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3 Institute of Radiology - Hospital das Cĺınicas, São Paulo - Brazil
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Abstract1

This paper develops a method for estimating parameters of a vector au-2

toregression (VAR) observed in white noise. The estimation method assumes3

the noise variance matrix is known and does not require any iterative process.4

This study provides consistent estimators and the asymptotic distribution of5

the parameters required for conducting tests of Granger causality. Methods in6

the existing statistical literature cannot be used for testing Granger causality,7

since under the null hypothesis the model becomes unidentifiable. Measure-8

ment error effects on parameter estimates were evaluated by using computa-9

tional simulations. The results suggest that the proposed approach produces10

empirical false positive rates close to the adopted nominal level (even for small11

samples) and has a satisfactory performance around the null hypothesis. The12

applicability and usefulness of the proposed approach are illustrated using a13

functional magnetic resonance imaging dataset.14

15

Key Words: Asymptotic property, errors-in-variables model, Granger causal-16

ity, multivariate time series.17

1 INTRODUCTION18

Multivariate time series modeling is an important component for the quantitative19

assessment of relationships between variables in many applied areas. This issue is20

essential in financial applications, for example, enabling optimal portfolio allocation,21

setting trading strategies over sectors of the market, or exchanging rates (Sims, 1980;22

1



Ni and Sun, 2003). In addition, the vector autoregressive model (VAR) is widely used23

in many fields such as economics (Granger, 1969), geophysics (Liu and Rodŕıguez ,24

2005), bioinformatics (Fujita et al., 2007a) and neuroscience (Goebel et al., 2003).25

The main reasons for the attractiveness of the VAR model in applied areas are26

its simplicity and relation with the concept of Granger causality (Granger, 1969).27

Granger causality has become a prominent concept in connectivity networks model-28

ing, because it provides inferences about the direction of information flow between29

different time series. Several studies in biological systems emphasize the importance30

of identification and description of gene regulator networks (Gottesman, 1984; Ka-31

toh , 2007), mainly in the study of tumors or structural diseases. Mukhopadhyay32

and Chatterjee (2007); Fujita et al. (2007a,b) introduced the utilization of VAR-33

based models to study these issues by applying these models to gene expression34

datasets. In Neuroscience, the functional integration theories highlight that brain35

functions heavily depend on neural connectivity networks (Cohen and Tong, 2001).36

Several neuroimaging studies (Goebel et al., 2003; Sato et al., 2006; Abler et al.,37

2006) suggested that VAR models and Granger causality are suitable to identify38

the information flow between neural structures. Nevertheless, it is well known that39

most biological measurements are subject to error, since the precision of acquisition40

equipments is never absolute. Actually, this limitation is present in most studies41

involving experimental data, such as chemistry, physics, biometrics, etc.42

Although technically incorrect, the most common procedure is simply to ignore43

the measurement errors, i.e.: to assume that the variables of interest are the observed44

ones. It is important to highlight that this assumption has serious implications. The45

conventional VAR model, in this case, would not identify correctly the relationships46

between the variables of interest (latent variables). It happens because the model47

white noise will not be independent which leads to misestimations of the model48

parameters. The usual assumption is acceptable when the errors are negligible.49

However, it is known that due to acquisition processes limitations, the measure-50

ment errors in biology (e.g.: gene expressions or neuro signals) are not negligible in51

most cases. Thus, the utilization of conventional VAR models may result in biased52

parameter estimation and as a consequence, unreliable Granger causality detection.53

In the following, we define the usual VAR model (for a more detailed description,54

see for instance, Lütkepohl, 2005). Let zt = (z1t, . . . , zpt)
⊤ denotes a (p× 1) vector55

of time series variables. The usual VAR(r) model has the form56

zt = a+B1zt−1 + . . .+Brzt−r + qt, t = 1, · · · , n (1)
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where n is the sample size, Bj for j = 1, . . . , r are (p × p) coefficient matrices and57

qt is a (p × 1) unobservable zero mean white noise vector process with covariance58

matrix Σ. For convenience, we consider that zl = 0 for all l ≤ 0. We are assuming59

throughout this paper that model (1) satisfies the stability condition defined in60

Lütkepohl (2005) on page 12. Therefore, under stationarity conditions, the mean61

and the autocovariance function are given, respectively, by62

E(zt) = µz =

(
Ip −

r∑

j=1

Bj

)−1

a,

63

γ(h) = E[(zt − µz)(zt−h − µz)
⊤] =

r∑

j=1

Bjγ(h− j), for h = 1, 2, 3, . . .

and64

γ(0) =

r∑

j=1

Bjγ(−j) +Σ

where Ip denotes the p× p identity matrix and γ(−j) = γ(j)⊤.65

Model (1) can be written in short as66

zt = a+Bz∗

t−1 + qt, t = 1, · · · , n (2)

where B = (B1 B2 . . . Br) is a p× pr matrix and z∗

t−1 = (z⊤
t−1, z

⊤
t−2, . . . , z

⊤
t−r)

⊤.67

Therefore, if the white noise has Normal distribution, the conditional Maximum68

Likelihood (ML) estimators of a, B and Σ are equal to the ordinary least squares69

estimators. They are given, respectively, by70

â
ML

= z̄t − B̂
ML

z̄∗

t−1, B̂
ML

= (S−1
z∗

t−1

Sz∗

t−1
zt)

⊤ and Σ̂
ML

= n−1
n∑

i=1

q̂iq̂
⊤
i (3)

where z̄∗

t−1 = n−1
∑n

i=1 z
∗

i−1, z̄t = n−1
∑n

i=1 zi, q̂i = zi − â
ML

− B̂
ML

z∗

i−1, Sz∗

t−1
=71

n−1
∑n

i=1(z
∗

i−1 − z̄∗

t−1)z
∗

i−1
⊤ and Sz∗

t−1
zt = n−1

∑n
i=1(z

∗

i−1 − z̄∗

t−1)zi
⊤.72

The consistency of those conditional ML estimators is assured under the station-73

ary conditions (see Lütkepohl, 2005, for further details). The consistency is shown74

using the fact that75

z̄t
P−→ µz, z̄∗

t−1
P−→ µz

∗ = 1r⊗µz, Sz∗

t−1

P−→ Γr(0) and Sz∗

t−1
zt

P−→ Γr(0)B
⊤

where “
P−→” denotes convergence in probability when the sample size increases, ⊗76

denotes the Kronecker product, 1r is a r−dimensional column vector of ones, and77
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the covariance function of z∗

t−1 is given by78

Γr(h) = E[(z∗

t−1 − µz∗)(z∗

t−h−1 − µz∗)⊤]

=




γ(h) γ(h + 1) . . . γ(h + r − 1)

γ(h− 1) γ(h) . . . γ(h + r − 2)
...

...
. . .

...

γ(h− r + 1) γ(h− r + 2) . . . γ(h)



.

