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Abstract

Bayesian and classical statistical approaches are based on different types of logical prin-

ciples. In order to avoid mistaken inferences and misguided interpretations, the practitioner

must respect the inference rules embedded into each statistical method. Ignoring these princi-

ples leads to the paradoxical conclusions that the hypothesis µ1 = µ2 could be less supported

by the data than a more restrictive hypothesis such as µ1 = µ2 = 0, where µ1 and µ2 are two

population means. This paper intends to discuss and explicit some important assumptions

inherent to classical statistical models and null statistical hypotheses. Furthermore, the defi-

nition of the p-value and its limitations are analyzed. An alternative measure of evidence, the

s-value, is discussed. This paper presents the steps to compute s-values and, in order to illus-

trate the methods, some standard examples are analyzed and compared with p-values. The

examples denunciate that p-values, as opposed to s-values, fail to hold some logical relations.
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1 Introduction

In social sciences, the majority of the events are contingent, full of uncertainties and permeated

by nuisance variables. For instance, cognitive skills are affected by a number of factors such as

education, culture, age, tiredness, genetics, etc. It is impractical to contemplate all factors that

influence a specific cognitive skill. Probability and statistical models are mathematical tools used to

handle contingent and uncertain events (Fisher, 1955; McCullagh, 2002; Kadane, 2011). These tools

are defined in terms of sets and functions, which are fully consistent with the modern formulation

of mathematics1.

Statistical models are employed to make inferences about unknown quantities and to test the

consistency of scientific statements with the observed data (Fisher, 1955). However, statistical

models have domains of applicability, internal rules, principles, limitations and so on (Fisher,

1922; Hájek, 2008; Dempster, 1968). It is important to understand those internal features in

∗email: patriota@ime.usp.br; fax: (+55 11) 3091-6130
1The formal apparatus needed for statistical models can be defined in a model of ZFC (Zermelo-Fraenkel with

the choice axiom) set theory. The ZFC set theory is the most accepted axiomatic formalization of mathematics
that prevents from trivial contradictions such as the Russel’s paradox which can emerge from the vagueness of the
näıve set theory (see, Terence, 2013, for more details). Natural, Rational and Real numbers, power sets, relations
and so on can be derived from models of ZFC set theory (there are other formalizations, but ZFC is, at the present
moment, the most studied and verified of them)
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order to avoid inadequate interpretations obtained from prohibited inferential rules (Fisher, 1955;

Kempthorne, 1976; Berger and Sellke, 1987; Lavine and Schervish, 1999).

The main goal of this paper is to discuss some hidden assumptions underlying the classical

statistical models2 and null hypotheses, see Sections 2 and 3. Section 4 discusses the formal

definition of a p-value, Section 5 presents its limitations and reviews a new classical measure of

evidence, called s-value, that overcomes some limitations of the p-value. Section 6 provides some

standard examples on testing population averages that illustrate the following feature of p-values:

they do not respect the reasoning of the logical consequence. The reasoning of logical consequence

is: if one hypothesis H01 implies another one H02, then, by the logical consequence, we would

expect more evidence against H02 than that against H01. For example, let µ1 and µ2 be two

population means. From p-values, it is possible to obtain the following striking result: with the

same observed data, it is possible to find more evidence against µ1 = µ2 than against µ1 = µ2 = 0,

even though the latter necessarily implies the former. Section 7 concludes the paper resuming the

main points discussed in the paper.

2 Statistical Models

It is difficult to introduce probability and statistical models by adopting an easy language without

ambiguity. This paper avoids the set-theoretic notation and will not introduce the primary prob-

ability space where all quantities are well defined (e.g., random variables, statistics, estimators,

induced spaces, etc.). The reader should be aware that the language used here is informal, and to

avoid ambiguities it will be required to make many textual caveats. The reader is referred to Cox

and Hinkley (1974), Schervish (1995), Lehmann and Casella (1998) and McCullagh (2002) for a

detailed discussion on statistical models.

Roughly speaking, the steps before choosing a statistical model are:

1. Define the objectives of the study;

2. Define the population of interest;

3. Define the quantities of interest;

4. Define an adequate experiment to collect the sample.

The practitioner must have prior knowledge to construct an appropriate experiment to access

the quantities of interest, for each field has its idiosyncrasies that must be taken into account.

