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Abstract

This paper deals with asymptotic results on a multivariate ultrastructural errors-in-variables regression

model with equation errors. Sufficient conditions for attaining consistent estimators for model parameters

are presented. Asymptotic distributions for the line regression estimators are derived. Applications are

presented to the elliptical class of distributions with two error assumptions. Model generalizes previous

results aimed at univariate scenarios.
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1. Introduction

It is well known that maximum-likelihood estimators (MLEs) and ordinary least squares estimators are

generally inconsistent if covariates are measured with errors and are intentionally ignored. More specifically,

the estimation of the slope parameter of a linear model is attenuated (Fuller, 1987) by the presence of

measurement errors. It is then expected that the same should occur in multivariate contexts. When variables

are subject to measurement errors, we must add to the model appropriate measurement equations in order

to capture the measurement error effects. This procedure, when feasible, produces consistent, efficient and

asymptotically normally distributed estimators. A careful and rigorous exposition on the inferential process

in simple and multiple errors-in-variables models can be seen in Fuller (1987) and the references therein.

It is however our impression that multivariate ultrastructural errors-in-variables (or measurement errors)

regression models have not been so extensively studied in the statistical literature as the multiple and

simple regression models were exploited. It seems that the majority of the references consider separately

the structural and functional versions. For instance, multivariate functional models were studied in Healy

(1980), Gleser (1981), Chang and Max (1983) and Dahm and Fuller (1986), while the structural version

was studied from a factor analysis point of view (Theobald and Mallison, 1978). Anemiya and Fuller (1984)

study both versions of this multivariate model without equation errors.

In this paper we consider a multivariate ultrastructural errors-in-variables regression model with equation

errors which, to the best of our knowledge, was not previously exploited in the statistical literature. We

present consistent estimators having asymptotic normal distributions. These results are basically attained

by using moment estimators and delta methods see, for instance, Lehmann and Casella (1998) and Kollo

and von Rosen (2005), Ch. 3. The main motivation to consider equation errors comes from epidemiological

(Kulathinal et al., 2002) and astrophysical (Kelly, 2007) studies, where equation errors are justified by the
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influence of other than those factors specified in the model for explaining the variation on the response

variable (see also Patriota et al., 2009). Multivariate analysis with measurement errors and equation errors

are listed as one topic of great methodological challenge for the coming decade in astrophysics, as can

be seen in the web page http://nedwww.ipac.caltech.edu/level5/Sept03/Feigelson/Feigelson5.html. Here,

we present a multivariate regression model with homoscedastic measurement errors and equation errors.

Although astrophysical datasets typically contain heteroscedastic errors and censoring, we believe that the

results of this paper can be used for further generalizations in studying those challenges. According to Fujita

et al. (2009), measurement errors may be one of the reasons for high biological false positive rates identified

in actual regulatory network models. The authors used a multivariate structural errors-in-variables model

with equation errors considering normality and homoscedasticity for modeling gene regulatory networks

(Xiong et al., 2004). Our results generalize this study by relaxing the normality supposition, therefore, the

results may also be applied in gene expression data and other regulatory network models. Our paper is

intended to be of a theoretical nature and we expect to report on real data applications in future research.

The model proposed in this paper can be seen as a generalization of the multiple regression model

considered in Schneeweiss (1976), Fuller (1987), Section 2.2 and it is also a generalization of the multivariate

structural version applied in Fujita et al. (2009). The model is defined in its full generality by the following

three stochastic equations

yi = a + Bxi + qi, (1)

Yi = yi + ei, (2)