As described previously, VARmodeling is commonly applied for detecting Granger79

causality relationships. The basic idea of Granger causality is the evaluation of80

temporal information founded on the assumption that the cause always precedes81

its effect (Granger, 1969). Let xt and yt be two time series. From the statistical82

perspective, xt is said to Granger-cause yt if the prediction error of yt, conditioning83

on the past values of both series, is less than considering solely the past values of yt.84

In other words, the past values of xt contains relevant information to improve the85

predictions of yt. Note that Granger causality concept is not equivalent to classical86

Aristotelian causality, since the former is based solely on prediction errors. However,87

due to its simplicity, it is more tractable in scientific experiments and may suggest88

possible causal relationships.89

One possible approach of using VAR models for Granger causality detection is90

by performing statistical tests on Bj ’s coefficients. Considering yt equation, if there91

is at least one coefficient multiplying the past values of xt which is not equal to zero,92

then xt is said to Granger-cause yt. Thus, this procedure involves the estimation of93

Bj, their respective covariance matrices, and the application of hypothesis testing.94

In general, many physical, biological and chemical variables have the measure-95

ment process subject to noise effects and it is very common to analyze them by96

using models assuming that these measurement errors are negligible. It may bring97

up undesirable features as biased estimates as well as their standard errors and,98

as a consequence, dangerously false confidence intervals and unreliable hypotheses99

testing. Thus, it is necessary to consider the measurement error in the modeling of100

these type of data.101

In this paper, we study a VAR model with main concern on including measure-102

ment errors. Let zt be the true (latent) variable that is not directly observed, instead103

a substitute variable Zt is observed. The relation between the latent and observed104

variables is given by the following additive structure105

Zt = zt + et, t = 1, · · · , n (4)
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where Zt = (Z1t, Z2t, · · · , Zpt)
⊤ is the observed vector and et = (e1t, e2t, · · · , ept)⊤106

is the measurement error vector with mean zero and variance-covariance matrix Σe.107

In most cases, if the usual conditional ML estimator is adopted for the observations108

subject to errors, i.e., replacing zt with Zt in equation (1), the estimator of B will109

not be consistent (as can be seen in (6)). Therefore, measurement error equation110

(4) should be included in the estimation procedure. Nevertheless, model (1) with111

equation (4) is not identifiable, since the covariance matrices of qt and et are con-112

founded when B = 0. It is easy to see that in the univariate AR(1), note that when113

r = p = 1 and b = 0 we have: Zi = a + qi + ei with E(Zi) = a, γ(0) = σ2 + σ2
e and114

γ(h) = 0 for all h 6= 0. It is impossible to estimate σ2 and σ2
e separately by observing115

only Z1, . . . , Zn. This problem can be avoided by using previous knowledge about116

the variance of et.117

This paper is organized as follows. Section 2 proposes consistent estimators for118

the VAR model with measurement errors and also presents the asymptotic distri-119

bution of the estimator of the elements of B. In Section 3, simulation studies are120

undertaken to investigate some aspects of the proposed estimators (rejection rates121

for a test of hypothesis, biases and mean square errors) also it is verified the impact122

by erroneously considering the usual model. We applied the models in a functional123

magnetic resonance imaging dataset in Section 4 and we finish the paper with con-124

clusions and remarks in Section 5.125

2 VAR WITH MEASUREMENT ERRORS126

In the presence of measurement errors, the conventional ML estimation of VAR127

models produces biased estimators and they may lead to wrong statistical infer-128

ences (see Fuller, 1987, in which it is found a discussion over errors-in-variables in129

regression models). Andersson (2005) warns for the problems in testing Granger130

causality by using a VAR model when the variables are subject to measurement131

errors. However, the author does not propose any approach to overcome such prob-132

lems. There are some studies to treat time series observed in white noise in the133

literature, those studies use Kalman filtering methodology and an Expectation and134

Maximization algorithm that requires intensive iterative procedures, (e.g., Geweke,135

1977; Aigner et al., 1984). Maravall and Aigner (1977) have provided a careful ex-136

position of the identifiability of some time series models with errors in variables.137

Beck (1990) describes approaches based on state space modeling and Kalman fil-138
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tering and demonstrates the usefulness of these tools in dynamic models. Kellstedt139

et al. (1996) show the efficiency gains adopting errors-in-variables models, and the140

precision of Kalman filter estimates in the face of autocorrelation. These measure-141

ment techniques have been applied to a variety of substantive problems, including142

dynamic representation, social problems (such as racial inequality), monetary policy143

and public entrepreneurship (Williams and McGinnis, 1992).144

These state space models can be attractive alternatives to conventional VAR145

modeling. However, in practice, the implementation of the estimators are not de-146

scribed in analytical form, but by interactive algorithms or numerical optimization147

solutions. In addition, the derivation of the asymptotic distribution of those esti-148

mators may be complex. In Shumway and Stoffer (2000), the section on state space149

methods shows an alternative procedure for how to estimate B, Σ and Σe under150

model (1) with error equations (4), using the EM algorithm. Hannan et al. (2003)151

proposed another iterative procedure to estimate these parameters. Nevertheless, as152

the main goal of this paper is to test Granger causality and the effect of the autore-153

gressive coefficientes, e.g., the coefficient that relates zt,j → zt,j+r, these approaches154

cannot be used, since the model becomes unidentifiable under the hypothesis B = 0.155

In this study, we provide simple and closed forms for the estimators when Σe is156

known, which allows the direct derivation of their respective asymptotic properties.157

Since the main concern of several practical applications is Granger causality testing,158

this information is essential to data analysis. In this section, the main concern is the159

parameter estimation and its asymptotic properties. Theorem 1 states consistent160

estimators for the model parameters and Theorem 2 establishes the asymptotic161

distribution for the estimator of vec(B⊤) given in Theorem 1, where vec(C) is an162

operator that heaps the columns of the matrix C.163

The methodology presented in this section is based on correcting the asymptotic164

bias of conventional ML estimator caused by the measurement error effect. The165

outcome is a consistent estimator with good asymptotic properties such as normality.166

The estimators and the asymptotic covariance matrix for the proposed estimator167

of vec(B⊤) are computed easily and no iterative procedure is required. We must168

remark that those estimators are not the conditional ML estimators nor the ML169

estimators taking into account the measurement errors which are very complicated170

to reach by maximizing the likelihood, even under normality of the errors.171

Theorem 1. If et ∼ N (0,Σe) with Σe known. Then, the parameters of model (1)172
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under measurement errors as in (4) have consistent estimators given by173

â = Z̄t − B̂Z̄∗

t−1, B̂ =

[
(SZ∗

t−1
− Ir ⊗Σe)

−1SZ∗

t−1
Zt

]⊤
(5)

and174

Σ̂ = n−1
n∑

i=1

(Zi − â− B̂Z∗

i−1)(Zi − â− B̂Z∗

i−1)
⊤ −Σe − B̂(Ir ⊗Σe)B̂

⊤

where Z̄∗

t−1 = n−1
∑

iZ
∗

i−1, Z̄t = n−1
∑

i Zi, SZ∗

t−1
= n−1

∑
i(Z

∗

i−1 − Z̄∗

t−1)Z
∗

i−1
⊤

175

and SZ∗

t−1
Zt

= n−1
∑

i(Z
∗

i−1 − Z̄∗

t−1)Zi
⊤.176

The proof of Theorem 1 can be found in Appendix A.1. Notice that, ifΣe = 0p×p,177

that is, when there is no measurement error, then the estimators of Theorem 1178

become the conditional ML estimators presented in (3). Also, it can be seen that179

the conditional ML estimator of B from model (1), without considering errors (4),180

is given by181

B̂ML =

[
S−1

Z∗

t−1

SZ∗

t−1
Zt

]⊤
,

which is not consistent, since182

B̂ML
P−→ B[Ipr + (Ir ⊗Σe)Γr(0)

−1]−1. (6)

