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Abstract. In this paper we propose a novel way to integrate time-evolving partial differen-5
tial equations that contain nonlinear advection and stiff linear operators, combining exponential6
integration techniques and semi-Lagrangian methods.7

The general formulation is built from the solution of an integration factor problem with respect to8
the problem written with a material derivative so that the exponential integration scheme naturally9
incorporates the nonlinear advection. Semi-Lagrangian techniques are used to treat the dependence10
of the exponential integrator on the flow trajectories. The formulation is general, as many exponential11
integration techniques could be combined with different semi-Lagrangian methods. This formulation12
allows an accurate solution of the linear stiff operator, a property inherited by the exponential13
integration technique. It also provides an accurate representation of the nonlinear advection, even14
with large time step sizes, a property inherited by the semi-Lagrangian method.15

Aiming for application in weather and climate modelling, we discuss possible combinations of well16
established exponential integration techniques and state-of-the-art semi-Lagrangian methods used17
operationally in the application. We show experiments for the planar rotating shallow water equations18
revealing that traditional exponential integration techniques could benefit from this formulation19
with semi-Lagrangian to ensure stable integration with larger time step sizes. From the application20
perspective, which already uses semi-Lagrangian methods, the exponential treatment could improve21
the solution of wave-dispersion when compared to semi-implicit schemes.22
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1. Introduction. Consider an autonomous initial value problem of the form26

(1)
du

dt
= L(u) +N (u), u(0) = u027

where L is a linear (possibly differential) operator and N is a function (usually nonlin-28

ear). The linear operator L may come from the original problem or be defined from29

a linearization of a more general autonomous system. Exponential integrators are30

usually derived making use of exponentials of a discrete form of the linear operator31

L. Many schemes of this form exists, as one may notice from the review of [27].32

Several application models, such as those related to fluid dynamics [1], have an33

important advection term in the equations, usually nonlinear. This can be represented34

as35

(2)
Du

Dt
=
∂u

∂t
+ ~v · ∇u = L(u) + Ñ (u), u(0) = u0,36

where D/Dt represents a total or material derivative, ~v = ~v(t, ~x, u) is the advection37

velocity, u = u(t, ~x), Ñ represents a general nonlinear term and the gradient (∇) acts38

only on the spatial variables (∇ = (∂x1
, ∂x2

, ..., ∂xn
)).39
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2 P. S. PEIXOTO, M. SCHREIBER

The treatment of the nonlinear advection in exponential integrators varies and40

leads to different mathematical properties. It can, for instance, be simply thought as41

a nonlinear term in the exponential integration scheme [7]. Also, the nonlinear term42

can be treated via a linearization procedure [13, 34, 8, 52, 22, 30], which can depend43

on the computation of Jacobian matrices or not.44

A well-established method to solve equations with nonlinear advection is the45

semi-Lagrangian advection approach [47, 41, 55, 17]. The cost-effectiveness of semi-46

Lagrangian schemes depends on the problem [5]. They are used in computational fluid47

dynamics [60, 11], and are very successfully used in weather forecasting [58], hence48

being adopted by several weather forecasting centres in operational models [15, 4, 20,49

38]. Semi-Lagrangian schemes preserve a fixed grid but follow particle trajectories for50

each time step to obtain precise information about the advected quantities. These51

schemes usually have very low dispersion errors [46], but are computationally more52

expensive than, for example, usual finite difference schemes for one single time step.53

However, when coupled with an implicit treatment of fast linear waves, this kind of54

scheme usually allows time step sizes that compensates the additional computational55

effort, with a reduced wall-clock time.56

Exponential integrators and semi-Lagrangian schemes have an interesting connec-57

tion. For linear advection, the characteristics (which define a particle trajectory) are58

precisely given by the exponential of the linear advection operator [9]. Moreover, for59

nonlinear advection, it is possible to establish an equivalence between the solution of60

a general integration factor problem to a semi-Lagrangian approach [54]. Therefore,61

it is possible to obtain properties of semi-Lagrangian schemes considering them from62

an exponential operator point of view. Or, similarly, it is possible to consider the63

solution of a semi-Lagrangian problem in place of an operator exponential [10]. The64

latter allows, for example, the development of high order semi-Lagrangian schemes65

[11].66

The goal of this work is to explore a combination of both approaches: semi-67

Lagrangian and exponential integrators. The key development in this paper is to68

consider an exponential integration scheme that is built with respect to the total69

(material) derivative, therefore treats nonlinear advection within the exponentiation70

framework, which, to our knowledge, has not yet been explored in the literature. With71

this methodology, nonlinear advection is calculated accurately with low dispersion72

error (property earned from the semi-Lagrangian approach), in combination with73

an accurate solution of the linear problem even for very stiff hyperbolic problems74

(property earned from the exponential integration). In principle, several combinations75

of exponential integration and semi-Lagrangian schemes could be explored. We will76

derive the general principles of the method and then illustrate how well-established77

schemes can be used together.78

The main application envisioned is modelling geophysical fluid dynamics, with79

implications in weather forecasting and climate modelling, where semi-Lagrangian80

schemes are already used operationally [15, 4, 20, 38]. Such applications are expe-81

riencing a recent computational bottleneck, as traditional schemes are reaching the82

limits of horizontal scalability [58]. This is particularly problematic for climate and83

paleoclimate simulations, that use a relatively low resolution and long-time integra-84

tion ranges, which would lead to wall-clock times of several months. In this scenario,85

there is a renewed interest in novel time stepping schemes that allow larger time86

steps, preserving accuracy, as well as better exploiting machine parallelism, targeting87

reduced wall-clock time. Also, traditional geophysical fluid dynamics models usually88

employ either an explicit time stepping scheme, for which the time step sizes are con-89
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strained by faster waves in the system (e.g inertia-gravity), or implicit time stepping90

schemes (e.g. Crank-Nicolson), which allow larger time steps, at the cost of damping91

the faster (short wavelength) linear waves. For atmospheric dynamics, such implicit92

schemes usually damp the faster gravity waves. A recent review on the matter of time93

stepping schemes for weather and climate [38] points out the need of time integra-94

tion schemes that allow large time steps while preserving wave dispersion properties.95

Small scale horizontal gravity waves play an important role in the large structure of96

the middle atmosphere, particularly for climate simulations [37]. Exponential inte-97

grators provide a way to obtain large time steps without damping these small-scale98

waves, preserving superior linear dispersion properties. However, exponential integra-99

tors can be usually more expensive than traditional implicit schemes, but this cost100

may be compensated by additional degrees of parallelism and larger time step sizes101

[51].102

An important model for the atmosphere and ocean dynamics is formed by the103

two-dimensional nonlinear rotating shallow water equations (SWE), as they provide104

a simple set of equations that already carry many of the complications encountered105

in full three-dimensional dynamics. Recent works of [13] and [23] explored the use106

of exponential integrators in SWE and showed its potential and practical relevance107

to weather forecasting. They explored the dynamic linearization procedure of [56] to108

obtain their exponential integrator, and the nonlinear advection was treated within109

the linearization. Also within this application framework, [22] shows results from110

exponential integrator schemes for Boussinesq thermal convection, indicating higher111

computational cost but greater accuracy with respect to well established schemes112

for the problem. Considering linear equation sets for this application, [3] solves the113

linear advection problem on the sphere, which is an important test case for weather114

and climate, using exponential integration. Also, [51] solves the linear SWE with a115

rational exponential integrator and analyze the potential computational gain of their116

massively parallel scheme. However, the practical adequacy of exponential integration117

schemes for weather and climate is still a matter of research, for which this study hopes118

to contribute.119

A combination with similarities to the one proposed here was developed by [12]120

where, instead of deriving the exponential integration along trajectories, a Laplace121

transform following trajectories was used. They also analyze how this semi-Lagrangian122

Laplace transform method can improve certain aspects of the solutions obtained with123

traditional semi-Lagrangian semi-implicit scheme considering a shallow water model.124

They particularly show how the Laplace transform method allows a filtering of an125

issue encountered in the semi-implicit scheme, known as orographic resonance. Such126

filtering could also be developed along similar lines for the semi-Lagrangian exponen-127

tial schemes derived here.128

The paper is organised as follows. In Section 2 we review usual exponential129

integration techniques. In Section 3 we review usual semi-Lagrangian techniques.130

These two sections will be used in the development of the semi-Lagrangian exponential131

technique, which is shown in Section 4. Section 5 shows properties of the SWE, which132

be investigated numerically in Section 6. We finish the paper with some remarks in133

Section 7.134

2. Exponential integration. We start providing a brief review of some existing135

exponential integration techniques that will be relevant for the semi-Lagrangian expo-136

nential approach. More details may be found in the review of exponential integrators137

of [27] and in references therein.138
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2.1. Analytical time integration. Numerically, the solution of equation (1),139

u(t), is approximated by (n) discrete values that could be, for example, grid point140

values or spectral coefficients, or both. This defines the discrete solution U(t) ∈ Rn141

evolving in time. The linear operator (L) can be approximated by a discrete version142

of it (L), with a preferred discretization scheme. Since L may be originated from a143

partial differential equation problem, it is prudent to keep in mind that L may be144

a function of the spatial coordinates (or wavenumbers). However, having derived it145

for an autonomous system, it is independent of time. So the analogous semi-discrete146

problem of interest may be written as147

(3)
dU(t)

dt
= LU(t) +N(U(t)), U(0) = U0,148

where L ∈ Rn × Rn is the discrete linear operator (an n × n matrix) and N(U) is a149

discrete version of N (u).150

Now let’s assume that U(tn) is given for a current time tn, and that we wish to151

calculate U(tn+1), for tn+1 = tn + ∆t. Since L may depend only on spatial variables,152

but not time, the integration factor problem,153

(4)
dQn(t)

dt
= −Qn(t)L, Qn(tn) = I,154

where I is the identity matrix, has a unique solution given by155

(5) Qn(t) = e−(t−tn)L.156

Using the integration factor in equation (3) one sees that157

(6)
d

dt
(Qn(t)U(t)) = Qn(t)N(U).158

Therefore the problem has an exact solution which may be implicitly represented as,159

(7) U(tn+1) = Q−1
n (tn+1)U0 +Q−1

n (tn+1)

