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Measurement error models with a general class
of error distribution
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In general, the normal distribution is assumed for the surrogate of the true covariates in the classical
measurement error model. This paper considers a class of distributions, which includes the normal one,
for the variables subject to error. An estimation approach yielding consistent estimators is developed and
simulation studies reported.
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1. Introduction

The ordinary maximum likelihood (ML) approach in classical regression models, fails when
the independent variables are subject to error. The most noticeable and well known problem
reported in the literature is the inconsistency of the ML estimators [1]. To solve this problem, a
number of alternatives were proposed. The measurement error model (MEM) is the most fash-
ionable of them, but it has some limitations. It is necessary to know some parameters to avoid
inconsistencies resulting from unbounded likelihoods (functional version) and non-identifiability
(structural version). For more details see, for example [2] and references therein.

Typically [1], it is assumed that the errors are normally distributed, but the normal assumption
is not always tenable. Actually, this is a strong assumption that cannot always be satisfied in
practice. There are situations where the observed covariate is positive, so that its distribution may
not be appropriately approximated by a normal distribution.

The most important contributions of this article are to introduce a multiple regression model
in which some covariates subject to error are not necessarily normally distributed and to propose
a method for obtaining consistent estimators for all parameters of the model, based on the cor-
rected score approach. The method is computationally simple and can be implemented with any
statistical package. It extends the results in [3] that studied an MEM where the surrogate for the
unobservable true covariate is the event count per unit time. They regarded the Poisson distribution
for the surrogate variable, the rate of which is the unobserved true covariate. The authors justified
the proposed model with a medical example.

*Corresponding author. Email: hbolfar@ime.usp.br

ISSN 0233-1888 print/ISSN 1029-4910 online
© 2009 Taylor & Francis
DOI: 10.1080/02331880903023795
http://www.informaworld.com



2 A.G. Patriota and H. Bolfarine

The approach considered in this paper assumes certain moment conditions for the surrogate
variables which are satisfied by distributions other than the normal, like the gamma, Poisson [3],
uniform, Rayleigh, among others. The model structure makes it possible to use the corrected score
approach as considered in [4,5] yielding consistent and asymptotically normal estimators which
can be used for defining Wald type statistics for hypothesis testing.

The paper is organized as follows. Section 2 defines the model with general distribution for the
surrogates and deals with the estimation process for the general setup described above. Examples
involving normal, continuous uniform, gamma, Poisson and discrete uniform distributions for
the surrogate variable Xi are given in Section 2.1, where consistent estimators are provided in
each case. Section 3 studies the asymptotic theory regarding the estimators obtained in Section 2.
Section 4 presents simulations studies. Section 5 concludes the paper with final discussions and
comments.

2. The general MEM and the corrected score approach

Assume that one observes the triplet (Yi, X�
i ,W�

i ) for each individual i = 1, . . . , n, where Yi is
the response variable, Xi (with dimensions p × 1) and W i (with dimensions q × 1) are indepen-
dent vectors with and without measurement error, respectively. That is, Xi is a random vector
and it is observed instead of xi (the true unobservable covariate). The W i vector may contain
indicator variables, e.g., gender, treatment received or continuous variables as age, weight of the
ith individual. The following linear relationship among Yi , W i and xi is considered:

Yi = β�W i + γ�xi + ei,

Xi ∼ G ∈ C(xi , g1, g2),
(1)

where W i and xi are non-stochastic vectors, C(xi , g1, g2) is a class of distributions and the
functions g1(·) and g2(·) satisfy

E[g1(Xi )] = xi , and E[g2(Xi )] = xix�
i (2)

where xi is the true unobservable (p × 1) vector. We also assume that ei

iid∼ N (0, σ 2) and Yi is
independent of Xi . Notice that, the assumptions made for the model (1) are not much restrictive
and the functions g1 and g2 do not specify any specific distribution, but a family of distributions.
Moreover, the functions (2) are sufficient to estimate the model parameters and their covariance
matrix using the corrected score approach. To the highest degree of generality we can consider
in implementing our approach, we need only to specify the form of the functions g1(·) and g2(·)
defined in (2) above. Clearly, when a distribution is specified for Xi then the functions gk , k = 1, 2
are naturally specified. For example, in the normal case with Var(Xi ) = � known and E(Xi )