The main steps to demonstrate (6) is given in Appendix A.1, in which is sufficient183

to compute the limit of SZ∗

t−1
and SZ∗

t−1
Zt
. The quantity SZ∗

t−1
has two sources of184

variations, one that refers to the unobservable variable z∗

t−1 and another one that185

refers to the measurement error.186

If the measurement error is huge and the sample size is not large enough, the187

quantity (SZ∗

t−1
− Ir ⊗Σe) may not be positive definite and the estimator B̂, pre-188

sented in (5), will be inadmissible. If the quantity (SZ∗

t−1
−Ir⊗Σe) has at least one189

eigenvalue close to zero the estimator B̂, presented in (5), will be unstable (because190

the computation of a matrix inverse requires all eigenvalues to be different from191

zero). If the matrix Σe is well specified, one way to avoid such inadmissibility and192

instability is increasing the sample size.193

In many practical applications, there is some interest on testing some elements194

of the matrix B (e.g., the so called Granger causality test). However, the exact195

distribution of vec(B̂⊤) is difficult to compute. Thus, one can use its asymptotic196

distribution to build confidence regions and hypothesis testing as an approxima-197

tion when the sample size is finite. The Theorem below gives us the asymptotic198

distribution of vec(B̂⊤).199
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Theorem 2. If et ∼ N (0,Σe) with Σe known and E(qij1qij2qij3qij4) < ∞ for all200

j1, j2, j3, j4 ∈ {1, . . . , p}, where qij is the jth element of qi. Then, the asymptotic201

distribution of vec(B̂⊤) obtained in Theorem 1 is given by202

√
n(vec(B̂⊤)− vec(B⊤))

D−→ N (0,Φ), (7)

where the p2r × p2r matrix Φ is given by

Φ = Σϑ ⊗ Γr(0)
−1 + (Ip ⊗ Γr(0)

−1)Ar(Ip ⊗ Γr(0)
−1)

where203

Ar = Σϑ ⊗ (Ir ⊗Σe) +B⊤ ⊗ [ΣeB(Ir ⊗Σe)] +

−
r∑

h=1

{
(BhΣe)⊗ Γr(h) + (ΣeB

⊤
h )⊗ Γr(−h)

}
+

+
r−1∑

h=1−r

[B(J−h ⊗Σe)B
⊤]⊗ Γr(h).

and Σϑ = Σ+Σe+B(Ir ⊗Σe)B
⊤, where Jl is a (r× r) matrix of zeros with one’s204

in the |l|th diagonal above (below) the main diagonal if l > 0 (l < 0) and J0 is a205

(r × r) matrix of zeros.206

The proof of Theorem 2 can be seen in Appendix A.2. For all r and Σe = 0207

we have Φ = Σ⊗ Γr(0)
−1, as given in Lütkepohl (2005). The Normal distribution208

assumption for the measurement error is required to compute the expectation of209

polynomial functions (until forth degrees) of the elements of et.210

The assumption of known measurement error variance is usually considered in211

many fields; such as, astrophysics (Akritas and Bershady, 1996; Kelly, 2007; Kelly212

et al., 2008), epidemiology (Kulathinal et al., 2002; Patriota et al., 2009), analytical213

chemistry (Cheng and Riu, 2006), among others. However, in real datasets this214

measurement error variance is, in general, estimated. If Σ̂e is a consistent estimator215

for Σe, then we have usually that Σ̂e = Σe + Op(m
−1/2), where m is the sample216

size used in the previous experiment, and Op(m
−1/2) means limited in probability217

even multiplying by m1/2. Then, provided that lim
n→∞

n/m = 0, all asymptotic218

results derived in this section remain valid. However, note that if lim
n→∞

n/m = ∞,219

then it is not possible to compute the asymptotic distribution for vec(B̂⊤), since its220

covariance matrix will diverge. We remark that, although if lim
n→∞

n/m ∈ (0,∞)221

the asymptotic distribution derived in this paper will not be valid, our results can222

also be used here with some caution. Our simulation studies (see Section 3) show223
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that the rejection rates under the null hypothesis are controlled even when Σe is224

replaced by an estimator built by using a previous sample (m) proportional to the225

sample size (n).226

In some cases, the partitioner can just specify the covariance matrix Σe rather227

than estimating it through previous experiments. In such cases, a misspecification228

in this covariance matrix may occur. For the sake of simplicity, suppose that Σe is229

the true covariance matrix and the misspecified one is Σ
(mis)
e = δΣe. Let B̂

(mis) be230

the estimator of B built by using the misspecified covariance matrix Σ
(mis)
e instead231

of Σe. Then, using the results of the Appendix, we have that232

B̂(mis) P−→ B
[
Ipr + (1− δ)(Ir ⊗Σe)Γr(0)

−1
]−1

,

i.e., the estimator B̂(mis) is not consistent for B. However, if 0 < δ < 2 the matrix233 [
Ipr+(1−δ)(Ir⊗Σe)Γr(0)

−1
]−1

will have eigenvalues closer to 1, in absolute value,234

than the ones of
[
Ipr + (Ir ⊗Σe)Γr(0)

−1
]−1

(notice that, if λC is the eigenvalue of235

C, then 1 + γλC is the eigenvalue of I + γC). In this sense, the estimator B̂(mis)
236

will have lesser asymptotic bias than B̂ML, for 0 < δ < 2. In other words, even if237

we underestimate the true matrix Σe or if we overestimate by up to two times, the238

multiplicative term of the asymptotic bias will be closer to the identity matrix than239

the one produced by the naive estimator (i.e., considering that Σe = 0).240

Notice that, if r = 1 we have the VAR(1) model and the asymptotic covariance241

simplifies to242

Φ = Σϑ ⊗ γ(0)−1 + (Ip ⊗ γ(0)−1)A1(Ip ⊗ γ(0)−1)

where243

A1 = Σϑ ⊗Σe +B⊤ ⊗ (ΣeBΣe)− [(BΣe)⊗ (γ(0)B⊤) + (ΣeB
⊤)⊗ (Bγ(0))].

The ith element of vec(B̂⊤), is asymptotically normally distributed with standard244

error given by the square root of ith diagonal element of Φ. Thus, we can obtain245

hypothesis tests on the individual coefficients, or more general form of contrasts246

H0 : Cvec(B⊤) = d Versus H1 : Cvec(B⊤) 6= d,

which involve coefficients across different equations of the VAR model. Thus,247

Granger causality testing can be carried out by adequately specifying this con-248

trasts matrix. An illustrative example is the case of series xt and yt, in which we249

are interested in evaluating the Granger causality from xt to yt in an r-order VAR250
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model. The matrix C has r rows, one for each coefficient related to the past values251

of xt in the yt equation. Considering that each column of C refers to each VAR252

coefficient, the contrast matrix is specified by simply setting 1 to the cell at the253

respective column and row for the xt coefficients in yt equation. This may be tested254

using the Wald-type statistic conveniently expressed as255

n(Cvec(B̂⊤)− d)⊤
[
CΦC⊤

]−1
(Cvec(B̂⊤)− d) (8)

Under the null hypothesis, (8) has a χ2(c) distribution in the limit, where c =256

rank(C) gives the number of linear restrictions.257

The previous procedure can also be developed to include the intercept by apply-258

ing the delta method (Lehmann and Casella, 1998) in the asymptotic distribution of259