∫ tn+1

tn

Qn(s)N(U(s))ds,160

where we note that Q−1
n (t) = e(t−tn)L is the inverse of Qn(t), and thus161

(8) U(tn+1) = e∆tLU(tn) + e∆tL

∫ tn+1

tn

e−(s−tn)LN(U(s))ds,162

which is well-known as the variation-of-constants formula.163

2.2. Numerical time integration (ETDRK). Exponential integration makes164

use of calculations of the exponentials, and/or exponential related functions, to obtain165

a time marching scheme along the lines of equation (8). There are many ways to obtain166

efficient calculations of matrix exponentials, as may be seen in [39]. We will postpone167

the discussion about how we intend to calculate the matrix exponential to a further168

section. For now, we simply assume that a precise method to obtain the exponential169

is known.170

The key differences in exponential integrator schemes lays in the way the nonlinear171

term is evaluated. If the equation is purely linear (N = 0), then the integral term172

in equation (8) vanishes and it is possible to solve the problem directly from the173

matrix exponential calculation for each time step. For nonlinear problems, there exists174
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several approaches [27]. We will use as example the Runge-Kutta Exponential Time175

Differencing (ETDRK) methods, following [14]. However, for the semi-Lagrangian176

exponential scheme (to be shown), other methods could be considered in a similar177

fashion.178

As a first order approximation, let the nonlinear term N(U) in the integral be179

constant in time, for each time step, with value N(U(tn)). We can then formally180

derive what is known as the first order ETD1RK method. Using equation (4) and181

assuming L−1 exists, we may formally write182

U(tn+1) = e∆tLU(tn) +

(∫ tn+1

tn

e−(s−tn+1)Lds

)
N(U(tn)) +O(∆t)183

= e∆tLU(tn)−

(∫ tn+1

tn

L−1 d
(
e−(s−tn+1)L

)
ds

ds

)
N(U(tn)) +O(∆t)184

= e∆tLU(tn) + L−1
(
e∆tL − I

)
N(U(tn)) +O(∆t),(9)185

= ϕ0(∆tL)U(tn) + ∆t ϕ1(∆tL)N(U(tn)) +O(∆t),186

where,187

(10) ϕ0(z) = ez, ϕ1(z) = z−1(ez − 1)188

with z = ∆tL.189

In many problems L−1 is not well defined, since, for example, L may have null190

eigenvalues. However, under the assumption that L is a finite dimensional matrix, ϕ1191

is always well defined if the pseudo-inverse is considered (note that in case L has null192

eigenvalues the nominator also leads to null values).193

More general (higher order) ETD schemes may be derived using higher order ϕk194

functions (see [14]), which may be defined as195

(11) ϕk(z) = z−k(ez − tk−1(z)), tk =

k∑
l=0

zl

l!
196

or using the recurrence relation197

(12) ϕk+1(z) = z−1 (ϕk(z)− ϕk(0)) , ϕ0(z) = ez,198

where potential singularities may be, in the present work, treated noticing that in the199

limit of z → 0 the l’Hopital rule can be applied.200

We will be particularly interested in this paper in the second order ETDRK201

scheme, in order to allow a fair comparison to other well-established second order202

approaches in our numerical experiments. Let Un be the numerical approximation of203

U(tn) at time t, then the ETD2RK scheme may be written as204

Un+1
1 = ϕ0(∆tL)Un + ∆t ϕ1(∆tL)N(Un),205

Un+1 = Un+1
1 + ∆tϕ2(∆tL)

(
N(Un+1

1 )−N(Un)
)
,(13)206

which is derived substituting the second order approximation for the nonlinear term,207

(14) N(U(s)) = N(U(tn)) +
(s− tn)

∆t
(N(U1(tn+1))−N(U(tn))) +O(∆t2),208

into equation (8).209
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3. Semi-Lagrangian integration. Broadly, Lagrangian schemes usually follow210

particle trajectories (characteristics) through time and may not even rely on a fixed211

computational grid, or else have a grid evolving over time. This can create compli-212

cated grids structures involving, for example, intersections of trajectories. Eulerian213

schemes usually keep a fixed grid and evaluate the movement of the particles that214

pass through a computational cell. For nonlinear advection, these schemes usually215

have time step size limited by the Courant-Friedrichs-Lewy condition (CFL). Semi-216

Lagrangian schemes keep a fixed grid but follow the particle trajectories for a single217

time step (a local version of the classical Lagrangian approach). Since the trajectories218

may end, or start, in points not in the reference grid, usually an interpolation step is219

required. In the context of atmospheric simulations, the scheme usually allows time220

step sizes larger than Eulerian schemes, beyond CFL condition [48], and reduces the221

risk intersecting trajectories with respect to fully Lagrangian schemes.222

In this section we introduce classic notations and results about semi-Lagrangian223

schemes. This will be required as a basis to derive the semi-Lagrangian exponential224

schemes in the next section. Further details on semi-Lagrangian methods can be225

found in [55] and [17].226

3.1. The material derivative. We start considering Equation (2) on a La-227

grangian framework, relative to a particle initially positioned at ~r0 in space. Thus,228

the system state is formed by u = u(t, ~r(t)), with advection velocity defined as229

~v = ~v(t, ~r(t), u(t, ~r(t))). Here, ~r(t) is the Lagrangian trajectory of the particle, there-230

fore it is the solution of the non-autonomous problem231

(15)
d~r(t)

dt
= ~v(t, ~r(t), u(t, ~r(t))), ~r(0) = ~r0.232

Equation (2) may be written in a Lagrangian framework as233

(16)
du(t, ~r(t))

dt
= L(u(t, ~r(t))) + Ñ (u(t, ~r(t))), u(0, ~r0) = u0,234

where now L and Ñ may implicitly also depend on the position ~r(t). The time235

derivative is expanded as236

(17)
du(t, r(t))

dt
=
∂u(t, ~r(t))

∂t
+ ~v · ∇u(t, ~r(t)).237

This time derivative on the Lagrangian framework is usually denoted as a total238

(material) derivative. To simplify the notation and avoid confusion with equation (1)239

this derivative is sometimes denoted in capital letters as D/Dt, so that we can simply240

write, without ambiguity, that equation (16) is241

(18)
Du

Dt
= L(u) + Ñ (u), u(0) = u0.242

As in the previous section, we will focus here on a discretized problem, where L243

may be again directly viewed as a finite dimensional matrix operator, hence linear,244

and will be denoted by L. In a Lagrangian framework, L may depend on the particle245

position ~r(t). Therefore, we may analogously to equation (3) set the general non-246

autonomous semi-discrete problem to be247

(19)
DU(t, ~r(t))

Dt
= L(U(t, ~r(t))) + Ñ(U(t, ~r(t))), U(t0, ~r(t0)) = U0,248

This manuscript is for review purposes only.



SEMI-LAGRANGIAN EXPONENTIAL INTEGRATION 7

where Ñ is a numerical approximation to Ñ , and now the time differential is a total249

derivative and depends on the solution of the problem given in (15).250

Although there are many forms of semi-Lagrangian schemes [55], these usually251

rely on basically two parts: (i) the evaluation of the trajectories (characteristics),252

which are solutions of the problem (15), and (ii) the interpolation of the information253

to the reference grid. Both parts play important roles in the accuracy and stability254

of the schemes [19, 17, 40]. We will consider a back-trajectory approach, which is a255

well-established approach [29] that assumes that the grid is fixed at time tn+1. The256

trajectory determines the position of a departure point at time tn, which is likely not257

to be a grid point, so an interpolation of the advected quantity is required. As shown258

in [19], the interpolation order needs to be chosen in agreement with the accuracy259

order of the trajectory calculation.260

3.2. Trajectory calculations. The trajectory evaluation can be obtained by261

a direct numerical time integration of differential equation (15), as a sub-cycling262

procedure, or, which is more common in atmospheric applications, solve its integral263

form. In the later,264

(20) ~r(tn+1)− ~r(tn) =

∫ tn+1

tn

~v(t, ~r(t), u(t, ~r(t)))dt,265

is solved to obtain the departure point ~rd = ~r(tn) from the knowledge of the arrival266

point ~ra = ~r(tn+1), which is set to be a grid point.267

Simple two-time level schemes [36] can be build using, for example, the midpoint268

rule integration (for ~rm = ~r(tn+1/2)) and an iterative procedure to solve the nonlinear269

resulting equation.270

In case ~v is not known within [tn, tn+1], for example if ~v depends on u, its evalua-271

tion in intermediate times requires an extrapolation from previous time steps. This ex-272

trapolation may directly influence the stability of the scheme [17]. A well-established273

approach is the Stable Extrapolation Two-Time-Level Scheme (SETTLS) of [29], used274

in the ECMWF1 in their global spectral model IFS. This method adopts an extrapo-275

lation such that the velocity at the midpoints can be approximated with second order276

as277

(21)

~v(tn+1/2, ~rm, um)︸ ︷︷ ︸
Midpoints

=
1

2

2~v(tn, ~rd, u(tn, ~rd))− ~v(tn−1, ~rd, u(tn−1, ~rd))︸ ︷︷ ︸
Departure points

+~v(tn, ~ra, u(tn, ~ra))︸ ︷︷ ︸
Arrival points

 .278

279

The fields to be calculated at the departure points, such as ~v(tn, ~r
k
d , u(tn, ~r

k
d )),280

are obtained by first calculating ~v(tn, ~x, u(tn)) at the usual grid points, and then281

interpolating to the departure points ~r kd . Consequently, the departure points may be282

obtained through an iterative procedure with283

(22) ~r k+1
d = ~ra −

∆t

2
~v(tn)− ∆t

2
(2~v(tn)− ~v(tn−1))

n
∗ .284

where the subscript ∗ with superscript n denotes interpolation to ~r kd points [6]. As285

first guess, ~r 0
d = ~ra is assumed. For smooth flows, a few iterations (3 or 4) are usually286

sufficient to ensure an accurate solution of the nonlinear equation.287

1European Centre for Medium-Range Weather Forecasts
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3.3. Semi-Lagrangian Solver (SL-SI-SETTLS). A well-established semi-288

Lagrangian solver for atmospheric models is the scheme used in the IFS-ECMWF289

model. It uses a semi-Lagrangian scheme coupled with a semi-implicit time stepping290

of linear terms with spectral horizontal discretization. This scheme, based on [29],291

will serve as a first guideline in the development of the semi-Lagrangian exponential292

schemes.293

The semi-implicit discretization with semi-Lagrangian Crank-Nicolson time step-294

ping assumes295

(23)
Un+1 − Un∗

∆t
=

1

2

(
(LU)n+1 + (LU)n∗

)
+ Ñn+1/2,296

where the last term represents the non-linearities at the midpoint of the trajectory.297