= xi , we have that g1(Xi ) = Xi and g2(Xi ) = XiX�
i − �.Another interesting example is when the

vector Xi has components which follow different distributions, e.g., suppose that Xi = (X1i , X2i )
�

such that X1i ∼ N (x1i , φi), X2i ∼ Poisson(x2i ) and Cov(X1i , X2i ) = ai , where ai and φi are
known for all i = 1, . . . , n. Then,

g1(Xi ) = Xi , g2(Xi ) =
[

X2
1i − φi X1iX2i − ai

X1iX2i − ai X2
2i − X2i

]
.

As we can see, the function g2 may depend on extra parameters which have to be known a priori
through other studies or extra data (such as replications), because the proposed model does not
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allow estimating those extra parameters. However, we must remark that there are many distribu-
tions which do not need extra parameters, such as Poisson, exponential, uniform (continuous and
discrete), Rayleigh and others.

We assume the functional model, namely no distribution is assumed for the unknown xi which
is considered then an incidental parameter (the structural version, however, can be assumed as
well). We define the parameter vector as θ = (β�, γ�, σ 2)�. One of the goals is to estimate θ

consistently and make inferences about (β�, γ�)�.
One way to deal with the measurement error problem is to replace xi with Xi in model (1)

and then maximize the associated log-likelihood function with respect to θ. This procedure is
known as the ‘naive’ estimation process and Xi being measured with error, the resulting ML
estimators are asymptotically biased [1]. In fact, the more inaccurate is the value of Xi , the more
distorted will be the estimator of γ and this can lead to other statistical imprecisions, specially
when dealing with confidence intervals and hypothesis testing. To overcome such difficulties, we
embrace the corrected score approach to estimate the parameters of the model (1). Nakamura
[4] proposed to correct the naive log-likelihood function �(θ,Y,W, X) such that its expectation
given the response variable is the unobserved log-likelihood function. That is, it requires finding
a function �+(θ,Y,W, X) such that

E[�+(θ,Y,W, X)|Y] = �(θ,Y,W, x), (3)

where Y = (Y1, . . . , Yn)
�, W = (W�

1 , . . . ,W�
n )�, X = (X�

1 , . . . , X�
n )� and x = (x�

1 , . . . , x�
n )�.

If differentiation and integration are interchangeable in (3), then the score function produced by the
corrected log-likelihood function, U+(θ,Y,W, X) = ∑

i U
+(θ, Yi,W i , Xi ) (we write U+(θ, X)

in short) will be unbiased. Thus, under the regularity conditions stated in [6], the estimator θ̃ such
that U+(θ̃, X) = 0 will be consistent. Following these ideas, the naive log-likelihood function is

�(θ) ∝ −n

2
log σ 2 − 1

σ 2

n∑
i=1

{(Yi − β�W i )
2 − 2(Yi − β�W i )X�

i γ + γ�XiX�
i γ}.

After some algebraic manipulations, it follows that the corrected log-likelihood function is
given by

�+(θ) ∝ −n

2
log σ 2 − 1

σ 2

n∑
i=1

{(Yi − β�W i )
2 − 2(Yi − β�W i )g1(Xi )

�γ + γ�g2(Xi )γ}

and its derivatives are given by

U+
1 (θ, X) = ∂�+(θ)

∂β
=

n∑
i=1

U+
i1(θ, X) (4)

U+
2 (θ, X) = ∂�+(θ)

∂γ
=

n∑
i=1

U+
i2(θ, X) (5)

and

U+
3 (θ, X) = ∂�+(θ)