(Z̄⊤
t , Z̄

∗⊤
t−1, vec(B̂

⊤)⊤), since â = Z̄t − (I ⊗ Z̄∗⊤
t−1)vec(B̂

⊤). Although, this asymp-260

totic distribution is important to test hypotheses regarding the model intercept, it is261

outside the main scope of this article and does not have any impact on the Granger262

causality.263

3 SIMULATION RESULTS264

In this section, some simulation studies were conducted in order to evaluate the265

adequacy of the asymptotic distribution of vec(B̂⊤) for small and moderate samples266

sizes. Computations were performed using the software R (www.r-project.org).267

For each setup of parameters and sample sizes, it was considered 15,000 Monte268

Carlo samples generated from a VAR(1) model with measurement errors, given by269

(
z1,t
z2,t

)
=

(
a1
a2

)
+

[
b11 b12

b21 b22

](
z1,t−1

z2,t−1

)
+

(
q1t
q2t

)
, (9)

(
Z1,t

Z2,t

)
=

(
z1,t
z2,t

)
+

(
e1t
e2t

)
. (10)

In all samples, the following setup of parameters was considered: a1 = a2 = 1,270

b11 = b22 = 0.5,271

Σ =

[
10 5

5 5

]
,

where the vector parameters values of (b12, b21) were the values of the set {(b12, b21); b12 ∈272

S and b21 ∈ S}, where S = {−0.4,−0.2, 0.0, 0.2, 0.4}, the variance of the measure-273

ment error et was Σe = 2I2, and the sample sizes n = 50, 100, 250, 500. As in actual274
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datasets Σe is usually estimated, we simulated m = 0.6n identically and indepen-275

dent random variables from a Normal distribution with mean zero and variance two.276

Then, we estimate Σ̂e = σ̂2
eI2, where σ̂2

e is the sample variance computed from this277

random variables.278

The rejection rates of the hypothesis H0 : b12 = b21 = 0 (i.e., z2,t−1 does not279

help to explain z1,t and z1,t−1 does not help to explain z2,t) are shown in Table 1, in280

which the test sizes are the rejection rates under the null hypothesis (that appears281

in bold). Wald-type statistic (8) is used at 5% nominal level. From this table we282

conclude that the test sizes from the proposed model are closer to the nominal level283

(5%), as compared to the usual approach for all sample sizes. Furthermore, when284

n increases the test sizes for the usual model also increase and, consequently, they285

do not converge to the adopted nominal level. This is an expected behavior because286

the usual approach produces biased estimates and standard errors. Table 1 depicts287

the power of the test in each methodology, which shows a good performance of the288

proposed approach. Nevertheless, it is not possible to compare the power between289

the two methods because they have different empirical test sizes.290

[[ Table 1]]

In addition, the results shown in Table 1 are similar for other values of the291

parameters a and B, if the same proportionality of Σ and Σe is set as defined292

above. But, other simulations suggest that the larger the measurement error, the293

larger the sample size required to have a good asymptotic approximation for Wald-294

type statistic (8).295

Further, simulation studies were also conducted for testing the hypothesis H0 :296

b12 = 0 at 5% nominal level. In this study, we consider b21 = 0.2. Other simulations297

were built considering other values for b21, however, the results are close to each298

other and, for this reason, they were omitted. As can be seen, Tables 1 and 2299

present similar behaviors, i.e., the proposed model has always empirical size test300

closer to the nominal level than the usual one.301

[[ Table 2]]

In Tables 1 and 2, the usual approach seems to be most powerful than the302

proposed approach when b21 = 0.2 and b21 = 0.4. However, as aforementioned, they303

cannot be compared directly, just because the real nominal level used to compute304

that powers are not the same. Thus, a descriptive measure was defined in order to305

analyze both methodologies around the null hypothesis. Let an(α) be the probability306

of the error type I using the true distribution of (8) when the sample size is n and307
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α is the adopting nominal level based on its asymptotic distribution. For instance,308

in Table 2 â100(0.05) = 0.0541 for the proposed approach and â100(0.05) = 0.0851309

for the usual one (i.e., ân(α) is the test size for a given n and α). An expected310

behavior for good statistics is an(α)
n→∞−→ α which means that the quantiles of the311

true distribution of (8) will be close to the quantiles of the asymptotic distribution,312

χ2(c), when the sample size is sufficiently large. Thus, the relation an(α)/αmeasures313

how far is the α-quantile of the asymptotic distribution from the true distribution314

of (8) for each n. Therefore, a corrected power may be defined by315

P (c)
n (α) =

Pn(an(α))

(an(α)/α)

where Pn(a(α)) is the power using the true probability of the error type I, namely316

an(α). The main idea is penalizing the power by the ratio between an(α) and α.317

Note that, the power under the null hypothesis has to be the nominal level and318

the comparison of powers from different statistics must be done adopting the same319

nominal level. Under the null hypothesis, we have that320

P
(c)
1n (α) = P

(c)
2n (α) = α,

since under the null hypothesis Pn(an(α)) = an(α). Hence, the corrected powers321

P
(c)
1n and P

(c)
2n are comparable. Moreover, under an alternative hypothesis and when322

n increases, an expected behavior of P
(c)
n (α) is to converge towards one. Although,323

this corrected power is not a monotonic function of the sample size nor of the324

nominal level, we believe that it can be used as a descriptive measure to evidence325

how unsuitable is the usual model when compared with the proposed one outside the326

null hypothesis. Furthermore, the proposed corrected power varies between 0 and327

infinity. Figure 1 shows the corrected power for both approaches, the null hypothesis328

was H0 : b12 = 0. The full line refers to the proposed approach and the dashed line329

refers to the usual one. The panels (a.1), (b.1), (c.1) and (d.1) refer to the corrected330

power when the alternative hypothesis are b12 = −0.4, b12 = −0.2, b12 = 0.2 and331

b12 = 0.4, respectively at α = 0.01. The panels (a.2), (b.2), (c.2) and (d.2) refer332

to the corrected power when the alternative hypothesis are b12 = −0.4, b12 = −0.2,333

b12 = 0.2 and b12 = 0.4, respectively at α = 0.05. The panels (a.3), (b.3), (c.3) and334

(d.3) refer to the corrected power when the alternative hypothesis are b12 = −0.4,335

b12 = −0.2, b12 = 0.2 and b12 = 0.4, respectively at α = 0.10. We observe in all336

graphs that, the usual approach has the worst performance (going to zero when337

the sample size increases) while the proposed one have an expected behavior for338
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a good statistic (going to one when the sample size increases). In general, the339

corrected power under the usual methodology goes to zero because the distance340

between an(α) and α increases much faster than the uncorrected power, Pn(an(α)),341

when n increases. This behavior is still true for other setups of parameters.342

[[ Figure 1]]

[[ Table 3]]

Table 3 shows that the biases of the estimators of bij (i, j = 1, 2) from the343

proposed model are almost always smaller (in absolute value) than the value supplied344

by the usual model (except only for the parameter b21 when n = 50). Moreover,345

the larger the sample size, the smaller the bias and MSE under the proposed model346

(this does not happen for the usual approach). For this specific table, the true347

parameters are b21 = 0.2 and b12 = −0.4, all other parameters were chosen as348

previously described.349

Table 4 presents the rejection rates for testing univariate hypotheses. In this350

table, the model was generated by considering p = 4, a1 = a2 = a3 = a4 = 1,351

b11 = 0.9, b22 = 0.6, b33 = 0.4, b44 = 0.5, b41 = 0.5, b14 = −0.3, b12 = b13 = b21 =352

b23 = b24 = b31 = b32 = b34 = b42 = b43 = 0. The measurement error variance was353

0.60 and the variance of qt was354

Σ =




0.80 0.20 0.20 0.05

0.20 0.80 0.05 −0.05

0.20 0.05 1.00 0.10

0.05 −0.05 0.10 0.90




.

