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Abstract

In this paper we introduce a general elliptical multivariate regression model in which the mean
vector and the scale matrix have parameters (or/and covariates) in common. This approach uni-
fies several important elliptical models, such as nonlinear regressions, mixed-effects model with
nonlinear fixed effects, errors-in-variables models, and so forth. We discuss maximum likeli-
hood estimation of the model parameters and obtain the information matrix, both observed and
expected. Additionally, we derived the generalized leverage as well as the normal curvatures of
local influence under some perturbation schemes. An empirical application is presented for illus-
trative purposes.

Key words: Elliptical distributions; Generalized leverage; Local influence; Maximum likelihood
estimation; Multivariate models.

1 Introduction

It is well known that the normality assumption is not always tenable and alternative distributions
(or methodologies) should be considered in such situations. One choice is the elliptical family of
distributions which includes the normal one. This class of distributions has received an increasing
attention in the statistical literature, particularly due to the fact of including important distributions
as, for example, Student-t, power exponential, contaminated normal, among others, with heavier or
lighter tails than the normal one.

We say that a d × 1 random vector Y has a multivariate elliptical distribution with location pa-
rameter µ (d×1) and a positive definite scale matrix Σ (d×d) if its density function exists, it is given
by (Fang et al., 1990)

fY (y) = |Σ|−1/2g
[
(y − µ)>Σ−1(y − µ)

]
, y ∈ Rd, (1)

where g : R → [0,∞) is such that
∫∞
0
u

d
2
−1g(u)du < ∞. The function g(·) is known as the density

generator. We will denote Y ∼ Ed(µ,Σ, g), or, simply, Y ∼ Ed(µ,Σ). When µ = 0 and Σ = Id,
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where Id is a d× d identity matrix, we obtain the spherical family of densities. A detailed description
of the elliptical multivariate class given in (1) can be found in Fang et al. (1990). Table 1, taken from
Galea et al. (2000), reports examples of distributions in the elliptical family.

Table 1: Multivariate elliptical distributions.†

Distribution Notation Generating function

Normal Nd(µ,Σ) g(u) = c exp(−u/2), u ≥ 0

Student-t td(µ,Σ, ν) g(u) = c(1 + u/ν)−(ν+d)/2, u ≥ 0

Contaminated normal CN d(µ,Σ, δ, τ) g(u) = c{(1− δ) exp(−u/2)

+δτ−d/2 exp(−u/(2τ))}, u ≥ 0

Cauchy Cd(µ,Σ) g(u) = c(1 + u)−(d+1)/2, u ≥ 0

Logistic Ld(µ,Σ) g(u) = ce−u/(1 + e−u)2, u ≥ 0

Power Exponential PEd(µ,Σ, α) g(u) = c exp(−uα/2), u ≥ 0

†c denotes the normalizing constant.

Assuming g(·) continuous and differentiable, it is useful to define the following quantities in the
elliptic context:

Wg(u) =
d

du
log g(u) =

g′(u)

g(u)
and W ′

g(u) =
d

du
Wg(u) =

g′′(u)

g(u)
−
(
g′(u)

g(u)

)2

,

where g′(u) = dg(u)/du and g′′(u) = dg′(u)/du. For example, we have

Wg(u) = −1

2

(
ν + d

ν + u

)
and W ′

g(u) =
1

2

(√
ν + d

ν + u

)2

for Student-t distribution with ν degrees of freedom (Lange et al., 1989) and

Wg(u) = −αu
α−1

2
and W ′

g(u) = −α(α− 1)uα−2

2

for power exponential (Gómes et al., 1998).
Multivariate elliptical regression models have been extensively studied in the statistical literature.

In fact, some important references are Lange et al. (1989), Welsh and Richardson (1997), Kowalski
et al. (1999), Fernández and Steel (1999), Galea et al. (2000), Liu (2000, 2002), Dı́az–Garcı́a et al.
(2003), Cysneiros and Paula (2004), Savalli et al. (2006), Dı́az–Garcı́a et al. (2007), Osorio et al.
(2007) and Russo et al. (2009), among others. The class of models proposed in this article includes
all the models considered in the papers above and several others as special cases, e.g., multivariate
errors-in-variables models, either with homoskedastic or heteroskedastic structures, mixed models
with some regressors subject to measurement errors, and so forth. Our approach unifies several im-
portant models which can be thought from a multivariate elliptical model. Here, the modelling is

2



made directly in the (observable) response variable (in mixed models context, it is known as marginal
model).