Xi = xi + ui, (3)

i = 1, . . . , n. We have in equation (1) a multivariate regression model, where y1, . . . ,yn and x1, . . . ,xn are

the true response and covariate vectors of dimension p1×1 and p2×1, respectively, a is a p1×1 vector of model

intercepts, B is a p1×p2 matrix of slope parameters, and q1, . . . , qn are random vectors of dimension p1×1

representing the equation errors. Moreover, as indicated by equations (2) and (3), Yi and Xi, i = 1, . . . , n are

measurements of the true (unobservable) vectors yi and xi, i = 1, . . . , n, respectively, where the respective

measurement errors are represented by ei and ui, i = 1, . . . , n. Hence, in order to make inference on unknown

parameters, it is common to suppose that the full vectors ri = (q⊤
i , e

⊤
i ,u

⊤
i , (xi−ξi)

⊤)⊤, i = 1, . . . , n, where

ξi = E(xi), are independent, identically and symmetrically distributed (typically assumed to be normally

distributed) with:

E(r1) = 0 and Var(r1) = Σr = diag(Σq,Σe,Σu,Σx). (4)

Consequently, if we denote the observable vectors by Zi = (Y ⊤

i ,X⊤

i )⊤, i = 1, . . . , n, we have from the above

assumptions that they are independent with mean vectors µi, i = 1, . . . , n, and common covariance matrix

Σ given by

µi =

(
a + Bξi

ξi

)
and Σ =

(
BΣxB⊤ + Σq + Σe BΣx

ΣxB⊤ Σx + Σu

)
. (5)

Therefore, if Σx = 0 (where 0 denotes the zero matrix with appropriate dimensions) then the ultrastructural

model (1)–(3) reduces to the functional model. Otherwise, if ξ1 = . . . = ξn = ξx, then the ultrastructural

model becomes the classical multivariate structural model. Gleser (1981) considered a functional multivariate

model with Σq = 0 and the measurement error vector (e⊤
i ,u

⊤
i )⊤ having null mean vector and covariance

matrix of the form σ2Σ0, where σ2 is a parameter to be estimated and Σ0 is a known matrix. Anemiya

and Fuller (1984) consider this model under an ultrastructural version with the covariance matrix of the
2



measurement error replaced by an estimator. As can be seen, the model regarded by these authors is not

nested with our proposal.

It is clear from (5) that the model (1)–(3) considering (4) is not identifiable when, e.g., the normal

assumption is considered. It is only possible to estimate the covariance matrices Var(qi + ei) = Σq + Σe

and Var(xi + ui) = Σx + Σu rather than each of those components separately. However, if the matrices Σe

and Σu are assumed to be known, the model becomes identifiable. Knowledge of these covariance matrices

will then be one of the assumptions considered. In addition, to derive the main results of this paper, we

assume that Σq is a positive definite matrix and that the following assumptions hold:

(A1) there exists a p2 × 1 vector ξ and a p2 × p2 matrix Σξ such that Σx + Σξ is positive definite,

√
n (ξ̄ − ξ) → 0 and

√
n (Sξ − Σξ) → 0,

as n→ ∞, where ξ̄ = n−1
∑n

k=1 ξk and Sξ = n−1
∑n

k=1(ξk − ξ̄)(ξk − ξ̄)⊤;

(A2) Var[vech(r1r
⊤
1 )] <∞.

Here, for any p × q matrix C with columns c1, . . . , cq, vec(C) is the (pq) × 1 vector defined by vec(C) =

(c⊤1 , . . . , c
⊤
q )⊤. Moreover, when p = q and C = C⊤, vech(C) denotes the [p(p + 1)/2] × 1 vector that

contains all the diagonal and (different) subdiagonal elements of C. Furthermore, in this last case, there

exits a p2×p(p+1)/2 duplication matrix D such that vec(C) = Dvech(C), or vech(C) = D+vec(C), where

D+ = (D⊤D)−1D⊤ is the Moore-Penrose inverse of D. We also use the notation Nd (µ,Σ) to represent a

d-variate normal distribution with mean µ and covariance matrix Σ.

Conditions (A1)–(A2) are needed to guarantee convergence in probability and distribution of the es-

timators and the existence of their limiting covariance matrix. They are conditions usually stated in the

ultrastructural measurement error literature, as can be seen, for example, in Cheng and Van Ness (1991) ,

Fuller (1987) and Arellano-Valle et al. (1996, 2002).

