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Abstract

We give a general matrix formula for computing the second-order skewness of maximum likelihood estimators.

The formula was firstly presented in a tensorial version by Bowman and Shenton (1998). Our matrix

formulation has numerical advantages, since it requires only simple operations on matrices and vectors. We

apply the second-order skewness formula to a normal model with a generalized parametrization and to an

ARMA model.
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1. Introduction

A distribution is usually characterized by the mean, variance, skewness and kurtosis. The mean and

variance represent the location and dispersion, respectively, whereas the skewness and kurtosis refer to the

shape of the distribution. The latter two measures can be used to verify a departure from normality of the

variable being analyzed. In this article, we shall concentrate only on the skewness measure in the context

of maximum likelihood estimation. The most commonly used measure of skewness is the standardized third

cumulant defined by γ = κ3/κ
3/2
2 , where κr is the rth cumulant of the distribution. When γ > 0 (γ < 0)

the distribution has a positive (negative) skew. It is well known that γ = 0 for all symmetric distributions

(e.g., normal, Student-t, power exponential, type I and type II logistics and so forth).

Under standard regular conditions, the maximum likelihood estimators (MLEs) are asymptotically nor-

mally distributed, and then, asymptotically, their skewness are equal to zero. However, for finite (small)

sample sizes, the exact distribution of the MLEs may be very different from the normal one and, under this

context, we can look at the skewness of the MLE to verify the departure from normality. The far away from

zero is the skewness estimate, the farther might be the exact distribution of the MLEs from the normal

distribution. Provided that the MLEs are asymptotically normally distributed, a first-order approximation

for the skewness of the MLE is zero. Nevertheless, this gives us no information about the symmetry of this

estimator under finite sample sizes. In view of that, Bowman and Shenton (1998) computed the second-order

skewness of the MLE which can be seen as a more accurate estimate of its exact skewness. In addition,

this skewness estimate can be used as a guide for computing the sample size as mentioned by Bowman and

Shenton (2005). We just fix a value for γ, say γ = 0.1, and choose a sample size for which this skewness

holds. Naturally, we have to take a previous sample to estimate unknown parameters in γ.
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Let ℓ(θ) be the total log-likelihood for some p × 1 vector θ of unknown parameters and let θ̂ be

the MLE of θ. We assume that ℓ(θ) is regular with respect to all θ derivatives up to and including

those of third order. We shall use the tensorial notation for joint cumulants of log-likelihood deriva-

tives: κr,s = E{∂ℓ(θ)/∂θr∂ℓ(θ)/∂θs}, κrs = E{∂2ℓ(θ)/∂θr∂θs}, κrst = E{∂3ℓ(θ)/∂θr∂θs∂θt} κrs,t =

E{∂2ℓ(θ)/∂θr∂θs∂ℓ(θ)/∂θt} and κ
(t)
rs = ∂κrs/∂θt. All κ’s are assumed to be of order O(n), where n is

the sample size. These cumulants satisfy certain equations called Bartlett regularity conditions such as

κr,s = −κrs, κr,st = κrst−κ
(t)
rs , κr,s,t = −κrst−κr,st−κs,rt−κt,rs which usually facilitate their calculations.

The total expected information matrix is given by Kθθ = {−κrs}. Let κr,s be the corresponding (r, s)th

element of the inverse information matrix, say K−1
θθ

= {κr,s}. The third central moment of the MLE θ̂a is

κ3(θ̂a) = E[(θ̂a − θa)3] for a = 1, . . . , p. Using Taylor series expansion, Bowman and Shenton (1998) derived

an approximation of order O(n−2) for this third central moment given by

κ3(θ̂a) =

p∑

r,s,t=1

κa,rκa,sκa,tm(t)
rs , (1)

where m
(t)
rs = 5κ

(t)
rs − (κ

(r)
st + κ

(s)
rt + κrst). Hence, the second-order skewness of θ̂a can be written as γ(θ̂a) =

κ3(θ̂a)/(κa,a)3/2 for a = 1, . . . , p. The quantities κ3(θ̂a) and (κa,a)3/2 are of orders O(n−2) and O(n−3/2),

respectively, and then the standardized third cumulant γ(θ̂a) is of order O(n−1/2).