In this paper we introduce a class of multivariate regression models with general parameterization
based on the elliptical distribution given in (1). Here, general parameterization has the same meaning
as defined by Patriota and Lemonte (2009). We consider that the mean vector and the positive definite
scale matrix share parameters. For example, in structural errors-in-variables models some variables
cannot be measured exactly, but instead it is observed surrogate variables contaminated with errors.
This characteristic makes the mean vector shares parameters with the scale matrix of the observed
variables. Thus, the model proposed in this paper is justified. Additionally, we develop local influ-
ence diagnostics based on minor perturbations in the data and in the assumed model and derive an
expression for the generalized leverage.

The rest of the paper is organized as follows. Section 2 presents the model and discusses the
estimation of the model parameters by maximum likelihood. We present the score function, Fisher
information matrix and an iterative process to obtain the maximum likelihood estimates. Section
3 deals with some basic calculations related with local influence. The normal curvatures of local
influence are derived under some perturbation schemes in Section 4. An expression for the generalized
leverage is derived in Section 5. A special model is considered in Section 6. Section 7 contains an
empirical application. Finally, some concluding remarks are made in Section 8.

2 The model

Let Y1,Y2, . . . ,Yn be observable independent vectors which the number of responses measured in
the ith observation is qi. Following the same idea introduced in Patriota and Lemonte (2009), the
multivariate elliptical regression model with general parameterization can be written as

Yi = µi(θ) + ui, i = 1, 2, . . . , n, (2)

with ui ∼ Eqi(0,Σi(θ)) and hence Yi ∼ Eqi(µi(θ),Σi(θ)). Also, µi(θ) = µi(θ,xi) is the mean
and Σi(θ) = Σi(θ,wi) is the positive definite scale matrix, where xi and wi are mi × 1 and ki × 1

nonstochastic vectors of auxiliary variables, respectively, associated with the ith observed response
Yi which may have common components. Both µi(θ) and Σi(θ) have known functional forms and
are twice differentiable with respect to each element of θ. Additionally, θ = (θ1, θ2, . . . , θp)

> is a
p-vector of unknown parameters of interest (where p < n and it is fixed). Since θ must be identifiable
in model (2), the functions µi(θ) and Σi(θ) are defined to accomplish such restriction.

It is important to observe that Σi(θ) is proportional to the variance-covariance matrix of Yi by a
quantity ξi > 0 which depends on the assumed elliptical distribution. For example, under normal and
Student-t models, ξi = 1 and ξi = ν/(ν − 2), respectively, for ν > 2. For further details the reader is
referred to Fang et al. (1990).
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The class of models presented in (2) is quite broad and includes several important statistical mod-
els. As a first example, we can mention linear and nonlinear regression models, either homoskedastic
or heteroskedastic. Recently, heteroskedastic structural measurement error models have been studied
by many authors, for instance, Kulathinal et al. (2002), Cheng and Riu (2006), Kelly (2007), de Cas-
tro et al. (2008) and Patriota et al. (2009). These models can also be formulated as in (2). Structural
equation models (e.g., Bollen, 1989; Lee et al., 2006) is a rich class of models with latent variables
that can be put as in (2). As can be seen, model (2) encompasses a wide range of models and our list
of examples is by no means exhaustive. Section 6 presents an important special case that shows the
applicability of the general formulation.

Let µi = µi(θ,xi), Σi = Σi(θ,wi), zi = Yi − µi and ui = z>i Σ−1i zi. The log-likelihood
function associated with (2), except for a constant term, is given by

`(θ) =
n∑
i=1

`i(θ), (3)

where `i(θ) = −1
2

log |Σi| + log g(ui). The functions g(·), µi and Σi must be defined in such way
that `(θ) be a regular function with respect to θ (Cox and Hinkley, 1974, Ch. 9). To obtain the
score function and the Fisher information matrix, we need to derive `(θ) with respect to the unknown
parameters and then computing some moments of such derivatives. We suppose that such derivatives
exist. To compute the derivatives of `(θ) we make use of matrix differentiation methods (Magnus and
Neudecker, 1988).

Some additional notation is in order. Let

ai(r) =
∂µi
∂θr

, Ci(r) =
∂Σi

∂θr
, Ai(r) = −Σ−1i Ci(r)Σ

−1
i ,

for r = 1, 2, . . . , p. Additionally, let

Fi =

(
Di

Vi

)
, Hi =

(
Σi 0

0 2Σi ⊗Σi

)−1
, si =

[
vizi

−vec(Σi − viziz>i )

]
, (4)

where Di = ∂µi/∂θ
>, Vi = ∂vec(Σi)/∂θ

> and vi = −2Wg(ui). Here, we assume that F =

(F>1 ,F
>
2 , . . . ,F

>
n ) has rank p, i.e. the functions µi and Σi must be defined to hold such condition.