This paper is organized as follows. Section 2 establishes the main results of the present article. It presents

consistent estimators and, moreover, the joint asymptotic distribution of the line parameters estimators.

Section 3 applies the results to the elliptical class of distributions which specializes to results previously

derived in the literature and, finally, Section 4 ends the paper with a summary of the main results and

conclusions.

2. Main results

In this section, the main concern is to develop consistent estimators for the parameters of the novel model

defined by (1)–(4). Furthermore, it is also of interest to study their asymptotic distribution. As mentioned in

the Introduction, it is well known the inconsistency of the maximum-likelihood estimators for the univariate

functional case without equation error (see for instance, Fuller, 1987; Cheng and Van Ness, 1991). However,

alternative consistent estimators can be proposed. Schneeweiss (1976) obtains the limiting distribution of

consistent estimators in a multiple regression model considering measurement error covariance matrix of the

independent variables to be known. The author makes no use of normality assumptions for the error terms.

Thus, following this line of thought, Proposition 1 presents consistent estimators for the model parameters

in the multivariate context. On the other hand, Proposition 2 establishes the asymptotic distribution for
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the estimator of θ = (a⊤, vec(B)⊤)⊤. These results are based on the asymptotic behavior of the sample

mean vector and covariance matrix of the observable vectors Z1, . . . ,Zn, which are given by

Z̄ =

(
Ȳ

X̄

)
and SZ =

(
SY SY X

SXY SX

)
,

where X̄ = n−1
∑n

i=1 Xi, Ȳ = n−1
∑n

i=1 Yi, SX = n−1
∑n

i=1(Xi − X̄)Xi
⊤, SY = n−1

∑n
i=1(Yi − Ȳ )Yi

⊤

and SXY = n−1
∑n

i=1(Xi−X̄)Yi
⊤. The asymptotic properties of Z̄ and SZ are established next in Lemma

1, but they appear in Arellano-Valle et al. (1996). For this, we note first that the assumptions considered

in Section 1 imply that the random vectors εi = Zi − µi, i = 1, . . . , n, are independent and identically

distributed (iid) for all n ≥ 1, and that they have mean vector 0 (the null vector) and covariance matrix Σ,

where µi and Σ are given in (5). Also, by (A1) we have that ξ̄ → ξ and Sξ → Σξ as n → ∞. Hence, for

µ̄ = n−1
∑n

i=1 µi and Sµ = n−1
∑n

i=1(µi − µ̄)(µi − µ̄)⊤ we obtain, as n→ ∞, that

µ̄ → µ =

(
a + Bξ

ξ

)
and Sµ → Σµ =

(
BΣξB

⊤ BΣξ

ΣξB
⊤ Σξ

)
. (6)

Moreover, ε1 = Z1 − µ1 = Ar1, where

A =

(
Ip1

Ip1
0 B

0 0 Ip2
Ip2

)
, (7)

where Ip is the (p × p) identity matrix. Under the assumption that the distribution of r1 is symmetric we

have that E[ε1vech(ε1ε
⊤
1 )⊤] = 0 and Λ = Var[vech(ε1ε

⊤
1 )] = Var[vech(Ar1r

⊤
1 A⊤)] = D+(A ⊗ A)Λr(A ⊗

A)⊤D+⊤
< ∞ since by (A2) Λr = Var[vec(r1r

⊤
1 )] < ∞, where D+ = (D⊤D)−1D⊤, with D being the

[d2 × d(d+ 1)/2] corresponding duplication matrix, d = p1 + p2 and the symbol ⊗ indicates the Kronecker

product. Thus, the results presented next follow from Theorem 2.1 in Arellano-Valle et al. (1996).