Notice that, these parameters and hypothesis tests were chosen to mimic our ap-355

plication (see next section for further details). We test the univariate hypotheses356

in each Monte Carlo simulation, say H0 : b12 = 0, H0 : b13 = 0, H0 : b21 = 0,357

H0 : b23 = 0, H0 : b24 = 0, H0 : b31 = 0, H0 : b32 = 0, H0 : b42 = 0 and H0 : b43 = 0358

by using the usual and proposed approaches. The measurement error variance was359

estimated through replications (m = 0.6n). Here, n = 100, 200, 400 in which for the360

real data n = m = 200.361

[[ Table 4]]

Notice that, for the proposed model the test sizes are, in average, closer to 5%362

than the usual one. Next section presents a comparison between of the results of363

Table 4 and the application.364
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4 APPLICATION365

As previously described, the models including measurement errors have great rel-366

evance in applied sciences, since equipment imprecisions are inherent to data ac-367

quisition. Actually, the usual models are commonly applied ignoring these errors.368

Nowadays, the scientific community started to pay enough attention to the fact369

that these procedures may lead to spurious results. In this section, we illustrate the370

concepts introduced in the present study with an application embedded in Neuro-371

science research, with the utilization of VAR modeling for the characterization of372

brain networks.373

The dataset explored in this application is proceeding from a functional mag-374

netic resonance imaging (fMRI) experiment. Basically, fMRI acquisition is based on375

monitoring the BOLD signal (blood oxygenation level dependent) at several brain376

regions through time. One of the main advantages of fMRI over other imaging tech-377

niques is its non-invasive protocol and relative high spatial resolution. The BOLD378

signal is related to oxygen consumption and blood flow, being considered as an in-379

direct measure of local neural activity (Logothetis et al. (2001)). Regarding this380

property, BOLD signal is used to quantify and locate the brain activity in humans.381

In this study, the BOLD signals at four brain regions from a subject in a resting382

state (eyes closed) experiment were considered. The data was collected in a Siemens383

3Tesla MR system (TR=1800ms, TA=900ms, TE=30ms). The selected brain re-384

gions were: left primary motor cortex (left M1), right primary motor cortex (right385

M1), supplementary motor area (SMA) and right cerebellum. For this volunteer,386

these regions were previously mapped by using a fingertap motor experiment. The387

anatomical location of these areas are shown in Figure 2. These regions are fre-388

quently involved in active and planned right hand fingertapping, and their role is389

already established in motor execution. However, we aim to evaluate the default390

connectivity network between these areas, which can be depicted by the informa-391

tion flow during a resting state run, which may be identified using VAR models and392

Granger causality concept.393

A well described limitation inherent to all fMRI acquisition is the high level of394

scanner noise. Thus, the signals observed mirror not only the physiological variations395

but also includes measurement errors. For this specific dataset, it was estimated396

that the error composed approximately 57.10% of the observed time series standard397

deviation. This estimate was obtained by considering the squared root of the median398

variance of BOLD time series from extracranial voxels (i.e., we used 2,354 auxiliar399
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time series of length 200), with baseline signal (mean) greater than 75. Voxels400

with baseline below this threshold are too far from tissue (image corners) and have401

minimal variance, which may lead to an underestimate of noise level. For simplicity,402

each observed series were normalized to have mean zero and variance one. The403

measurement error was considered to be serially uncorrelated, independent of the404

latent variables and with a standard deviation estimated at 0.571.405

The model considered for the latent variable is given by406

zt = a+B1zt−1 + qt, t = 1, · · · , n (11)

where n = 200 is the time series length, zt = (z1t, z2t, z3t, z4t)
⊤ with z1t : Left M1407

signal, z2t : SMA signal, z3t : Right M1 signal and z4t : Right cerebellum signal; B1408

is the (4× 4) autoregressive coefficients matrix409

B1 =




b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44




, (12)

and qt is an (4 × 1) unobservable zero mean white noise vector. The observed410

variables are given by411

Zt = zt + et, t = 1, · · · , n (13)

where Zt = (Z1t, Z2t, Z3t, Z4t)
⊤ and et = (e1t, e2t, e3t, , e4t)

⊤ is the measurement error412

vector with Var(et) = 0.5712I4.413

The time series plots corresponding to the respective observed BOLD signal at414

each brain region are represented in Figure 3. Since we are interested in identifying415

the links of connectivity networks using Granger causality, the statistical inferences416

are related to the parameters bij (i, j = 1, 2, 3, 4). If bij 6= 0, then there is a in-417

formation flow from brain area j to area i (Baccala and Sameshima (2001)). The418

coefficient estimates, standard errors and p-values (H0 : bij = 0 vs H1 : bij 6= 0) for419

both usual and proposed approaches are shown in Tables 5 and 6, respectively.420

[[ Figure 2]]

[[ Figure 3]]

[[ Figure 4]]

[[ Figure 5]]

[[ Table 5]]

[[ Table 6]]
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The estimate of Σ is421

Σ̂ =




0.81 0.16 0.18 0.04

0.16 0.76 0.05 −0.05

0.18 0.05 0.95 0.09

0.04 −0.05 0.09 0.87




.

The results described in Tables 5 and 6 suggest the existence of bidirectional422

information flow between Left M1 and Cerebellum. However, the application of423

usual approach indicates also that Left M1 sends information to SMA and Right424

M1, and that the latter sends to SMA. For both usual and proposed approaches,425

the diagrams of the networks at the significance level of 5% are shown in Figure 4.426

As highlighted by the simulations results, the utilization of usual VAR estimation,427

ignoring the measurement errors, may result in wrong test nominal sizes. In this428

context, it is important to mention that the main differences between the usual429

and proposal results were on standard deviation estimates. Further, the proposal430

estimates are almost twice the values resulting from usual approach. The theory and431

simulations suggest the existence of biases in the latter. Consequently, the p-values432

from the usual method tend to be underestimated, resulting in high rejection rates.433

Note that these connections may possibly exist, but since the nominal level of the434

test is “incorrect”, the type I error is not under control. In addition, note that some435

coefficients were considerably underestimated, for example b11, b22 and b33. See,436

the qq-plots represented in Figure 5, which suggest that the probability density of437

residuals Zt − Ẑt are reasonably approximated by the Normal distribution.438

In what follows we compare the results of Tables 5 and 6 with Table 4. Note439

that, for the real data, at a 5% nominal level, the proposed approach does not detect440

difference from zero for the following coefficients b12, b13, b21, b23, b24, b31, b32, b34,441

b42 and b43. In contrast, the usual approach does not detect such differences only for442

the coefficients b12, b13, b24, b32, b34, b42 and b43. That is, the results agree for these443

coefficientes, however for b21 (Left M1 → SMA, p-value for the usual and proposed444

methods are 0.008 and 0.332, respectively), b23 (Right M1 → SMA, p-value for445

the usual and proposed methods are 0.002 and 0.053, respectively), b31 (Left M1446

→ Right M1, p-value for the usual and proposed methods are 0.030 and 0.073,447

respectively) they do not coincide. Futhermore, the hypothesis b21 = 0 presents the448

greatest difference between the p-values, which keeps different conclusions even if449

we set a 10% nominal level. While, for the hypotheses b23 = 0 and b31 = 0 the450

conclusions become the same at a 10% nominal level. Thus, looking at the results451
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of Table 4 we can find a possible explanation for this fact. Notice that, for the452

usual approach and n = 200, the empirical false positive rates under the hypothesis453

b21 = 0 is 7.55% (the proposed approach is 4.75%); under the hypothesis b23 = 0 is454

