MAE 5776

ANÁLISE MULTIVARIADA

Júlia M Pavan Soler

pavan@ime.usp.br

Análise Multivariada

$$Y_{n\times p} = (Y_{ij}) \in \Re^{n\times p}$$

Estatísticas Descritivas Multivariadas

Já vimos 💮

- Distribuição Normal Multivariada
- Distribuições Amostrais
- Regiões de Confiança, Testes Multivariados, MANOVA, IC Simultâneos, Correções para Múltiplos Testes
- Análises Multivariadas Clássicas (n>p, iid): CP, CoP, AC,AF, AD, AAgr, CC
- Análises Multivariadas Esparsas (n<<p, iid): CP, AD, CC, PLS

- Componentes Principais em Observações Correlacionadas
- Aprendizado de Estruturas Modelos de Grafos Probabilísticos (Modelos de Equações Estruturais)
 Propriedades de Markov

Matriz de Dados

Unidades Amostrais	Variáveis								
	1	2		j		р			
1	Y ₁₁	Y ₁₂		Y _{1j}		Y _{1p}			
2	Y ₂₁	Y ₂₂		Y_{2j}		Y_{2p}			
i	 Y _{i1}	 Y _{i2}		$\left(Y_{ij}\right)$		Y _{ip}			
•••									
n	Y_{n1}	Y_{n2}		Y_{nj}		Y_{np}			

Amostra Aleatória Simples de n-Vetores em \Re^p

$$Y_{n \times p} \in \mathbb{R}^{n \times p}; \quad Y_i \in \mathbb{R}^p \stackrel{iid}{\sim} (\mu; \Sigma)$$

Já vimos vários resultados sob a formalização de observações independentes (AASn)

Casos mais gerais:

• Amostra Aleatória de G-Matrizes em $\Re^{n_g \times p}$ $(g = 1,...,G; \sum_g n_g = n)$ (AAS_G)

Variáveis Aleatórias Multidimensionais

alternativas

Matriz aleatória (Gupta and Nagar, 2000):

 $Y_{n \times p} = (Y_{ij}) \in \Re^{n \times p}; \quad Y_{n \times p} \sim N_{n,p}(M; \Psi \otimes \Sigma); \quad vec(Y)_{nn \times 1} \sim N_{np}(vec(M); \Psi \otimes \Sigma)$

$$vec(Y)_{np\times 1} \sim N_{np}(vec(M); \Psi \otimes \Sigma)$$

 $M_{n \times p} = 1_n \mu'_{p \times 1}$: matriz de médias

 $vec(M)_{nn\times 1} = 1_n \otimes \mu_{n\times 1}$: vetor de médias de n observações em p variáveis

 $(\Psi_{n\times n}\otimes\Sigma_{p\times p})_{nn\times nn}$: matriz de covariâncias

Formulação flexível para diferentes modelagens

Matrizes de covariância Estruturadas: entre indivíduos (Ψ) e entre variáveis (Σ)

$$\Psi = I_n ; \quad \Sigma = I_p$$

$$\Psi = I_n; \quad \Sigma = (1 - \rho) I_p + \rho 1_p 1_p'$$

$$\Psi = I_n; \quad \Sigma = I_p \quad \Psi = I_n; \quad \Sigma = (1 - \rho) I_p + \rho 1_p 1_p' \quad \Psi = \bigoplus_{g=1}^G \left[(1 - \rho) I_{n_g} + \rho 1_{n_g} 1_{n_g'} \right]; \quad \Sigma = (\sigma_{jl})$$

Observações e variáveis independentes

Observações independentes e correlação uniforme entre as variáveis

Correlação uniforme entre observações agrupadas em G grupos

Correlação não estruturada entre variáveis

Matriz Aleatória

Amostra Aleatória de n-Vetores em
 ^{Rp}

$$Y_{n \times p} \in \mathbb{R}^{n \times p}; \quad Y_i \in \mathbb{R}^p \stackrel{iid}{\sim} (\mu; \Sigma)$$

• Amostra Aleatória de *n*-Vetores em \Re^p tal que $n = \sum_{g=1}^G n_g$

Considere Amostra Estratificada MAS com Correlação entre Observações dentro dos Estratos (Grupos)

Grupos	Unidades		*1					
1	amostrais	1	2		j		р	$Y_{n \times n} = \dots $
	1	Y ₁₁	Y ₁₂		Y _{1j}		Y _{1p}	$n \times p$
1	2	Y ₂₁	Y ₂₂		Y_{2j}		Y_{2p}	$\setminus I_0$
	i.	 Y _{i1}	 Y _{i2}	•••	Y_{ij}		··· Y _{ip}	$Y_{g(n_g \times p)}$
G	(n	 Y _{n1}	 Y _{n2}	•••	 Y _{nj}	•••	Y_{np}	$n = \sum_{G}^{G} n_{g}$

$$Y_{n \times p} \in \Re^{n \times p}; \quad Y_{g} = Y_{n_{g} \times p} \in \Re^{n_{g} p \times 1} \underbrace{(iid)}_{\sim} \left(\mu_{g}; \Omega_{g}\right) \left\{ \begin{array}{l} \mu_{g (n_{g} p \times 1)} = 1_{n_{g}} \otimes \mu'_{p \times 1} \\ \Omega_{g (n_{g} p \times n_{g} p)} = \Psi_{g} \otimes \Sigma_{p \times p} \end{array} \right\}$$

Matriz Aleatória

• Amostra Aleatória de G-Matrizes em $\Re^{n_g \times p}$ $(g = 1, ..., G; \sum_g n_g = n)$

$$Y_{n \times p} \in \mathfrak{R}^{n \times p}; \quad Y_{g} = Y_{n_{g} \times p} \in \mathfrak{R}^{n_{g} p \times 1} \stackrel{\text{(iid)}}{\sim} \left(\mu_{g}; \Omega_{g}\right) \left\{\begin{array}{l} \mu_{g (n_{g} p \times 1)} = 1_{n_{g}} \otimes \mu'_{p \times 1} \\ \Omega_{g (n_{g} p \times n_{g} p)} = \Psi_{g} \otimes \Sigma_{p \times p} \end{array}\right.$$

$$Y_{n \times p} \sim \left(\mu_{n \times p}; \Omega_{np \times np}\right) \begin{cases} \mu_{n \times p} = \bigoplus_{g=1}^{G} \left(1_{n_g} \otimes \mu'_{p \times 1}\right) = \left(\bigoplus_{g=1}^{G} 1_{n_g}\right) \otimes \mu'_{p \times 1} \\ \Omega_{np \times np} = \bigoplus_{g=1}^{G} \Omega_g = \bigoplus_{g=1}^{G} \left(\Psi_g \otimes \Sigma_{p \times p}\right) = \left(\bigoplus_{g=1}^{G} \Psi_g\right) \otimes \Sigma_{p \times p} \end{cases}$$

Matriz Aleatórias – Componentes de Covariâncias em \Re^{pxp}

■ Amostra Aleatória de G-Matrizes em $\Re^{n_g \times p}$ $(g = 1,...,G; \sum_g n_g = n)$

$$\begin{split} Y_{n\times p} \in \Re^{n\times p}; \quad Y_g = Y_{n_g\times p} \in \Re^{n_g\times p} &\stackrel{iid}{\sim} \left(\mu_g; \Omega_g\right) \left\{ \begin{array}{l} \mu_{g\,(n_g\times p)} = \mathbf{1}_{n_g} \otimes \mu'_{p\times 1} \\ \Omega_{g\,(n_g\,p\times n_g\,p)} = \Psi_g \otimes \Sigma_{p\times p} \end{array} \right. \\ Y_{n\times p} \sim \left(\mu_{n\times p}; \Omega_{np\times np}\right) \left\{ \begin{array}{l} \mu_{n\times p} = \left(\bigoplus_{g=1}^G \mathbf{1}_{n_g}\right) \otimes \mu'_{p\times 1} \\ \Omega_{np\times np} = \bigoplus_{g=1}^G \left(\Psi_g \otimes \Sigma_{p\times p}\right) = \left(\bigoplus_{g=1}^G \Psi_g\right) \otimes \Sigma_{p\times p} \end{array} \right. \\ \left. \begin{array}{l} Decompor \ \Re^{p\times p} \ em \\ Componentes \ de \ Covariâncias \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Omega_{np\times np} = \left(\bigoplus_{g=1}^G \Psi_g\right) \otimes \Sigma \end{array} \right. \\ \left. \begin{array}{l} \Omega_{np\times np} = \left(\bigoplus_{g=1}^G \Psi_g\right) \otimes \Sigma \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right. \\ \left. \begin{array}{l} \Sigma_{p\times p} = \Sigma_B + \Sigma_W \\ \end{array} \right.$$

 Σ_B : componente da covariância entre as p-variáveis, associado à covar. entre as *n*-observações

Componentes de Covariâncias em RPXP

$$Y_{n \times p} \sim \left(\mu_{n \times p}; \Omega_{np \times np}\right) \left\{ \begin{array}{l} \mu_{n \times p} = \bigoplus_{g=1}^{G} \left(1_{n_{g}} \otimes \mu'_{g p \times 1}\right) \\ \Omega_{np \times np} = \left(\bigoplus_{g=1}^{G} \Psi_{g}\right) \otimes \Sigma_{B} + I_{n} \otimes \Sigma_{W} \end{array} \right\}$$

$$\Omega_{np\times np} = \begin{bmatrix} \Psi_1 & 0 & \\ & \Psi_2 & \\ 0 & \cdots & \\ & & \Psi_G \end{bmatrix} \otimes \Sigma_B + \begin{bmatrix} I_{n_1} & 0 & \\ & I_{n_2} & \\ 0 & \cdots & \\ & & I_{n_G} \end{bmatrix} \otimes \Sigma_W$$

