L by
⋃L. If L is laminar, the elements of L∗ are pairwise disjoint. If, in

addition,
⋃L = V then L∗ is a partition of V .

Let L be a laminar collection of subsets of V and y is a function from L into Q≥. For any
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subcollection L′ of L, let y(L′) := ∑

L∈L′ yL. We say that y respects c if

y(L(e)) ≤ ce (1)

for each e in E. We say that e is tight for y if equality holds in (1). We say that y respects π if

y(L[S]) ≤ π(S) and y(L[S]) + y(LS) ≤ π(S) (2)

for each S in L. We shall refer to the first set of inequalities as (2a) and to the second set as (2b).

(The usual primal-dual scheme for the PCST problem uses only (2a).) If equality holds in (2a),

we say that y saturates S. If equality holds in (2b), we say that y saturates the complement

of S.

Lemma 2.1 Given a laminar collection L of subsets of V and a function y from L into Q≥, if y

respects c and π then y(L) ≤ c(T ) + π(T ) for any connected subgraph T of G.

Proof. Let S be a minimal set in L containing VT . If there is no such set, let S := V . For

B := {L ∈ L : δTL 6= ∅},

y(B) ≤
∑

L∈B

|δTL| yL =
∑

e∈ET

y(L(e)) ≤
∑

e∈ET

ce = c(T )

by virtue of (1). For C := L[S] ∪ LS, by virtue of (2b),

y(C) = y(L[S]) + y(LS) ≤ π(S) .

For D := L[S \ VT ],

y(D) =
∑

X∈D∗

y(L[X]) ≤
∑

X∈D∗

π(X) ≤ π(S \ VT )

due to (2a). Since L = B ∪ C ∪ D, we have y(L) ≤ c(T ) + π(S) + π(S \ VT ) ≤ c(T ) + π(T ), as

claimed.

We denote by opt(G, c, π) the value of an (optimum) solution of PCST(G, c, π), i.e., the min-

imum value of the expression c(T ) + π(T ) over all trees T of G. Lemma 2.1 has the following

consequence:

Corollary 2.2 For any laminar collection L of subsets of V and any function y from L into Q≥,

if y respects c and π then y(L) ≤ opt(G, c, π).

This lower bound serves as motivation for the new algorithm.

Linear programming relaxation

The definitions of “y respects c” and “y respects π” and the lower bound on opt(G, c, π) given by

Corollary 2.2 are based on the following relaxation of the PCST problem: find vectors x and z

that

3



Figure 1: A connected graph T and a laminar collection of sets whose union con-

tains VT . The thick line encloses the set S in the proof of Lemma 2.1. The dotted lines

represent the collection D, the dashed ones together with set S represent C and the

solid ones represent B.

minimize
∑

e∈E cexe +
∑

S⊆V π(S)zS

subject to
∑

e∈δL xe +
∑

S⊇L zS +
∑

S⊇L zS ≥ 1 for each L ⊆ V ,

xe ≥ 0 for each e ∈ E,

zS ≥ 0 for each S ⊆ V .

(3)

The idea behind this linear program is simple: in any solution given by x and z, for each set L, either

there is an edge in δL, or one of L and L is part of a set that pays penalty (a set S with zS = 1).

Given a solution T of PCST(G, c, π), set xe := 1 if e ∈ ET and xe := 0 otherwise and set zS := 1

if S = VT and zS := 0 otherwise. The pair (x, z) thus defined is feasible in (3) and its value is

c(T ) + π(T ). Hence, the linear program (3) is a relaxation of PCST(G, c, π). Conversely, it can

be shown that any optimum solution (x, z) of (3) whose components are all in {0, 1} describes a

solution of PCST(G, c, π). The dual of the linearprogram (3) calls for a vector y that

maximizes
∑

L⊆V yL

subject to
∑

δL∋ e yL ≤ ce for each e ∈ E,
∑

L⊆S yL +
∑

L⊇S yL ≤ π(S) for each S ⊆ V ,

yL ≥ 0 for each L ⊆ V

(4)

Our definition of “y respects π” follows from the second group of constraints in (4). It may seem

at first that (2a) does not match that group of constraints. The apparent disagreement comes from

the fact that a laminar collection does not usually contain the complements of its elements, and

therefore LS is usually empty for S in L. It is true, however, that, for any function y defined on a

laminar collection L, if y respects π then y also satisfies the second group of constraints in (4) once

yL is set to 0 for all L not in L. (The proof of this observation is similar to the proof Lemma 2.1.)