Lemma 1. Let Zi = (Y ⊤

i ,X⊤

i )⊤, i = 1, . . . , n, be the observable random vector for the model (1)–(3), so

that, by assumptions, the random vectors Zi−µi, i = 1, . . . , n, are independent, identically and symmetrically

distributed, with mean vector 0 and covariance matrix Σ, where µi and Σ are given in (5). Then:

(i) under (A1) it follows, as n→ ∞, that

Z̄ =

(
Ȳ

X̄

)
a.s.−→ µ =

(
a + Bξ

ξ

)

and

SZ =

(
SY SY X

SXY SX

)
a.s.−→ Σ + Σµ =

(
BΓx+ξB

⊤ + Σq + Σe BΓx+ξ

Γx+ξB
⊤ Γx+ξ + Σu

)
;

where Γx+ξ = Σx + Σξ.

(ii) under (A1)-(A2) it follows, as n→ ∞, that

√
n (Z̄ − µ)

d−→ Nd (0,Σ)

and √
n vech(SZ − Σ − Σµ)

d−→ Nd(d+1)/2 (0,Λ + Λµ)

and they are asymptotically independent, where

Λ = D+{(A ⊗ A)Λr(A ⊗ A)⊤}D+⊤
and Λµ = 4D+(Σ⊗ Σµ)D+⊤

, (8)

where the matrix A is defined in (7).
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Remark: The version of this lemma in Arellano-Valle et al. (1996) is proved under the assumption that

Σξ is positive definite. However, the lemma is still valid under the less restrictive condition that Σx + Σξ

is positive definite, as can be seen in Gleser (1981), where this last condition is considered.

Notice that the above asymptotic distributions depend on the distribution of ri only through the quan-

tities Σr (see Eq. (4)) and Λr = Var[vec(r1r
⊤
1 )]. In the next section we give some examples related to the

class of the elliptical distributions. We present next the main results of the paper.

Proposition 1. Consider model (1)–(3) with the assumption (4). Suppose also that the covariance ma-

trices Σe and Σu are known and that condition (A1) holds. Then, parameters a, B, ξ, Σq and Γx+ξ are

consistently estimated by

â = Ȳ − B̂X̄,

B̂ = SY X(SX − Σu)−1,

ξ̂ = X̄,

Σ̂q = SY − SY X(SX − Σu)−1SXY − Σe,

Γ̂x+ξ = SX − Σu.

Considering part (i) of the Lemma 1, the proof of Proposition 1 is straightforward, since all these

estimators are continuous functions of the sample mean vector Z̄ and of the sample covariance matrix SZ .

Proposition 2. In addition, if we consider condition (A2) in Proposition 1, then the asymptotic distribution

of θ̂ = (â⊤, vec(B̂)⊤)⊤ is given by
( √

n (â − a)√
n vec(B̂ − B)

)
d−→ Np1+p1p2

((
0

0

)
,

(
Φa ΦaB

ΦBa ΦB

))
,

where

Φa = PΣP⊤ + (ξ⊤ ⊗ Ip1
)ΦB(ξ ⊗ Ip1

),

ΦaB = Φ⊤

Ba = −(ξ⊤ ⊗ Ip1
)ΦB ,

ΦB = QD(Λ + Λµ)D⊤Q⊤,

with

P = (Ip1
, −B), Q = (Γ−1

x+ξ ⊗ Ip1
)(H2 ⊗ H1) − (Γ−1

x+ξ ⊗ B)(H2 ⊗ H2),

Λ + Λµ defined in (8), H1 = (Ip1
, 0) and H2 = (0, Ip2

) matrices such that SY X = H1SZH⊤
2 and

SX = H2SZH⊤
2 .