This term is computed based on averaging and extrapolation (see [29], Eq. (4.4,4.5))298

with299

(24) Ñn+1/2 =
1

2

([
2Ñn − Ñn−1

]
∗

+ Ñn
)
,300

which is the SETTLS extrapolation, where Ñn is the evaluation of the nonlinear term301

at time tn. The unknowns in Equation (23) are implicitly given by Un+1 and (LU)n+1,302

which require a linear solver.303

To ensure an overall second order accurate scheme (assuming ∆t ∝ ∆x), it is suffi-304

cient to use cubic interpolations of the advected quantities (with respect to Equations305

(23) and (24)), and linear interpolations of the velocities in the trajectory calculations306

(Equation (22)) [40].307

4. Semi-Lagrangian exponential integration. In this section, we discuss308

how the general exponential integration techniques can be applied in a Lagrangian309

reference frame. Exponential integration schemes usually incorporate the nonlinear310

advection into the nonlinear term calculation or solve about a linearization of it. We311

propose a new scheme which is described as follows.312

4.1. Basic theory. The key concept investigated in this paper is to consider,313

from a numerical perspective, the exponential integration of Equation (19) considering314

the total (material) derivative.315

As in Section 2, where we built exponential integration schemes from the solution316

of an integration factor problem, we would like to be able to define a similar integra-317

tion factor for the problem with respect to this material derivative. We assume the318

existence of an integration factor Pn(t) that is a solution to the problem319

(25)
D(Pn(t)U(t, ~r(t)))

Dt
= Pn(t)Ñ(U(t, ~r(t))), Pn(tn) = I.320

Assuming that U is solution of (19), Pn will also be a solution of321

(26)
DPn(t)

Dt
U(t, ~r(t)) = −Pn(t)L(U(t, ~r(t))), Pn(tn) = I.322

We recall that L may depend on the space variables, which are now dependent also323

on time due to the Lagrangian framework, which we will explicitly indicate with a324

subscript as L = L~r(t). If L~r(t) commutes in time, that is, L~r(t)L~r(s) = L~r(s)L~r(t) for325

all times s and t, then the integration factor problem has as solution326

(27) Pn(t) = e−
∫ t
tn
L~r(s)ds.327
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For the continuous problem with L with space-varying coefficients (dependent of the328

particle position), the commutation assumption will most likely not be satisfied. The329

integration factor may, however, still exist and be well defined, but might not have330

the usual matrix exponential form. Assuming that such integration factor exists, and331

that it is invertible (P−1
n exists for all time), equations (19) and (25) indicate the332

following implicit relation on U (analogous to (7)),333

(28)

U(tn+1, ~r(tn+1)) = P−1
n (tn+1)U(tn, ~r(tn)) + P−1

n (tn+1)

∫ tn+1

tn

Pn(s)Ñ(U(s, ~r(s)))ds.334

This is the fundamental equation for the derivation of the semi-Lagrangian exponential335

schemes developed in this paper.336

Numerically, one needs an explicit way of calculating the integration factor. This337

will depend on the problem of interest. One possibility is to directly numerically338

integrate equation (26), which is the basis of many operator splitting techniques [54].339

Another possibility, if such integration factor is unknown in its exponential form,340

is to assume that L does not vary within each time step for each given local trajectory,341

since then the problem reduces to a matrix exponential problem. This should provide342

a first order approximation to the true integration factor at each time step, but the343

consequences of this choice for the proposed semi-Lagrangian exponential scheme in344

terms of overall convergence of the numerical scheme to the solution of the continuous345

problem is a matter still to be investigated, and will not be further addressed in346

this paper. Instead, we will assume in what follows that L is independent of the347

particle position for each time step. This greatly simplifies the problem, as in this348

case Pn = Qn, as defined in equation (5), and the problem reduces to349

(29) U(tn+1, ~r(tn+1)) = e∆tLU(tn, ~r(tn)) + e∆tL

∫ tn+1

tn

e−(s−tn)LÑ(U(s, ~r(s)))ds.350

This is almost identical to what we obtained for the usual exponential integration351

approach (see equation (8)), but now U is varying along a particle trajectory in352

time, resulting in a derivation of what we are calling a semi-Lagrangian exponential353

integration.354

Using the semi-Lagrangian notation, we rewrite the numerical method from equa-355

tion (29) as356

(30) Un+1 = e∆tLUn∗ + e∆tL

∫ tn+1

tn

e−(s−tn)LÑ(U(s, ~r(s)))ds,357

where Un+1 is given at grid points and Un∗ refers to the (interpolated) value at depar-358

ture points. Therefore, different semi-Lagrangian exponential schemes can be built359

depending on how the integral is approximated, as happens with the usual exponential360

integration techniques.361

We now highlight two important remarks:362

(R1) The semi-Lagrangian schemes are built considering interpolations at non grid363

points (departure points). The integral in (30) relies on a linear operator364

(the exponential of L) acting on a nonlinear function (Ñ). If we wish to365

evaluate this at time tn, therefore at departure points, we should first apply366

the linear operator to the nonlinear function at time tn, and only then inter-367

polate to the departure points. If we first interpolate the nonlinear function368

to the departure points, then the application of the linear operator would be369
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referring to an irregular grid, therefore possibly not being well defined numer-370

ically. Therefore, at time tn, the interpolation should preferably come after371

the application of the linear operators.372

(R2) At time tn+1, interpolated values considering a semi-Lagrangian approach are373

assumed to have already been advected, therefore the results lay on a regular374

grid relative to the arrival points, for example as in the Un∗ term of Equation375

(30). Therefore, at time tn+1, the operators can come after the interpolation.376

The main reasons behind these important remarks above are related to the follow-377

ing properties of linear operators acting on advected quantities. Even thought e∆tL378

is a linear operator independent of time and space, it does not in general commute379

with the interpolation operator (∗), since this interpolation reflects a non-regular grid380

formed by nonlinear back trajectories. Therefore, in general, e∆tLUn∗ 6=
(
e∆tLUn

)
∗.381

We provide in Appendix A an illustration for this issue, which happens even in the382

case of linear advection.383

4.2. Semi-Lagrangian Exponential SETTLS (SL-EXP-SETTLS). Fol-384

lowing the SETTLS scheme [29] for the semi-Lagrangian discretization, but using it385

with respect to equation (30), we may derive our first combination of semi-Lagrangian386

exponential scheme, which we will denote as SL-EXP-SETTLS. The scheme is derived387

from (30) as388

(31) Un+1 = e∆tLUn∗ + ∆t e∆tLÑn+1/2
e ,389

where we use the SETTLS extrapolation to obtain the value of Ñ at the trajectory390

midpoint as391

(32) Ñn+1/2
e =

1

2

[
2Ñn − e∆tLÑn−1

]n
∗

+
1

2
Ñn.392

To save evaluations of the exponential terms, which are the computationally most393

intensive parts, one may simplify the above equations in order to require only 2394

exponential evaluations per time step.395

This scheme may also be thought as a semi-Lagrangian version of the Integrating396

Factor method, proposed in [14], as the second order Adams-Bashforth Integrating397

Factor method (IFAB2), as one can notice from their equation (31). Therefore this398

scheme may also be termed as SL-IFAB2.399

As discussed in [14], the concept of stability for Integrating Factor methods is400

unclear. This is also the case for our semi-Lagrangian version of exponential schemes,401

and therefore this is a topic discussed purely from a numerical perspective in this402

paper, with theoretical analysis to be addressed in a later publication.403

An illustration of the importance of remark (R1) from the previous sub-section404

can be shown in the following example. One might think of using a half-time step405

exponential to incorporate the nonlinearities, deriving the following scheme:406

(33) Un+1 = e∆tLUn∗ + ∆t e
∆t
2 LÑn+1/2

a , (unstable example)407

408

(34) Ñn+1/2
a =

1

2

[
2Ñn − Ñn−1

]
∗

+
1

2
Ñn,409

which applies the extrapolation only on Ñ , and will numerically differ from the ap-410

proach derived above. However, this alternative scheme turns out to be critically411

unstable, as the extrapolation needs to be applied with respect to the full integrand412

term.413
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4.3. Semi-Lagrangian Exponential ETDRK (SL-ETDRK). To construct414

semi-Lagrangian Exponential Time Differencing Runge-Kutta schemes (SL-ETDRK)415

in analogy to usual ETDRK schemes, we need to pay attention to the remarks (R1)416

and (R2) above. In usual ETD schemes, as shown in section 2, the exponential in417

from of the integral in equation (30) would be commuted with the integral to within418

the integrand. However, since now the integral is along trajectories, this no longer419

results in an equivalent problem in the numerical scheme, due the remarks pointed420

out above. Therefore, we should first evaluate the integral term, and then apply the421

linear operator (e∆tL).422

To be able to preserve e∆tL outside of the integral, and still make use of the ϕ423

functions of ETDRK schemes, we may use the following property of ϕ functions. The424

ϕ0(z) = ez function can be factored out of ϕk(z) = ϕ0(z)ψk(z) with425

(35) ψk(z) = (−1)n+1ϕk(−z) +

k−1∑
l=1

ϕl(−z).426

This formula can be proved substituting equation (11) into the right-hand-side of the427

equation above and using binomial expansions in a similar way as done in [14].428

With this property in hand, we may derive the semi-Lagrangian ETD1RK scheme429

in the following way. From equation (29), assuming as in ETD1RK that the non-430

linearity is constant within a time step, we have431

(36)

U1(tn+1, ~r(tn+1)) = ϕ0(∆tL)U(tn, ~r(tn)) + ϕ0(∆tL)

(∫ tn+1

tn

e−(s−tn)L

)
N(U(tn, ~r(tn)))ds.432

433

Using the properties of ϕ functions, particularly that ϕ1(z) = ϕ0(z)ϕ1(−z), we434

may write the numerical scheme as435

(37) Un+1
1 = ϕ0(∆tL) [Un + ∆t ϕ1(−∆tL)N(Un)]

n
∗ ,436

which can be computed numerically with only two ϕ function evaluations and one437

interpolation per time step.438

Deriving the second order scheme (SL-ETD2RK) involves a more careful analysis439

of how the integral in equation (29) is approximated. Let440

(38)

N(U(s)) = N(U(tn, ~r(tn))) +
(s− tn)

∆t
(N(U1(tn+1, ~r(tn+1)))−N(U(tn, ~r(tn)))) +O(∆t2),441

then442

U2(tn+1, ~r(tn+1)) = ϕ0(∆tL)U(tn, ~r(tn)) + ϕ0(∆tL)

(∫ tn+1

tn

e−(s−tn)L

)
N(U(tn, ~r(tn)))ds443

+ ϕ0(∆tL)

(∫ tn+1

tn

(s− tn)

∆t
e−(s−tn)L

)
N(U(tn+1, ~r(tn+1)))ds444

− ϕ0(∆tL)

(∫ tn+1

tn

(s− tn)

∆t
e−(s−tn)L

)
N(U(tn, ~r(tn)))ds.(39)445

Using the SL-ETD1RK scheme and the properties of the ϕ functions we may446

write the SL-ETD2RK scheme as447

(40) Un+1
2 = Un+1

1 + ∆t ϕ0(∆tL)
[
ψ2(∆tL)N(Un+1

1 )− (ψ2(∆tL)N(Un))
n
∗
]
,448

This manuscript is for review purposes only.