Corollary 2.2 is, therefore, a consequence of the weak duality relation between feasible solutions

of (4) and feasible solutions of (3).

4



3 Unrooted growth clustering algorithm

Our algorithm, which we call GW-Unrooted-Growth, follows the GW primal-dual scheme. Just

as GW, it has two phases. In phase 1, a tree is obtained; in phase 2, some edges are removed from

the tree to produce the final output.

Each iteration in phase 1 begins with a spanning forest F of G = (V,E), a nonnegative function

y defined on the componentes of F and on some subsets of those componentes, and a collection

S of components of F that are saturated by y. If all the components of F except one are in S,
phase 1 ends and phase 2 begins with that only component as starting point. Now suppose that

two or more of the components of F are not in S. Then the algorithm increases uniformly the

values of the y variables on all those components and stops when one of the following three events

happens: (a) an edge connecting two components of F becomes tight, (b) a component becomes

saturated, (c) the complement of a component becomes saturated. If event (c) happens for some

component T , phase 2 begins with T as starting point. If event (a) happens, the algorithm adds

to F one of the edges that became tight and begins a new iteration. If event (b) happens for some

component, the algorithm adds that component to S and begins a new iteration.

Phase 2 of our algorithm begins with the tree T produces by phase 1 and the collection S of

saturated sets. While there exists S in S such that δS contains exactly one edge of T , that set S is

removed from T . (This is somewhat different from the reverse delete strategy of the GW pruning

algorithm.) Phase 2 returns the remaining tree.

The detailed description of our algorithm uses the following terminology. An edge is internal

to a partition P of V if both of its ends are in the same element of P. All other edges are external
to P. For any external edge, there are two elements of P containing its ends; we call these two

elements the extremes of the edge in P.
We can now state the GW-Unrooted-Growth algorithm. It receives (G, c, π) and returns a

tree T in G such that

c(T ) + π(T ) ≤
(

2− 2
n

)

opt(G, c, π)

as well as c(T ) + 2π(T ) ≤ 2 opt(G, c, π).

GW-Unrooted-Growth (G, c, π)

1 F ← (V, ∅)
2 L ← {{v} : v ∈ V }
3 S,M, y ← ∅, ∅, 0
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4 while |L∗ \ S| > 1 andM = ∅ do
5 let g be the characteristic function of L∗ \ S relative to L
6 choose the largest ǫ in Q≥ such that y ′ := y + ǫg respects c and π

7 if some edge e external to L∗ is tight for y ′

8 then let L1 and L2 be the extremes of e in L∗
9 L ← L ∪ {L1 ∪ L2}
10 y ′L1∪L2

← 0

11 F ← F + e

12 else if y ′ saturates some element L of L∗ \ S
13 then S ← S ∪ {L}
14 else y ′ saturates the complement of an element M of L
15 M← {M}
16 y ← y ′

17 if M 6= ∅
18 then let M be the only element ofM
19 else let M be the only element of L∗ \ S
20 T ← F [M ]

21 ⊲ end of phase 1 and beginning of phase 2

21 R ← ∅
22 while |δTS| = 1 for some S in S do

23 R ← R∪ {S}
24 T ← T − S

25 return T

(On lines 21–24, the collection R is, of course, redundant, but it will be useful for the analysis.)

With each iteration of the block of lines 5–16, the size of L∗ \S decreases by exactly 1 unit. Hence,

if |L∗ \ S| ≤ 1 on line 4, then, on line 19, collection L∗ \ S has a single element.

Before discussing the algorithm, we must define some additional concepts and notation. For a

graph H and a set S of vertices of H, we denote by H[S] the subgraph of H induced by S and by

H − S the graph H[S].