Also, the “vec” operator transforms a matrix into a vector by stacking the columns of the matrix one
underneath the other and “⊗” indicates the Kronecker product. These quantities are used to find the
derivatives of the log-likelihood function which will be required to compute the score function, Fisher
information and all the normal curvatures of local influence.

By using the defined quantities in (4) and after some straightforward matrix algebra, the score
function for θ can be written as

Uθ =
n∑
i=1

F>i Hisi. (5)
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The expected Fisher information matrix for θ is (see Appendix A)

Kθ =
n∑
i=1

F>i HiMiHiFi, (6)

with

Mi =

[
4dgi
qi

Σi 0

0
8fgi

qi(qi+2)
Σi ⊗Σi

]
+

[
0 0

0
(

4fgi
qi(qi+2)

− 1
)

vec(Σi)vec(Σi)
>

]
,

where dgi = E(W 2
g (Ui)Ui) and fgi = E(W 2

g (Ui)U
2
i ), with Ui = ||Li||2, Li ∼ Eqi(0, Iqi). Naturally,

function g(u) is such that dgi and fgi exist for all i = 1, 2, . . . , n. It is possible to obtain closed-
form expressions for dgi and fgi for some multivariate elliptical distributions. For example, we have
(Mitchell, 1989)

dgi =
qi
4

(
qi + ν

qi + ν + 2

)
and fgi =

qi(qi + 2)

4

(
qi + ν

qi + ν + 2

)
for Student-t distribution and

dgi =
α2

21/α
Γ

(
qi − 2

2α
+ 2

)
Γ

(
qi
2α

)−1
and fgi =

qi(qi + 2α)

4

for power exponential, where Γ(·) denotes the gamma function. It should be noticed that matrix Mi

has all information about the adopted distribution. Also, note that the expected Fisher information is
a quadratic form which can be attained through simple matrix operations. If µi(θ) and Σi(θ) have
not parameters in common, i.e. µi(θ) = µi(θ1) and Σi(θ) = Σi(θ2), where θ = (θ>1 ,θ

>
2 )>, then

Fi = block–diag{Fi(θ1),Fi(θ2)} and the parameter vectors θ1 and θ2 will be orthogonal.
It is noteworthy that dgi and fgi may have unknown quantities (for instance, the degrees of free-

dom ν in the Student-t distribution and the shape parameter α in the power exponential distribution)
and one may want to estimate these quantities via maximum-likelihood estimation. However, Lu-
cas (1997) studies some robustness aspects of the Student-t M-estimators using influence functions
and shows that the protection against “large” observations is only valid when the degrees of freedom
parameter is kept fixed. Therefore, for the purpose of avoiding possible lack of protection against
outliers, we do not estimate dgi and fgi by maximum likelihood and instead of it, we kept fixed all
quantities involved with them. Otherwise, unboundedness problems may arise for the influence func-
tions and the elliptical distribution will lose its main goal. It is worth emphasizing that, the problem
with the influence functions verified by Lucas (1997) is proven only for the Student-t distribution,
but it may also happen for other distributions when one estimates dgi and fgi via maximum likeli-
hood (it happens at least with Student-t distribution). This issue is an open problem and needs more
attention but it is beyond of the main scope of this paper. In practice, one can use model selection
procedures, such as the Akaike information criterion (AIC), to choose the more appropriate values of
such unknown parameters.
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The Fisher scoring method can be used to estimate θ by iteratively solving the equation

(F (m)>W (m)F (m))θ(m+1) = F (m)>W (m)s∗(m), m = 0, 1, . . . , (7)

where
W (m) = H(m)M (m)H(m), F (m) = (F

(m)>
1 ,F

(m)>
2 , . . . ,F (m)>

n )>,

H(m) = block–diag{H(m)
1 ,H

(m)
2 , . . . ,H(m)

n },

M (m) = block–diag{M (m)>
1 ,M

(m)>
2 , . . . ,M (m)>

n },

s∗(m) = F (m)θ(m) +H−1(m)M−1(m)s(m), s(m) = (s
(m)>
1 , s

(m)>
2 , . . . , s(m)>

n )>,

and m is the iteration counter. Each loop, through the iterative scheme (7), consists of an iterative
re-weighted least squares algorithm to optimize the log-likelihood (3). Using equation (7) and any
software (for instance, MAPLE, MATLAB, Ox, R, SAS) with a weighted linear regression routine one
can compute the MLE θ̂ iteratively. The iterations continue until convergence is achieved (a stopping
criterion must be defined). Sometimes this iterative algorithm does not converge, neither find the
actual maximum of the likelihood function nor a relative maximum point which is an interior point
of a restricted parametric space. In these cases, other numerical methods can be used such as the
Gauss-Newton and Quasi-Newton methods.