There are some recent works in the statistical literature regarding the skewness of the MLEs. Cysneiros et

al. (2001) computed the second-order skewness and kurtosis for one-parameter exponential family. Cordeiro

and Cordeiro (2001) applied formula (1) to obtain a matrix expression for the second-order skewness of

the MLEs of the location and dispersion parameters in generalized linear models. Bowman and Shenton

(2005) implemented a MAPLE script to compute the derivatives involved in (1) for two-parameter gamma

and three-parameter Poisson mixture distributions. More recently, Cavalcanti et al. (2009) studied the

second-order skewness of the MLEs in exponential family nonlinear models.

In this article, we obtain a matrix formula for the tensorial equation (1) under a general framework. The

main result is derived in Section 2. In Section 3, we apply the proposed matrix formula to a multivariate

normal nonlinear model following a generalized parametrization. Section 4 is devoted to the skewness of

the MLEs of the parameters in an ARMA model. Section 5 provides some simulation results. Section

6 presents an application and a R script algorithm (R Development Core Team, 2007) to calculate the

skewness. Finally, we offer concluding remarks in Section 7.

2. General matrix formula

Here, we develop from (1) a matrix formula for the third central moment of the MLE under any regular

statistical model. The following matrix equations will be intensively used in the algebraic development

discussed in the article. Let A, B, C and D be general matrices of appropriate dimensions. We have

tr(AB) = vec(A⊤)⊤vec(B), vec(AB) = (I ⊗ A)vec(B) = (B⊤ ⊗ I)vec(A) (2)

and

A⊤CD = {a⊤

r Cds}, tr{A⊤CDB⊤} = vec(A)⊤(B ⊗ C)vec(D), vec(ACB) = (B⊤ ⊗ A)vec(C), (3)

where I is the identity matrix, A = (a1, . . . , an), D = (d1, . . . , dm), vec(·) is the vec operator, which

transforms a matrix into a vector by stacking the columns of the matrix one underneath the other and
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“⊗” denotes the Kronecker product. These results and other methods in matrix differential calculus can be

studied in Magnus and Neudecker (2007). To simplify the presentation of the matrix formula, we consider

the following matrix operation: if E = (e1, . . . , ep) is a p × p matrix, where ej is a p × 1 vector, we

define the p2 × p2 matrix Q(E) = block–diag(e⊤

1 , . . . , e⊤

p ). We also write the inverse of the information

matrix as K−1
θθ

= (κ(1), . . . , κ(p)), where κ(a) = (κ1,a, . . . , κp,a)⊤. Further, we define the p × p2 matrix

M = (M (1) . . . M (p)) based on the kernel quantity m
(t)
rs in equation (1), namely

M (t) =




m
(t)
11 . . . m

(t)
1p

...
. . .

...

m
(t)
p1 . . . m

(t)
pp


 .

First, we note that

p∑

r,s,t=1

κa,rκa,sκa,tm(t)
rs = κ(a)⊤(κ(a)⊤ ⊗ Ip)(κ

(a)⊤ ⊗ Ip2)vec(M), (4)

where Ip is the p × p identity matrix. The matrix M may be defined in different ways. For example,

M = (M(1), . . . , M(p)) and M = (M∗

(1), . . . , M
∗

(p)), where

M(r) =




m
(1)
r1 . . . m

(p)
r1

...
. . .

...

m
(1)
rp . . . m

(p)
rp


 and M∗

(s) =




m
(1)
1s . . . m

(p)
1s

...
. . .

...

m
(1)
ps . . . m

(p)
ps


 ,

generate the same equation (4).