Given a forest F in G and a subset L of V , we say that F is L-connected if VF ∩ L = ∅ or

the induced subgraph F [VF ∩ L] is connected. In other words, F is L-connected if the following

property holds: for any two vertices u and v of F in L, there exists a path from u to v in F and

that path never leaves L. If F spans G (as is the case during the first phase of the algorithm), the

condition “F [VF ∩ L] is connected” can, of course, be replaced by “F [L] is connected”.

For any collection L of subsets of V , we shall say that F is L-connected if F is L-connected

for each L in L.
For any collection S of subsets of V , we say a tree T has no bridge in S if |δTS| 6= 1 (therefore,

either δTS = ∅ or |δTS| ≥ 2) for all S in S.
Note that each iteration of the while loop in phase 2 begins with an L-connected tree T . At

the end, the tree T is L-connected and has no bridge in S.
At the beginning of each iteration of phase 1, F is a spanning forest of G, L is a laminar

collection of subsets of V such that
⋃L = V , S is a subcollection of L,M is a subcollection of L,

and y is a function from L into Q≥. The following invariants hold at the beginning of each iteration
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of the block of lines 5–16:

(i1) F is L-connected;
(i2) y respects c and π;

(i3) each edge of F is tight for y;

(i4) y saturates each element of S;
(i5) |M| ≤ 1 and y saturates the complement of each element ofM;

(i6) for any tree T in G, if T is L-connected and has no bridge in S, then
∑

e∈ET

y(L(e)) + 2 y(L[T ]) + 2 y(LT ) ≤ 2 y(L) (5)

as well as
∑

e∈ET
y(L(e)) + y(L[T ]) + y(LT ) ≤

(

2− 2
n

)

y(L).
Here, and in what follows, L[T ] and LT stand for L[VT ] and LVT

respectively.

4 Proof of the invariants

At the beginning of each iteration of the block of lines 5–16, invariants (i1) to (i5) clearly hold.

The proof of (i6) depends on the following lemma.

Lemma 4.1 Let T be a tree in G = (V,E). Let P be a partition of V and (A,B) a bipartition

of P. If T is P-connected, has no bridge in B, and PT = ∅, then
∑

A∈A

|δTA|+ 2 |A[T ]| ≤ 2 |A| − 2 . (6)

Proof. Let us say that two elements of P are adjacent if there is an edge of T with these two

elements as extremes. This adjacency relation defines a graph H having P for set of vertices. Since

T has no cycles and is P-connected, the edges of H are in one-to-one correspondence with the

edges of T that are external to P. Hence, the degree of every vertex P of H is exactly |δTP |, and
therefore 1

2

∑

P∈P |δTP | = |EH|.
Of course H has at least |P[T ]| isolated vertices and therefore at least |P[T ]| + 1 components.

Since T has no cycles and is P-connected, H is a forest. Hence |EH| ≤ |P|−|P[T ]|−1 and therefore

1

2

∑

P∈P

|δTP | ≤ |P| − |P[T ]| − 1 .

Now consider the vertices of H that are in B. Since BT = ∅, we have |δTB| ≥ 1 for each B

in B \ B[T ]. Actually, |δTB| ≥ 2 for each B in B \ B[T ], since T has no bridge in B. Hence,
∑

B∈B

|δTB| =
∑

B∈B\B[T ]

|δTB| ≥ 2 |B| − 2 |B[T ]| .

Finally,

∑

A∈A

|δTA| =
∑

P∈P

|δTP | −
∑

B∈B

|δTB|

≤ 2 |P| − 2 |B| − 2 |P[T ]|+ 2 |B[T ]| − 2

= 2 |A| − 2 |A[T ]| − 2 ,
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as claimed.

Corollary 4.2 Let T be a tree in G = (V,E). Let P be a partition of V and (A,B) a bipartition

of P. If T is P-connected and has no bridge in B then

∑

A∈A

|δTA|+ 2|A[T ]|+ 2|AT | ≤ 2 |A| . (7)

Proof. Suppose first that PT = ∅, whence also AT = ∅. Then, by Lemma 4.1, we have

∑

A∈A

|δTA|+ 2 |A[T ]|+ 2 |AT | =
∑

A∈A

|δTA|+ 2 |A[T ]| ≤ 2 |A| − 2 < 2 |A| .