12 P. S. PEIXOTO, M. SCHREIBER

where449

(41) ψ2(∆tL) = −ϕ2(−∆tL) + ϕ1(−∆tL).450

The cost of a ψ function evaluation is similar to the cost of a ϕ function evaluation,451

as the multiple ϕs to be summed may be joined in the solver. Therefore, after suitably452

rearranging the equations, the scheme can be coded to require 4 ϕ (or ψ) function453

evaluations and 2 interpolations.454

5. Rotating Shallow Water Equations on an f-Plane. In this section we455

describe the basic concepts of the Shallow Water Equations (SWE), which will serve456

as application for the schemes discussed in the previous sections.457

Considering a Lagrangian framework, with particle trajectories given by ~r(t) =458

(x(t), y(t)) on a plane, we define ~v = ~v(t, ~r(t)) = (u(t, ~r(t)), v(t, ~r(t))) to be the flow459

velocity, and η = η(t, ~r(t)) a fluid depth perturbation about a constant mean fluid460

depth (η̄). The rotating SWE on an f-plane may then be written as461

(42)
DU

Dt
= LU + Ñ (U),462

where the time derivative is assumed to be the total (material) derivative, and463

(43) U =

 u
v
η

 , L =

 0 f −g∂x
−f 0 −g∂y
−η̄∂x −η̄∂y 0

 , Ñ (U) =

 0
0

−η∇ · ~v

 ,464

where the total fluid depth h is given by h = η + η̄. The velocities are given by ~v =465

(u, v) and the gravity g is assumed constant. The Coriolis parameter f is assumed to466

be constant throughout this paper (f-plane approximation). Initial conditions for the467

prognostic variables (u, v, η) are assumed to be given. Bi-periodic boundary conditions468

will be adopted for (x, y) on a rectangular limited set of R2.469

The dynamics of the SWE depend on parameter choices (f, g, η̄) and on the initial470

conditions. The gravity wave speed is given by c =
√
gη̄. To be physically relevant,471

the shallow water assumption requires the mean depth (η̄) to be much smaller than472

the domain size. The typical barotropic atmospheric dynamics considers relatively473

large values of η̄, so that c � u0, where u0 represents a reference wind velocity. In474

this case, the linear waves are much faster than the nonlinear advection. However, in475

3D atmospheric models, or multilayer shallow water models, with many vertical levels,476

the mean depth (η̄) is related to what is known in atmosphere and ocean models as an477

equivalent depth[57], which is inversely proportional to vertical resolution. Therefore,478

η̄ is considerably smaller in 3D models, resulting in the possibility of c ≈ u0. In479

this case, nonlinear advection discretization plays an important role and is where480

semi-Lagrangian exponential schemes may show significant gains in time step size. A481

complete discussion on derivation and properties of the SWE can be found in basic482

atmospheric dynamics books (e.g. [57, 28, 35]).483

The SWE are used as an intermediate step towards the solution of the full three-484

dimensional equation set for the dynamics of the atmosphere. well-established models485

adopt semi-implicit schemes [17, 48], with implicit treatment of linear terms and ex-486

plicit treatment of nonlinearities. Among the implicit schemes for the linear waves,487

Crank-Nicolson (trapezoidal differencing) is frequently adopted, as done for example488

in the IFS model of the ECMWF [18, 29], coupled with a semi-Lagrangian approach.489
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Modern models that use non-regular spherical grids, such as MPAS [53] or DYNAM-490

ICO [16], adopt explicit time stepping procedures based on Runge-Kutta time integra-491

tion. See [38] for an extensive list and description of the main time stepping schemes492

used for weather and climate models.493

5.1. Exponential of the linear operator. We seek to find the exponential494

of the linear operator L where we assume the time step size ∆t incorporated into L495

by simple scaling. Assuming a double Fourier expansion of U in space on a [0; 2π)2496

periodic domain, we can look at a single mode (single wavenumber) to understand497

the action of L in terms of its exponentials. For a fixed time, let U be of the form498

(44) U~k(~x) = ei
~k·~xÛ~k,499

with ~k = (k1, k2), ~x = (x1, x2) = (x, y), Û~k independent of ~x and i =
√
−1. Then500

(45) LU~k =

 0 f −gik1

−f 0 −gik2

−η̄ik1 −η̄ik2 0

 Û~k,501

where the matrix above is the matrix symbol of L (usually denoted as L(i~k)), which502

has purely imaginary eigenvalues (more details can be found in [35]). The eigenvalues503

are given by504

(46) ωf (~k) = 0, ωg(~k) = ±i
√
f2 + g η̄ ~k · ~k,505

where ωf (~k) is the steady geostrophic, or vortical, mode and ωg defines the 2 inertia-506

gravity wave modes (ω−g (~k), ω+
g (~k)). The eigenvectors can be directly computed from507

L(i~k), which we will denote as ~ωf (~k), ~ω−g (~k), ~ω+
g (~k), according to their respective508

eigenvalues. Defining Q = [~ωf (~k), ~ω−g (~k), ~ω+
g (~k)] as the eigenvector matrix, Λ =509

[ωf (~k), ω−g (~k), ω+
g (~k)] as the diagonal eigenvalue matrix, and using L(i~k) = QΛQ−1,510

the exponential of L can be directly calculated for the shallow water system through511

its symbol as512

(47) eL(i~k) = QeΛQ−1,513

where the eΛ is the diagonal matrix with entries given by the exponential of the514

respective eigenvalues.515

For the studies conducted in the present work we exploit features from double516

Fourier spectral spatial discretization. This allows us to compute the numerical ma-517

trix exponential directly from equation (47). Using this approach will provide an518

exponential (ϕ0) of the linear operator accurate to machine precision. To evaluate519

ϕn(∆tL) functions (see Eq. (12)), it is straightforward to verify that we can write520

(48) ϕn(∆tL(i~k)) = Qϕn(∆tΛ)Q−1
521

hence computing ϕn element-wise for each diagonal element in Λ.522

We would like to emphasize that computing the exponential directly as discussed523

above is only possible because we are exploiting the orthogonal Fourier basis on the524

bi-periodic domain acting on a constant linear differential operator. In more general525

settings, such as on the sphere, non-trivial methods, such as matrix exponentiation526
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techniques, need to be employed. Even though many approaches to calculate expo-527

nentials exists, see [27], two approaches are currently most commonly researched in528

this context, Krylov subspace solvers, and rational approximations. Krylov solvers,529

such as those presented in [26], are used in [13] and [23] for the matrix exponentiation530

of a dynamic linearization of the shallow water system. Furthermore, [51] adopts a531

rational approximation based on [25] for the rotating SWE on the plane, which is532

also used for the sphere in [50] with a global spectral representation. This rational533

approximation approach calculates the matrix exponentials with a very high degree of534

parallelism, so the additional computational costs of the calculating such exponential535

may be absorbed by extra compute nodes to reduce the time-to-solution.536

In this study we will use the analytical linear operator exponential described537

in equation (47), and we will leave the discussion of computational performance of538

different exponentiation techniques with respect to the semi-Lagrangian exponential539

method to be presented elsewhere.540

5.2. Dispersion analysis. The linear SWE on an f-plane define a hyperbolic541

system formed by inertia-gravity (Poincaré) and geostrophic (steady) waves. Numer-542

ical schemes should be able to represent well these two kinds of waves. We will adopt543

in this study spectral spatial discretizations of the linear operator (based on Fourier544

series), therefore errors in the evaluation of the linear operator are negligible (of ma-545

chine precision) for each wavenumber. However, the temporal discretization may still546

be a source of error which can be directly investigated.547

Let U be written in wave-like solutions for a single horizontal wavenumber (~k),548

U(t, ~x) = eω(~k)tei
~k·~xÛ~k, where ω(~k) is the (time) frequency oscillation relative to a549

horizontal (spatial) wavemode ~k and Û~k now depends on the initial conditions, but550

not on ~x and t. Substituting U in the linear SWE results in the previously defined551

dispersion relations ωf and ωg from equation (46). We point out that the frequencies552

are purely imaginary, therefore of pure hyperbolic nature.553

For the linear exponential integration schemes, considering that the matrix expo-554

nential is calculated within machine precision, these relations are obtained also within555

the same accuracy. State-of-the-art weather forecasting systems that do not adopt556

exponential integration schemes, but mostly Runge-Kutta schemes [53] when explicit,557

or Crank-Nicolson [29] when implicit (see a complete description in [38]). To ensure558

large time steps, implicit schemes are preferred, but in this case, the dispersion re-559

lations described above are not very accurately attained for the smaller wave-modes560

(faster gravity waves). Durran [17] discusses this in details for 1D SWE, but we561

will highlight the analytical dispersion relation of the Crank-Nicolson scheme for our562

two-dimensional system here for the sake of completeness.563

The Crank-Nicolson (CN) scheme, considering analytical evaluation of the space564

linear operator L, may be written as565

(49)
Un+1 − Un

∆t
=

1

2

(
LUn+1 + LUn

)
,566

which leads to an implicit linear system. Using the L(i~k) matrix symbol eigen-567

decomposition and a wave-like solution discrete-in-time, we obtain the amplification568

factor for one time step as569

(50) e∆t ω̃(~k) =
1 + ∆t

2 ω(~k)

1− ∆t
2 ω(~k)

570
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where ω̃ is the approximate dispersion relation of the CN scheme and ω denotes the571

analytical one. Therefore the CN scheme preserves the steady geostrophic modes (for572

ω̃f (~k) = ωf (~k) = 0). However, the gravity waves will have dispersion of the form573