5.72% (the proposed approach is 4.75%) and under the hypothesis b31 = 0 is 5.73%455

(the proposed approach is 5.25%). As can be seen, the usual method is rejecting456

more than the proposed one for the hypothesis b21 = 0, whereas for the hypotheses457

b23 = 0 and b32 = 0 the usual method is still rejecting more than the proposed one,458

but a little less pronouced. The same behavior can be seen in the application.459

Some studies (Biswal et al (1995)) suggest the existence of functional networks460

between motor areas even in resting state condition. These studies are based on461

correlation analysis between the BOLD signal at different brain sites. First, it is462

important to note that Granger causality is conceptually different from correlation,463

which is symmetric (it does not provide the direction of information flow ), evaluated464

in a pairwise fashion (and not in the full multivariate sense) and it does not take465

into account temporal information. In fact, correlation analysis is more closely466

related to instantaneous Granger Causality concept, which can be useful to quantify467

simultaneity between time series but it is unsuitable in the context of information468

flow detection. Second, the usual correlation analysis does not consider the presence469

of measurement errors, which may also affect the statistical significance of the results.470

The nature of functional networks in resting state is still unclear and is the subject471

of several studies (Long et al. (2008)). Nevertheless, we have demonstrated in this472

study that the inclusion of measurement errors can considerably influence the final473

results. Thus, the development of novel approaches dealing with this artifact is474

necessary.475

In summary, since the proposal and usual results differ, we conclude that the476

presence of measurement error cannot be ignored. An adequate treatment for this477

artifact is essential for the adequate description and modeling of brain networks. It is478

surprising that this important limitation received proper attention only recently. We479

believe that a preliminary analysis of this problem points toward the demand for the480

development of new estimation procedures regarding scanner noise characterization,481

physiological noise and computational implementation.482
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5 CONCLUSION483

This paper has introduced a new approach to model multivariate times series when484

measurement errors are present. The simulation studies indicate that the proposed485

approach provides coherent results (test size close to the nominal level even for486

small samples, power increasing with the sample size under alternative hypotheses,487

biases and mean square errors decreasing when the sample size increases) under488

small and moderate measurement error. Such features seem no to be shared by the489

conventional maximum likelihood estimators which present a much inferior perfor-490

mance. Furthermore, the proposal is easily attained and iterative procedures are491

not required. The theory, simulations and application showed that the presence of492

measurement error cannot be neglected and a proper model has to be considered493

for an adequate description and modeling of brain networks. We expect to report494

extensions of the proposed model (for elliptical errors, heteroscedasticity situations,495

also trying to incorporate the variability of the measurement error variance esti-496

mation in the asymptotics), a residual study and more simulation studies for large497

measurement errors on incoming papers.498
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A PROOF OF THEOREMS503

A.1 Proof of Theorem 1504

In order to prove the consistence of the estimators stated in Theorem 1, namely505

â = Z̄t − B̂Z̄∗

t−1, B̂ =

[
(SZ∗

t−1
− Ir ⊗Σe)

−1SZ∗

t−1
Zt

]⊤

and506

Σ̂ = n−1
n∑

i=1

(Zi − â− B̂Z∗

i−1)(Zi − â− B̂Z∗

i−1)
⊤ −Σe − B̂(Ir ⊗Σe)B̂

⊤,

we must study the limits of the quantities SZ∗

t−1
, SZ∗

t−1
Zt
, Z̄∗

t−1 and Z̄∗

t when507

the sample size goes to infinity. Note that Z∗

t−1 = z∗

t−1 + e∗

t−1, where e∗

t−1 =508
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(e⊤
t−1, . . . , e

⊤
t−r)

⊤, and under the stationary conditions of a VAR(r) model we have509

that510

SZ∗

t−1
= n−1

n∑

i=1

(Z∗

i−1 − Z̄∗

t−1)Z
∗⊤
i−1

= n−1
n∑

i=1

(z∗

i−1 + e∗

i−1 − z̄∗

t−1 − ē∗

t−1)(z
∗

i−1 + e∗

i−1)
⊤

= Sz∗

t−1
+ Se∗

t−1
+Op(n

−1/2)

= Γr(0) + Ir ⊗Σe +Op(n
−1/2),

where Se∗
t−1

= n−1
∑n

i=1 e
∗

i−1e
∗⊤
i−1, and Op(n

−1/2) means limited in probability even511

multiplying by n1/2 (it happens with the crossing product in the above expression).512

That is, SZ∗

t−1

P−→ Γr(0) + Ir ⊗Σe. Following the same scheme, we have that513

SZ∗

t−1
Zt

= n−1
n∑

i=1

(Z∗

i−1 − Z̄∗

t−1)Z
⊤
i

= n−1

n∑

i=1

(z∗

i−1 + e∗

i−1 − z̄∗

t−1 − ē∗

t−1)(zi + ei)
⊤

= Sz∗

t−1
zt +Op(n

−1/2)

= Γr(0)B
⊤ +Op(n

−1/2),

and finally, both the quantities Z̄∗

t−1 and Z̄∗

t converge in probability to µ∗. Hence,514

(SZ∗

t−1
− Ir ⊗Σe)

−1 P−→ Γr(0)
−1 and SZ∗

t−1
Zt

P−→ Γr(0)B
⊤,

thus, the probability convergence of â, B̂ and Σ̂ to a, B and Σ follow, respectively.515

A.2 Proof of Theorem 2516

The proof idea has three steps. The first step consists in showing that vec(B̂⊤) −517

vec(B⊤) can be written as linear combinations of a vectorial mean. The second one,518

we must demonstrate that this vectorial mean has an asymptotic Normal distribu-519

tion. The last step must conclude that vec(B̂⊤)− vec(B⊤) also has an asymptotic520

Normal distribution. In order to prove Theorem 2, we need some auxiliary results,521

which are exposed in two propositions below.522

Proposition 1. Under the model (1) and (4), the proposed estimator B̂ has the523

following relationship524

vec(B̂⊤)− vec(B⊤) = (Ip ⊗ Γr(0)
−1)W̄ +Op(n

−1),
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where525

W̄ = n−1

n∑

i=1




W1i

...

Wqi


 = n−1

n∑

i=1

Wi

with Wi = (qi+ei−Be∗

i−1)⊗(z∗

i−1−µ∗+e∗

i−1)−Ψ and Ψ = [Ip⊗(Ir⊗Σe)]vec(B
⊤).526

Proof: Define B.k as a vector (rp×1) of coefficients associated with the kth element527

of the vector zt, that is528

zkt = ak +B⊤
.kz

∗

t−1 + qkt.