A matriz de covariância Σ é decomposta em dois componentes, um associado à suposição de correlação entre observações do mesmo grupo ($\Sigma_{\rm B}$: matriz de covariância ENTRE grupos) e outro associado à independência condicional entre observações dado o grupo ($\Sigma_{\rm W}$: matriz de covariância DENTRO de grupos)

Componentes Principais em Modelos de Componentes de Covariâncias

$$Cov(Y_g) = \Omega_g = \Psi_g \otimes \Sigma_B + I_{n_g} \otimes \Sigma_W; \qquad \Sigma_B + \Sigma_W = \Sigma$$

$$PC_B \Rightarrow \max_{\|a\|=1} \frac{a \Sigma_B a}{a'a}$$
 : direção com máxima variação entre grupos

$$PC_W \Rightarrow \max_{\|a\|=1} rac{a \Sigma_W a}{a'a}$$
 : direção com máxima variação dentro dos grupos

$$PCH \Rightarrow \max_{\|\Sigma_{W}^{1/2}a\|=1} \frac{a \hat{\Sigma}_{B} a}{a \hat{\Sigma}_{B} a} = \max_{\|\Sigma_{W}^{1/2}a\|=1} \frac{a \hat{\Sigma}_{B} a}{a \hat{\Sigma}_{W} a} : \text{direção com máxima variação entre e mínima variação dentro de grupos}$$

Obter estimativas dos Componentes de Covariância!

$$\hat{\Sigma}_{B}$$
, $\hat{\Sigma}_{W}$

ANOVA — Efeito Fixo e Aleatório
$$com_{Oohter}$$
 estimativas com_{Oohter} com_{Oohter} estimativas com_{Oohter} com_{Ooh

Modelo de Efeitos Fixos

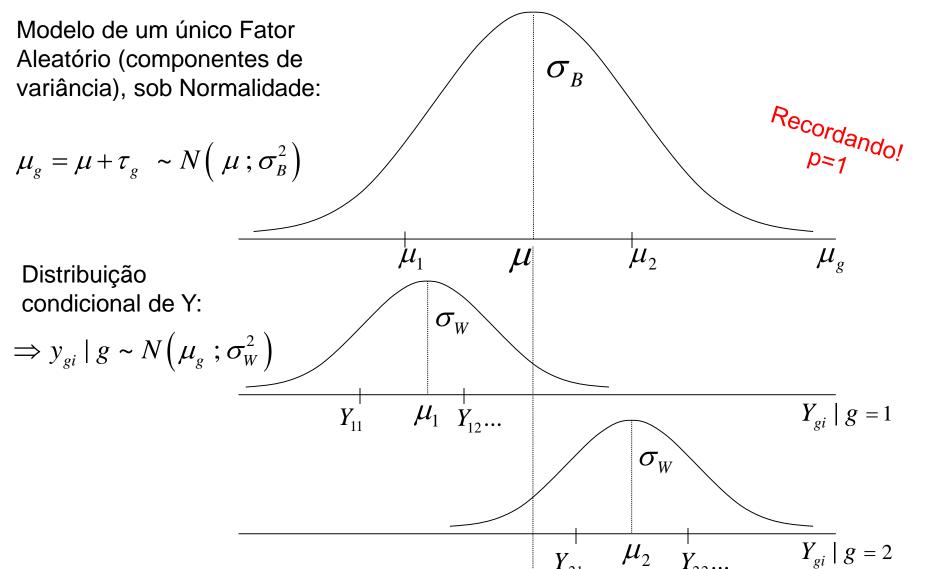
$$\sum_{g=1}^{G} \tau_g = 0$$

$$e_{gi} \sim (0; \sigma^2)$$

$$\Rightarrow Y_{gi} \sim (\mu_g; \sigma^2)$$

$$Cov(Y_{n\times 1}) = \begin{bmatrix} \sigma^2 & 0 & 0 & 0 \\ 0 & \sigma^2 & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \sigma^2 \end{bmatrix} = \sigma^2 I_n$$

Modelo de Efeitos Aleatórios



$$H_0: \sigma_B^2 = 0 \Leftrightarrow H_0: \mu_g = \mu$$

Sob H₀, os modelos de ANOVA com um fator aleatório ou um fator fixo são equivalentes (mesma tabela ANOVA)

Recordando o caso p≈1. Tabela de ANOVA equivalente para os ou um fator aleasta in equivalente para os ou um fator fixo ^{ou} um fator al<u>eatório!</u>

$$H_0: \sigma_B^2 = 0 \Leftrightarrow H_0: \mu_g = \mu$$

F.V. g.l.

SQ

QM

F

Grupo

G-1 $S_b = \sum_{a} r (\overline{Y}_o - \overline{Y})^2$ $QMGr = S_b / (G-1)$

QMGr OM Res

Resíduo

n-G

 $S_w = \sum_i (Y_{gi} - \overline{Y}_g)^2 \qquad QM \operatorname{Re} s = S_w / (n - G)$

TOTAL

n-1

 $S_T = \sum_i (Y_{gi} - \overline{Y})^2$

 $n_{g} = r$: Dados balanceados

$$E(QM \operatorname{Re} s) = \sigma_W^2 \qquad \Rightarrow \qquad \hat{\sigma}_W^2 = QM \operatorname{Re} s$$

$$\Rightarrow$$

$$\hat{\sigma}_W^2 = QM \operatorname{Re} s$$

$$E(QMTr) = \sigma_W^2 + r \sigma_B^2 =$$

$$E(QMTr) = \sigma_W^2 + r \sigma_B^2 \implies \hat{\sigma}_B^2 = \frac{QMTr - QM \operatorname{Re} s}{r}$$

$$F \sim F_{(G-1),(n-G)}$$

Componentes de Covariâncias em R pxp Estruturas para Ψ em R nxn

Correlação Uniforme entre Observações (Simetria Composta ou Equicorrelação)
 (Konish and Rao, 1992)

$$\begin{split} Y_{n\times p} &\in \Re^{n\times p}; \quad Y_{g} = Y_{n_{g}\times p} \in \Re^{n_{g}\times p} \quad \overset{iid}{\sim} \quad \left(\mu_{g}; \Omega_{g}\right) - \begin{bmatrix} \mu_{g (n_{g}\times p)} = 1_{n_{g}} \otimes \mu'_{g p\times 1} \\ \Omega_{g (n_{g}p\times n_{g}p)} = \Psi_{g} \otimes \Sigma_{p\times p} \end{bmatrix} \\ & Cov(Y_{gi}, Y_{g'i'})_{(p\times p)} = \begin{cases} \Sigma = \Sigma_{B} + \Sigma_{W} & \text{se } g = g', i = i' \\ \Sigma_{B} & \text{se } g = g', i \neq i' \end{cases} \qquad \underbrace{\Psi_{g} = 1_{n_{g}} 1_{n_{g}}'}_{\Sigma = \Sigma_{B} + \Sigma_{W}} \\ \Rightarrow Cov(Y_{g})_{n_{g}p\times n_{g}p} = \Omega_{g} = \left(1_{n_{g}} 1_{n_{g}}'\right) \otimes \Sigma_{B} + I_{n_{g}} \otimes \Sigma_{W} \end{split}$$

$$\Rightarrow Y_{g} \quad \overset{iid}{\sim} \left(1_{n_{g}} \otimes \mu'_{g}; \Omega_{g} = (1_{n_{g}} 1_{n_{g}}') \Sigma_{B} + I_{n_{g}} \otimes \Sigma_{W} \right)$$

$$\Rightarrow Y_{n\times p} \quad \sim \left(\bigoplus_{g=1}^{G} (1_{n_{g}} \otimes \mu'_{g}); \Omega = \bigoplus_{g=1}^{G} \Omega_{g} \right)$$

Estimadores MANOVA entre MANOVA com

$$\Rightarrow Y_g \overset{iid}{\sim} \left(1_{n_g} \otimes \mu'_g; \Omega_g = (1_{n_g} 1_{n_g}) \Sigma_B + I_{n_g} \otimes \Sigma_W \right)$$

Equivalência analítica entre MANOVA com um Fator Fixo ou um Fator Aleatório (sob equicorrelação)

Tabela de MANOVA:

F.V.	g.l.	Matriz de SQPC
Trat	G-1	$H_{p \times p} = \sum_{g=1}^{G} n_g \left(\overline{Y}_g - \overline{Y} \right) \left(\overline{Y}_g - \overline{Y} \right)' = S_b$
Resíduo	n-G	$E_{p \times p} = \sum_{g=1}^{G} \sum_{i=1}^{n_g} \left(Y_{gi} - \overline{Y}_g \right) \left(Y_{gi} - \overline{Y}_g \right)' = S_w$
TOTAL	n-1	$H + E = \sum_{g=1}^{G} \sum_{i=1}^{n_g} (Y_{gi} - \overline{Y}) (Y_{gi} - \overline{Y})'$

Sob
$$H_0: \mu_g = \mu, \quad g = 1, ..., G$$

$$E\left(\frac{S_w}{n-G}\right) = \Sigma_W; \quad E\left(\frac{S_b}{G-1}\right) = \Sigma_W + n_0 \Sigma_B \qquad \qquad n_0 = \frac{n - \left(\sum_g n_g^2 / n\right)}{G-1}$$