∂σ 2
=

n∑
i=1

U+
i3(θ, X) (6)

where U+
i1(θ, X) = 1/σ 2{Yi − β�W i − γ�g1(Xi)}W i , U+

i2(θ, X) = 1/σ 2{(Yi − β�W i )g1(Xi ) −
g2(Xi)γ} and U+

i3(θ, X) = −1/(2σ 2) + 1/(2σ 4){(Yi − β�W i )
2 − 2(Yi − β�W i )g1(Xi )

�γ +
γ�g2(Xi )γ}.
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It is easy to see that the expectation of these derivatives are equal to zero. Moreover, their
expectations given Y are equal to the unobserved score functions. The corrected score estimators
are obtained equating (4)–(6) to zero and solving the resulting equations. Thus, they are given by

β̂n =
(

n∑
i=1

W iW�
i

)−1 n∑
i=1

W i[Yi − γ�g1(Xi )], (7)

γ̂n = H−1
n

⎡
⎣ n∑

i=1

g1(Xi )Yi −
n∑

i=1

g1(Xi )W�
i

(
n∑

i=1

W iW�
i

)−1 n∑
i=1

W iYi

⎤
⎦ (8)

and

σ̂ 2
n = 1

n

n∑
i=1

{(Yi − β�W i )
2 − 2(Yi − β�W i )g1(Xi )

�γ + γ�g2(Xi )γ}, (9)

where Hn = ∑
i g2(Xi )

� − ∑
i g1(Xi )W�

i (
∑

i W iW�
i )−1 ∑

i W ig1(Xi )
�. As we can see, the

estimators (7)–(9) have analytical solutions thus not requiring iterative procedures. Section 3
presents general regularity conditions by which the estimators (7)–(9) are consistent. We show
some examples in the next subsection to illustrate the usefulness of our approach.

2.1. Some special cases

In the examples below, we consider the simple regression model when there are only independent
variables subject to error. Assume also that W i = 1, β = β, Xi = Xi and γ = γ are all scalars.

The model (1) reduces to Yi = β + γ xi + ei , where ei

iid∼ N (0, σ 2), i = 1, . . . , n.

Example 2.1 (Normal distribution) Suppose that Xi ∼ N (xi, φ
2
i ) with known φi for all i =

1, . . . , n. Notice that g1(Xi) = Xi and g2(Xi) = X2
i − φ2

i , i = 1, . . . , n. Hence, the consistent
estimators for β, γ and σ 2 are given by

β̂n = Ȳ − γ̂nX̄, γ̂n =
∑n

i=1 YiXi − nȲ X̄∑n
i=1 X2

i − nX̄2 − φ2
i

and σ̂ 2
n = 1

n

n∑
i=1

{
(Yi − β̂n − γ̂nXi)

2 − φ2
i γ̂

2
n

}
.

Example 2.2 (Uniform distribution) Suppose that Xi ∼ U(0, xi). Notice that g1(Xi) = 2Xi and
g2(Xi) = 3X2

i . Then, the consistent estimators for β, γ and σ 2 are given by

β̂n = Ȳ − 2γ̂nX̄, γ̂n =
∑n

i=1 YiXi − nȲ X̄

1.5
∑n

i=1 X2
i − 2nX̄2

and σ̂ 2
n = 1

n

n∑
i=1

{
(Yi − β̂n − γ̂nXi)

2 − γ̂ 2
n X2

i

}
.

Example 2.3 (Gamma distribution) Suppose that Xi ∼ G(xi, φ) with φ known, E(Xi) = xi >

0 and Var(Xi) = φx2
i . Notice that g1(Xi) = Xi and g2(Xi) = X2

i /(φ + 1) and when φ = 1 it
becomes the exponential distribution. Then, the consistent estimators for β, γ and σ 2 are given by

β̂n = Ȳ − γ̂nX̄, γ̂n =
∑n

i=1 YiXi − nȲ X̄

(1 + φ)−1
∑n

i=1 X2
i − nX̄2

and

σ̂ 2
n = 1

n

n∑
i=1

{
(Yi − β̂n − γ̂nXi)