Proof. First, after some algebra, we can write

â − a = P̂ (Z̄ − µ) − (ξ⊤ ⊗ Ip1
)vec(B̂ − B). (9)

Moreover, since SY X = H1SZH⊤
2 and SX = H2SZH⊤

2 , where H1 = (Ip1
,0) and H2 = (0, Ip2

), we have

that B̂ = B̂(SZ) = H1SZH⊤
2 (H2SZH⊤

2 −Σu)−1 is a continuous function of the sample covariance matrix

SZ. Define ak as the kth element of vech(SZ). Hence, by applying the matrix derivatives methodology

(see, e.g., Kollo and von Rosen, 2005; Magnus and Neudecker, 2007) we have that

∂B̂

∂ak
= H1

(
∂SZ

∂ak

)
H⊤

2 (SX − Σu)−1 − SY X(SX − Σu)−1H2

(
∂SZ

∂ak

)
H⊤

2 (SX − Σu)−1,
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leading to

∂vec(B̂)

∂ak
=[((SX − Σu)−1H2) ⊗ H1]D

∂vech(SZ)

∂ak

− [((SX − Σu)−1H2) ⊗ (SY X(SX − Σu)−1H2]D
∂vech(SZ)

∂ak
.

That is, the Jacobian at Σ + Σµ reduces to

∂{vec(B̂)}
∂{vech(SZ)⊤}

∣∣∣∣∣
SZ=Σ+Σµ

= (Γ−1
x+ξ ⊗ Ip1

)(H2 ⊗ H1)D − (Γ−1
x+ξ ⊗ B)(H2 ⊗ H2)D = QD,

where Q = (Γ−1
x+ξ ⊗ Ip1

)(H2 ⊗ H1)− (Γ−1
x+ξ ⊗B)(H2 ⊗H2). Therefore, by the delta method we have that

√
n vec(B̂ − B)

d−→ Np1p2
(0,ΦB) where

ΦB = QD(Λ + Λµ)D⊤Q⊤.

Moreover, from Lemma 1(ii) it follows that
√
n (Z̄ −µ) and

√
n vec(B̂−B) are asymptotically indepen-

dent, with
√
n (Z̄ − µ)

d−→ Nd (0,Σ), thus, the proof follows by noting from (9) that

( √
n (â − a)√

n vec(B̂ − B)

)
=

(
P̂ −(ξ⊤ ⊗ Ip1

)

0 Ip1p2

)( √
n (Z̄ − µ)√

n vec(B̂ − B)

)
.

Notice that for the structural case, we have ξi = ξ for all i = 1, . . . , n and Σξ = 0, then Γx+ξ = Σx and

Λµ = 0. For the functional case, we have Σx = 0, then Γx+ξ = Σξ. Defining

Φ =

(
Φa ΦaB

ΦBa ΦB

)
,

then it may be consistently estimated by replacing the unknown parameters with their consistent estimators

given in Proposition 1. The ith element of θ̂, is asymptotically normally distributed with standard errors

given by the square root of the ith diagonal element of Φ divided by
√
n. Thus, we can formulate statistical

hypotheses for the individual coefficients or, more generally, for contrasts of the form

H0 : Cθ = d Versus H1 : Cθ 6= d,

which can be tested by using Wald-type statistics conveniently expressed as

n(Cθ̂ − d)⊤
[
CΦ̂C⊤

]−1
(Cθ̂ − d). (10)

Under the null hypotheses, (10) has a limit χ2(m) distribution where m = rank(C) corresponds to the

number of linear restrictions.

It is important to remark that the estimation of ΦB may involve plugging in estimators for both Σx

and Σξ. As it is not possible to estimate these quantities separately, one must choose working with the

structural (Σξ = 0) or the functional (Σx = 0) version. We present one example with this characteristic in

the next section.
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3. The elliptical class of distributions

We shall use the same definition for an elliptical distribution as the one presented in Fang et al. (1990).

That is, we say that an s × 1 random vector Y has a multivariate elliptical distribution with location

parameter µ and a positive definite scale matrix Ψ, if its density function exists and is given by

fY (y) = |Ψ|−1/2g
[
(y − µ)⊤Ψ−1(y − µ)

]
, (11)

where g : R → [0,∞) is the density generator and it is such that
∫∞

0
u

s

2
−1g(u) <∞. We use the notation Y ∼

Els(µ,Ψ, g). It is possible to show that the characteristic function of Y is given by ψ(t) = E(exp(it⊤Y )) =

exp(it⊤µ)ϕ(t⊤Ψt), where t ∈ R
s and ϕ : [0,∞) → R. Then, if ϕ is twice differentiable at zero, we have

that E(Y ) = µ and Var(Y ) = δΨ, where δ = −2ϕ′(0). A detailed description of the elliptical multivariate

class given in (11) can be found in Fang et al. (1990).