(51) ω̃g(~k) = ωg(~k) +
∆t2

12
(ωg(~k))3 +O(∆t5),574

which is purely imaginary (the amplitude of the mode is not altered by the scheme),575

but the phase speed is affected. The odd powers of ωg indicate that the additional576

terms (error) will always produce a reduction of the ω̃g frequency, and this reduction577

will be larger the larger the wavenumber norm (~k · ~k), since it depends on ωg(~k).578

Therefore, the error in the Crank-Nicolson method slows down the faster (larger579

wavenumber) inertio-gravity waves, which will be slower when larger time step sizes580

are used.581

For finite difference schemes the spatial errors significantly influence the dispersion582

relations. [45] analyzes the effect of different discretizations on the shallow water waves583

dispersions. To preserve an adequate representation of the inertio-gravity waves and584

reduce computational modes arising from spatial discretizations, staggered grids are585

preferred. These are usually called C-grids in the geoscientific modelling community,586

and has the depth variable centred in the cell and the velocities given at the edges of587

cell, normal to the edge [2]. Finite difference schemes are usually coupled with explicit588

Runge-Kutta (RK) time integration, which is limited by CFL stability conditions, so589

the time step size is usually much smaller than with implicit schemes. As it uses small590

time steps, the dispersion errors are then dominated by the spatial discretization erros.591

For large scales, finite difference schemes on C-grids represent well the inertia-gravity592

waves, but they also damp the smaller wavelength waves (faster). See [44] for details593

on the dispersions with respect to difference time and space finite difference schemes.594

Since many modern atmospheric models that use non-regular grids are using finite-595

difference/volumes approaches with explicit time integration, we will also consider596

this approach as reference in our experiments further in the paper.597

6. Numerical experiments. We will consider the following set of schemes to598

be analyzed:599

• RK-FDC: Runge-Kutta second order in time with second order in space en-600

ergy conserving finite differences discretization on a staggered C-grid due to601

[49].602

• SL-SI-SETTLS: Semi-Lagrangian, semi-implicit (Crank-Nicolson) scheme us-603

ing spectral discretization adapted from [29] to the plane, described for the604

planar SWE in Appendix B.605

• SL-EXP-SETTLS: Exponential version of SL-SI-SETTLS, as described in606

Section 4.2.607

• ETD2RK: Original ETD2RK scheme, as described in Section 2, with spectral608

space discretization.609

• SL-ETD2RK: Semi-Lagrangian version of ETD2RK, as described in Section610

4.3.611

• REF: Reference solution. Runge-Kutta forth order in time with small time612

step and high resolution Eulerian spectral discretization (pseudo-spectral for613

all nonlinear terms, such as advection).614

The schemes are connected in the following way. RK-FDC is a reference explicit615

scheme well-established for the solution of the SWE of very low cost per time step,616

but restricted to smaller time steps (CFL condition). SL-SI-SETTLS is the state-of-617
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the-art scheme used in many global atmospheric dynamical cores, which we aim to618

compare to our semi-Lagrangian exponential schemes (SL-EXP-SETTLS, SL-EXP-619

ETD2RK). ETD2RK is a well-established exponential integration technique, which620

we aim to compare to our semi-Lagrangian version, SL-ETD2RK, considering the621

different treatment of the nonlinear advection.622

6.1. Definitions of domain and parameters. The experiments will be exe-623

cuted on a scenario that mimics the Earth’s dimensions, and we will follow the stan-624

dard spherical test case parameters defined in [59]. The domain is set to be [0, Lx]×625

[0, Ly] = [0, 2πa]× [0, 2πa], where a = 6371.22 km is the Earth radius, with bi-periodic626

boundary conditions. The gravity acceleration constant is set to g = 9.80616 ms−2627

and the Coriolis frequency constant is f = 2Ω, with Ω = 7.292× 10−5 rad · s−1. The628

mean depth is η̄ = 10 km so that the gravity wave speed is c =
√
gη̄ ≈ 313 ms−1,629

hence similar to the speed of sound.630

The experiments will be performed with a horizontal discretization of 512 spectral631

modes in each dimension. This corresponds to 768 physical grid points to avoid632

aliasing effects, which would result in a grid cell with a length of approximately 52 km633

in each coordinate. The exception is the reference solution (REF), for which we will634

use 1024 spectral modes per coordinate. Such high horizontal resolution was chosen635

in order to reduce the errors relative to spatial discretizations and allow a clearer636

comparison of the different time stepping schemes. The time step sizes will vary637

according to the analysis to be investigated.638

We will present results of errors in two metrics: maximum absolute error (Max-639

Error) and root mean square error (RMSError), always for fixed integration time640

(timestamp). In case of mismatching resolutions, where pointwise comparison does is641

not well defined, bi-cubic spline interpolation is used on the highest resolution result642

to obtain information on the lowest resolution grid. This lack of matching happens643

as we are using a collocated grid (A-grid in geophysical notation), with physical rep-644

resentation of the quantities considered in the center of the cell.645

6.2. Kinetic energy spectra. The analysis of the energy spectra is deeply re-646

lated to the study of turbulence in fluid dynamics models, which is well studied for647

the atmosphere (e.g. [33, 31]). Here, we do not intend to do turbulence analysis,648

but rather simply use spectrum analysis to compare how the different schemes act649

on small-scale waves. Therefore, we will assume a simplified kinetic energy spec-650

trum analysis, avoiding structure functions and two-point correlation functions [43],651

as follows.652

The two-dimensional kinetic energy spectrum will be obtained using the Fourier653

transformed velocities, with modes denoted as (û(~k), v̂(~k)), ~k = (k1, k2), with654

(52) E~k =
1

2

(
û(~k) û∗(~k) + v̂(~k) v̂∗(~k)

)
,655

where ∗ represents the complex conjugate. One may now define the one-dimensional656

Discrete Power Density Spectra as [42]657

(53) En =
∑

n≤‖~k‖<n+1

E~k,658

where ‖~k‖ =
√
k2

1 + k2
2, and Ek represents the spectrum density with respect to659

horizontal wavenumber n and wavelength L/n, where L is the size of the domain.660

This closely follows what is usually done in spherical atmospheric models (e.g. [31]).661
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6.3. Unstable jet test case. On the sphere, a well-known test case is defined662

by the Galewsky et al [21] initial conditions. These initial conditions are formed of663

2 geostrophic balanced mid-latitude zonal jets. A small perturbation in the height664

field is added to generate fast gravity waves that eventually destabilize the jets and665

form well-defined vortices after a few days. On the bi-periodic plane, no such test666

case exists, so we propose something similar in the following way.667

The jets are defined by the u and v velocities as,668

(54) u(x, y) = u0 (sin(2πy/Ly))
81
, v(x, y) = 0,669

u0 = 50ms−1 is the maximum speed, the power of 81 was chosen so that the jet is670

confined in a small region, and it is built to ensure periodicity. To ensure that the671

depth field is in geostrophic balance with the velocity field, that is, that the initial672

conditions are analytically in a steady state, we define the depth perturbation as673

(55) η(x, y) = −f
g

∫ y

0

u(x, s)ds.674

The integral is solved numerically through repeated piecewise Gaussian integrals en-675

suring that the integral is calculated within desired tolerance for double precision.676

Small Gaussian perturbations (ηp) are added to η to trigger the barotropic insta-677

bility,678

(56) ηp(x, y) = 0.01η̄ [exp{−kd1(x, y))}+ exp{−kd2(x, y)}] ,679

where k = 1000, and di(x, y) = (x−xi)
2

L2
x

+ (y−yi)2

L2
y

, i = {1, 2}, are the square Euclidean680

distances of (x, y) to the points p1 = (x1, y1) = (0.85Lx, 0.75Ly), p2 = (x2, y2) =681

(0.15Lx, 0.25Ly), respectively.682

Initial conditions are presented in Figure 1. Note that the zonal jets move towards683

different directions (left-right), in order to ensure periodicity of all initial fields. We684

present in Figures 2 and 3 results from the high resolution reference scheme (REF)685

with a small time step size of 2 seconds. Figure 2 shows how the initial Gaussian per-686

turbations trigger the generation of fast-moving inertia-gravity waves that dominate687

the initial period of time integration. The waves start interacting with each other688

through the nonlinear effects and eventually disturb the jets to form well-defined689

vortices at day 10, shown in Figure 3a with the vorticity of the flow.690
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Fig. 1. Initial condition for unstable jet test case. (a) Total depth (η+ η̄) and (b) zonal velocity
(u).
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Fig. 2. Reference solution (REF) for depth difference from initial conditions with respect to
(a) half and (b) one days.
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Fig. 3. Reference solution for vorticity at 10 days. (a) Full nonlinear SWE. (b) SWE neglecting
the nonlinear divergence term (Ñ = 0). (c) Difference between (a) and (b).

We will also use this test case neglecting the nonlinear divergence of the SWE (Ñ691

from equation (43)). The SWE flow is still nonlinear, due to the nonlinear advection692

term. In fact, the solution of the unstable jet initial condition neglecting the nonlinear693

divergence is very similar to the solution considering this term, as may be seen in694

Figure 3b. Even though this term might not visually influence much the solutions after695

10 days (see Figure 3c), it plays an important role in energy cascade and nonlinear696

interaction of waves. Also, it will influence the numerical properties of the scheme, as697

we will see further on in the next section.698
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Fig. 4. Reference solution for vorticity at 30 days using the full nonlinear SWE.