Using the identities A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C and Ip2 = Ip ⊗ Ip, we obtain

(κ(a)⊤ ⊗ Ip)(κ
(a)⊤ ⊗ Ip2) = (κ(a)⊤ ⊗ Ip)((κ

(a)⊤ ⊗ Ip) ⊗ Ip) = (κ(a)⊤(κ(a)⊤ ⊗ Ip)) ⊗ Ip.

Hence,

p∑

r,s,t=1

κa,rκa,sκa,tm(t)
rs = κ(a)⊤[(κ(a)⊤(κ(a)⊤ ⊗ Ip)) ⊗ Ip]vec(M) = vec(M)⊤

[(
(κ(a) ⊗ Ip)κ

(a)
)
⊗ Ip

]
κ(a).

By application of (3), we have

p∑

r,s,t=1

κa,rκa,sκa,tm(t)
rs = tr{M⊤κ(a)κ(a)⊤(κ(a)⊤ ⊗ Ip)} = κ(a)⊤(κ(a)⊤ ⊗ Ip)M

⊤κ(a).

We can express the vector κ3(θ̂) = (κ3(θ̂1), . . . , κ3(θ̂p))
⊤ as

κ3(θ̂) =




κ(1)⊤(κ(1)⊤ ⊗ Ip)M
⊤κ(1)

...

κ(p)⊤(κ(p)⊤ ⊗ Ip)M
⊤κ(p)


 .

Then, we obtain a matrix formula for the third central moment of the MLE

κ3(θ̂) = Q(K−1
θθ

)
(
Q(K−1

θθ
) ⊗ Ip

)(
Ip ⊗ M⊤

)
vec(K−1

θθ
),
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since

Q(K−1
θθ

)
(
Q(K−1

θθ
) ⊗ Ip

)
=




κ(1)⊤(κ(1)⊤ ⊗ Ip) . . . 0

...
. . .

...

0 . . . κ(p)⊤(κ(p)⊤ ⊗ Ip)




and

(
Ip ⊗ M⊤

)
vec(K−1

θθ
) =




M⊤κ(1)

...

M⊤κ(p)


 .

Finally, using the third identity in (3), we obtain

κ3(θ̂) = Q(K−1
θθ

)
(
Q(K−1

θθ
) ⊗ Ip

)
vec(M⊤K−1

θθ
). (5)

The matrix formula (5) can be used to compute the second-order skewness of the MLEs in rather

general regular statistical models, since it facilitates the numerical and algebraic computations involved. It

depends only on the inverse information matrix K−1
θθ

and the basic matrix M . For models with closed-

form information matrix, it is possible to derive the skewness of the MLE in closed-form and then we can

determine which aspects of the model contribute significantly to the skewness. In practice, equation (5) can

be used without much difficulty, particularly if a suitable computerized algebra system is readily available.

Although the tensorial expression (1) seems algebraically more appealing than (5), the latter is better suited

for algebraic and numerical purposes in rather general parametric models, because it involves only trivial

operations on matrices. Its main advantage over the tensorial formula (1) is that we can avoid computations

involving higher-order arrays.

Equation (5) can be easily implemented in the R software (R Development Core Team, 2007) by using

the package Matrix (see Section 6.1). This package gives a suitable treatment to sparse matrices which is

much faster than the usual tensorial methods. It is worth mentioned that we need only the matrices Kθθ

and M to compute the second-order skweness. On the one hand, the tensorial formula (1) needs four loops

to compute the entire vector κ3(θ̂) which has complexity of order O(p4). On the other hand, although the

matrix formula (5) requires the Kronecker product, it involves sparse and symmetric matrices and this turns

the method computationally faster.