Thus, we have that vec(B⊤) = (B⊤
.1 ,B

⊤
.2 , · · · ,B⊤

.p)
⊤ and the estimator of Theorem529

1 for it can be written as vec(B̂) = (B̂⊤
.1 , B̂

⊤
.2 , · · · , B̂⊤

.p)
⊤, where B̂.k = (SZ∗

t−1
−530

I ⊗ Σe)
−1SZ∗

t−1
Zkt

and SZ∗

t−1
Zkt

= n−1
∑n

i=1(Z
∗

i−1 − Z̄∗

t−1)Zkt for k = 1, . . . , p.531

Moreover, the model (2) may be rewritten in terms of the observed variables as532

Zt = a+BZ∗

t−1 + ϑt,

ϑt = qt + et −Be∗

t−1,
(14)

and for the kth element of Zt we have533

Zkt = ak +B⊤
.kZ

∗

t−1 + ϑkt,

ϑkt = qkt + ekt −B⊤
.ke

∗

t−1.
(15)

Then, it follows that534

SZ∗

t−1
Zk

= n−1
n∑

i=1

(Z∗

i−1 − Z̄∗

t−1)(ak +B⊤
.kZ

∗

i−1 + ϑki) = SZ∗

t−1
B.k + SZ∗

t−1
ϑk
,

where SZ∗

t−1
ϑk

= n−1
∑n

i=1(Z
∗

i−1 − Z̄∗

t−1)ϑki = n−1
∑n

i=1(z
∗

i−1 − µ∗ + e∗

i−1)ϑki +535

Op(n
−1). Hence, denoting Sz∗

t−1
ϑk

= n−1
∑n

i=1(z
∗

i−1 − µ∗ + e∗

i−1)ϑki we have that536

SZ∗

t−1
Zk

= (SZ∗

t−1
− Ir ⊗Σe)B.k + Sz∗

t−1
ϑk

−Ψk +Op(n
−1),

with Ψk = −(Ir ⊗Σe)B.k. As a result, we have537

B̂.k = B.k + Γ−1
r (0)W̄k +Op(n

−1)

where W̄k = n−1
∑n

i=1Wki and Wki = (z∗

i−1−µ∗+e∗

i−1)ϑki−Ψk. Hence, it follows538

that539

vec(B̂⊤)− vec(B⊤) = (Ip ⊗ Γr(0)
−1)W̄ +Op(n

−1),
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where540

W̄ = n−1

n∑

i=1




W1i

...

Wqi


 = n−1

n∑

i=1

Wi

withWi = (qi+ei−Be∗

i−1)⊗(z∗

i−1−µ∗+e∗

i−1)−Ψ andΨ = [Ip⊗(Ir⊗Σe)]vec(B
⊤).541

Proposition 2. If et ∼ N (0,Σe) with Σe known and E(qij1qij2qij3qij4) < ∞ for542

all j1, j2, j3, j4 ∈ {1, . . . , p}, where qij is the jth element of qi. The mean, W̄ , of543

Proposition 1 has an asymptotic distribution given by544

√
nW̄

D−→ N (0,Tr),

where545

Tr = Σϑ ⊗ Γr(0) +Σϑ ⊗ (Ir ⊗Σe) +B⊤ ⊗ [ΣeB(Ir ⊗Σe)] +

−
r∑

h=1

{
(BhΣe)⊗ Γr(h) + (ΣeB

⊤
h )⊗ Γr(−h)

}
+

+
r−1∑

h=1−r

[B(J−h ⊗Σe)B
⊤]⊗ Γr(h).

where Jl is a (r × r) matrix of zeros with one’s in the |l|th diagonal above (below)546

the main diagonal if l > 0 (l < 0) and J0 is a (r × r) matrix of zeros.547

Proof: Notice that the expectation of Wi is equal to zero for all i. Shumway548

and Stoffer (2000) state a central limit theorem to a univariate M-dependent se-549

quence of random variables with mean zero. We say that a time series xt is550

M-dependent if the set of values xs, s ≤ t is independent of the set of values551

xs, s ≥ t + M + 1 (Shumway and Stoffer, 2000, on pg. 66). Then, assuming that552

E(qij1qij2qij3qij4) < ∞ for all j1, j2, j3, j4 ∈ {1, . . . , p} where qij is the jth element553

of qi and defining x̄ = n−1
∑n

i=1 xi, where xi = δ⊤Wi we have that E(xi) = 0,554

Cov(xi, xi−h) = δ⊤Cov(Wi,W
⊤
i−h)δ = δ⊤E(WiW

⊤
i−h)δ and555

E(WiW
⊤
i−h) = E[Fih ⊗ (z∗

i−1 − µ∗)(z∗

i−h−1 − µ∗)⊤] + E[Fih ⊗ e∗

i−1e
∗⊤
i−h−1] +

+ E[Fih ⊗ e∗

i−1(z
∗

i−h−1 − µ∗)⊤] + E[Fih ⊗ (z∗

i−1 − µ∗)e∗⊤
i−h−1]−

− ΨΨ⊤

with Fih = (qi + ei −Be∗

i−1)(qi−h + ei−h −Be∗

i−h−1)
⊤. Thus, using some matricial556

results and simple expectation rules we can solve these expectations as follows557

E(WiW
⊤
i−h) = 0 for |h| < r,
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558

E(WiW
⊤
i−h) = −(BrΣe)⊗ Γr(h) for h = r,

559

E(WiW
⊤
i−h) = −(ΣeB

⊤
|r|)⊗ Γr(h) for h = −r,

560

E(WiW
⊤
i−h) = [B(J−h⊗Σe)B

⊤]⊗Γr(h)−(BhΣe)⊗Γr(h) for h = 1, . . . , r−1,
561

E(WiW
⊤
i−h) = [B(J−h⊗Σe)B

⊤]⊗Γr(h)−(ΣeB
⊤
|h|)⊗Γr(h) for h = −1, . . . , 1−r,

562

E(WiW
⊤
i−h) = Σϑ⊗Γr(0)+Σϑ⊗ (Ir ⊗Σe)+B⊤⊗ [ΣeB(Ir ⊗Σe)] for h = 0,

where Jl is a (r × r) matrix of zeros with one’s in the |l|th diagonal above (below)563

the main diagonal if l > 0 (l < 0) and J0 is a (r × r) matrix of zeros. That is,564

x1 . . . , xn is a strictly M-dependent sequence of random variables with mean zero565

(where M = r) and, therefore, we can use the result stated in Shumway and Stoffer566

(2000), which says that567

√
nx̄

D−→ N (0, Vr)

where568

Vr =
r∑

h=−r

Cov(δ⊤Wi, δ
⊤Wi−h) = δ⊤Trδ

with569

Tr = Σϑ ⊗ Γr(0) +Σϑ ⊗ (Ir ⊗Σe) +B⊤ ⊗ [ΣeB(Ir ⊗Σe)] +

−
r∑

h=1

{
(BhΣe)⊗ Γr(h) + (ΣeB

⊤
h )⊗ Γr(−h)

}
+

+
r−1∑

h=1−r

[B(J−h ⊗Σe)B
⊤]⊗ Γr(h).

As
√
nδ⊤W̄ is asymptotically normally distributed for all δ 6= 0r then, by the570

Cramer-Wold device (see Theorem 10.4.5 on page 336 in Athreya and Lahiri, 2006),571

we have that572

√
nW̄

D−→ N (0,Tr).

Then, by the Propositions 1 and 2, the prove of Theorem 2 follows573

√
n(vec(B̂⊤)− vec(B⊤))

D−→ N (0, [Ip ⊗ Γr(0)
−1]Tr[Ip ⊗ Γr(0)

−1]).
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Table 1: Rejection rates (%) of the hypothesis H0 : b12 = b21 = 0 (at 5% nominal

level) using the Wald statistics (8) for n = 50, n = 100, n = 250 and n = 500.

The bold numbers at the center are test sizes (they are expected to be 5%) and the

numbers around them are empirical powers.