Note that the score function and the Fisher information matrix for θ can be written as, respectively,
Uθ = F>Hs and Kθ = F>WF . We have vi = 1 and M = H−1 for the normal model, which
implies that W = H . Thus, equations (5)-(7) agree with the result due to Patriota and Lemonte
(2009).

3 Local influence

The local influence method is recommended when the concern is related to investigate the model
sensitivity under some minor perturbations in the model (or data). Let ω be a k-dimensional vector
of perturbations restricted to some open subset Ω of Rk. The perturbed log-likelihood function is
denoted by `(θ|ω). We consider that exists a no perturbation vectorω0 ∈ Ω such that `(θ|ω0) = `(θ),
for all θ. The influence of minor perturbations on the MLE θ̂ can be assessed by using the likelihood
displacement LDω = 2{`(θ̂)− `(θ̂ω)}, where θ̂ω denotes the maximizer of `(θ|ω).

The idea for assessing local influence as advocated by Cook (1986) is essentially the analysis of
the local behavior of LDω around ω0 by evaluating the curvature of the plot of LDω0+ad against a,
where a ∈ R and d is a unit direction. One of the measures of particular interest is the direction dmax

corresponding to the largest curvature Cdmax . The index plot of dmax may evidence those observations
that have considerable influence on LDω under minor perturbations. Also, plots of dmax against
covariate values may be helpful for identifying atypical patterns. Cook (1986) showed that the normal
curvature at the direction d is given by Cd(θ) = 2|d>∆>L̈−1θθ∆d|, where ∆ = ∂2`(θ|ω)/∂θ∂ω>
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and L̈θθ = ∂2`(θ)/∂θ∂θ>, both ∆ and L̈θθ are evaluated at θ = θ̂ and ω = ω0. Moreover, Cdmax

is twice the largest eigenvalue of B = −∆>L̈−1θθ∆ and dmax is the corresponding eigenvector. The
index plot of dmax may reveal how to perturb the model (or data) to obtain large changes in the
estimate of θ.

Assume that the parameter vector θ is partitioned as θ = (θ>1 ,θ
>
2 )>. The dimensions of θ1 and

θ2 are p1 and p− p1, respectively. Let

L̈θθ =

(
L̈θ1θ1 L̈θ1θ2
L̈>θ1θ2 L̈θ2θ2

)
,

where L̈θ1θ1 = ∂2`(θ)/∂θ1∂θ
>
1 , L̈θ1θ2 = ∂2`(θ)/∂θ1∂θ

>
2 and L̈θ2θ2 = ∂2`(θ)/∂θ2∂θ

>
2 . If the

interest lies on θ1, the normal curvature in the direction of the vector d is Cd;θ1(θ) = 2|d>∆>(L̈−1θθ −
L̈22)∆d|, where

L̈22 =

(
0 0

0 L̈−1θ2θ2

)
and dmax;θ1 here is the eigenvector corresponding to the largest eigenvalue of B1 = −∆>(L̈−1θθ −
L̈22)∆ (see Cook, 1986). The index plot of the dmax;θ1 may reveal those influential elements on θ̂1.

In order to have a curvature invariant under a uniform change of scale, Poon and Poon (1999)
introduce the conformal normal curvature Bd(θ) in the direction of the unit vector d, given by

Bd(θ) = − d>∆>L̈−1θθ∆d√
tr{(∆>L̈−1θθ∆)2}

,

evaluated at ω = ω0 and θ = θ̂. An interesting property of the conformal normal curvature is that
0 ≤ Bd(θ) ≤ 1. Thus, it can be easily computed once Cd(θ) was obtained. This quantity can be seen
as a normalized version of Cd(θ).