After longer periods of time, the flow goes on to develop into a fully turbulent699

flow, as may be seem in Figure 4 (the flow considering Ñ = 0 is very similar to the700

full SWE). From a spectral point of view, energy moves towards smaller wavelengths701

as time evolves, as may be seen in Figure 5. The initial kinetic energy spectrum is702

basically defined by the spectrum of powers of trigonometric functions (in this case703

sin81(2πy/Ly) ). As the power chosen (81) is odd, the spectrum will be zero for704

all even wavenumbers. That is why we see a zig-zag pattern in the early stages of705

integration in the kinetic energy spectrum. Energy builds up in even wavenumbers706

due to nonlinear interactions. Note also that the spectra converges towards the well707

known −5/3 power law of 2D kinetic energy turbulence [33]. Reproducing this kind of708

spectra in small wavelengths stably is usually a major challenge for numerical schemes.709
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Fig. 5. Kinetic energy spectrum for reference solution using the full nonlinear SWE for different
integration times (from 1 day to 20 days).
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6.4. Analysis of Shallow Water Equations without nonlinear diver-710

gence. Considering Ñ = 0 simplifies the semi-Lagrangian exponential schemes. In711

fact, in this case, SL-EXP-SETTLS and SL-ETD2RK are equivalent, since the only712

non-linearity left (advection) is treated within the semi-Lagrangian approach. SL-SI-713

SETTLS also greatly simplifies for similar reasons. RK-FDC, ETD2RK and REF still714

have to deal with the nonlinear advection as a nonlinear term. The finite differences715

scheme RK-FDC is built about the vector invariant form of the equations, where716

nonlinear advection is not explicit, therefore it is not clear how to remove the non-717

linear divergence and we do not present results of this scheme for this SWE without718

nonlinear divergence.719

The initial period is dominated by linear gravity waves, so that is where we720

expect to see benefits of the exponential integration scheme with respect to the semi-721

implicit scheme. We show in Figure 6 the errors at day 1 of integration for the722

unstable jet test case without nonlinear divergence. A few remarks are relevant at723

this point. First, as stated before, SL-EXP-SETTLS and SL-ETD2RK are equivalent724

in this case. Also, it should be noted that a fixed horizontal resolution was used in725

these tests, therefore, for small time step sizes, the dominating error becomes the726

spatial interpolation errors. Increasing the resolution reduces the errors of the semi-727

Lagrangian schemes. Therefore, at small time steps, ETD2RK is much more accurate728

than the other schemes, since all spatial operators are treated spectrally. However,729

the semi-Lagrangian schemes are stable throughout all time step sizes tested, whereas730

the ETD2RK scheme is limited by advection CFL time step size. In general, the semi-731

Lagrangian exponential schemes are more accurate than the semi-implicit scheme (SL-732

SI-SETTLS), due to the more accurate treatment of the linear waves. Concluding,733

the semi-Lagrangian exponential schemes provide a more accurate way, compared to734

SL-SI-SETLLS, to extend the time step size allowed by the traditional exponential735

scheme (ETD2RK).736

Due to the dynamically unstable nature of the test case, quantitative analysis of737

errors in longer periods of time is not usually indicated. However, it is interesting738

to see qualitatively how the schemes behave once the vortices have developed. We739

show in Figure 7 the vorticity at day 10 for the several schemes investigated. All740

schemes seem to be able to represent well the vortex formation, but we notice that741

the ETD2RK has more noise at or around the vortices, whereas the semi-Lagrangian742

schemes show smoother vortices, due to the successive non-spectral interpolations743

required. With a time step size of 450 seconds, the ETD2RK scheme is unstable, but744

the semi-Lagrangian schemes produce high-quality solutions (see Figure 8).745

6.5. Analysis of the Full Shallow Water Equations. In this section, we will746

analyze the schemes with respect to the full SWE, including the nonlinear divergence.747

In this case, the RK-FDC schemes will also be included in the analysis. Also, the748

different semi-Lagrangian exponential schemes (SL-ETD2RK and SL-EXP-SETTLS)749

now differ from each other.750

We show in Figure 9 the errors associated with the integration of the full SWE751

for the unstable jet test case at day 1. As in the previous test, due to the limita-752

tion imposed by the spatial interpolation used in the semi-Lagrangian schemes, the753

ETD2RK scheme provides more accurate results when small time step sizes are used.754

The ETD2RK scheme is again limited by CFL condition for advection. The RK-755

FDC scheme is limited in both time and space: the finite differences scheme limits756

the accuracy, and the gravity wave speed CFL limits the time step size. With the757

inclusion of the nonlinear divergence, the SL-EXP-SETTLS scheme turns out to be758
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Fig. 6. For each scheme, the (a) maximum absolute error and the (b) root mean square error
for 1 integration day with respect to the reference are shown for different time step sizes. All schemes
were tested for all time step sizes indicated. If a scheme does not shows a value for a large time step
it indicates it became unstable for this test. The SWE without nonlinear divergence were adopted in
this test, therefore SL-EXP-SETTLS and SL-ETD2RK are identical.

unstable when used with large time steps. Compared to the SL-SI-SETTLS scheme,759

the SL-EXP-SETTLS does not damp the high wavenumber gravity waves, which in-760

teract with each other in the nonlinear divergence and becomes numerically unstable.761

Differently, the SL-ETD2RK scheme is stable with large time steps, and is more ac-762

curate than the SL-SI-SETTLS scheme, due to the more accurate treatment of the763

linear waves. The theoretical stability analysis of the semi-Lagrangian schemes is764

still a matter to be investigated and is here considered only in an empirical sense.765

However, we point out an important difference between them: SL-EXP-SETTLS is a766

multistep scheme (requires an extrapolation from a previous time step), whereas the767

SL-ETD2RK is a single step method (apart for the extrapolation used in the back768

trajectory calculation).769

From Figure 9 we again notice that SL-ETD2RK seems to be a viable extension770

of the ETD2RK scheme to larger time steps, being more accurate than the SL-SI-771

SETTLS. In Figure 10 we show the vorticity field at day 10 for 3 different schemes (SL-772

SI-SETTLS, SL-EXP-ETD2RK, and ETD2RK). They are again qualitatively very773

similar, although the ETD2RK shows more high wavenumber oscillations around the774

vortices. Interestingly, for larger time step sizes, due to the extra energy in the high775

wavenumber gravity waves, the SL-ETD2RK triggers small turbulent like features776

after long runs when compared to SL-SI-SETTLS. This is illustrated in figure 11b.777

Since there is no dissipation of near grid scale energy, this energy destabilizes the jet778

into smaller scale features. This is clearly seen in Figure 12, where we also notice that779

the ETD2RK scheme has more energy in the smaller scales.780

6.6. Shallow Water Equations with term specific viscosity. For the pur-781

pose of weather and climate simulations, a certain amount of small-scale dissipation782

is usually required, either from a numerical stability perspective or from a physical783

point of view. The SL-SI-SETTLS scheme, when used in the full IFS dynamical core,784

adopts a spectral hyper-viscosity filter in the momentum equations in order to both785

numerically stabilize the scheme and physically dissipate energy from the small-scale786
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Fig. 7. Numerical solution of the SWE without nonlinear divergence for the unstable jet test
case at time 10 days for the vorticity field using a time step size of 225 seconds. (a) SL-SI-SETTLS,
(b) SL-EXP-SETTLS (which is identical to SL-ETD2RK), (c) ETD2RK.

energy tail (see [24] for an analysis of the impacts of the viscosity in a global spectral787

model). We remark that in full models this energy in high wavenumbers could be788

used to model physical sub-grid properties, such as convection.789

With the semi-Lagrangian exponential scheme, it is possible to preserve the lin-790

ear waves precise dispersion and apply a term specific dissipation in the nonlinear791

divergence term. This way, linear waves (long and short) are treated accurately, but792

only the longer waves originated from their nonlinear interaction are preserved in the793

model. This allows the model to be numerically stable without damping the linear794

waves, and also provides dissipation of small-scale features generated by the additional795

energy in high wavenumbers excited by the exponential integration.796

In the analysis that follows we considered an implicit spectral diffusion applied797

only to the nonlinear divergence term. Let c~k be the Fourier coefficient with wavenum-798

bers ~k = (k1, k2), then the implicit diffusion is such that the coefficient is filtered to799

(57) c̃~k =
c~k

1 + ∆t µ‖~k‖2
,800

where µ is a diffusion coefficient, ∆t is the time step size and we are assuming nor-801

malized wavenumbers (adjusted for the domain size).802

We start by analyzing, with different viscosities, the kinetic energy spectrum of803
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Fig. 8. Numerical solution of the SWE without nonlinear divergence at time 10 days for the
vorticity field using a time step size of 450 seconds. (a) SL-SI-SETTLS, (b) SL-EXP-SETTLS
(which is identical to SL-ETD2RK). The scheme ETD2RK is not shown as it is unstable for this
time step size.
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Fig. 9. For each scheme, the (a) maximum absolute error and the (b) root mean square error
for 1 integration day with respect to the reference are shown for different time step sizes. All schemes
were tested for time step sizes indicated. If a scheme does not shows a value for a large time step it
indicates it became unstable for this test. The full SWE were adopted in this test.

the semi-Lagrangian ETD2RK scheme. Figure 13 shows how the amount of viscosity804

required to obtain a solution along the lines of the SL-SI-SETTLS with a time step805

size of 900 seconds, and, following these results, we will adopt µ = 25.6× 106 m2s−1.806

This value is similar to what is actually used in weather forecasting systems for the807

full equations, whereas here, we are only considering it for the nonlinear divergence808

(see [32] for a comprehensive discussion on the use of diffusion in atmospheric models).809

Figure 14 shows results of the vorticity field after 10 days. The SL-ETD2RK810
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Fig. 10. Numerical solution of the Full SWE for the unstable jet test case at time 10 days for the
vorticity field using a time step size of 112.5 seconds. (a) SL-SI-SETTLS, (b) SL-EXP-ETD2RK,
(c) ETD2RK.

scheme now does not develop near grid scale features even with a time step size of811

900 seconds. Even with the implicit diffusion, the ETD2RK scheme is still not able812

to do time step sizes as large as the semi-Lagrangian schemes, due to the instability813

originated from the nonlinear advection term. To stabilize the ETD2RK scheme,814

further terms should be damped, which would likely reduce the accuracy of the scheme.815

As before, the SL-EXP-SETTLS scheme is unstable for large time steps.816

Error results at day 1 of integration are shown in Figure 15, where we can see that817

now the two semi-Lagrangian exponential schemes deliver more accuracy compared818

to the SL-SI-SETTLS scheme.819

7. Concluding remarks. This paper is intended to be a proof of concept for820

a novel approach that combines semi-Lagrangian and exponential integration tech-821

niques. The approach may be helpful for users of standard exponential integration822

techniques as a way to allow larger time step sizes preserving accurate solutions. In823

this case, one might even wish to use a higher order semi-Lagrangian scheme, such824

as the one proposed in [10]. For the application perspective, considering weather and825

climate models, the method presents a way to improve the dispersion properties of826

well-established schemes, therefore better representing linear fast gravity waves.827

The results presented in this paper show the potential benefits of such a com-828

bination of different approaches. However, we do not present results in terms of829
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Fig. 11. Numerical solution of the Full SWE at time 10 days for the vorticity field using a
time step size of 225 seconds. (a) SL-SI-SETTLS, (b) SL-ETD2RK.
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Fig. 12. Kinetic energy spectrum for different methods and time step sizes for the full nonlinear
SWE at day 10 of integration.