Now assume that PT 6= ∅. Then A is the disjoint union of AT and A[T ] and δTA = ∅ for each A

in A. Hence,
∑

A∈A

|δTA|+ 2|A[T ]|+ 2|AT | = 2|A| .

This proves the corollary.

Corollary 4.3 Let P be a partition of V and (A,B) a bipartition of P. Let T be a tree in G =

(V,E). If |V | ≥ 2 and T is P-connected and has no bridge in B then

∑

A∈A

|δTA|+ |A[T ]|+ |AT | ≤
(

2− 2
n

)

|A| , (8)

where n := |V |.

Proof. Suppose first that PT = ∅, whence also AT = ∅. Then, by Lemma 4.1, we have

∑

A∈A

|δTA|+ |A[T ]|+ |AT | =
∑

A∈A

|δTA|+ |A[T ]|

≤
∑

A∈A

|δTA|+ 2 |A[T ]|

≤ 2 |A| − 2

≤ 2 |A| − 2 |A|/n
=

(

2− 2
n

)

|A| ,

since |A| ≤ n. Suppose now that PT 6= ∅. Then A is the disjoint union of A[T ] and AT and

δTA = ∅ for each A in A, whence
∑

A∈A

|δTA|+ |A[T ]|+ |AT | = |A| ≤
(

2− 2
n

)

|A| ,

since n ≥ 2.
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Proof of (i6). Clearly, (i6) holds at the beginning of the first iteration. Assume, by induction,

that (i6) holds at the beginning of some non-terminal iteration and let us verify that it holds at

the beginning of the next iteration.

Suppose, first, that line 13 is executed. Let S ′ := S ∪ {S} and let T be some L-connected tree

that has no bridge in S ′. Since T has no bridge in S, (5) holds. We must show that (5) also holds

when y ′ is substituted for y. Let P := L∗, A := L∗ \ S, and B := L∗ ∩ S. Lemma 4.1 implies

∑

L∈A

|δTL| ǫ+ 2 |A[T ]| ǫ+ 2 |AT | ǫ ≤ 2 |A| ǫ .

The addition of this inequality to (5) produces

∑

e∈ET

y ′(L(e)) + 2 y ′(L[T ]) + 2 y ′(LT ) ≤ 2 y ′(L) ,

since y ′ differs from y only in A. Hence, (i6) remains true at the beginning of the next iteration.

Now suppose lines 8–11 are executed. Let L′ := L ∪ {L1, L2} and let T be an L′-connected
tree that has no bridge in S. Since T is L-connected, (5) holds. We must show that (5) also

holds when y ′ and L′ are substituted for y and L respectively. Let P := L∗, A := L∗ \ S, and
B := L∗ ∩ S. Lemma 4.1 implies

∑

L∈A |δTL| ǫ + 2 |A[T ]| ǫ + 2 |AT | ǫ ≤ 2 |A| ǫ, as in the previous

case. The addition of this inequality to (5) produces

∑

e∈ET

y ′(L′(e)) + 2 y ′(L′[T ]) + 2 y ′(LT ) ≤ 2 y ′(L) ,

since y ′L1∪L2
= 0 and y ′ differs from y only in A. Hence, (i6) remains true at the beginning of the

next iteration.

Finally, suppose lines 14–15 are executed. Since neither L nor S change in this case, an analysis

analogours to that of the first case will show that (5) also holds when y ′ is substituted for y and

therefore (i6) remains true at the beginning of the next iteration.

5 Analysis of the algorithm

Now that we proved invariants (i1) to (i6), we are ready to study the lines 17–25. By virtue of

invariant (i3), the tree T returned on line 25 is such that (i3)

c(T ) =
∑

e∈ET

ce =
∑

e∈ET

y(L(e)) .