3. Multivariate normal model with a generalized parametrization

Now, we apply equation (5) to a multivariate normal nonlinear model with a generalized parametrization

proposed by Patriota and Lemonte (2009). Let Y1, . . . , Yn be observed independent vectors for which the

number of responses measured in the ith observation is qi. The multivariate regression model can be written

as

Yi = µi(θ) + ui, i = 1, . . . , n, (6)

where ui
ind
∼ Nqi

(0,Σi(θ)) and “
ind
∼ ” means “independently distributed as”. Consequently, we have that

Yi
ind
∼ Nqi

(µi(θ),Σi(θ)), where µi(θ) = µi(θ, Xi) and Σi(θ) = Σi(θ, Zi) are known functional forms for

the mean and the variance-covariance matrix, respectively. They are assumed to be three times continuously

differentiable with respect to each element of θ. The model (6) admits that non-stochastic auxiliary variables

X1, . . . , Xn and Z1, . . . , Zn can also be observed, where Xi and Zi are mi×1 and ki×1 vectors, respectively,

of known variables associated with the ith observed response Yi which may have equal components. In
4



addition, θ is a p-vector of unknown parameters of interest (where p < n and it is fixed). Since θ must be

identifiable in model (6), the functions µi(θ) and Σi(θ) are defined to accomplish such restriction. Recently,

Patriota et al. (2010) present some influence assessment procedures for this model, such as the local influence,

total local influence of an individual and generalized leverage.

The large class of models (6) includes many important statistical models. We can mention, for instance,

linear and nonlinear regression models, either homoscedastic or heteroscedastic. Heteroscedastic structural

measurement error models can also be formulated within this class. These models were studied by de Castro

et al. (2008), Patriota et al. (2009) and the references therein. Structural equation models (e.g., Bollen,

1989) represent a rich class of models with latent variables that can be written as a special case of equation

(6). Simultaneous equations models (e.g., Magnus and Neudecker, 2007, Ch. 16) comprise endogenous and

exogenous variables and, in the reduced form, they are special sub-models of the general model (6). The

model (6) is perhaps the one with the highest degree of generality that can be considered in a multivariate

normal set-up with independent observed vectors and therefore our list of examples is by no means exhaustive.

In order to follow the same notation introduced by Patriota and Lemonte (2009), we take the full

quantities Y = (Y ⊤
1 , . . . , Y ⊤

n )⊤, µ = (µ1(θ)⊤, . . . , µn(θ)⊤)⊤, Σ = block–diag(Σ1(θ), . . . ,Σ1(θ)) and u =

Y − µ. The log-likelihood function associated with model (6), apart from a constant, is

ℓ(θ) = −
1

2
log |Σ| −

1

2
u⊤Σ−1u. (7)

In order to guarantee the asymptotic properties of the MLE θ̂, such as consistency, sufficiency and

normality, we assume that the usual regularity conditions on ℓ(θ) hold and also that the parameter θ is an

interior point of Θ which is an open subset of R
p. The quantities µi(θ) and Σi(θ) are defined in such a

way that the log-likelihood (7) becomes a regular function. In general, we assume the regularity conditions

stated in Cox and Hinkley (1974, Ch. 9) on the behavior of ℓ(θ) as n → ∞.

We define the following quantities (r, s, t = 1, 2, . . . , p):

ar =
∂µ

∂θr
, asr =

∂2µ

∂θs∂θr
, Cr =

∂Σ

∂θr
, Csr =

∂2Σ

∂θs∂θr
and Ar =

∂Σ−1

∂θr
= −Σ−1CrΣ

−1.

Let

F =

(
D

V

)
, H =

[
Σ 0

0 2(Σ⊗ Σ)

]−1

and u∗ =

[
u

−vec(Σ − uu⊤)

]
, (8)

where D = (a1, . . . , ap) and V = (vec(C1), . . . , vec(Cp)). Here, F is assumed to have full rank p. To

compute the derivatives of ℓ(θ), we can make use of matrix differential calculus methods (Magnus and