computational performance of the schemes discussed. We intend to present results of830

the computational workload of the approach in a later publication showing results in a831

more realistic setup, considering the spherical SWE. In this case, we do not explicitly832

have the exponential of the linear operator easily accessible. Therefore, this analysis833

will highly depend on how the matrix exponential is calculated, so it goes beyond the834

scope of this paper.835
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Fig. 14. Numerical solution of the Full SWE at time 10 days for the vorticity field using
implicit diffusion on the nonlinear divergence term with µ = 25.6× 106 m2s−1. (a) SL-SI-SETTLS
with ∆t = 900s, (b) SL-ETD2RK with ∆t = 900s, (c) ETD2RK with ∆t = 225s, (d) SL-ETD2RK
with ∆t = 225s.

semi-Lagrangian spectral schemes.839

Appendix A. Properties of semi-Lagrangian exponential schemes and840

pitfalls.841

A.1. Commutation of linear operator and interpolation on departure842

points. Consider a general vector ~w ∈ Rn, a linear operator T ∈ Rn×Rn, which will843

represent here, for example, a matrix exponential, and I~x : Rn → Rn an interpolation844

operation with respect to points ~x ∈ Rn. Following the semi-Lagrangian notation845

for interpolation, we may concisely write that I~x(~w) = ~w∗, where the ∗ implicitly846

indicates the interpolation with respect to ~x. This subsection is just to point a simple847

example to illustrate that even in very simple cases (T ~w)∗ 6= T (~w∗).848
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Fig. 15. Adopting a implicit diffusion on the nonlinear divergence term with µ = 25.6 ×
106 m2s−1, for each scheme, the (a) maximum absolute error and the (b) root mean square error
for 1 integration day with respect to the reference are shown for different time step sizes. All schemes
were tested for time step sizes indicated. If a scheme does not shows a value for a large time step it
indicates it became unstable for this test. The full SWE were adopted in this test.
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Fig. 16. Kinetic energy spectrum considering an implicit diffusion on the nonlinear divergence
term with µ = 25600000 m2s−1, for the schemes/parameters shown in Figure 15

Consider a 1D periodic grid with uniformly spaced points (xi)i=1,n, with distance849

∆x from each other. In this example we will consider a scalar advection with constant850

velocity given by ∆x/∆t, so that, after one time step, the departure points will be a851

simple translation and will match exactly their left neighbours. That is, the trajectory852

goes from tn to tn+1 carrying the function value at xi−1 to the xi point. In this case,853

the interpolation to departure points will be given by a periodic shift in the indexes,854

(58) I~x(~w) = I~x([w1, w2, w3, . . . , wn]) = [wn, w1, w2, . . . , wn−1] = ~w∗.855

Note that the operator I~x is a linear operator.856

Now consider a simple diagonal linear operator T = (αii)i=1,n, with αii 6= αjj ,857

This manuscript is for review purposes only.



28 P. S. PEIXOTO, M. SCHREIBER

for j 6= i. In this case,858

(T ~w)∗ = ([α11w1, α22w2, w3, . . . , αnnwn])∗(59)859

= [αnnwn, α11w1, α22w2, w3, . . . , α(n−1)(n−1)wn−1],860

but861

(60) T (~w∗) = T [wn, w1, w2, . . . , wn−1] = [α11wn, α22w1, . . . , αnnwn−1].862

Therefore, even if the trajectories are constant (or linear), the commutation does not863

generally hold.864

In the more general case treated in the derivation of the semi-Lagrangian exponen-865

tial scheme, the trajectories are nonlinear. Also, the linear operator is not necessarily866

diagonal, but one could think of its diagonalized version in complex space in a similar867

way, for which the terms in the diagonal would be the eigenvalues of the operator.868

A.2. Approximation of an integral along trajectories. In this subsection869

we discuss approximations to870

(61)

∫ tn+1

tn

T (s)w(s, ~r(s))ds871

where T : R → Rn × Rn, w : R × Rn → Rn and ~r : R → Rn defines a characteristic872

path (trajectory) in Rn, all being sufficiently smooth (at least continuous).873

An approximation of the integral to midpoint of the trajectory would have the874

following form875

(62) A1 = ∆t[T (s)w(s, ~r(s))]tn+1/2
,876

which, assuming a trajectory calculated exactly, would have an error of the order877

O(∆t3). In semi-Lagrangian schemes the exact value of the functions (w) at trajec-878

tory midpoints are usually not known, so they are extrapolated and/or interpolated879

from values at fixed time steps. Let v(s) = T (s)w(s, ~r(s)), and consider an interpola-880

tion/extrapolation of v as881

(63) A1 ≈ I~xtn ,~xtn+1
(v) = I~xtn ,~xtn+1

(Tw),882

where we note that I depends on the arrival (~xtn+1) and departure points (~xtn) for883

the calculation of Tw, as was the case for the SETTLS scheme, for example.884

On the other hand, as noticed in the previous subsection, T will not in general885

commute with I. As a consequence, assuming T (t) is known for all times, if one takes886

the approximation of the integral as887

(64) A2 = ∆tT (tn+1/2)w(tn+1/2, ~r(tn+1/2)),888

and applies the interpolation/extrapolation only on w, to obtain889

(65) A2 ≈ ∆tT (tn+1/2)I~xtn ,~xtn+1
(w),890

the resulting approximation differs from the former (A1 6= A2), with, for example, the891

operators used in the previous subsection. Interestingly, this may even be different if892

T does not vary in time.893
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Clearly, both approximations A1 and A2 are approximations to the desired inte-894

gral with the same accuracy order. However, in a more general case, the midpoints of895

the trajectories may not coincide with regular grid points. As a result, A2 may not896

always well defined, for example when T is formed by linear differential operators.897

Appendix B. Semi-Lagrangian semi-implicit spectral scheme.898

One of our reference methods is the scheme used in the IFS model, adapted to899

the SWE on the plane, that uses semi-Lagrangian semi-implicit time stepping with900

spectral horizontal discretization. This scheme, based on [29], is briefly described here901

for completeness.902

The semi-implicit discretization with semi-Lagrangian Crank-Nicolson time step-903

ping is based on the discretization described in Section 3.3. Substituting the SWE in904

this formulation we obtain an implicit linear differential system of the form905

αun+1 − fvn+1 + gηn+1
x = (αun + fvn − gηnx )∗(66)906

fun+1 + αfvn+1 + gηn+1
y = (αvn − fun − gηny )∗(67)907

η̄un+1
x + η̄vn+1

y + αη = (αηn − η̄δn)∗ − 2(̃ηδ)
n+1/2

(68)908

where α = 2/∆t, the n+1/2 term with .̃ is calculated using the SETTLS extrapolation909

and δn = unx+vny is the velocity divergence. The right-hand-side of the above equations910

are respectively denoted as (Rnu, Rv, R
n
η ). Writing (u, v) in terms of η as911

(69)

(
u
v

)n+1

=
1

κ

(
α f
−f α

)(
Ru
Rv

)n
− g

κ

(
α f
−f α

)(
ηx
ηy

)n+1

912

with κ = α2 + f2, and applying the divergence and vorticity operations to (u, v)n+1,913

we obtain a single Helmholtz equation for η as914

(70) κηn+1 − gη̄∇2ηn+1 = −η̄Rnδ − η̄
f

α
Rnζ +

κ

α
Rnη ,915

where Rnδ = ∂xR
n
u + ∂yR

n
v and Rnζ = ∂xR

n
v − ∂yRnu are respectively the divergence916

and vorticity of (Rnu, R
n
v ). This equation can be easily solved in spectral space, since917

the Fourier basis define eigenfunctions of the linear differential operators. Once ηn+1918

is obtained, (un+1, vn+1) is obtained via (69).919

REFERENCES920

[1] J. D. Anderson and J. Wendt, Computational fluid dynamics, vol. 206, Springer, 1995.921
[2] A. Arakawa and V. Lamb, Computational design of the basic dynamical processes of the922

UCLA general circulation model, Methods in Computational Physics, 17 (1977), pp. 173–923
265.924

[3] R. K. Archibald, K. J. Evans, J. Drake, and J. White, Time acceleration methods for925
advection on the cubed sphere, in International Conference on Computational Science,926
Springer, 2009, pp. 253–262.927

[4] S. R. M. Barros, D. Dent, L. Isaksen, G. Robinson, G. Mozdzynski, and F. Wollenwe-928
ber, The IFS model: A parallel production weather code, Parallel Computing, 21 (1995),929
pp. 1621–1638.930

[5] P. Bartello and S. J. Thomas, The cost-effectiveness of semi-Lagrangian advection, Monthly931
weather review, 124 (1996), pp. 2883–2897.932

[6] J. Bates, F. Semazzi, R. Higgins, and S. R. Barros, Integration of the shallow water equa-933
tions on the sphere using a vector semi-lagrangian scheme with a multigrid solver, Monthly934
Weather Review, 118 (1990), pp. 1615–1627.935

This manuscript is for review purposes only.



30 P. S. PEIXOTO, M. SCHREIBER

[7] G. Beylkin, J. M. Keiser, and L. Vozovoi, A new class of time discretization schemes for the936
solution of nonlinear PDEs, Journal of Computational Physics, 147 (1998), pp. 362–387.937

[8] E. Carr, I. Turner, and P. Perr, A variable-stepsize jacobian-free exponential integrator for938
simulating transport in heterogeneous porous media: Application to wood drying, Journal939
of Computational Physics, 233 (2013), pp. 66 – 82.940

[9] E. Celledoni, Eulerian and semi-Lagrangian schemes based on commutator-free exponential941
integrators, Group theory and numerical analysis, 39 (2005), pp. 77–90.942

[10] E. Celledoni and B. K. Kometa, Semi-Lagrangian Runge-Kutta exponential integrators for943
convection dominated problems, Journal of Scientific Computing, 41 (2009), pp. 139–164.944

[11] E. Celledoni, B. K. Kometa, and O. Verdier, High order semi-Lagrangian methods for945
the incompressible Navier–Stokes equations, Journal of Scientific Computing, 66 (2016),946
pp. 91–115.947

[12] C. Clancy and P. Lynch, Laplace transform integration of the shallow-water equations. Part948
II: Semi-Lagrangian formulation and orographic resonance, Quarterly Journal of the Royal949
Meteorological Society, 137 (2011), pp. 800–809.950

[13] C. Clancy and J. A. Pudykiewicz, On the use of exponential time integration methods951
in atmospheric models, Tellus A: Dynamic Meteorology and Oceanography, 65 (2013),952
p. 20898.953

[14] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, Journal of954
Computational Physics, 176 (2002), pp. 430–455.955