4 Curvature calculations

In the section, we derive the matrix ∆ for different perturbation schemes. These matrices are obtained
using results of matrix differentiation (Magnus and Neudecker, 1988). We shall consider the case-
weight perturbation, scale matrix and response variable perturbation schemes, that is, we derive (for
three perturbation schemes) the matrix

∆ = {∆ri} =

{
∂2`(θ|ω)

∂θr∂ωi

}∣∣∣∣
θ=θ̂,ω=ω0

, i = 1, 2, . . . , k and r = 1, 2, . . . , p,

considering the defined model in (2) and its log-likelihood function given by (3). The quantities
distinguished by the addition of “̂” are evaluated at θ̂. The observed information matrix used in the
calculation of the normal curvature is given in Appendix B.
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4.1 Case weight perturbation

The perturbation of cases is done by attaching some weight to each observation in the log-likelihood
resulting in `(θ|ω) =

∑n
i=1 ωi`i(θ), where ω = (ω1, ω2, . . . , ωn)>, with ωi ≥ 0, for i = 1, 2, . . . , n,

and ω0 = 1n = (1, 1, . . . , 1)> is the vector of no perturbations. Using matrix differentiation rules
along with the notations defined in Section 2, we find

∆ri =
1

2
tr{Âi(r)(Σ̂i − v̂iẑiẑ>i )}+ v̂iâ

>
i(r)Σ̂

−1
i ẑi, (8)

for r = 1, 2, . . . , p and i = 1, 2, . . . , n. Here, v̂i = vi(θ̂) for i = 1, 2, . . . , n. In matrix notation, the
p× n matrix ∆ can be written as

∆ =
(
F̂>1 Ĥ1ŝ1, F̂

>
2 Ĥ2ŝ2, . . . , F̂

>
n Ĥnŝn

)
,

where Fi, Hi and si (for i = 1, 2, . . . , n) were defined in Section 2. For normal models, expression
(8) reduces to the one derived by Patriota et al. (2010).

4.2 Scale matrix perturbation

The scale matrix perturbation is introduced by considering

Yi ∼ Eqi(µi(θ), ω−1i Σi(θ)), i = 1, 2, . . . , n,

where ω = (ω1, ω2, . . . , ωn)> ∈ Rn−{0} and ω0 = 1n such that `(θ|ω0) = `(θ) given in (3). Thus,
we have

∆ri = {Wg(ûi) + ûiW
′
g(ûi)}

[
ẑ>i(r)Âi(r)ẑi − 2â>i(r)Σ̂

−1
i ẑi

]
, (9)

for r = 1, 2, . . . , p and i = 1, 2, . . . , n. In matrix notation, the p× n matrix ∆ takes the form

∆ =
(
F̂>1 Ĥ1r̂1, F̂

>
2 Ĥ2r̂2, . . . , F̂

>
n Ĥnr̂n

)
,

where

r̂i = −2{Wg(ûi) + ûiW
′
g(ûi)}

[
ẑi

vec(ẑiẑ
>
i )

]
.

Expression (9) reduces to the one given by Patriota et al. (2010) for normal models.

4.3 Response perturbation

Here, the response variable Yi is perturbed according to Y ∗i = Yi + ωi, where ωi denotes the qi × 1

perturbation vector and ω = (ω>1 ,ω
>
2 , . . . ,ω

>
n )>, so that the no perturbation vector is ω0 = 0,

where ω ∈ RN (N =
∑n

i=1 qi). In this case, the perturbed log-likelihood function is also given by
`(θ|ω) =

∑n
i=1 `i(θ|ω), where

`i(θ|ω) = −1

2
log |Σi|+ log g(uiw),
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where uiw = z>iwΣ−1i ziw, with ziw = zi + ωi. We obtain

∆ri = −2â>i(r)Σ̂
−1
i

{
Wg(ûi)Σ̂i + 2W ′

g(ûi)ẑi(r)ẑ
>
i(r)

}
Σ̂−1i

+ 2ẑ>i Âi(r)

{
Wg(ûi)Σ̂i +W ′

g(ûi)ẑi(r)ẑ
>
i(r)

}
Σ̂−1i ,

(10)

for r = 1, 2, . . . , p and i = 1, 2, . . . , n. In matrix notation, the p×N matrix ∆ is given by

∆ =
(
F̂>1 Ĥ1Ĝ1, F̂

>
2 Ĥ2Ĝ2, . . . , F̂

>
n ĤnĜn

)
,

where

Ĝi = −2

(
Wg(ûi)Iqi + 2W ′

g(ûi)ẑiẑ
>
i Σ̂−1i

2ẑi ⊗
[
Wg(ûi)Iqi +W ′

g(ûi)ẑiẑ
>
i Σ̂−1i

]) .
For normal models the expression (10) reduces to the one given by Patriota et al. (2010).

5 Generalized leverage

Let Y = vec(Y1,Y2, . . . ,Yn) and µ(θ) = vec(µ1,µ2, . . . ,µn). In what follows we shall use the
generalized leverage proposed by Wei et al. (1998). The authors have shown that the generalized
leverage is obtained by evaluating the N ×N matrix

GL(θ) = Dθ(−L̈θθ)−1L̈θY ,

at θ = θ̂, where Dθ = ∂µ(θ)/∂θ> and L̈θY = ∂2`(θ)/∂θ∂Y >. As noted by the authors, the gen-
eralized leverage is invariant under reparameterization and observations with large GLij are leverage
points. The main idea behind the concept of leverage is that of evaluating the influence of Yi on its
own predicted value.