Neudecker, 2007). The score function and the expected information are Uθ = F⊤Hu∗ and Kθθ = F⊤HF ,

respectively. An iterative algorithm to calculate the MLE is given by

(F (m)⊤H(m)F (m))θ(m+1) = F (m)⊤H(m)v(m), m = 0, 1, . . . , (9)

where v(m) = F (m)θ(m) + u∗(m) and m is the iteration counter. The cycle scheme (9) is an iterative

re-weighted least squares algorithm and the iterations continue until convergence is achieved. Sometimes

this algorithm does not converge, neither find the actual maximum of the likelihood function nor a relative

maximum point which is an interior point of a restricted parametric space. In these cases, other numerical

methods can be used such as the Gauss-Newton and Quasi-Newton methods.
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For the general model (6), Patriota and Lemonte (2009) obtained the cumulants

κtsr = tr{(ArΣAs + AsΣAr)Ct} +
1

2
tr{AsCtr + ArCts + AtCsr}

− (a⊤

t Asar + a⊤

s Atar + a⊤

s Arat + a⊤

t Σ−1asr + a⊤

tsΣ
−1ar + a⊤

s Σ−1atr)

(10)

and

κ
(r)
ts =

1

2
tr{(ArΣAs + AsΣAr)Ct + AtCrs + AsCrt}

− (a⊤

rtΣ
−1as + a⊤

t Aras + a⊤

t Σ−1ars).
(11)

Then, we have

m(t)
rs = 2a⊤

s Arat + 2a⊤

r Asat + tr{AtΣAsCr} − 4a⊤

s Atar

− 3a⊤

stΣ
−1ar − 3a⊤

rtΣ
−1as +

3

2
tr{ArCst + AsCrt}

+ 3a⊤

rsΣ
−1at −

3

2
tr{AtCrs}

and by using the identities in (2) systematically, the matrix M (t) for this general model can be written as

M (t) = F⊤HOtHF − 3

(
F⊤HFt + F⊤

t HF −
[
v⊤

t H
][∂F

∂θ

])
,

where

Ot = 4

(
Ct −a⊤

t ⊗ Σ

−at ⊗ Σ Ct ⊗ Σ

)
, Ft =

∂F

∂θt
=

(
Dt

Vt

)
,

Dt = (a1t, . . . , apt), Vt = (vec(C1t), . . . , vec(Cpt)), vt = (a⊤

t , vec(Ct)
⊤)⊤ and N =

∑
i qi. Here, ∂F /∂θ is

an array of dimension N(N + 1)× p× p and [·][·] represents the bracket product of a matrix by an array as

defined by Wei (1998, p. 188). The bracket product can also be written as

[
v⊤

t H
][∂F

∂θ

]
=
(
Ip ⊗ (v⊤

t H)
)
G (12)

where

G =




G11 . . . G1p

... . . .
...

Gp1 . . . Gpp




with Grs = (a⊤
rs, vec(Crs)

⊤)⊤.

Hence, we have all ingredients for computing the second-order skewness

κ3(θ̂) = Q
(
(F⊤HF )−1

)(
Q
(
(F⊤HF )−1

)
⊗ Ip

)
vec(M⊤(F⊤HF )−1).

For models with closed-form information matrix F⊤HF , it is possible to derive closed-form expressions

for the skewness of the estimate θ̂. If the second derivatives of µ and Σ are equal to zero (i.e., Ft = 0 for

all t = 1, . . . , p), the matrix M (t) reduces to M (t) = F⊤HOtHF .
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4. ARMA model

We consider an ARMA (p, q) model defined by

yi = α1yi−1 + . . . + αp1
yi−p1

+ ui − β1ui−1 − . . . − βp2
ui−p2

, (13)

where the u′

is are independent random variables with mean zero and variance σ2 and y = (y1, . . . , yn)⊤ is

the observed time series of length n. Let τ = (α1, . . . , αp1
, β1, . . . , βp2

)⊤ be the b = p1 + p2 vector of linear

parameters. We have p = b + 1 unknown parameters to be estimated, namely those parameters in τ and

σ2. The log-likelihood ℓ(θ) for θ = (τ⊤, σ2)⊤ given y, apart from a constant, is

ℓ(θ) = −
1

2
log |Σ| −

1

2
y⊤Σ−1y, (14)

where Σ = σ2Ω is the covariance matrix of y and Ω = Ω(τ ). Notice that the log-likelihood function (14)

has the same structure of the log-likelihood function (7), therefore we can use the same quantities already

defined and derived for the general case. We remark that, in this case, the matrix Σ is not block diagonal.