Componentes de Covariâncias em \Re^{pxp} Sob Correlação Uniforme entre Observações

$$\Rightarrow \hat{\Sigma}_W = \frac{S_w}{n - G}; \qquad \hat{\Sigma}_B = n_0^{-1} \left\{ \frac{S_b}{G - 1} - \frac{S_w}{n - G} \right\}$$

$$\Rightarrow \hat{\Sigma} = \hat{\Sigma}_W + \hat{\Sigma}_B = n_0^{-1} \left\{ \frac{S_b}{G - 1} + \frac{(n_0 - 1)S_w}{n - G} \right\}$$

$$n_0 = \frac{n - \left(\sum_g n_g^2 / n\right)}{G - 1}$$

Componentes de Covariâncias em RPXP Sob Correlação Uniforme entre Observações

Konishi and Rao, 1992; Oualkacha et al., 2012)

$$\Rightarrow Y_g \overset{iid}{\sim} \left(1_{n_g} \otimes \mu_g'; \Omega_g = (1_{n_g} 1_{n_g}') \Sigma_B + I_{n_g} \otimes \Sigma_W \right); \quad \hat{\Sigma}_{p \times p} = \hat{\Sigma}_{B_{p \times p}} + \hat{\Sigma}_{W_{p \times p}}$$

$$PC_g \Rightarrow \max_a \frac{a'\hat{\Sigma}_B a}{a'a}$$
, $a'a=1$ Direção com máxima variação Entre grupos

$$PC_e \Rightarrow \max_a \frac{a'\hat{\Sigma}_W a}{a'a}, \qquad a'a=1$$
 Direção com máxima variação Dentro de grupos

$$PC_{T} \Rightarrow \max_{a} \frac{a'\hat{\Sigma} a}{a'a} = \max_{a} \frac{a'\left[\hat{\Sigma}_{B} + \hat{\Sigma}_{W}\right] a}{a'a}, \qquad a'a = 1 \quad \text{Direção com máxima variação Total}$$

$$PCH \Rightarrow \max_{a} \frac{a'\hat{\Sigma}_{B} a}{a'\left[\hat{\Sigma}_{B} + \hat{\Sigma}_{W}\right] a} = \max_{a} \frac{a'\hat{\Sigma}_{B} a}{a'\hat{\Sigma}_{W} a}, \qquad a'\hat{\Sigma}_{W} a = 1 \quad \text{Direção com máxima variação Entre grupos e mínima variação Dentro}$$

$$\text{Entre grupos e mínima variação Dentro}$$

$$\text{Principal de principal idade}$$

$$\text{Perincipal de principal idade}$$

$$\text{Principal idade}$$

$$\text{Principal idade}$$

$$PCH \Rightarrow \max_{a} \frac{a'\hat{\Sigma}_{B}a}{a'[\hat{\Sigma}_{B} + \hat{\Sigma}_{W}]a} = \max_{a} \frac{a'\hat{\Sigma}_{B}a}{a'\hat{\Sigma}_{W}a},$$

$$\hat{\Sigma}_W^{-1} \hat{\Sigma}_B \Rightarrow \hat{\Sigma}_W^{-1/2} \hat{\Sigma}_B \hat{\Sigma}_W^{-1/2}$$

Componentes Principais em Modelos de Componentes de Covariâncias

$$\Rightarrow Y_g \overset{iid}{\sim} \left(1_{n_g} \otimes \mu_g'; \Omega_g = (1_{n_g} 1_{n_g}') \Sigma_B + I_{n_g} \otimes \Sigma_W \right)^{(**)}$$

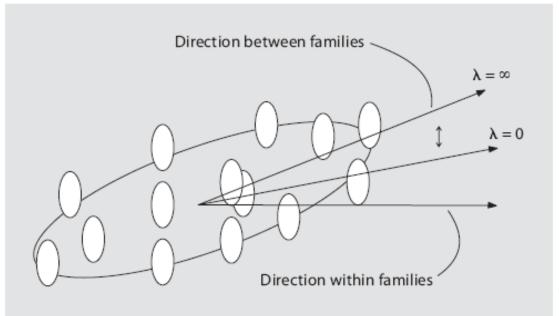
$$PCH \Rightarrow \max_{a} \frac{a \Sigma_{B} a}{a \hat{\Sigma}_{W} a}$$

 $PCH \Rightarrow \max_{a} \frac{a \hat{\Sigma}_{B} a}{a \hat{\Sigma}_{W} a}$: Componentes Principais de Herdabilidade (direção com máxima variação Entre e mínima variação Dentro de grupos)

$$\hat{\Sigma}_{w} = \frac{S_{w}}{n - G}; \qquad \hat{\Sigma}_{B} = n_{0}^{-1} \left\{ \frac{S_{b}}{G - 1} - \frac{S_{w}}{n - G} \right\} \qquad n_{0} = \frac{n - \left(\sum_{g} n_{g}^{2} / n\right)}{G - 1} \quad \begin{array}{c} Os \ PCH \ de \ dados \\ corresponden \ direction ados \ (sob **) \\ Discriminante \ sob \ obs. \end{array}$$

Obter os autovalores e autovetores (V) de $\hat{\Sigma}_{W}^{-1}\hat{\Sigma}_{R} \Longrightarrow PCH = YV$

Componentes Principais-Componentes de Covariância Soluções Regularizadas



(Wang, 2007)

Elipse vertical: corresponde à variabilidade dentro dos grupos (famílias)

Elipse maior: corresponde à variação entre grupos (famílias)

$$PCH_{\lambda} \Rightarrow \max_{a,\lambda>0} \frac{a'\hat{\Sigma}_{B}a}{a'\hat{\Sigma}_{W}a + \lambda \|a\|^{2}} = \max_{a,\lambda>0} \frac{a'\hat{\Sigma}_{B}a}{a'[\hat{\Sigma}_{W} + \lambda I_{p}]a}$$

Solução Regularizada n<<p

λ=0: solução não regularizada do PCH

 $\lambda=\infty$: solução do PCH próxima à solução para Σ_B . (maximização entre grupos)

Componentes Principais-Componentes de Covariância Soluções Regularizadas

Algoritmo de obtenção do parâmetro de regularização λ

- Passo 1: Partição dos grupos em dois sub-grupos: Grupo 1 e Grupo 2. (Repetir L=50 vezes)
- Passo 2: Grupo1: para λ =0.01, obter o j-ésimo autovetor $V_{j\lambda}^{(1)l}$ de $(\hat{\Sigma}_W + \lambda I_p)^{-1/2}$.

Será necessário substituir os autovalores negativos por "0" (Amemiya, 1985).

Grupo2: obter as estimativas $\hat{\Sigma}_{R}^{(2)l}$, $\hat{\Sigma}_{W}^{(2)l}$;

Passo 3. Repetir para λ = 0.01, 2, 4, ..., 1000. O parâmetro de regularização é estimado como:

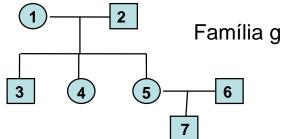
$$\lambda_{CV} = \arg\max_{\lambda} \frac{1}{L} \sum_{l=1}^{L} \frac{V_{j\lambda}^{(1)l'} \hat{\Sigma}_{B}^{(2)l} V_{j\lambda}^{(1)l}}{V_{j\lambda}^{(1)l'} \hat{\Sigma}_{W}^{(2)l} V_{j\lambda}^{(1)l}}; \qquad PCH_{\lambda_{CV}} = Ya'; \max_{a} \frac{a' \hat{\Sigma}_{B} a}{a' [\hat{\Sigma}_{W} + \lambda_{CV} I_{p}] a}$$

Correlação Familiar Control de Covariâncias Correlação Familiar covariância mais geral entre obs la das devido à estrutura Modelo de Componentes de

Observações correlacionadas devido à estrutura familiar (grau de parentesco entre indivíduos)

Covariância

Família	Unidade Amostral	Υ,	Υ ₂	Y	— — ⇒(701.	v)	\circ	1	II 🛇	\mathbf{r}	. 7	$\otimes \Sigma$
1	1	Y ₁₁₁	Y ₁₁₂	Y ₁	4				L		Δ_B -	$+I_{n_g}$	$\otimes \Sigma_{W}$
1	2	Y ₁₂₁	Y ₁₂₂	Y ₁	ma	atriz	de p	aren	tesco) /			
	•••			_	- r		. 1	2	3	4	5	6	7
1	n_1	Y _{1n11}	Y _{1n12}	Y ₁	ı1n	1	1	0	1/2	1/2	1/2	0	1/4
Médias	da Família 1	$\frac{Y_{1n11}}{Y_{11}}$	$\frac{Y_{1n12}}{\overline{Y}_{12}}$	Y_1	. <u>p</u>	2	0	1	1/2	1/2	1/2	0	1/4
•••				Ÿ	1 <i>p</i>	3	1/2	1/2	1	1/2	1/2	0	1/4
G	1	Y_{G11}	Y_{G12}	Y_G	Ψ_g =	= 4	1/2	1/2	1/2	1	1/2	0	1/4
G	2	Y_{G21}	Y_{G22}	Y_{G}		5	1/2	1/2	1/2	1/2	1	0	1/2
•••						6	0	0	0	0	0	1	1/2
G	n _G	$Y_{G}n_{G1}$	$Y_G n_{G2}$	Y _G r	l _{Gp}	7	1/4	1/4	1/4	1/4	1/2	1/2	1
Médias	da Família G	\overline{Y}_{G1}	$\frac{\overline{Y}_{G2}}{\overline{Y}_{2}}$	Ÿ	$\frac{Gp}{\overline{f}}$								
Vetor de	e Médias Geral	$Y_{\scriptscriptstyle 1}$	\overline{Y}_{2}	Ī	7								



Componentes Principais-Componentes de Covariâncias Correlação Familiar

Estimadores MANOVA do Modelo de Componentes de Covariância: são funções lineares de S_h e S_w (Oualkacha et al., 2012)

$$\hat{\Sigma}_{B} = \frac{S_{b}/(G-1) - S_{w}/(n-G)}{(\tau_{c} - \tau_{b}/n)/(G-1) - (\tau_{a} - \tau_{c})/(n-G)}$$