Under the model defined in (2), we have that

Dθ = (D>1 ,D
>
2 , . . . ,D

>
n )>

and
L̈θY =

(
F>1 H1G1,F

>
2 H2G2, . . . ,F

>
n HnGn

)
.

Index plots of GLii may reveal those observations with high influence on their own predicted values.

6 Special model

In order to illustrate the usefulness and applicability of the proposed formulation, we consider a
general elliptical mixed-effects model with nonlinear mixed effects and some covariates subject to
measurement error. Here, the equation of interest is

zi = β0 + β1xi + f(li,α) +Wibi + qi, i = 1, 2, . . . , n, (11)
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where zi is a v × 1 latent response vector, xi is a m × 1 latent vector of covariates, β0 is a v × 1

vector of intercepts, β1 is a v×m matrix which elements are inclinations, f(li,α) is a v-dimensional
nonlinear function ofα, li is a vector of explanatory known covariates,Wi is a v×r matrix of known
constants, bi is a r×1 vector of unobserved random coefficients (random effects of the model) and qi
is the equation error. Model (11) is an errors-in-variables nonlinear mixed model which generalizes
the one considered in Russo et al. (2009). In model (11) we cannot observe directly the variables zi
and xi, instead we observe Zi andXi, respectively, with the following additive relationship

Zi = zi + ei and Xi = xi + ui,

where ei and ui are measurement errors. We consider that the vector of full random vector ri =(
(xi − µx)>, b>i , q>i , e>i ,u>i

)> follows the following elliptical distribution

ri ∼ Ed(0,Ωi),

where d = 2v + 2m + r and Ωi = block-diag{Rx(σ1),Rb(σ2),Rq(σ3), τei, τui}, with τei and τui
the variances of the measurement errors assumed to be known for all i = 1, . . . , n. These “known”
matrices may be attained, for example, through an analytical treatment of the data collection mech-
anism, replications, machine precision, etc. Here, we consider that the matrices Rx = Rx(σ1),
Rb = Rb(σ2) and Rq = Rq(σ3) are completely specified by the vectors of parameters σ1, σ2 and
σ3, respectively. Therefore, the marginal distribution for the observable vector Yi = (Z>i ,X

>
i )> is

Yi ∼ Ed(µi(θ),Σi(θ)),

where

µi(θ) =

[
µzi

µx

]
and Σi(θ) =

(
Σzi + τzi β1Rx

Rxβ
>
1 Rx + τxi

)
,

with µzi = β0 + β1µx + f(li,α), Σzi = β1Rxβ
>
1 + WiRbW

>
i + Rq. In this model, θ =

(β>0 , vec(β1)
>,µ>x ,α

>,σ>1 ,σ
>
2 ,σ

>
3 )>. Note that the mean vector and the covariance-variance ma-

trix of observed variables have the matrix β1 in common, i.e. they share mv parameters. Kulathinal
et al. (2002) study the linear univariate case under normality (i.e. v = 1, m = 1, f = 0 andD = 0).

Notice that the matrix Fi is the only thing that we have to find for computing all quantities pre-
sented in this paper. For this special model, it is given by

Fi =

(
D

(1)
i D

(2)
i D

(3)
i D

(4)
i 0 0 0

0 V
(2)
i 0 0 V

(5)
i V

(6)
i V

(7)
i

)
,

where D(1)
i = ∂µi/∂β

>
0 , D(2)

i = ∂µi/∂vec(β1)
>, D(3)

i = ∂µi/∂µ
>
x , D(4)

i = ∂µi/∂α
>, V (2)

i =

∂vec(Σi)/∂vec(β1)
>,V (5)

i = ∂vec(Σi)/∂σ1)
>,V (6)

i = ∂vec(Σi)/∂σ
>
2 andV (7)

i = ∂vec(Σi)/∂σ
>
3 .

As a special case of the model above we have the nonlinear mixed model considered by Russo
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et al. (2009), which emerges by taking θ = (α>,σ>2 , σ
2
3)>, Yi = Zi, µi = f(li,α), Σi =

WiDW
>
i + σ2

3Iqi and the matrix Fi becomes

Fi =

(
Di 0

0 Vi

)
,

where Di = ∂µi/∂α
> and Vi = ∂vec(Σi)/∂γ

> with γ = (σ2, σ
2
3)>. Other special models are

nonlinear heteroscedastic models, nonlinear model with a first-order autoregressive covariance matrix
to the error terms, heteroscedastic multivariate errors-in-variables models, among several others.