The same previous iterative procedure to attain the maximum likelihood estimates can be used here.

For the defined model ARMA (13), we have E(y) = µ = 0. Thus, by using the same quantities defined

in the previous section, D = Dt = 0 and the matrix M (t), for t = 1, . . . , p, becomes

M (t) = V ⊤H2O2tH2V − 3

(
V ⊤H2Vt + V ⊤

t H2V −
[
v⊤

2tH2

][∂V

∂θ

])
, (15)

where

H2 =
1

2
Σ−1 ⊗ Σ−1, O2t = 4Ct ⊗ Σ, Vt =

∂V

∂θt
,

Vt = (vec(C1t), . . . , vec(Cpt)) and v2t = vec(Ct)
⊤. In order to identify the contribution of the parameters

in τ and σ2, we partition the matrix M (t) as follows

M (t) =

(
M

(t)
11 M

(t)
12

M
(t)
21 M

(t)
22

)

where M
(t)
11 = {m

(t)
rs }, for r, s = 1 . . . , b, is a b × b matrix that is the contribution of the parameters in τ ,

M
(t)
12 = M

(t)⊤
21 = {m

(t)
rs }, for r = 1, . . . , b and s = p, is a b × 1 vector which is a type of cross-contribution

of τ and σ2 and, finally, M
(t)
22 = m

(t)
pp is a real number that is the contribution of σ2. These matrices can be

formed by decomposing the matrices V and Vt as follows

V = (Ṽ , γ̃) and Vt = (Ṽt, γ̃t)

where Ṽ = (vec(C1), . . . , vec(Cb)), γ̃ = vec(Cp), Ṽt = (vec(C1t), . . . , vec(Cbt)) and γ̃t = vec(Cpt). Then,

by representation (12), the matrix G can be partitioned as

G =

(
G̃1 G̃2

G̃⊤

2 G̃3

)
,

where

G̃1 =




G11 . . . G1b

... . . .
...

Gb1 . . . Gbb


 , G̃2 =




G1p

...

Gbp


 and G̃3 = Gpp.
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Then,

M
(t)
11 = Ṽ ⊤H2O2tH2Ṽ − 3

(
Ṽ ⊤H2Ṽt + Ṽ ⊤

t H2Ṽ −
(
Ib ⊗ (v⊤

2tH2)
)
G̃1

)
,

M
(t)
12 = Ṽ ⊤H2O2tH2γ̃ − 3

(
Ṽ ⊤H2γ̃t + Ṽ ⊤

t H2γ̃ − [Ib ⊗ (v⊤

2tH2)]G̃2

)

and

M
(t)
22 = γ̃⊤H2O2tH2γ̃ − 3

(
2γ̃⊤H2γ̃t − v⊤

2tH2G̃3

)
.

Also, the Fisher information is given by

Kθθ =

(
Kττ Kτσ2

Kσ2τ Kσ2σ2

)
=

(
Ṽ ⊤H2Ṽ Ṽ ⊤H2γ̃

γ̃⊤H2Ṽ γ̃⊤H2γ̃

)
. (16)

The matrix M for the ARMA model is easily constructed from equation (15) and then the skewness of

the MLEs can be calculated from the matrix M and the information matrix (16).

5. Simulation studies

The main goal of this section is to compare the sample and analytical skewness measures of the MLEs

for an errors-in-variables model using Monte Carlo simulation. The sample sizes were taken as n =

15, 25, 35, 50, 100 and 1000 and the number N of Monte Carlo replications was 15,000. All simulations

were performed using R Development Core Team (2007).