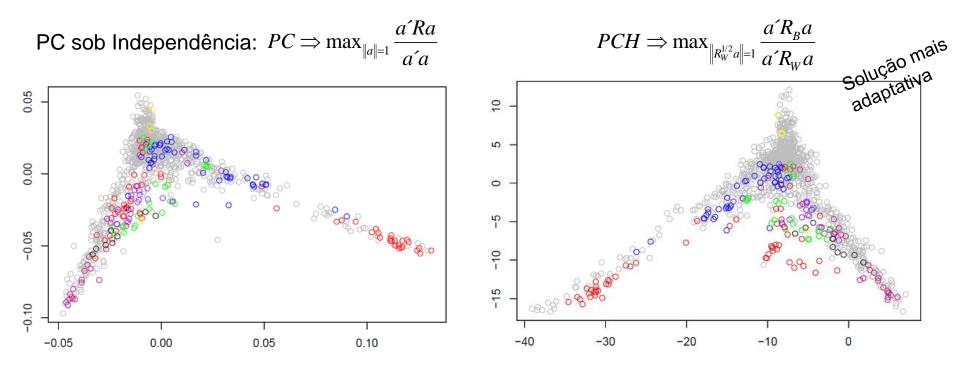
$$\hat{\Sigma}_{W} = \frac{1}{(n-G)} S_{w} - \frac{(\tau_{a} - \tau_{c})}{(n-G)} \hat{\Sigma}_{B}$$

$$n = \sum_{g=1}^{G} n_g, \quad \tau_a = \sum_{g=1}^{G} \tau_{a_g}, \quad \tau_b = \sum_{g=1}^{G} \tau_{b_g}, \quad \tau_c = \sum_{g=1}^{G} \frac{1}{n_g} \tau_{b_g}$$

$$\tau_{a_g} = 2Trace \left[\Phi_g\right], \quad \tau_{b_g} = 2\sum_{\substack{i'=1\\i'>i}}^{n_g} \sum_{i=1}^{n_g} \left(\Phi_g\right)_{ii'}$$

Componentes Principais-Componentes de Covariância Correlação Familiar (de Andrade et al., 2015)

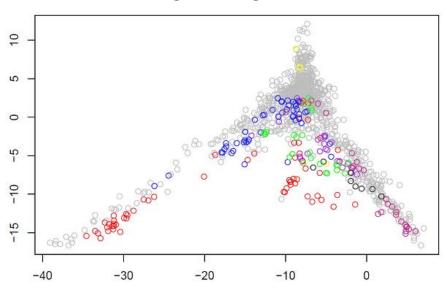
Aplicação: Projeto Corações de Baependi (MG) n=1.109 indivíduos de G=80 famílias e p=8.764 variáveis genéticas (SNPs)



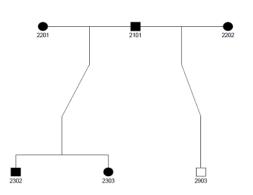
Proporção da variância explicada pelos PC1 e PCH1

СР	1	2	3	4	5	6	7	8	9	10
R	0.022	0.014	0.008	0.0069	0.0068	0.0061	0.0059	0.0055	0.0053	0.005
$R_W^{-1}R_B$	0.086	0.070	0.035	0.031	0.028	0.026	0.0255	0.0249	0.0246	0.0239

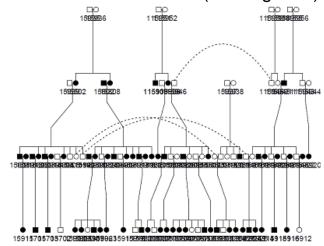
Componentes Principais-Componentes de Covariância Correlação Familiar



Família: 5 membros (homogênea)

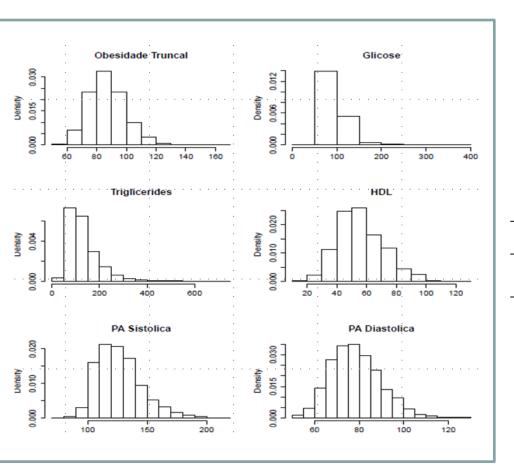


Família: 60 membros (heterogênea)



Componentes Principais-Componentes de Covariâncias Correlação Familiar

Aplicação: Projeto Corações de Baependi (MG) Componentes Principais da Síndrome Metabólica (doença multifatorial: p=6)



Calcular o PCH1 (variável latente da SM)

$$Y_g \sim \left(1_{n_g} \mu_g'; \Psi_g \otimes \Sigma_B + I_n \otimes \Sigma_W\right)$$

$$\max_{a} \frac{a'\hat{\Sigma}_{B}a}{a'\hat{\Sigma}_{W}a} \qquad PCH = a'Y_{6\times 1}$$

Var.	ObTr	Glic	Triglic	HDL	SBP	DBP	PCH1
ρ	0,16	0,12	0,35	0,30	0,18	0,13	0,36
ρ(Y,PCH1) -0,23	-0,34	-0,93	-0,28	3 -0,35	-0,39	

$$\rho = \frac{\sigma_B^2}{\sigma_P^2 + \sigma_W^2}$$
 Coef. de correlação intraclasse

Componentes Principais em Dados de Famílias Minicurso: Oficina - R

^{/is}ualização do PCHi

 Gerar dados com estrutura familiar aleatória e vetor de médias e matrizes de covariância conhecidas (p=2)

$$Y_g \sim \left(1_{n_g} \mu_g'; \Psi_g \otimes \Sigma_B + I_n \otimes \Sigma_W\right)$$

 Obter as estimativas das matrizes de covariância e os seguintes Componentes Principais (a'Y):

$$\max_{a} \frac{a'\hat{\Sigma}_{B}a}{a'\hat{\Sigma}_{W}a}$$

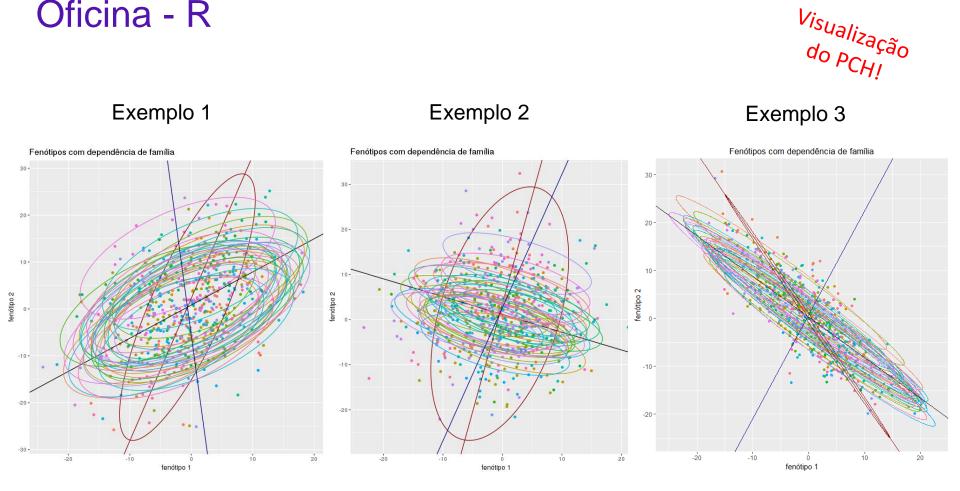


Exemplo1: $\Sigma_{\rm g}$ e $\Sigma_{\rm g}$ com correlações positivas (0,30 e 0,25, respectivamente) e fenótipos com herdabilidade moderada (0,40 a 0,70)

Exemplo 2: Σ_g e Σ_g com correlações de sinais opostos (0,30 e -0,25, respectivamente) e fenótipos com herdabilidade moderada (0,40 a 0,70)

Exemplo 3: Σ_g e Σ_g com correlações negativas (-0,90 e -0,80, respectivamente) e fenótipos com herdabilidade moderada (0,40 a 0,70)

Componentes Principais em Dados de Famílias Oficina - R



Preto: reta de MQO Vermelho: CP maximizando a variabilidade ENTRE famílias Azul: Componente Principal de Herdabilidade (PCH)

Componentes Principais em Dados Correlacionados

Diferentes propostas na literatura!

n obs correlacionadas

Alternativa 1: Componentes Principais Discriminantes (PCH)

$$Y_g \sim (1_{n_g} \mu_g'; \Omega_g); \quad \Omega_g = \Psi_g \otimes \Sigma_B + I_{n_g} \otimes \Sigma_W; \quad \max_{V_j = a} \frac{a' \hat{\Sigma}_B a}{a' \hat{\Sigma}_W a} \quad \Rightarrow PCH = YV$$

Alternativa 2: Componentes Principais sob Transformação Espectral em nana

$$Y_{n \times p} \sim (\mu_{n \times p}; \Omega_{np \times np} = \Psi_{n \times n} \otimes \Sigma_{p \times p}); \quad \Psi_{n \times n} = U_n \Lambda_n^{1/2} U_n \implies Z = U_n' Y$$

$$Cov(\Lambda_n^{1/2}U_n'Y_{n\times p}) = I_n \otimes \Sigma$$

transformar Y em *n* observações independentes

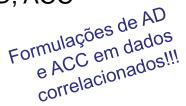
transformadas em *n* novas variáveis independentes!