As can be seen, several important models can be adjusted just by appropriately defining the
vector of parameters θ, the location function µi(θ), the dispersion function Σi(θ) and the model-
specification matrix Fi. With this, all the quantities derived in this paper become available.

7 Application

In this section, for illustrative purposes, we analyze the radioimmunoassay data, reported in Tiede
and Pagano (1979), which were obtained from the Nuclear Medicine Department of the Veteran’s
Administration Hospital, Buffalo, New York. All the computations were done using the Ox matrix
programming language (Doornik, 2006). Ox is freely distributed for academic purposes and available
at http://www.doornik.com.

Following Tiede and Pagano (1979) we shall consider the nonlinear regression model

yi = θ1 +
θ2

1 + θ3x
θ4
i

+ ui, i = 1, 2, . . . , 14,

where the response variable is the observed count, the covariate corresponds to the dose (measured
in micro-international units per milliliter) and the errors follow an appropriate elliptical distribution.
According to Tiede and Pagano (1979), the model above yields parameters which have physical in-
terpretations, i.e. the estimate of θ1 is an estimate of the background counts or noise. The zero dose
count is estimated by the estimate of θ2 and the midrange of the assay, also referred to as the effective
dose for 50% response is estimated by the estimate of θ4. The estimated value of this parameter,
which is in the neighborhood of 1.0, provides an indication of the sharpness of the bend in the curve.
For further details the reader is referred to Tiede and Pagano (1979).

Maximum likelihood estimates of the model parameters for the normal and Student-t (with ν = 4)
models are presented in Table 2 as well as the corresponding approximate standard errors. We have
considered ν = 4 for the Student-t model for modeling the current data based on the arguments given
in Lange et al. (1989, Example 2). Additionally, the scale parameter is assumed to be known for both
models. From Table 2 all the parameters seem to be highly significant for the adopted models. Figure
1 gives the scatter-plot of the data, together with the fitted curves of the normal and Student-t models.
As can be seen from this figure, the t model fits satisfactorily to the radioimmunoassay data.
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Table 2: Maximum likelihood estimates and standard errors in parentheses.
Model

Parameter Normal Student-t
θ1 444.8649 (1.4326) 929.2840 (0.9075)
θ2 7549.7624 (1.7093) 6881.7149 (1.3252)
θ3 0.1329 (0.0001) 0.0781 (0.0001)
θ4 0.9583 (0.0004) 1.3562 (0.0006)
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Figure 1: Scatter-plot and the fitted models.
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In what follows we shall apply the local influence method developed in the previous sections for
the purpose of identifying influential observations in the normal and Student-t regression models fitted
to the data. In order to consider the general results derived before, we define θ = (θ1, θ2, θ3, θ4)

> and
µi(θ) = θ1 + θ2/(1 + θ3x

θ4
i ), for i = 1, 2, . . . , 14. We have that

Fi =

(
1

1

1 + θ3x
θ4
i

− θ2x
θ4
i

(1 + θ3x
θ4
i )2

−θ2θ3x
θ4
i log(xi)

(1 + θ3x
θ4
i )2

)
and hence the quantities derived in this paper become available. Figure 2 presents the index plots
of |dmax| for the maximum likelihood estimate of θ, θ̂. From this figure we can notice that case #9
appears as the most influential for the normal model. However, for the Student-t model the influence
of case #9 reduces substantially, even though some points appear with moderate influence. Based

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

Index

d
m

a
x

Normal

9

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

Index

d
m

a
x

Student−t

11
12

13

Figure 2: Index plots of |dmax| for θ̂.

on Figure 2, we eliminated those most influential observations and refitted the normal and Student-
t models. In Table 3 we have the relative changes of each parameter estimate, defined by RC =

|(θ̂j − θ̂j(i))/θ̂j| × 100%, where θ̂j(i) denotes the maximum likelihood estimate of θj , after removing
the ith observation. It should be noticed from Table 3 that the relative changes for the maximum
likelihood estimates of the parameters of the Student-t model are very little pronounced. On the
other hand, the maximum likelihood estimates of the parameters of the normal model are extremely
affected by the indicated cases, mainly by the case #9. According to Tiede and Pagano (1979) this
case is an outlier. Therefore, this table confirms the robustness of the Student-t model against the
extreme values.
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Table 3: Relative changes (%) dropping the cases indicated.
Normal Student-t