The simple errors-in-variables model considers that (Yi, Xi) is a vector of random variables defined by

Yi = α + βxi + ei and Xi = xi + ui, i = 1, . . . , n, (17)

where xi ∼ N (µx, σ2
x), ei ∼ N (0, σ2) and ui ∼ N (0, σ2

u). Here, σ2
u is known and xi, ei and ui are mutually

uncorrelated for i = 1, . . . , n. Let Yi = (Yi, Xi)
⊤ and θ = (α, β, µx, σ2

x, σ2)⊤, we have Yi ∼ N2(µi(θ),Σi(θ)),

where

µi(θ) =

(
α + βµx

µx

)
and Σi(θ) =

(
β2σ2

x + σ2 βσ2
x

βσ2
x σ2

x + σ2
u

)
.

Hence,

µ(θ) = 1n ⊗

(
α + βµx

µx

)
and Σ(θ) = In ⊗

(
β2σ2

x + σ2 βσ2
x

βσ2
x σ2

x + σ2
u

)
.

From the previous expressions, we immediately obtain

a1 = 1n ⊗

(
1

0

)
, a2 = 1n ⊗

(
µx

0

)
, a3 = 1n ⊗

(
β

1

)
, a4 = a5 = 0

and ars = 0 for all r, s except for

a23 = a32 = 1n ⊗

(
1

0

)
.

Further, C1 = C3 = 0 and

C2 = In ⊗

(
2βσ2

x σ2
x

σ2
x 0

)
, C4 = In ⊗

(
β2 β

β 1

)
and C5 = In ⊗

(
1 0

0 0

)
.

8



Additionally, Crs = 0 for all r, s except for

C22 = In ⊗

(
2σ2

x 0

0 0

)
and C24 = C42 = In ⊗

(
2β 1

1 0

)
.

Thus,

F =

(
a1 a2 a3 0 0

0 vec(C2) 0 vec(C4) vec(C5)

)
and Ft =

(
a1t a2t a3t 0 0

0 vec(C2t) 0 vec(C4t) vec(C5t)

)
.

Therefore, the required quantities to determine κ3(θ̂) using expression (5) are given. The MLEs are

α̂ = Ȳ − β̂X̄, β̂ = SY X/(S2
X − σ2

u), µ̂ = X̄, σ̂2
x = S2

X − σ2
u and σ̂2 = S2

Y − β̂2σ̂2
x, where Ȳ and X̄ are the

sample means and S2
Y and S2

X are the sample variances of Y and X , respectively, and SY X is the sample

covariance of (Y, X).

For comparison purposes, we compute (for each parameter and sample size) the sample moment ratio

statistics ρ = m3/m
3/2
2 , where mk = N−1

∑N
i=1(θ̂j −

¯̂
θ)k for k = 2, 3 and

¯̂
θ = N−1

∑N
i=1 θ̂j . Further, we also

compute (for each parameter, sample size and Monte Carlo simulation) the asymptotic skewness γ = κ3/κ
3/2
2

for i = 1, . . . , N and calculate the average γ̄ = N−1
∑N

i=1 γj .

The true values of the regression parameters were set at α = 67, β = 0.42, µx = 70, σ2
x = 247 and

σ2 = 43. The parameter values were selected in order to represent the data (the yields of corn on Marshall

soil in Iowa) described in Fuller (1987, p. 18). The known measurement error variance is σ2
u = 57 (which

was attained through a previous experiment).

Table 1 lists the asymptotic and sample skewness of the MLEs. The figures in this table confirm that

the asymptotic skewness and the sample skewness are generally in good agreement and they both converge

to zero when n increases (as expected).

We remark that, there is a problem with the sample moment ratio ρ for the MLE of β (and consequently

for the MLE of α), since for finite samples sizes the expectation of β̂ is not defined (see Fuller, 1987, pag

28, exercise 13(b)). For this reason, this measure may not be reliable to estimate the skewness of α̂ and β̂.

However, as there is no other reliable measure for the skewness we keep it in the simulations.