For the general elliptical situation, we consider two cases.

Case one: Let ri
iid∼ El2d(0,Ψ, g), then Var(r1) = δΨ = Σr. Since Z1 − µ1 = Ar1, we have that

Z1−µ1 ∼ Eld(0,AΨA⊤, g), where Var(Z1) = δAΨA⊤ = Σ. As aforementioned, the asymptotic covariance

matrix of
√
n(â−a, vec(B̂−B)) just depends on r1 only through Σr and Λr. Therefore, following Arellano-

Valle et al. (1996) (see page 209, Eq. 2.3) and by using matrix properties, we have that

Λr = Var[vec(r1r
⊤

1 )] = (1 + κ)(I4d2 + K2d,2d)(Σr ⊗ Σr) + κvec(Σr)vec(Σr)⊤,

where Ks1,s2
is a commutation matrix such that for the s1-vector a and the s2-vector b, Ks1,s2

(b ⊗ a) =

(a⊗b) and κ = ϕ′′(0)/[ϕ′(0)]2−1 is the kurtosis parameter assumed to be known. According to Lemma 4.1

in Arellano-Valle et al. (2002), the following relationships hold: δ = E[U/(2d)] and δ2(κ+1) = E{U2/[4d(d+

1)]}, where U has the same distribution as that of r⊤
1 Ψ−1r1.

The following example illustrates Case One in the context of the simple linear regression model with

measurement errors.

Example 1: Let’s consider the univariate measurement error model, that is, when p1 = p2 = 1,

yi = a+ bxi + qi, Yi = yi + ei and Xi = xi + ui

with ri = (qi, ei, ui, (xi−ξi))⊤ ∼ El4(0,Ψ, g), where Var(ri) = δΨ = diag(σ2
q , σ

2
e , σ

2
u, σ

2
x). Define the sample

moments SXY =
∑n

i=1(Xi − X̄)Yi/n, SX =
∑n

i=1(Xi − X̄)Xi/n, Ȳ =
∑n

i=1 Yi/n and X̄ =
∑n

i=1Xi/n.

Then, under the suppositions (A1) and (A2), b̂ = SY X/(SX − σ2
u) is a consistent estimator for b and

√
n(̂b− b)

d−→ N1 (0, φb)

where

φb =
(3κ+ 2)b2σ4

u + (κ+ 1)[σ2
u(b2σ2

x + σ2
q + σ2

e) + σ2
x(σ2

q + σ2
e)] + σ2

ξ (b2σ2
u + σ2

q + σ2
e)

(σ2
x + σ2

ξ )2
.

The asymptotic variance φb is computed by specializing the matrices Q, D, Λ and Λµ of the Proposition 2

under p1 = p2 = 1 and the additional supposition ri ∼ El4(0,Ψ, g). Taking σ2
e = 0 we get the same result

as in Theorem 3.3 of Arellano-Valle et al. (1996), in addition, if σ2
e = κ = 0 we obtain the same results in

Cheng and Van Ness (1991). In this example, when κ 6= 0, the estimation of the asymptotic variance φb

depends on both σ2
x and σ2

ξ , so that the user must decide which approach to use; functional or structural.
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Case two: Suppose that qi
iid∼ Elp1

(0,Ψq, gq), ei
iid∼ Elp1

(0,Ψe, ge), ui
iid∼ Elp2

(0,Ψu, gu) and vi = xi−ξi
iid∼

Elp2
(0,Ψx, gx) are independent random vectors, then Var(ri) = Σr = diag(δqΨq, δeΨe, δuΨu, δxΨx), where