Next, we must compute a bound on π(T ). Suppose first that M 6= ∅ and therefore M ∈ M
and y saturates the complement of M according to invariant (i5). Note that the sets

⋃R, M and (i5)

VT are pairwise disjoint and their union is V . Every element of R is saturated by y according to

invariant (i4). Hence, (i4)
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π(T ) = π(M ) +
∑

R∈R∗

π(R)

= y(L[M ]) + y(LM ) +
∑

R∈R∗

y(L[R])

= y(L[M ]) +
∑

R∈R∗

y(L[R]) + y(LM )

≤ y(L[T ]) + y(LM )

≤ y(L[T ]) + y(LT ) .

Now supposeM = ∅ and therefore M is the only element of L∗ \ S. Let X := L∗ ∩S; of course
X is a partition of M . Note that R∗∪X ∪{VT } is a partition of V . Every element of R is saturated

by y according to invariant (i4). Hence,(i4)

π(T ) =
∑

R∈R∗

π(R) +
∑

X∈X ∗

π(X)

=
∑

R∈R∗

y(L[R]) +
∑

X∈X ∗

y(L[X])

≤ y(L[T ])
≤ y(L[T ]) + y(LT ) .

Tree T is L-connected. Indeed, for any u and v in L ∩ VT , the path from u to v in T is the

same as in F and uses only vertices of L because of invariant (i1). In addition, the while loop on(i1)

lines 21–24 makes sure T has no bridge in S. Hence, invariant (i6) holds for T and therefore(i6)

c(T ) + 2π(T ) ≤
∑

e∈ET

y(L(e)) + 2 y(L[T ]) + 2 y(LT ) ≤ 2 y(L) .

Finally, by virtue of invariant (i2) and Corollary 2.2,(i2)

c(T ) + 2π(T ) ≤ 2 opt(G, c, π) .

Alternatively, we could have shown that c(T ) + π(T ) ≤
(

2 − 2
n

)

opt(G, c, π). This completes the

proof of the following theorem:

Theorem 5.1 Algorithm GW-Unrooted-Growth is a (2 − 2
n
)-approximation for the PCST

problem.

The approximation ratio stated in Theorem 5.1 is tight, as the example in Figure 2 shows. The

graph in this example is a cycle with n vertices. All edges but one have cost 2. The remaining

edge has cost 2+ ρ. All vertices but the ones incident to this special edge have penalty 1, while the

two vertices incident to the special edge have penalty 10. The algorithm increases yL to 1 for each

singleton set L. At this point, all the edges but the special one become tight and are added to the

forest F (in some order). After all of them have been added to F , the algorithm stops (phase 2 does

nothing in this example) and outputs the tree induced by the dark edges, which has cost 2(n− 1).

The optimum tree, on the other hand, consists only of the special edge (the dark edge depicted in

Figure 2(b)). The ratio between the costs of these two solutions approaches 2 − 2
n
as ρ tends to

zero.
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Figure 2: (a) The dark edges indicate the solution produced by the GW-Unrooted-

Growth algorithm, a solution of cost 2(n− 1). (b) The only dark edge indicates the

optimum solution, whose cost is n+ ρ.

6 Running time

Algorithm GW-Unrooted-Growth can be implemented to run in O(n2 log n) time. The details

of such implementation are analogous to those of the GW algorithm for the rooted PCST (see [4]).

There are a few differences, though, that are worth mentioning.

The algorithm does, of course, keep track the numbers yS , π(S), and π(S) for each S in L.
In order to compute ǫ and to find tight edges and saturated sets, it must also keep track of the

numbers

aS := y(L[S]) and bS := y(L[S]) + y(LS)
for each S in L, as well as the number hf := y(L(f)) for each edge f external to L∗. These numbers

are updated in each iteration as follows. Between lines 6 and 7, for each S in L∗ \ S, we must

add ǫ to aS ,

add tǫ to bL for each L in L[S],
where t := |L∗ \ S|. In addition, for each S in L∗ ∩S and for each L in L[S], we must add tǫ to bL.

Finally, for each edge f external to L∗, we must add rǫ to hf , where r is the number (0, 1, or 2) of

extremes of f in L∗ \ S.
Now we must consider the updates required after the decision on lines 6. Between lines 11

and 12, we must

set aL1∪L2
to aL1

+ aL2
,

set bL1∪L2
to bL1

− aL2
(or, equivalently, to bL2

− aL1
).