[15] M. Diamantakis, The semi-Lagrangian technique in atmospheric modelling: current status956
and future challenges, in ECMWF Seminar in numerical methods for atmosphere and957
ocean modelling, 2013, pp. 183–200.958

[16] T. Dubos, S. Dubey, M. Tort, R. Mittal, Y. Meurdesoif, and F. Hourdin, DYNAMICO-959
1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility,960
Geoscientific Model Development, 8 (2015), pp. 3131–3150.961

[17] D. R. Durran, Numerical methods for fluid dynamics: With applications to geophysics, vol. 32,962
Springer, 2010.963

[18] ECMWF, PART III: DYNAMICS AND NUMERICAL PROCEDURES, IFS Documentation,964
ECMWF, 2017, ch. ., p. .965

[19] M. Falcone and R. Ferretti, Convergence analysis for a class of high-order semi-lagrangian966
advection schemes, SIAM Journal on Numerical Analysis, 35 (1998), pp. 909–940.967

[20] S. N. Figueroa, J. P. Bonatti, P. Y. Kubota, G. A. Grell, H. Morrison, S. R. Barros,968
J. P. Fernandez, E. Ramirez, L. Siqueira, G. Luzia, et al., The Brazilian global969
atmospheric model (BAM): performance for tropical rainfall forecasting and sensitivity to970
convective scheme and horizontal resolution, Weather and Forecasting, 31 (2016), pp. 1547–971
1572.972

[21] J. Galewsky, R. K. Scott, and L. M. Polvani, An initial-value problem for testing numerical973
models of the global shallow-water equations, Tellus A, 56 (2004), pp. 429–440.974

[22] F. Garcia, L. Bonaventura, M. Net, and J. Sánchez, Exponential versus IMEX high-order975
time integrators for thermal convection in rotating spherical shells, Journal of Computa-976
tional Physics, 264 (2014), pp. 41–54.977

[23] S. Gaudreault and J. A. Pudykiewicz, An efficient exponential time integration method for978
the numerical solution of the shallow water equations on the sphere, Journal of Computa-979
tional Physics, 322 (2016), pp. 827 – 848.980

[24] A. Gelb and J. P. Gleeson, Spectral viscosity for shallow water equations in spherical geom-981
etry, Monthly Weather Review, 129 (2001), pp. 2346–2360.982

[25] T. Haut, T. Babb, P. Martinsson, and B. Wingate, A high-order time-parallel scheme for983
solving wave propagation problems via the direct construction of an approximate time-984
evolution operator, IMA Journal of Numerical Analysis, (2015), p. drv021.985

[26] M. Hochbruck and C. Lubich, On Krylov subspace approximations to the matrix exponential986
operator, SIAM Journal on Numerical Analysis, 34 (1997), pp. 1911–1925.987

[27] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica, 19 (2010),988
pp. 209–286.989

[28] J. R. Holton, An introduction to dynamic meteorology, Academic Press, 4 ed., 2004.990
[29] M. Hortal, The development and testing of a new two-time-level semi-lagrangian scheme991

(settls) in the ecmwf forecast model, Quarterly Journal of the Royal Meteorological Society,992
128 (2002), pp. 1671–1687.993

[30] G. L. Kooij, M. A. Botchev, and B. J. Geurts, An Exponential Time Integrator for the994
Incompressible Navier–Stokes Equation, SIAM Journal on Scientific Computing, 40 (2018),995
pp. B684–B705.996

[31] J. N. Koshyk and K. Hamilton, The horizontal kinetic energy spectrum and spectral budget997

This manuscript is for review purposes only.



SEMI-LAGRANGIAN EXPONENTIAL INTEGRATION 31

simulated by a high-resolution troposphere–stratosphere–mesosphere GCM, Journal of the998
Atmospheric Sciences, 58 (2001), pp. 329–348.999

[32] P. H. Lauritzen, C. Jablonowski, M. A. Taylor, and R. D. Nair, Numerical techniques1000
for global atmospheric models, vol. 80, Springer Science & Business Media, 2011.1001

[33] E. Lindborg, Can the atmospheric kinetic energy spectrum be explained by two-dimensional1002
turbulence?, Journal of Fluid Mechanics, 388 (1999), pp. 259–288.1003

[34] J. Loffeld and M. Tokman, ”comparative performance of exponential, implicit, and explicit1004
integrators for stiff systems of odes”, Journal of Computational and Applied Mathematics,1005
241 (2013), pp. 45 – 67.1006

[35] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, vol. 9, American1007
Mathematical Soc., 2003.1008

[36] A. McDonald, Accuracy of Multiply-Upstream Semi-Lagrangian Advective Schemes II, Mon.1009
Wea. Rev., 115 (1987), pp. 1446–1450.1010

[37] C. McLandress, On the importance of gravity waves in the middle atmosphere and their pa-1011
rameterization in general circulation models, Journal of Atmospheric and Solar-Terrestrial1012
Physics, 60 (1998), pp. 1357–1383.1013

[38] G. Mengaldo, A. Wyszogrodzki, M. Diamantakis, S.-J. Lock, F. X. Giraldo, and N. P.1014
Wedi, Current and Emerging Time-Integration Strategies in Global Numerical Weather1015
and Climate Prediction, Archives of Computational Methods in Engineering, (2018), pp. 1–1016
22.1017

[39] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix,1018
twenty-five years later, SIAM review, 45 (2003), pp. 3–49.1019

[40] P. S. Peixoto and S. R. Barros, On vector field reconstructions for semi-lagrangian transport1020
methods on geodesic staggered grids, J. Comput. Phys., 273 (2014), pp. 185 – 211.1021

[41] O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes1022
equations, Numerische Mathematik, 38 (1982), pp. 309–332.1023

[42] F. Plunian, R. Stepanov, and P. Frick, Shell models of magnetohydrodynamic turbulence,1024
Physics Reports, 523 (2013), pp. 1–60.1025

[43] S. B. Pope, Turbulent flows, 2001.1026
[44] M. K. Rajpoot, S. Bhaumik, and T. K. Sengupta, Solution of linearized rotating shallow1027

water equations by compact schemes with different grid-staggering strategies, Journal of1028
Computational Physics, 231 (2012), pp. 2300–2327.1029

[45] D. A. Randall, Geostrophic Adjustment and the Finite-Difference Shallow-Water Equations,1030
Mon. Wea. Rev., 122 (1994), pp. 1371–+.1031

[46] H. Ritchie, Application of the semi-lagrangian method to a spectral model of the shallow water1032
equations, Mon. Wea. Rev., 116 (1988), pp. 1587–1598.1033

[47] A. Robert, A stable numerical integration scheme for the primitive meteorological equations,1034
Atmosphere-Ocean, 19 (1981), pp. 35–46.1035

[48] A. Robert, A semi-Lagrangian and semi-implicit numerical integration scheme for the prim-1036
itive meteorological equations, Journal of the Meteorological Society of Japan. Ser. II, 601037
(1982), pp. 319–325.1038

[49] R. Sadourny, The dynamics of finite-difference models of the shallow-water equations, Journal1039
of the Atmospheric Sciences, 32 (1975), pp. 680–689.1040

[50] M. Schreiber and R. Loft, A parallel time-integrator for solving the linearized shallow water1041
equations on the rotating sphere, under revision in Numer. Linear Algebra Appl., (2018).1042

[51] M. Schreiber, P. S. Peixoto, T. Haut, and B. Wingate, Beyond spatial scalability limita-1043
tions with a massively parallel method for linear oscillatory problems, The International1044
Journal of High Performance Computing Applications, (2017), p. 1094342016687625.1045

[52] J. C. Schulze, P. J. Schmid, and J. L. Sesterhenn, Exponential time integration using Krylov1046
subspaces, International journal for numerical methods in fluids, 60 (2009), pp. 591–609.1047

[53] W. C. Skamarock, J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D.1048
Ringler, A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tes-1049
selations and C-Grid Staggering, Mon. Wea. Rev., 140 (2012), pp. 3090–3105.1050

[54] A. St-Cyr and S. J. Thomas, Nonlinear operator integration factor splitting for the shallow1051
water equations, Applied Numerical Mathematics, 52 (2005), pp. 429–448.1052

[55] A. Staniforth and J. Ct, Semi-Lagrangian Integration Schemes for Atmospheric Models - A1053
Review, Mon. Wea. Rev., 119 (1991), pp. 2206–2223.1054

[56] M. Tokman, Efficient integration of large stiff systems of ODEs with exponential propagation1055
iterative (EPI) methods, Journal of Computational Physics, 213 (2006), pp. 748–776.1056

[57] G. K. Vallis, Atmospheric and oceanic fluid dynamics, Cambridge University Press, 2017.1057
[58] D. L. Williamson, The evolution of dynamical cores for global atmospheric models, J. Mete-1058

orol. Soc. Jpn., 85B (2007), pp. 241–269.1059

This manuscript is for review purposes only.



32 P. S. PEIXOTO, M. SCHREIBER

[59] D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, A standard1060
test set for numerical approximations to the shallow water equations in spherical geometry,1061
J. Comput. Phys., 102 (1992), pp. 211–224.1062

[60] D. Xiu and G. E. Karniadakis, A Semi-Lagrangian High-Order Method for NavierStokes1063
Equations, Journal of Computational Physics, 172 (2001), pp. 658 – 684.1064

This manuscript is for review purposes only.


	Introduction
	Exponential integration
	Analytical time integration
	Numerical time integration (ETDRK)

	Semi-Lagrangian integration
	The material derivative
	Trajectory calculations
	Semi-Lagrangian Solver (SL-SI-SETTLS)

	Semi-Lagrangian exponential integration
	Basic theory
	Semi-Lagrangian Exponential SETTLS (SL-EXP-SETTLS)
	Semi-Lagrangian Exponential ETDRK (SL-ETDRK)

	Rotating Shallow Water Equations on an f-Plane
	Exponential of the linear operator
	Dispersion analysis

	Numerical experiments
	Definitions of domain and parameters
	Kinetic energy spectra
	Unstable jet test case
	Analysis of Shallow Water Equations without nonlinear divergence
	Analysis of the Full Shallow Water Equations
	Shallow Water Equations with term specific viscosity

	Concluding remarks
	Appendix A. Properties of semi-Lagrangian exponential schemes and pitfalls
	Commutation of linear operator and interpolation on departure points
	Approximation of an integral along trajectories

	Appendix B. Semi-Lagrangian semi-implicit spectral scheme
	References