2 − φ

1 + φ
γ̂ 2

n X2
i

}
.
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Example 2.4 (Poisson distribution; [3]) Suppose that Xi ∼ P(xi). Notice that g1(Xi) = Xi and
g2(Xi) = X2

i − Xi . Then, the consistent estimators for β, γ and σ 2 are as follows

β̂n = Ȳ − γ̂nX̄, γ̂n =
∑n

i=1 YiXi − nȲ X̄∑n
i=1 X2

i − nX̄(1 + X̄)
and σ̂ 2

n = 1

n

n∑
i=1

{(Yi − β̂n − γ̂nXi)
2 − γ̂ 2

n Xi}.

Example 2.5 (Discrete uniform distribution) Suppose that Xi ∼ U{0, . . . , xi}. Notice that
g1(Xi) = 2Xi and g2(Xi) = 3X2

i − Xi . Then, the consistent estimators for β, γ and σ 2 are as
follows

β̂n = Ȳ − 2γ̂nX̄, γ̂n =
∑n

i=1 YiXi − nȲ X̄

1.5
∑n

i=1 X2
i − nX̄(0.5 + 2X̄)

and

σ̂ 2
n = 1

n

n∑
i=1

{(Yi − β̂n − γ̂nXi)
2 − γ̂ 2

n X2
i }.

Many other distributions may be assigned to Xi . The Rayleigh distribution, for example,
has mean xi

√
π/2 and variance x2

i (4 − π)/2, therefore the functions that are used to estimate
consistently the parameters are given by g1(Xi) = Xi

√
2/π and g2(Xi) = (1/2)X2

i .
In general, the distribution of Xi may not be specified. It suffices to provide the functions

g1(·) and g2(·). Notice that if we take g1(Xi) = Xi and g2(Xi) = X2
i − φ2, then there are many

distributions for Xi that comply with these conditions. For example, if Xi has normal (with
mean xi and variance φ2) or logistic (with mean xi and variance φ2 = (π2/3)s2, where s > 0
is the scale parameter known) distributions then the functions g1(·) and g2(·) are the same for
both cases. Another useful example is the gamma and the normal multiplicative models, namely
Xi ∼ N (xi, x

2
i φ) and Xi ∼ G(xi, φ) generate the same functions g1(·) and g2(·). Therefore, this

paper considers the distribution of Xi that lies in the family C{xi, g1, g2} which includes all
distributions that generate the same functions gk, k = 1, 2.

3. Large sample results

Define U+
i (θ) = (U+

i1(θ, X)�, U+
i2(θ, X)�, U+

i3(θ, X))�,

I+
n (θ) = −1

n

n∑
i=1

∂U+
i (θ)

∂θ
and �̄

+
n (θ) = 1

n

n∑
i=1

U+
i (θ)U+

i (θ)�. (10)

Further, let

�̄
+
n (θ) = E[I+

n (θ)] and �̄
+
n (θ) = E[�̄+

n (θ)]. (11)

We consider the valid regularity conditions stated in [6] regarding the estimating equations
(4)–(6).As a result [2], the estimator θ̂n is consistent and n1/2L1/2

n (θ̂n − θ) converges in distribution
to a standard multivariate normal distribution, where L1/2

n (θ) = �̄
+
n (θ)−1/2�̄

+
n (θ) (see also [5] for

regularity conditions regarding the asymptotic behaviour of the matrices (10) and (11)).
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Therefore, in our proposed model we must compute the matrices �̄
+
n (θ) and �̄

+
n (θ) to find a

consistent estimator for the asymptotic covariance matrix of θ̂n. It can be shown that

�̄
+
n (θ) = 1

n

n∑
i=1

E[I+
i (θ)] = 1

nσ 2

⎡
⎢⎢⎢⎢⎢⎣

∑
i

W iW�
i

∑
i

W ix�
i 0q

∑
i

xiW�
i

∑
i

xix�
i 0p

0�
q 0�

p

n

2σ 2

⎤
⎥⎥⎥⎥⎥⎦ .