The overall time required for the management of all these numbers is O(n) per iteration, since

L has O(n) sets. Therefore, it is possible to get an O(n2 log n) implementation, as in the GW

algorithm.

The ideas proposed by Klein [13] and by Gabow, Goemans and Williamson [7] can also be used,

resulting in implementations with running time O(n
√
m log n) and O(n(n+

√
m log n)), respectively,

where m := |E|. Finally, using the technique of Cole et al. [3], one can get a
(

2 − 2
n
+ 1

poly(n)

)

-

approximation that runs in O((n+m) log2 n)-time.

7 Previous unrooted growth clustering algorithms

The JMP algorithm seems to be based on the same linear program as the GW algorithm, which

differs from the one presented above only in the definition of “y respects π”, which consists of (2a)
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Figure 3: (a) An instance of the PCST. (b) The solution produced by the JMP

algorithm when ρ > 0. Its cost is 4. (c) The optimum solution, consisting of vertex u

alone, has cost 2 + ρ. (d) A similar instance of arbitrary size consists of a long path.

alone, without (2b). Of course, JMP has no set M and does not have the case considered in

lines 14–15 of our algorithm, Here is the linear program associated with JMP: find vectors x and

z that

minimize
∑

e∈E cexe +
∑

S⊆V π(S)zS

subject to
∑

e∈δL xe +
∑

S⊇L zS ≥ 1 for each L ⊆ V ,

xe ≥ 0 for each e ∈ E,

zS ≥ 0 for each S ⊆ V .

(9)

The dual of this linear program calls for a vector y that

maximizes
∑

L⊆V yL

subject to
∑

δL∋e yL ≤ ce for each e ∈ E,
∑

L⊆S yL ≤ π(S) for each S ⊆ V ,

yL ≥ 0 for each L ⊆ V .

(10)

(Compare these linear programs with (3) and (4) respectively.) Unfortunately, (9) is not a relaxation

of PCST. Hence, its optimum value cannot be used as a lower bound for opt(G, c, π). Algorithm

JMP finds a feasible solution of (10) (see Minkoff’s thesis [14] for the analysis). The value of this

feasible solution might be larger than opt(G, c, π), as the example in Figure 3 shows. Indeed this

example shows that the approximation ratio of the JMP algorithm can be arbitrarily close to 2,

regardless of the size of the graph. This contradicts Theorem 3.2 in [12].

Minkoff [14] proposed the use of the JMP algorithm for the rooted PCST. (A small adaptation

is required, so that the algorithm produces a tree that contains the root vertex.) Unfortunately,

the example in Figure 3 with u as root contradicts Theorem 2.6 in [14], which claims that this

algorithm is a (2− 1
n
)-approximation.

To our knowledge, there is no published (correct) proof that these two algorithms have any

approximation guarantee. We have verified that they are 2-approximations [6]. The proof involves

some non-trivial technicalities.

8 Strong pruning

Phase 2 of the GW algorithm, where edges are deleted from the tree produced by phase 1, is

sometimes called “pruning phase”. This phase can be viewed as an algorithm that solves (exactly

12



or approximately) the PCST problem on trees. When an efficient algorithm is available to solve

the problem on trees, it is natural to use it, as it will likely produce solutions better than the usual

procedure proposed by Goemans and Williamson.

A dynamic programming approach can solve the PCST on trees in polynomial time. Phase 2 of

the GW-Unrooted-Growth algorithm can be replaced by such dynamic programming. This is

called “strong pruning”. Johnson, Minkoff and Phillips [12] and Minkoff [14] have already suggested

this procedure.

With strong pruning, the JMP algorithm is at least as good as without it. But the example

shown in Figure 3 does not apply to JMP with strong pruning. The worst example we have for

this variant is depicted in Figure 2; it has ratio 2− 2
n
. We conjecture that the JMP algorithm with

strong pruning achieves a ratio better than 2. The approximation ratio of our algorithm does not

improve by using strong pruning, as the example in Figure 2 shows.
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