Table 1: Asymptotic (γ) and sample (ρ) skewness of the MLEs

α β µ σ2
x σ2

n = 15 γ̄ -0.6445 0.6550 0.0000 0.7303 0.4879

ρ -1.1479 1.2014 -0.0050 0.8207 0.6839

n = 25 γ̄ -0.4189 0.4271 0.0000 0.5657 0.4370

ρ -0.6038 0.6089 0.0068 0.5717 0.5319

n = 35 γ̄ -0.3249 0.3318 0.0000 0.4781 0.3870

ρ -0.4438 0.4729 0.0016 0.4453 0.4022

n = 50 γ̄ -0.2574 0.2631 0.0000 0.4000 0.3321

ρ -0.2992 0.3093 -0.0032 0.4223 0.3105

n = 100 γ̄ -0.1707 0.1748 0.0000 0.2828 0.2409

ρ -0.2388 0.2325 0.0449 0.2700 0.2454

n = 1000 γ̄ -0.0512 0.0525 0.0000 0.0894 0.0776

ρ -0.0720 0.0832 -0.0006 0.0487 0.0447

The estimated skewness for µ̂x = X̄ is zero as expected since the distribution of X̄ is symmetric.
9



6. An application

We consider an application to a small data set given by Fuller (1987, p. 18). Table 2 presents the data

which are yields of corn and determinations of available soil nitrogen collected at 11 sites on Marshall soil

in Iowa. Following Fuller (1987, p. 18), the estimates of soil nitrogen contain measurement errors arising

from two sources. First, only a small sample of soil is selected from each plot and, as a result, there is the

sampling error associated with the use of the sample to represent the whole population. Second, there is a

measurement error associated with the chemical analysis used to determined the level of nitrogen in the soil

sampled. The variance arising from these two sources is estimated as σ2
u = 57. According to Fuller (1987,

p. 18), the model (17) holds.

Table 2: Yields of corn on Marshall soil in Iowa.

Soil Soil

Yield Nitrogen Yield Nitrogen

Site (Y ) (X) Site (Y ) (X)

1 86 70 7 99 50

2 115 97 8 96 70

3 90 53 9 99 94

4 86 64 10 104 69

5 110 95 11 96 51

6 91 64

Table 3: MLEs (standard error) and asymptotic skewness.

Parameter MLEs γ (skewness)

α 66.8606 (11.73) -0.5670

β 0.4331 (0.16) 0.5793

µx 70.6364 (5.02) 0.0000

σ2
x 220.1405 (118.17) 0.8528

σ2 38.4058 (20.94) 0.7085

The MLEs, the corresponding standard errors and the estimated skewness are listed in Table 3. The

figures in this table show that the skewness of the MLEs of the variances σ2
x and σ2 are high (0.8528 and

0.7085, respectively) which indicates a departure from normality.

6.1. R code

We present below an R code to calculate the second-order skewness of the MLEs. The user just need to

give the expected information matrix Kθθ and the matrix M

require("Matrix")

K3.corrected<-function(K,M){

K<-solve(K)
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l<-ncol(K)

aux<-function(j)

matrix(kronecker(diag(l)[,j], K1[,j]))

D.K<-Matrix(sapply(1:l, aux),sparse=TRUE)

Kurtosis.corrected<-t(D.K)%*%kronecker(t(D.K),Diagonal(l))%*%as.vector(t(M)%*%K)

return(Kurtosis.corrected)

}

7. Conclusions and Remarks

We present a general matrix formula for computing the second-order skewness of the maximum likelihood

estimators (when their third central moments exist). The matrix formula was applied to a multivariate

normal nonlinear model and to an ARMA model. It can be easily implemented into a computer algebra

system such as Mathematica or Maple, or into a programming language with support for matrix operations,

such as Ox or R. In practice, the skewness can be applied to verify a departure from normality of these

estimators for finite sample sizes. We also provide an R code to compute the skewness.
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