Obter os Componentes Principais Clássicos de $\hat{\Sigma}$

Análise Multivariada

$$Y_{n\times p} = (Y_{ij}) \in \Re^{n\times p}$$

- Estatísticas Descritivas Multivariadas:
- Distribuição Normal Multivariada:
- Distribuições Amostrais:
- Regiões de Confiança, Testes Multivariados, MANOVA, IC Simultâneos, Correções para Múltiplos Testes
- Análises Multivariadas Clássicas (n>p, iid): CP, AF, CoP, AC, AD, ACC
- Análises Multivariadas Esparsas (n<<p, iid): CP, AD, ACC

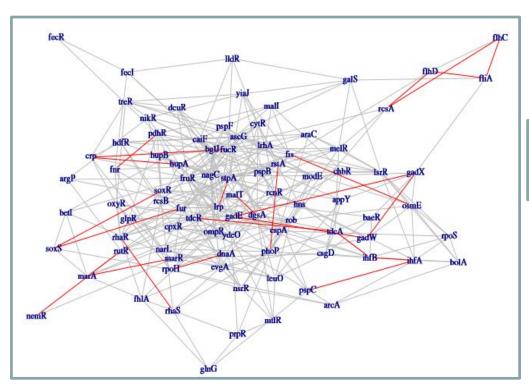


- ✓ Componentes Principais em Observações Correlacionadas
 - Aprendizado de Estruturas Modelos de Grafos Probabilísticos Modelos de Equações Estruturais Propriedades de Markov

Aprendizado de Estruturas – Inferência Causal

$$Y_{n\times p} = (Y_{ij}) \in \mathfrak{R}^{n\times p}$$

Aprender/Estimar a Estrutura de Dependência entre Variáveis \Re^{pxp}



Grafo Gaussiano de Independência Condicional (p=87 variáveis em E. *coli.;* Drton and Maathuis, 2016)

Dados multivariados com observações independentes (n>p; p↑)

$$Y_i \in \mathfrak{R}^p \stackrel{iid}{\sim} (\mu; \Sigma)$$

 $\begin{array}{c|c} \Sigma \text{ diagonal} & \leftrightarrows & \Sigma \\ \text{(independência)} & & & \text{Não Estruturada} \end{array}$

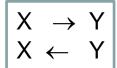
Estado da Arte: aprender a estrutura de dependência usando teorias de:

- Modelos de GRAFOS +
- SEM (Modelos de Equações Estruturais)
- Propriedades de Markov

Aprendizado de Estruturas Correlação x Causa

- Inferências "Causais": obtidas de Ensaios Clínicos Controlados e Aleatorizados
- Desafios: Extrair Inferência Causal de Estudos Observacionais

Relação entre Variáveis: Correlação (é simétrica) versus Causa (é assimétrica)



Estabelecer suposições que possam capturar a assimetria das estruturas causais.

Sistemas de 2 variáveis (X e Y) não podem inferir estruturas causais. Ao incluir uma terceira variável (X, Y e Z) é possível inferir estruturas causais, sob certas suposições (Haussman, 1984; Papineau, 1985)

Aprendizado de Estruturas – Inferência Causal

Como os sistemas respondem a intervenções ?

Ensaios Controlados Aleatorizados (padrão ouro de inferência causal)

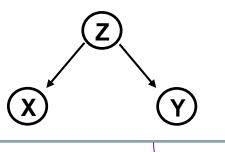
X

Estudos observacionais (podem conter muitos "ruídos/vícios)

Avaliar padrões de dependência entre trios de variáveis:

Caso 1

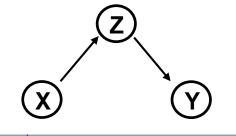
Z é causa comum Z é confundidor



 $(X \perp Y)$ associados

Caso 2

Z é efeito intermediário X tem efeito indireto sobre Y

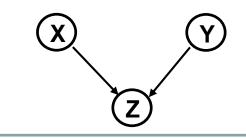


Modelos Probabilísticos Equivalentes Grafos Diferentes

 $(X \perp Y \mid Z)$ independência condicional

Caso 3

Z é efeito comum (colisão não conectada) (unshielded collider)

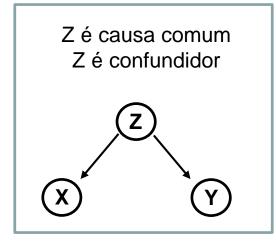


 $(X \perp Y)$ independência

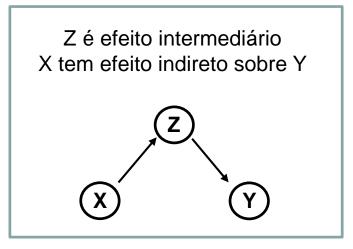
 $(X \perp Y \mid Z)$ dependência condicional

Aprendizado de Estruturas – Trios de Variáveis

Caso 1



Caso 2



$$(X \perp Y \mid Z)$$

Independência condicional

Mesma relação de independência (mesma distribuição conjunta) MAS sob diferentes Grafos.

$$P(X \mid Z) P(Y \mid Z) P(Z)$$
 $P(X) P(Z \mid X) P(Y \mid Z)$

$$P(X,Y,Z)$$

$$P(X | Z) P(Y | Z) P(Z) = P(X, Z) P(Y | Z) = P(X) P(Z | X) P(Y | Z)$$

Como quebrar a equivalência de distribuições (geradas de "grafos" diferentes) ?

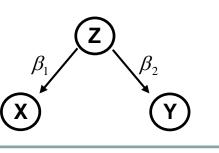
- Condições para que o modelo probabilístico determine unicamente o grafo:
 - ⇒ Teorema da Identificabilidade (ou da descoberta)

Aprendizado de Estruturas – Trios de Variáveis

Correspondência entre Grafos e SEM (Modelos de Equações Estruturais)

Caso 1

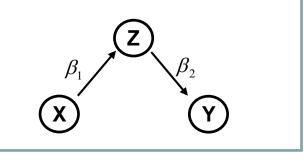
Z é causa comum Z é confundidor



$$P(X \mid Z) P(Y \mid Z) P(Z)$$

Caso 2

Z é efeito intermediário X tem efeito indireto sobre Y



Correspondência entre "Grafos" e "SEM"

Cada efeito é uma função arbitrária (linear ou não) de sua causa direta e de um termo de erro. A função não é tão importante quanto a independência dos termos de erro (Spirtes,1994)

Considere SEM lineares e com erros independentes:

$$Y = \beta_2 Z + e_{Y|Z}$$

$$X = \beta_1 Z + e_{X|Z}$$

$$(X \perp Y \mid Z) \Leftrightarrow e_{Y\mid Z} \perp e_{X\mid Z}$$

$$Y = \beta_2 Z + e_{Y|Z}$$

$$Z = \beta_1 X + e_{Z|X}$$

$$(X \perp Y \mid Z) \Leftrightarrow e_{Y\mid Z} \perp e_{Z\mid X}$$

Sob termos de erros independentes, tanto a representação SEM como a representação por Grafos permitem identificar a "independência condicional" entre as variáveis.

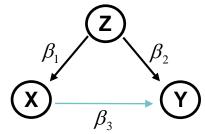
Aprendizado de Estruturas – Trios de Variáveis

Na correspondência entre SEM e Grafos é importante que o modelo probabilístico seja Fiel ao Grafo.

 $(X \perp Y \mid Z)$

Caso 1

Z é causa comum (confundidor)



Efeito $Z \rightarrow Y =$ Efeito direto + Efeito Indireto

$$Y = \beta_2 Z + \beta_3 X + e_{Y|Z,X}$$

$$X = \beta_1 Z + e_{X|Z}$$

$$Y = \beta_2 Z + \beta_3 (\beta_1 Z + e_{X|Z}) + e_{Y|Z,X}$$

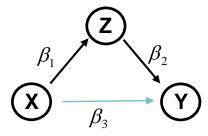
= $(\beta_2 + \beta_1 \beta_3) Z + \beta_3 e_{X|Z} + e_{Y|Z,X}$

$$\beta_2 = -\beta_1 \beta_3 \Rightarrow$$
 Efeito total nulo

O modelo probabilístico é infiel ao grafo

Caso 2

Z é efeito intermediário X tem efeito indireto sobre Y



Efeito $X \rightarrow Y =$ Efeito direto + Efeito Indireto

$$Y = \beta_2(\beta_1 X + e_{Z|X}) + \beta_3 X + e_{Y|Z,X}$$

= $(\beta_3 + \beta_1 \beta_2) X + \beta_2 e_{Z|X} + e_{Y|Z,X}$

$$\beta_3 = -\beta_1 \beta_2 \Rightarrow$$
 Efeito total nulo

O modelo probabilístico é infiel ao grafo

Aprendizado de Estruturas – Inferência Causal

Componentes da Inferência e do Aprendizado de Estruturas envolvendo "p" variáveis:

- Fatoração da Distribuição de probabilidades conjunta (Lauritzen, 1990, 1996)
 Independência condicional e
 Propriedades de Markov (M-Pares de Variáveis, M-Local, M-Global)
- Modelos de Grafos Probabilísticos (Pear, 1989; Verma e Pear, 1990) d-separação (estrutura de colisão não-conectada: X→Y←Z) Fidelidade
- 3. Modelos de Equações Estruturais (SEM) (Boolen,1989)

 Equações de Mensuração e Equações das variáveis latentes

 Linearidade

 Erros independentes

Grafos: Diagramas de Representação "Causal"

Grafo é um conjunto de vértices (V) e arestas (E): G=(V,E); $E \subset VxV$

V: variáveis (biométricas, de sobrevivência, espectros de imagens, fenótipos, genótipos, expressão gênica, etc)

E: arestas representam "dependências" (não independência condicional) entre variáveis

Grafo Não Dirigido (UDG): X — Y — Z

Definem Vizinhanças: $nb_G(v)=\{w \in V; \{w,v\} \in E\}$

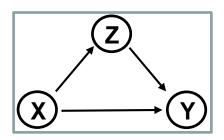
Grafo Dirigido (DAG, acíclico): X → Y → Z

Definem estruturas de Pais e Descendentes: $pa_G(v)=\{w \in V; \{w,v\} \in E\}$

 $de_G(v)=\{w \in V; w=v \text{ ou } v \rightarrow ... \rightarrow w \text{ em } G\}$

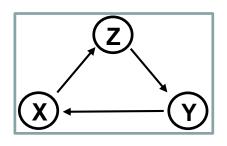
Grafos: Diagramas de Representação "Causal"

Grafos dirigidos: G=(V,E); E ⊂ VxV



DAGs: Grafos Acíclicos Dirigidos

SEM recursivos: com termos de erros não correlacionados e sem relacionamentos cíclicos Matriz de Adjacência "B" é triangular inferior (arestas conectando variáveis/Coluna causando Linha)



DCGs: Grafos Cíclicos Dirigidos

SEM não recursivos: matriz "B" geral mas sem elementos na diagonal (não ocorre self-loops)

Termos de "erro" e efeitos não são indicados no grafo (como acontece na representação de SEM).