Dropping θ̂1 θ̂2 θ̂3 θ̂4 θ̂1 θ̂2 θ̂3 θ̂4

#9 107.51 7.12 35.50 38.86 0.00 0.00 0.04 0.00
#11 15.95 0.88 3.02 0.76 0.00 0.01 0.09 0.02
#12 11.65 0.65 2.20 0.56 0.00 0.01 0.00 0.01
#13 15.19 0.91 0.35 1.23 0.01 0.00 0.04 0.00

8 Concluding remarks

In this paper, we introduce a multivariate elliptical model with general parameterization which unifies
several important models (e.g., (non)linear regressions models, (non)linear mixed models, errors-in-
variables models, and so forth). We also consider diagnostic techniques that can be employed to
identify influential observations. Appropriate matrices for assessing local influence on the parameter
estimates under different perturbation schemes are obtained. Although the complexity of the postu-
lated model, the expressions derived in this paper are simple, compact and can be easily implemented
into any mathematical or statistical/econometric programming environment with numerical linear al-
gebra facilities, such as R (R Development Core Team, 2009) and Ox (Doornik, 2006), among others,
i.e. our formulas related with this class of models are manageable, and with the use of modern com-
puter resources, may turn into adequate tools comprising the arsenal of applied statisticians. Finally,
an empirical application to a real data set is presented.
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A Appendix

In what follows, we shall derive the Fisher information matrix presented in Section 2, equation (6).
As we are considering a function g with regular properties (differentiation and integration are inter-
changeable), we have that E(si) = 0 and the Fisher information for θ is obtained as

E
(
UθU

>
θ

)
=

n∑
i=1

F>i HiE
(
sis
>
i

)
HiFi.
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Note that

E
(
sis
>
i

)
=

[
E
(
v2i ziz

>
i

)
−E
(
vizivec(Σi − viziz>i )>

)
−E
(
vivec(Σi − viziz>i )z>i

)
E
(
vec(Σi − viziz>i )vec(Σi − viziz>i )>

)] .
Thus, by adapting the results of Mitchell (1989) for a matrix version, we have the following expecta-
tions:

1. E
(
vizi

)
= 0,

2. E
(
viziz

>
i

)
= Σi,

3. E
(
v2i ziz

>
i

)
=

4dgi
qi

Σi,

4. E
(
v2i vec(ziz

>
i )z>i

)
= 0,

5. E
(
v2i vec(ziz

>
i )vec(ziz

>
i )>

)
=

4fgi
qi(qi + 2)

(
vec(Σi)vec(Σi)

>+Σi⊗Σi+Pi(Σi⊗Σi)

)
,where

Pi is a commutation maltrix such that vec(A) = Pivec(A>) for any matrix A with appropri-
ated dimensions.

where zi ∼ Eqi(0,Σi(θ)). Therefore, the main result follows by the properties of the commutation
matrix Pi.

B Appendix

The observed information matrix for θ is given by −L̈θθ, where, after some algebraic manipulation,

L̈θθ =
∂2`(θ)

∂θ∂θ>
=

n∑
i=1

{
F>i HiM̈iHiFi +

[
s>i Hi

][∂Fi
∂θ

]}
,

with

M̈i = 2Wg(ui)

[
Σi 2z>i ⊗Σi

2Σi ⊗ zi 2(Σi ⊗ (ziz
>
i ) + (ziz

>
i )⊗Σi)

]

+ 4W ′
g(ui)

[
ziz

>
i z>i ⊗ (ziz

>
i )

(ziz
>
i )⊗ zi vec(ziz

>
i )vec(ziz

>
i )>

]
+

[
0 0

0 2Σi ⊗Σi

]
.

Note that ∂Fi/∂θ is an array of dimension qi(qi+1)×p×p. Here, [·][·] represents the bracket product
of a matrix by an array as defined by Wei (1998, p. 188).
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Dı́az–Garcı́a, J.A., Gutiérrez–Jáimez, R. (2007). The distribution of residuals from a general elliptical distribu-
tion. Journal of Statistics Planning and Inference. 137:2347–2354.

Doornik, J.A. (2006). An Object-Oriented Matrix Language – Ox 4, 5th ed. Timberlake Consultants Press,
London.

Fang, K.T., Kotz, S., Ng, K.W. (1990). Symmetric Multivariate and Related Distributions. Chapman and Hall,
London.

Fernández, C., Steel, M.F.J. (1999). Multivariate Student-t regression models: pitfalls and inference.
Biometrika. 86:153–167.

Galea, M., Riquelme, M., Paula, G.A. (2000). Diagnostic methods in elliptical linear regression models. Brazil-
ian Journal of Probability and Statistics. 14:167–184.
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