δq, δe, δu and δx depend on their characteristic functions, respectively (as defined previously). We must

compute Var(vec(r1r
⊤
1 )) = Var(r1 ⊗ r1). Notice that, there exists a matrix J such that (r1 ⊗ r1) = Jw,

where

w = (w⊤

1 ,w
⊤

2 ,w
⊤

3 ,w
⊤

4 ,w
⊤

5 ,w
⊤

6 ,w
⊤

7 )⊤

with w⊤
1 = (q⊤

1 ⊗ q⊤
1 , e

⊤
1 ⊗ e⊤

1 ,u
⊤
1 ⊗ u⊤

1 ,v
⊤
1 ⊗ v⊤

1 )⊤, w2 = (e1 ⊗ q1), w3 = (u1 ⊗ q1), w4 = (v1 ⊗ q1),

w5 = (u1 ⊗ e1), w6 = (v1 ⊗ e1), w7 = (v1 ⊗ u1). Then, Var(r1 ⊗ r1) = JVar(w)J⊤, where

Var(w) = diag(Σw1
,Σe,q,Σu,q,Σv,q,Σu,e,Σv,e,Σv,u)

with Σw1
= diag(Λq,Λe,Λu,Λx), Σa,b = Σa ⊗ Σb,

Λa = (1 + κa)(Ip2
a

+ Kpa,pa
)(Σa ⊗ Σa) + κavec(Σa)vec(Σa)⊤,

pa being the dimension of the generic vector a, κa the kurtosis parameter of a and Σa the variance matrix

of a for a = q, e,u,x.

The following example illustrates Case Two in the context of the simple linear regression model with

measurement error.

Example 2: Let’s consider the same model of Example 1, with ri = (qi, ei, ui, (xi − ξi))
⊤ where (I)

qi
iid∼ El1(0, ψq, gq), (II) ei

iid∼ El1(0, ψe, ge), (III) ui
iid∼ El1(0, ψu, gu) and (IV) vi = (xi−ξi) iid∼ El1(0, ψx, gx)

are independent random variables. Consider the same sample moments defined in the previous example.

Then, b̂ = SY X/(SX − σ2
u) is also a consistent estimator for b and, under the suppositions (A1) and (A2)

together with (I)–(IV) we have √
n(̂b− b)

d−→ N1 (0, φb)

where

φb =
(3κu + 2)b2σ4

u + (σ2
e + σ2

q )σ2
u + (b2σ2

u + σ2
q + σ2

e)(σ2
ξ + σ2

x)

(σ2
x + σ2

ξ )2
.

The asymptotic variance φb is computed by specializing the matrices Q, D, Λ and Λµ of the Proposition

2 under p1 = p2 = 1 and the additional suppositions (I)–(IV). Notice that, when qi, ei, ui and xi are

independent random variables, the asymptotic variance of b̂ just depend on the distribution of ui. Taking

σ2
e = 0 we obtain φb = {(3κu +2)b2σ4

u +σ2
qσ

2
u +(b2σ2

u +σ2
q)(σ2

x +σ2
ξ)}/(σ2

x +σ2
ξ )2, in addition, if σ2

e = κu = 0

we attain φb = {2b2σ4
u +σ2

qσ
2
u +(b2σ2

u +σ2
q)(σ2

x +σ2
ξ )}/(σ2

x +σ2
ξ )2 which is the very same asymptotic variance

derived in Cheng and Van Ness (1991).

In general, Zografos (2008) showed that, if z ∼ El2d(0,Ψ, g) then the kurtosis parameter is given by

κ =
πd
∫
∞

0 wd+1g(w)dw

4d(d+ 1)Γ(d)δ2
− 1.

where δ was defined previously. Then, assumption (A2) is always true under the elliptical class of distribu-

tions if ϕ is twice differentiable at zero such that ϕ′(0) 6= 0 and
∫∞

0 wd+1g(w)dw <∞.
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