Corrected approach Usual approach (OLS)

b12 b12

-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4

n = 50

-0.4 88.79 43.95 21.55 44.37 83.03 83.17 31.40 19.27 52.19 88.55

-0.2 82.95 27.38 7.75 22.52 61.89 75.11 17.19 10.37 39.04 77.59

b21 0.0 82.31 21.89 4.70 17.44 54.01 75.81 15.33 13.06 46.38 81.33

0.2 87.81 27.67 8.41 24.10 59.58 84.42 25.11 24.30 65.27 92.08

0.4 93.98 42.31 16.19 34.09 67.33 93.36 43.33 38.86 81.89 97.09

n = 100

-0.4 99.81 81.63 44.50 70.98 98.06 99.47 62.79 34.27 79.88 99.35

-0.2 99.23 57.85 12.33 35.84 87.49 98.05 32.81 12.62 64.40 97.10

b21 0.0 99.15 45.22 5.03 28.26 83.06 98.01 26.66 19.03 76.63 98.53

0.2 99.50 49.03 11.12 42.27 88.25 99.03 41.35 42.17 93.19 99.83

0.4 99.91 69.40 28.78 61.56 92.37 99.89 70.19 67.81 98.92 100.0

n = 250

-0.4 100.0 99.75 85.97 97.86 100.0 100.0 96.74 71.29 99.41 100.0

-0.2 100.0 95.11 26.42 69.13 99.79 100.0 71.89 21.48 95.93 99.99

b21 0.0 100.0 85.09 5.63 59.33 99.69 100.0 58.01 39.23 99.21 100.0

0.2 100.0 87.79 19.95 80.56 99.85 100.0 80.67 80.51 99.99 100.0

0.4 100.0 97.21 62.91 94.57 99.91 100.0 97.65 97.66 100.0 100.0

n = 500

-0.4 100.0 100.0 99.29 99.99 100.0 100.0 99.97 95.71 100.0 100.0

-0.2 100.0 99.93 48.41 93.75 100.0 100.0 95.21 37.71 99.95 100.0

b21 0.0 100.0 99.11 5.34 88.17 100.0 100.0 88.13 67.50 100.0 100.0

0.2 100.0 99.45 36.79 98.01 100.0 100.0 98.17 98.19 100.0 100.0

0.4 100.0 99.99 90.51 99.88 100.0 100.0 99.99 99.99 100.0 100.0
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Table 2: Rejection rates (%) of the hypothesis H0 : b12 = 0 (at 5% nominal level)

using the Wald statistics (8) for n = 50, n = 100, n = 250 and n = 500.

b12

Model −0.4 −0.2 0.0 0.2 0.4

n = 50

Proposed Model 42.65 13.51 4.93 7.35 14.10

Usual Model 36.54 9.79 6.53 17.78 34.56

n = 100

Proposed Model 71.01 21.85 5.41 11.09 25.52

Usual Model 61.75 12.97 8.51 31.87 61.65

n = 250

Proposed Model 97.57 43.83 5.28 21.50 55.67

Usual Model 94.40 22.07 14.17 69.65 95.53

n = 500

Proposed Model 99.99 70.28 5.37 40.33 85.12

Usual Model 99.94 36.90 24.39 94.27 99.93

27



Table 3: Empirical bias and mean squared error for the proposed and usual model.

Note that, the biases

Proposed model Usual model

Bias MSE Bias MSE

n = 50

b11 -0.0034 1.4357 -0.1446 0.0454

b12 -0.0713 1.7832 0.1098 0.0434

b21 0.0323 0.1504 0.0250 0.0143

b22 -0.0813 0.2005 -0.1589 0.0461

n = 100

b11 -0.0032 0.0218 -0.1313 0.0290

b12 -0.0334 0.0352 0.1209 0.0293

b21 0.0140 0.0120 0.0165 0.0067

b22 -0.0364 0.0195 -0.1265 0.0258

n = 250

b11 -0.0004 0.0079 -0.1252 0.0203

b12 -0.0143 0.0119 0.1299 0.0224

b21 0.0039 0.0043 0.0112 0.0027

b22 -0.0125 0.0066 -0.1086 0.0156

n = 500

b11 -0.0008 0.0040 -0.1235 0.0175

b12 -0.0072 0.0058 0.1326 0.0203

b21 0.0023 0.0021 0.0097 0.0013

b22 -0.0068 0.0031 -0.1024 0.0124
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Table 4: Rejection rates under null univariate hypothesis (at 5% nominal level).

The model is generated considering b12 = b13 = b21 = b23 = b24 = b31 = b32 = b34 =

b42 = b43 = 0 and the other parameters were taken similar to which estimated for

the application. Each cell depicts the nominal level for univariatly testing if bij = 0.

The closer to 5% the better is the result.

Proposed model Usual model

n = 100 n = 200 n = 400 n = 100 n = 200 n = 400

H0 : b12 = 0 4.67 4.65 4.60 6.21 7.21 9.78

H0 : b13 = 0 5.15 4.78 4.79 5.95 5.43 5.86

H0 : b21 = 0 5.35 4.75 4.83 7.30 7.55 8.99

H0 : b23 = 0 5.15 5.20 4.74 5.55 5.72 4.89

H0 : b24 = 0 5.48 5.18 4.81 6.08 5.17 4.93

H0 : b31 = 0 5.61 5.25 4.91 6.42 5.73 5.67

H0 : b32 = 0 4.94 5.13 5.09 5.55 5.56 5.30

H0 : b34 = 0 5.28 5.21 5.36 5.75 5.30 5.68

H0 : b42 = 0 5.06 4.73 4.89 4.91 4.59 5.21

H0 : b43 = 0 5.11 5.25 4.96 5.09 5.26 5.33
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Table 5: Application to real data - usual approach: coefficient estimates,

standard deviations and respective p-values (H0 : coefficient is equal to zero).

Parameter Estimate Standard Deviation p−value

b11 0.537 0.065 <0.001

b12 0.105 0.063 0.097

b13 0.003 0.060 0.967

b14 -0.181 0.059 0.002

b21 0.179 0.068 0.008

b22 0.378 0.066 <0.001

b23 0.145 0.063 0.002

b24 0.047 0.062 0.442

b31 0.165 0.076 0.030

b32 -0.074 0.074 0.319

b33 0.242 0.071 <0.001

b34 -0.061 0.069 0.378

b41 0.294 0.070 <0.001

b42 -0.060 0.068 0.381

b43 0.092 0.065 0.154

b44 0.350 0.064 <0.001
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Table 6: Application to real data - proposed approach: coefficient estimates,

standard deviations and respective p-values (H0 : coefficient is equal to zero).

Parameter Estimate Standard Deviation p−value

b11 0.935 0.137 <0.001

b12 -0.032 0.127 0.803

b13 -0.095 0.103 0.357

b14 -0.287 0.091 0.002

b21 0.132 0.137 0.332

b22 0.581 0.126 <0.001

b23 0.199 0.103 0.053

b24 0.027 0.092 0.765

b31 0.279 0.156 0.073

b32 -0.184 0.143 0.201

b33 0.346 0.117 0.004

b34 -0.111 0.106 0.294

b41 0.538 0.147 <0.001

b42 -0.252 0.135 0.063

b43 0.044 0.110 0.687

b44 0.528 0.099 <0.001
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Figure 1: Corrected power versus sample size. The full line refers to the proposed

approach and the dot line refers to the usual one. It is expected that the corrected

power converges to one.
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Figure 2: Four areas were selected for connectivity evaluation using the VAR model:

Left M1: left primary motor cortex, Right M1: right primary motor cortex,

SMA: supplementary motor area and Right Cerebellum.
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Figure 3: Observed signal at each brain region.

Figure 4: Identified network of information flow by testing the parameters of VAR

model (α = 5%)
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Figure 5: QQplot for Normal distribution: Residuals (Observed values - Pre-

dicted) at each brain region.
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