SEM para variáveis "observadas" de um sistema (não há variáveis latentes).

Equações de Mensuração

A correlação entre as pvariáveis está modelada em B

$$Y_{i p \times 1} = B_{p \times p} Y_{i p \times 1} + X_{i p \times q} \beta_{q \times 1} + e_{i p \times 1}; \quad e_i \stackrel{iid}{\sim} N_p \left(0; \Sigma = I_p \sigma^2\right)$$

 $B_{p \times p}$: Matriz de Adjacência (0 e 1's; B_{ii} =0) Efeitos causais diretos entre as variáveis |I-B|=1 para DAGs

B: Representação Matricial de Grafos (coluna causando linha ou vice-versa)

Objetivo da inferência: Estimar B e β

Objetivo da inferência: Estimar B e
$$\beta$$
Modelo na forma reduzida:

 $Y_i (I-B) = X_i \beta + e_i$; $Y_i = (I_p - B)^{-1} X_i \beta + (I_p - B)^{-1} e_i$
 $Inferência penalizada da (Cai et al., 2013)$

$$\arg\max_{B,\beta} \left\{ n \ln |I - B| - \frac{np}{2} \ln \left(2\pi\sigma^2 \right) - \frac{1}{2\sigma^2} \|Y(I - B) - X\beta\|_2^2 - \lambda \|B\|_1 \right\}$$

SEM para variáveis "observadas" de um sistema (não há variáveis latentes).

Equações de Mensuração

$$Y_{i p \times 1} = B_{p \times p} Y_{i p \times 1} + X_{i p \times q} \beta_{q \times 1} + e_{i p \times 1}; \quad e_i \stackrel{iid}{\sim} N_p \left(0; \Sigma = I_p \sigma^2\right)$$

$$B_{p \times p}$$
: Matriz de Adjacência (0 e 1's; B_{ii} =0) $|I-B|$ = 1 para DAGs

Modelo

reduzido
$$Y_i = \left(I_p - B\right)^{-1} X_i \beta + \left(I_p - B\right)^{-1} e_i \qquad \text{Mistura de erros independentes}$$

Matriz de covariância imposta pelo SEM: $Cov(Y_i) = \Sigma_{yy} = (I - B)^{-1} \Sigma (I - B)^{-1'}$

Objetivo da inferência: Estimar B e β

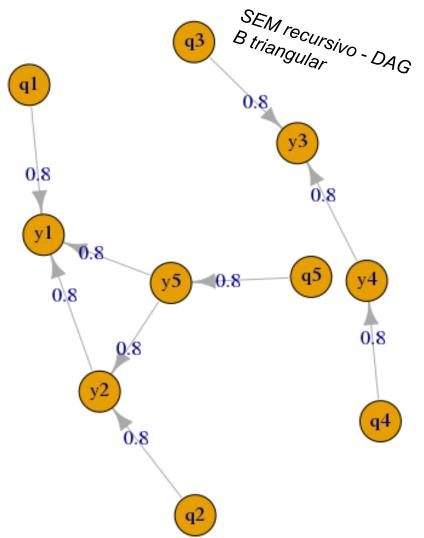
$$Y_i \stackrel{iid}{\sim} N_p \left(\left[I_p - B_{p \times p} \right]^{-1} X_i \beta; \sigma^2 \left[I_p - B_{p \times p} \right]^{-1} \left[I_p - B_{p \times p} \right]^{-1'} \right)$$

p= 5 variáveis B matriz de Adjacência: coluna causa linha coluna → linha

X=Q matriz de efeitos genéticos: cada variável é afetada por um único "Fator Genético"

$$B = \begin{array}{c} y1 & y2 & y3 & y4 & y5 \\ y1 & 0.0 & 0.8 & 0.0 & 0.0 & 0.8 \\ y2 & 0.0 & 0.0 & 0.0 & 0.0 & 0.8 \\ y3 & 0.0 & 0.0 & 0.0 & 0.8 & 0.0 \\ y4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ y5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \end{array}$$

$$Q = \begin{array}{c} q1 & q2 & q3 & q4 & q5 \\ y1 & 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ y2 & 0.0 & 0.8 & 0.0 & 0.0 & 0.0 \\ y3 & 0.0 & 0.0 & 0.8 & 0.0 & 0.0 \\ y4 & 0.0 & 0.0 & 0.0 & 0.8 & 0.0 \\ y5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.8 \end{array}$$

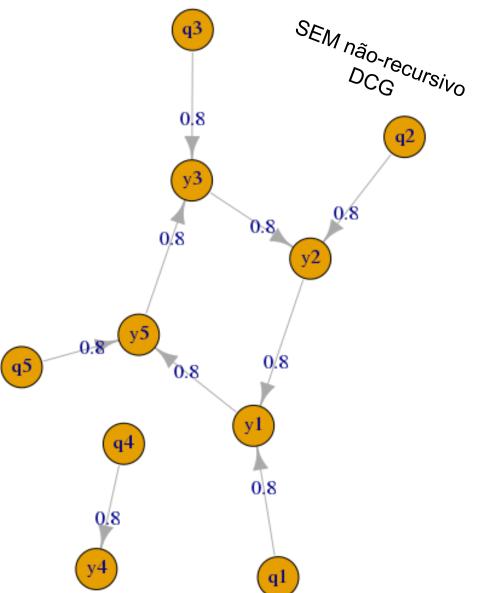


Algoritmos de Geração de Grafos Aleatórios

Erdős–Rényi (1959): atribui as arestas aleatoriamente Barabási-Albert (1999): segue modelos biológicos

p= 5 variáveis
 B matriz de Adjacência: coluna causa linha coluna → linha
 X=Q matriz de efeitos genéticos: cada variável é afetada por um único "gene"

$$B = \begin{array}{c} y1 & y2 & y3 & y4 & y5 \\ y1 & 0.0 & 0.8 & 0.0 & 0.0 & 0.0 \\ y2 & 0.0 & 0.0 & 0.8 & 0.0 & 0.0 \\ y3 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ y4 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ y5 & 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 2 & 0.0 & 0.8 & 0.0 & 0.0 & 0.0 \\ y2 & 0.0 & 0.8 & 0.0 & 0.0 & 0.0 \\ y3 & 0.0 & 0.0 & 0.8 & 0.0 & 0.0 \\ y4 & 0.0 & 0.0 & 0.0 & 0.8 & 0.0 \\ y5 & 0.0 & 0.0 & 0.0 & 0.0 & 0.8 \end{array}$$



Propriedades de Markov

V: Vértices, nb(v): vizinhança de v, A, B e C subconjuntos disjuntos em V

Independência Condicional para Pares de variáveis: $\left(X_{_{v}}\perp X_{_{w}}\,|\,X_{_{V\setminus\{v,w\}}}
ight)$

Independência Condicional Local: $\left(X_{v}\perp X_{\frac{V\setminus\{nb(v)\cup v\}}{}}\mid X_{nb(v)}\right)$

Independência Condicional Global: $(X_A \perp X_B \mid X_C)$

M-Pares: $X_1 \perp X_4 \mid (X_2, X_3, X_5) \mid X_1 \perp X_5 \mid (X_2, X_3, X_4)$

 $X_2 \perp X_4 \mid (X_1, X_3, X_5) \mid X_2 \perp X_5 \mid (X_1, X_3, X_4) \mid X_3 \perp X_5 \mid (X_1, X_2, X_4)$

 $\text{M-Local:} \quad X_4 \perp (X_1, X_2) \,|\, (X_3, X_5) \quad X_5 \perp (X_1, X_2, X_3) \,|\, X_4$

Modelos Gaussianos: a variável pode ser predita de seus vizinhos (regressão LASSO)

avaliação de Σ^{-1}

Modelos Gaussianos:

M-Global: $(X_4, X_5) \perp (X_1, X_2) \mid X_3 \quad X_4 \perp X_2 \mid (X_1, X_3)$

Distribuições conjuntas decomponíveis: avaliar fatorações da densidade

Grafos Dirigidos (DAGs) Conceito de d-Separação

Definição: Critério de d-separação (Pearl, 1988, 2000)

 $(X \perp Y \mid Z)_G$: X e Y estão d-separados dado Z se para qualquer caminho (aresta) U entre X e Y,

- ✓ U não contém colisão não conectada, e então Z ∈ U (Z é efeito intermediário ou causa comum), ou
- ✓ U contém uma colisão não-conectado, e então nem o colisor nem seus descendentes ∈ Z.

$$X \to Z \to Y$$
 (efeito intermediário)
$$(X \perp Y \mid Z)_G$$

X e Y estão "d-separados" dado Z

$$X \to Z \leftarrow Y$$
 (efeito comum, colisão não conectada) $(X \perp Y \mid Z)_G$

X e Y estão "d-conectados" dado Z

Notação:

$$(X \perp Y \mid Z)_p$$
: X é condicionalmente independente de Y dado Z sob P $P(X = x \mid Y = y, Z = z) = P(X = x \mid Z = z); $P(Y = y, Z = z) > 0$$

 $(X \perp Y \mid Z)_L$: X é condicionalmente independente de Y dado Z em um SEM (linear com erros iid)

 $(X \perp Y \mid Z)_{UDG}$: X é separado de Y dado Z em um Grafo não direcionado UDG

 $(X \perp Y \mid Z)_G$: X é d-separado de Y dado Z em um Grafo direcionado G (DAG ou DCG)

$$(X \perp Y \mid Z)_G \begin{tabular}{l} M-Global \\ $\stackrel{\Rightarrow}{\rightleftharpoons}$ \\ $\stackrel{\Leftarrow}{\Leftarrow}$ \\ Fidelidade \end{tabular} (X \perp Y \mid Z)_P \; ; \; (X \perp Y \mid Z)_L \; L \; satisfazendo \; \rho_{XY\mid Z} = 0$$

Resultados bem estabelecidos para os Modelos de Grafos Gaussianos (sob distribuição conjunta Normal Multivariada e observações independentes, estruturas podem ser aprendidas via testes de Independência Condicional)

Os **Algoritmos de Aprendizado de Estruturas** são principalmente baseados em Testes de Independência Condicional.