It also follows that �̄
+
n (θ) is consistently estimated by �̄

+
n (θ̂n) and then we have that a consistent

estimator for the asymptotic covariance matrix of θ̂n is given by

̂Var(θ̂n) = 1

n
�̄

+
n (θ̂n)

−1�̄
+
n (θ̂n)�̄

+
n (θ̂n)

−�,

which can be implemented using some statistical software, such as R Development Core Team [7].
Thus, we can test the hypothesis H0: Gθ1 = d, where G is a specified matrix, θ1 = (β�, γ�)�

and d is a vector with appropriate dimensions. The Wald type statistics for testing this hypothesis
is given by

Wn = (Gθ̂1n − d)�[GPn(θ̂n)G�]−1(Gθ̂1n − d ), (12)

where Pn(θ̂n) = [Ic×c, 0c×1] ̂Var(θ̂n)[Ic×c, 0c×1]� and c = p + q. Here, Wn converges in distri-
bution to a χ2 distribution with r degrees of freedom, where r is the rank of G. As shown in [8], the
likelihood ratio statistics based on the corrected likelihood function l+(.) does not follow central
chisquare distribution.

4. Simulation study

To assess the performance of the proposed model and methods, we conducted two simulation
studies using the statistical package R Development Core Team [7]. In both simulations, we
considered the multiple linear regression model Yi = β1 + β2Ti + γ xi + ei , where Ti represents
the treatment (taking value one, if the ith experimental unit received the treatment and zero oth-
erwise). The generation was performed considering that the first n/2 individuals received the
treatment and the remainder n/2 the innocuous (placebo) substance. Values for the other param-
eters were taken as: β1 = 1, β2 = 2, γ = 1 and Var(ei) = 5. We took xi ∼ Uniform{1, . . . , 10},
i = 1, . . . , n. For each of the two scenarios described next, 25,000 samples of sizes n =50, 100
and 200 were generated. They are: (i) Xi ∼ G(xi, 0.01), that is, Xi has Gamma distribution with
E(Xi) = xi and Var(Xi) = 0.01x2

i and (ii) Xi ∼ P(xi), that is, Xi has Poisson distribution with
E(Xi) = xi and Var(Xi) = xi . For each generated sample, we compute the estimates using the
proposed model (assuming known the functions g1 and g2 of Xi for each scenario). Table 1 shows
the empirical median square error (MSE) and the bias for the estimators in the scenarios (i) and
(ii), respectively. That is, let δjn = θ̂

(j)
n − θ , where θ̂

(j)
n is the estimate of θ in the j th Monte Carlo

simulation when the sample size is n. The MSE is the median of {δ2
1n, . . . , δ

2
Nn} and the bias is

the median of {δ1n, . . . , δNn}. The median was used because it is more robust against discrepant
points. Although the asymptotic distribution of

√
nδni is normal (when n goes to infinity), it can be

asymmetric, elliptical or bi-modal for small values of n. We study the behaviour of the estimators
(7)–(9) for samples sizes 50, 100 and 200, as reported above.
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Table 1. Bias and MSE for parameter estimators under Gamma and Poisson distributions as in
scenarios (i) and (ii).

Gamma distribution
Rates of

Sample size rejection (%) β1 β2 γ1 σ 2

MSE bias n = 50 0.58 0.6749 0.3428 0.0188 1.6996
−0.2056 0.0450 0.0360 −0.7091

MSE bias n = 100 0 0.2593 0.1470 0.0103 0.7130
−0.1023 −0.0004 0.0207 −0.3618

MSE bias n = 200 0 0.1576 0.0842 0.0045 0.4280
−0.0570 0.0009 0.0099 −0.1954

Poisson distribution

β1 β2 γ1 σ 2

MSE bias n = 50 3.67 0.7792 0.4069 0.0217 2.2102
−0.1877 0.0310 0.0313 −0.7669

MSE bias n = 100 0.32 0.4037 0.1912 0.0123 1.1485
−0.1351 0.0095 0.0245 −0.4648

MSE bias n = 200 0.01 0.2221 0.0970 0.0066 0.5713
−0.0716 −0.0075 0.0128 −0.2118

Note: Rejection rates are the percentage of negative estimates σ̂ 2
n .