Passo 1. Iniciar com arestas entre todas as variáveis

Passo 2. Aprendizado do Grafo Não Direcionado (UDG - relações simétricas)

Testes de independência condicional entre Pares de variáveis dado as restantes

$$X \perp Y \mid V \setminus \{X,Y\}$$

Inferir o Esqueleto do Grafo

Passo 3. Aprendizado do Grafo Direcionado (DAG – relações de causa/efeito)

No UDG algumas variáveis podem estar d-conectadas devido à V-estrutura $X \rightarrow Z \leftarrow Y$

Avaliar todos os trios de variáveis e orientar os casos de colisão

Modelos de Grafos Gaussianos

Passo 2. Aprendizado do Grafo não dirigido (UDG)

Testes da Correlação Parcial Nula

$$S = V \setminus \{X, Y\}, \qquad X \perp Y \mid S \iff \rho(X, Y \mid S) = 0$$

Modelo Normal Multivariado: $V_i^{iid} \sim N_p \left(\mu_{p \times 1}; \Sigma_{p \times p}\right)$

Alternativa 1: Aprendizado de um UDG via Matriz de Precisão

$$V \stackrel{iid}{\sim} N_p \left(\mu_{p \times 1}; \Sigma_{p \times p} \right); \quad \Sigma^{-1} = K = (k_{XY}) \qquad \rho(X, Y \mid S) = \frac{-k_{XY}}{\sqrt{k_{XX}k_{YY}}}$$

Teste da Correlação Parcial Nula: Estatística z de Fisher

$$\begin{cases} H_0: \rho_{XY.Z} = 0 \\ H_1: \rho_{XY.Z} \neq 0 \end{cases} z_{XY.S} = \frac{1}{2} \ln \left(\frac{1 + \hat{\rho}_{XY.S}}{1 - \hat{\rho}_{XY.S}} \right); \sqrt{n + |S| - 3} |z_{XY.S}| \stackrel{H_0}{\sim} N(0;1)$$

Situações mais gerais: n?

Modelos de Grafos Gaussianos

Alternativa 2: Aprendizado de um UDG via Ajuste de Modelos Univariados

$$\Sigma_{p \times p} = \begin{pmatrix} \sigma_{XX} & \sigma_{XY} & \Sigma_{XS} \\ \sigma_{YX} & \sigma_{YY} & \Sigma_{YS} \\ \Sigma_{SX} & \Sigma_{SY} & \Sigma_{SS} \end{pmatrix} \xrightarrow{\text{Distr. Condicional}} \Sigma_{XY.S} = \begin{pmatrix} \sigma_{XX.S} & \sigma_{XY.S} \\ \sigma_{YX.S} & \sigma_{YY.S} \end{pmatrix}$$

$$\begin{split} \boldsymbol{\Sigma}_{XY.S} &= \begin{pmatrix} \boldsymbol{\sigma}_{XX.S} & \boldsymbol{\sigma}_{XY.S} \\ \boldsymbol{\sigma}_{YX.S} & \boldsymbol{\sigma}_{YY.S} \end{pmatrix} \\ &= \begin{pmatrix} \boldsymbol{\sigma}_{XX} & \boldsymbol{\sigma}_{XY} \\ \boldsymbol{\sigma}_{YX} & \boldsymbol{\sigma}_{YY} \end{pmatrix} - \begin{pmatrix} \boldsymbol{\Sigma}_{XS} \\ \boldsymbol{\Sigma}_{YS} \end{pmatrix} \boldsymbol{\Sigma}_{SS}^{-1} \begin{pmatrix} \boldsymbol{\Sigma}_{SX} & \boldsymbol{\Sigma}_{SY} \end{pmatrix} \end{split}$$

Modelos Univariados:

$$Y_{n\times 1} = \mu_{Y|S} + \beta_S^{Y} 'S + e_{Y|S}; \quad e_{Y|S} \sim N(0; \sigma_{Y|S}^2)$$

$$\bullet \ X_{\scriptscriptstyle n\times 1} = \mu_{\scriptscriptstyle X|S} + \beta_{\scriptscriptstyle S}^{\scriptscriptstyle X} \ {}^{\scriptscriptstyle \cdot}S + e_{\scriptscriptstyle X|S}; \quad e_{\scriptscriptstyle X|S} \sim N \left(0; \sigma_{\scriptscriptstyle X|S}^2\right)$$

$$\rho(X,Y|S) = \frac{\sigma_{XY.S}}{\sqrt{\sigma_{XX.S}\sigma_{YY.S}}} = \frac{-k_{XY}}{\sqrt{k_{XX}k_{YY}}}$$

$$= \frac{Cov(e_{X|S};e_{Y|S})}{\sigma_{X|S}\sigma_{Y|S}} = \beta_{X|S}^{Y} \frac{\sigma_{X|S}}{\sigma_{Y|S}}$$

Método das Vizinhanças (Meinshausen and Buhlmann, 2006)

Encontrar a vizinhança de cada vértice: $nb(V_j) = \{V_i; \beta_{V_{i|S}}^{V_j} \neq 0, j \neq i (j, i = 1, ..., p)\}$

Incluir arestas se: $\hat{E} = \{(X,Y); X \in nb(Y) \land \lor Y \in nb(X)\}$ Critério AND/OR

Os **Algoritmos de Aprendizado de Estruturas** são principalmente baseados em Testes de Independência Condicional.

- Passo 1. Grafo Completo
- **Passo 2.** Aprendizado do Esqueleto (**UDG** relações simétricas) $a_{r_{e_{\mathcal{S}}}t_{a_{\mathcal{S}}}}^{\sim n_{r_{e_{\mathcal{S}}}t_{a_{\mathcal{S}}}}}$

Independência condicional de Pares de variáveis dado as restantes

Passo 3. Aprendizado do Grafo Direcionado (DAG – relações de causa/efeito)

Orientar as arestas: encontrar V-estruturas $X \rightarrow Z \leftarrow Y$

Realizar testes de Independência Condicional de Pares de variáveis dado todo possível subconjunto condicionante.

- 3.1. X e Y não conectados
- 3.2. Pesquisar por Z; $(X \perp Y|Z)$
- 3.3. Se não existir $Z \Rightarrow X \longrightarrow Z \longleftarrow Y$

Implementar um teste de independência condicional Oráculo da d-separação

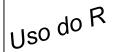
Simulação de Grafos: "UDG"

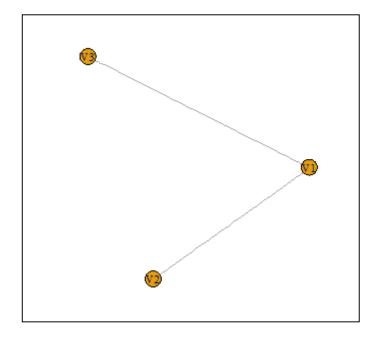
Adèle Ribeiro, 2018

```
Entrada: Matriz de Correlação Parcial > data.pCor [,1] [,2] [,3] [1,] 1.0 0.6 -0.5 [2,] 0.6 1.0 0.0 [3,] -0.5 0.0 1.0
```

#Gerar dados N3
#Aprender a estrutura
#Estimar as arestas via Método das Vizinhanças
#Teste z de Fisher

```
> nei out$pCor$estimates
   V1
             V2
                 V3
      0.64450169 -0.48553853
V1
  NA
V2 0.6445017 NA
               0.04922369
V3 -0.4855385 0.04922369
                        NΑ
> nei out$pCor$p.values
  V1
               V2
                            V3
               1.825967e-118 2.817058e-60
V1 NA
V2 1.825967e-118 NA
                            1.198066e-01
V3 2.817058e-60 1.198066e-01
                             NA
```



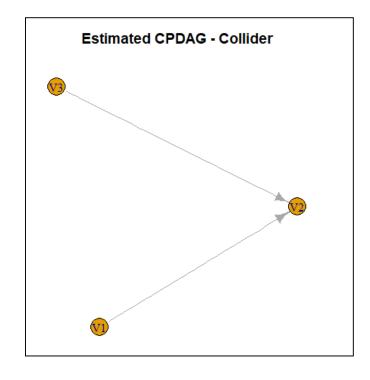


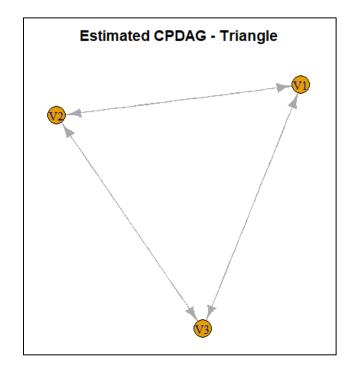
Simulação de Grafos: "DAG" p=3 Variáveis

Adèle Ribeiro, 2018

```
Possible types:
- chain: V1 -> V2 -> V3
- collider: V1 -> V2 <- V3
- fork: V1 <- V2 -> V3
- triangle: V1 -> V2 <- V3 <- V1
- independent: V1 V2 V3
```

#Gerar dados via Modelos de Mensuração (SEM) #Entrar com os Betas: no exemplo, Beta=0 e 0.8 #Testes de Independência Condicional com # p-valor=0.01 e Correção de Bonferroni



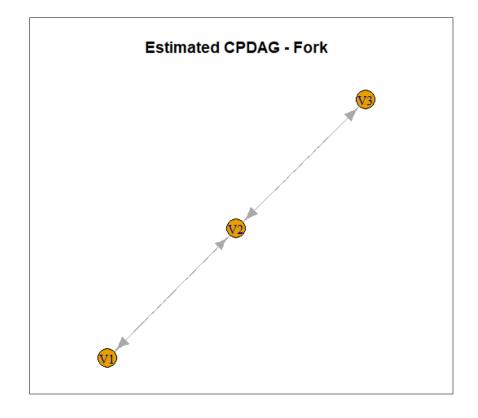


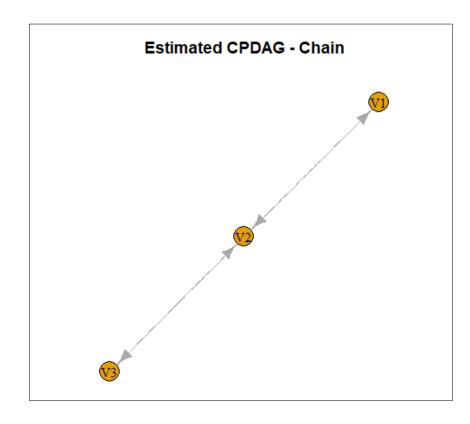
Simulação de Grafos: DAG p=3 √ariáveis

```
# Possible types:
# - chain: V1 -> V2 -> V3
# - collider: V1 -> V2 <- V3
# - fork: V1 <- V2 -> V3
# - triangle: V1 -> V2 <- V3 <- V1
# - independent: V1 V2 V3</pre>
```

Adèle Ribeiro, 2018

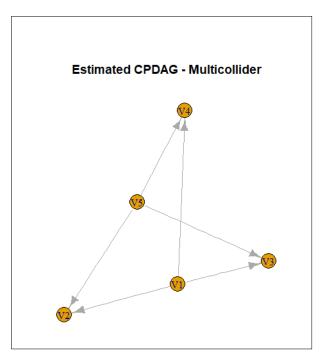
Chains and forks have the same joint distribution # they cannot be statistically distinguished from each other.

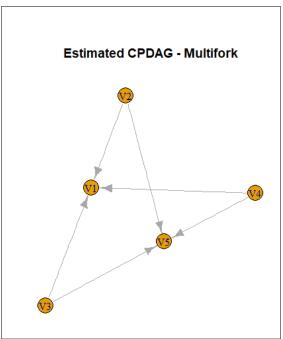


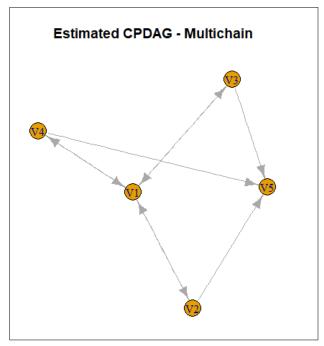


Simulação de Grafos: "DAG" p=5 Variáveis Adèle Ribeiro, 2018

```
# Possible types:
# - multichain
# - multicollider: V2, V3, and V4 are colliders and sink/terminal vertices;
# V1 and V5 are source nodes;
# - multifork: V2, V3, and V4 are source nodes;
# V1 and V5 are colliders and sink/terminal vertices.
```







Aprendizado de Estruturas em Observações Correlacionadas

$$\Rightarrow Y_{np}; Y_{g \, n_g \times p} \sim \left(1_{n_g \otimes \mu'_g}; \Psi_{g \, n_g \times n_g} \otimes \Sigma_{B_{p \times p}} + I_{n_g} \otimes \Sigma_{W_{p \times p}}\right); \quad \Sigma_T = \Sigma_B + \Sigma_W$$

Aprendizado de COMPONENTES de Covariância do Grafo

Passo 2. Aprendizado dos Grafos UDG (não orientados)

Alternativa 2.1. Testes de Correlação Parcial Nula a partir do Ajuste do Modelo de Componentes de Covariância

$$\Sigma_T = \Sigma_B + \Sigma_W;$$
 $\hat{\Sigma}_T,$ $\hat{\Sigma}_B,$ $\hat{\Sigma}_W$ Estimadores MANOVA (Oualkacha et al., 2012)

Como obter testes válidos de correlação parcial? $\rho(X,Y|S) = \frac{\sigma_{XY,S}}{\sqrt{\sigma_{XX,S}\sigma_{YY,S}}} = \frac{-k_{XY}}{\sqrt{k_{XX}k_{YY}}}$

Matrizes de Precisão

Grafo do Efeito de Grupos $\rightarrow \hat{\Sigma}_{R}^{-1}$

Grafo Residual (Dentro de Grupo) $\to \hat{\Sigma}_{w}^{-1}$

Grafo Total (Efeito Combinado) $\rightarrow \hat{\Sigma}_T^{-1}$

Limitação: Estabelecer o tamanho amostral efetivo (n_e) na formulação da estatística z de Fisher.

Solução proposta: uso do denominador das estimativas MANOVA de cada matriz de covariância.

Aprendizado de Estruturas em Observações Correlacionadas

Alternativa 2.2. Teste de Correlação Parcial Nula a partir do Ajuste de Modelos de Componentes de Covariâncias

$$Y_{n\times 1} = \mu + \beta_{S} 'S + g + e; \quad g \sim N_{n} \left(0; \Psi_{g} \sigma_{B}^{2}\right); \quad e \sim N_{n} \left(0; I_{n} \sigma_{W}^{2}\right);$$
 Efeitos aleatórios
$$Cov \begin{bmatrix} g \\ e \end{bmatrix} = \begin{pmatrix} \Psi_{n\times n} \sigma_{B}^{2} & 0_{n\times n} \\ 0_{n\times n} & I_{n} \sigma_{W}^{2} \end{pmatrix}; \quad \Psi = I_{G} \otimes \Psi_{g}$$

Ajuste de Modelos Univariados de Componentes de variância

Como obter testes válidos de correlação $\rho(X,Y|S) = \frac{\sigma_{XY.S}}{\sqrt{\sigma_{XX.S}\sigma_{YY.S}}} = \frac{Cov(e_{X|S};e_{Y|S})}{\sigma_{X|S}\sigma_{Y|S}}$ parcial?

$$Y_{n\times 1} = \mu_{Y|S} + \beta_S^{Y} \cdot S + g_{Y|S} + e_{Y|S}; \quad g_{Y|S} \sim N(0; \Psi \sigma_{BY|S}^2); e_{Y|S} \sim N(0; \Psi \sigma_{WY|S}^2)$$

$$X_{n \times 1} = \mu_{X|S} + \beta_S^{X} 'S + g_{X|S} + e_{X|S}; \quad g_{X|S} \sim N(0; \Psi \sigma_{BX|S}^2); e_{X|S} \sim N(0; \Psi \sigma_{WX|S}^2)$$

Aprendizado de Estruturas em Observações Correlacionadas

Alternativa 2.2. Teste de Correlação Parcial Nula a partir do Ajuste de Modelos de Componentes de Covariâncias

$$Y_{n\times 1} = \mu + \beta_S 'S + g + e; \quad g \sim N_n(0; \Psi_g \sigma_B^2); \quad e \sim N_n(0; I_n \sigma_W^2);$$

$$Cov\begin{bmatrix} g \\ e \end{bmatrix} = \begin{pmatrix} \Psi_{n \times n} \sigma_B^2 & 0_{n \times n} \\ 0_{n \times n} & I_n \sigma_W^2 \end{pmatrix}; \quad \Psi = I_G \otimes \Psi_g$$

Como obter testes válidos de correlação p_{arcial} p_{ara cada}

- Ajuste de Modelos Univariados de Componentes de variância

 Firo Marginal: $\xi = Y E(Y) = g + e$ (Talluri and Shete, 2014) $\hat{\rho}(X,Y|S)_T = \frac{Cov(\hat{\xi}_S^X;\hat{\xi}_S^Y)}{\sqrt{Var(\hat{\xi}_S^X)Var(\hat{\xi}_S^Y)}}$
 - Erro Condicional: $e = Y E(Y \mid g)$ $\longrightarrow \hat{\rho}(X, Y \mid S)_{W} = \frac{Cov(\hat{e}_{S}^{X}; \hat{e}_{S}^{Y})}{\sqrt{Var(\hat{e}_{S}^{X})Var(\hat{e}_{S}^{Y})}}$ (Valente et al., 2010 sob SEM)

■ Efeito Aleatório:
$$g = E(Y | g) - E(Y)$$
 \longrightarrow $\hat{\rho}(X, Y | S)_B = \frac{Cov(\hat{g}_S^X; \hat{g}_S^Y)}{\sqrt{Var(\hat{g}_S^X)Var(\hat{g}_S^X)}}$

Aprendizado de Estruturas em Observações Correlacionadas

Como obter testes válidos de correlação parcial para cada Componente (e e g)?

Componente de Erro Condicional:

$$\hat{\rho}(X,Y|S)_{W} = \frac{Cov(\hat{e}_{S}^{X};\hat{e}_{S}^{Y})}{\sqrt{Var(\hat{e}_{S}^{X})Var(\hat{e}_{S}^{Y})}}$$

Efeito Aleatório:

$$\hat{\rho}(X,Y|S)_{B} = \frac{Cov(\hat{g}_{S}^{X};\hat{g}_{S}^{Y})}{\sqrt{Var(\hat{g}_{S}^{X})Var(\hat{g}_{S}^{X})}}$$

Limitação: Resíduo condicional (\hat{e}_S^X , \hat{e}_S^Y) e o efeito aleatório predito (\hat{g}_S^X , \hat{g}_S^Y) estão confundidos.

Solução para reduzir o confundimento nas estimativas: uso do procedimento proposto por Loy and Hoffman(2015) → obter uma aproximação de baixa dimensão, para os efeitos aleatórios rotacionados bem como para os resíduos condicionais, que minimize o confundimento.