Table 2. Rejection rates for the hypothesis H0: γ = γ0 (at the 5% nominal level) using the
Wald type statistics (12) when n = 50, 100 and 200 under scenarios (i) and (ii) and under
least squares (ordinary model).

Gamma Poisson

Proposed model Ordinary model Proposed model Ordinary model

n = 50

γ0 −3 5.70 <0.01 6.00 2.43
−2 5.08 0.01 6.02 1.56
−1 4.26 0.01 4.83 0.29

1 4.50 0.04 4.74 0.24
2 5.16 <0.01 5.46 1.36
3 5.31 0.01 5.69 2.24

n = 100

γ0 −3 5.44 <0.01 5.83 1.32
−2 5.03 <0.01 5.62 0.63
−1 4.64 0.02 4.77 0.01

1 4.86 0.02 4.80 0.03
2 4.96 <0.01 5.50 0.60
3 4.98 <0.01 6.06 1.16

n = 200

γ0 −3 5.16 <0.01 5.88 0.51
−2 5.03 <0.01 5.30 0.10
−1 4.71 0.01 4.73 <0.01

1 4.91 <0.01 4.74 <0.01
2 4.75 <0.01 5.22 0.14
3 5.44 <0.01 5.95 0.48

The estimator σ̂ 2
n obtained using (9) returns negative values for some samples. All such samples

were eliminated. Table 1 brings also the percentage of such samples for each sample size. As can
be depicted from Table 1, the estimator (9) goes to a positive value closer to σ 2. We also conducted
the simulations with other combinations of parameters. They seem to agree with the conclusions
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Figure 1. Histograms for σ̂ 2
n when n = 100.

presented above and so they are not reported. We observed in the simulations that the smaller the
variance of ei , σ 2, the greater the percentage of eliminated samples, which is clearly expected.
Our approach showed a desirable performance, although for small variances σ 2 and small sample
sizes (situations hardly expected in practice) it is possible to have negative variance estimates.
Clearly, one way to avoid negative estimates of σ 2 is to use large samples.

Finally, Table 2 depicts the empirical test sizes for testing H0: γ = γ0, (γ0 = −3, −2, . . . , 2, 3)

for the Wald statistics at the 5% nominal level, when n = 50, 100, 200 under scenarios (i) and
(ii). The Wald statistics is also computed under the ordinary model, that is, using the least squares
estimators, without measurement error correction. As can be seen, the empirical test sizes for the
approach proposed in this paper is much closer to the real nominal level than the corresponding
empirical levels for the Wald statistics using ordinary least squares estimates. Figure 1 depicts the
histograms for σ̂ 2

n when n = 100 considering Gamma and Poisson distributions for Xi |xi (using
the same setup described above for the other parameters). As can be seen, the histogram is quite
symmetric indicating good agreement with the normal distribution.

5. Final discussion

This paper considered a class of distributions for the surrogate vector of xi (the unobserved
covariate) generalizing previous works in the literature. The simulation studies showed that if
the distribution of the surrogate variable is well specified, then the corrected estimators proposed
present good behaviour in the sense of decreasing bias and MSE and the Wald statistics based on
those estimators present empirical test sizes close to the nominal levels adopted. Such features
seem no to be shared by the ordinary least squares estimators which present a much poorer
performance. Furthermore, the corrected estimators are easily obtained and iterative procedures
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are not required. We emphasize that supplemental data for error correction are not necessary if the
surrogate distribution is Poisson, exponential, continuous uniform, discrete uniform or any other
distribution having no additional parameters to be estimated. As mentioned by a referee, one can
consider σ 2 as a function of the location parameters β and γ in order to avoid negative estimates
for it. We expect to report on such more general situations in incoming papers.
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