The experiment may be randomized in specific strata or layers or clusters (different treatments,

genders, groups of risk and so on), and these considerations should guide the researcher to choose

the class of probability distributions that will be considered in the statistical model. Typically,

in scientific experiments, there are direct observable quantities (age, gender, measured height and

weight, etc.) and unobservable quantities (intelligence, “feelings of morale”, “sense of belonging”,

etc.). These quantities might be either random or non-random and are ingredients of a statistical

model. All random quantities must be well-defined in a probability space.

In this paper, random observable quantities are denoted by upper-case Latin letters, say X or

T , and their observed counterparts are denoted by lower-case Latin letters, say x or t. Random

2I prefer to use “classical” model rather than “frequentist” model, since the classical model is a mathematical
structure that can be interpreted either inside or outside the frequentist paradigm, see Section 2 for more details.
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and non-random unobservable quantities are denoted by the Greek letters γ and θ, respectively.

The unobservable random quantities are called latent random variables (Bollen, 2002). Let us

informally represent a statistical model by the triplet

(X, γ,M), (2.1)

where X represents the observable random variables, γ represents the latent random variables and

M is a family containing joint probability (density) functions of the random variables, that is,

M = {gθ : θ ∈ Θ ⊆ Rp}, p ∈ N where gθ is a possible joint probability (density) function of (X, γ),

for each θ ∈ Θ. It should be clear that θ ∈ Θ is an indexer of possible probability distributions, it

is not a random variable. Through residual analyses, one can verify empirically if the familyM is

adequate or inadequate to model the observable data. It is not possible to assure that the family

M contains the generator mechanism of the data, that is, the mechanism that effectively generates

the data. Furthermore, the data’s generator mechanism might not even be translatable in terms

of probability distributions.

When the probability distribution that governs the random quantities is known, then M con-

tains only one element, namely M = {g}, where g(x, γ) ≡ fγ(x)f0(γ) is the joint probability

(density) function of the observable and unobservable random variables, with

X|γ ∼ fγ and γ ∼ f0,

where fγ is the probability (density) function of the random variable X given γ and f0 is the

probability (density) function of the random variable γ. Recall that in this latter example, it is

assumed that the joint probability distribution that governs the random quantities is known. In

this context, it is possible to provide full probabilistic descriptions of the random quantities (mean,

variance, quantiles, marginal probabilities, joint probabilities, conditional probabilities, etc.). As

aforementioned, in practice it is difficult (or even impossible) to known the generator of the random

quantities and the family M typically has more than one element.

The formal statistical model is defined with sigma-fields and a family of probability measures

(see, for instance, Lehmann and Casella, 1998; McCullagh, 2002; Lehmann and Romano, 2005;

Patriota, 2013). The reader must keep in mind that model (2.1) is a simplified version that

shall help us to understand some important features of the classical statistical model and the null

hypothesis statistical testing.

3 Scientific and Statistical Hypotheses

In science, it is common to formulate statistical hypotheses to test scientific statements. A non-

trivial step is to translate a scientific statement into statistical language. In the classical paradigm,

a statistical hypothesis is a statement about probability distributions that potentially govern the

experimental data. That is, in order to create a statistical hypothesis, one must be able to transform

a scientific statement in terms of probability distributions. For instance, the statement “this coin is

not biased” is typically transformed into “P (this coin turns up head) = 0.5”, that is, the following

is taken as a hidden principle:

“This coin is not biased” AND “Theoretical assumptions”⇔ “P (this coin turns up head) =

0.5”.
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The theoretical assumptions are attained from the chosen experiment. One experiment may be

performed by independently throwing n times the coin over a smooth surface. The observable

random variable is the number of times the coin turned up heads. In this simplified version, no

latent variables are considered. Assuming that the coin cannot land on its edge, one statistical

model that can represent this experiment is the binomial model (X,M), where M = {gθ : θ ∈
(0, 1)} with

gθ(k) =
n!

k!(n− k)!
θk(1− θ)n−k, for k = 1, . . . , n,

where n! is the usual factorial notation, θ is the probability that the studied coin turns up head and

gθ(k) is the probability that the coin turns up heads exactly k times in the performed experiment.

The scientific statement and its statistical counterpart are related by

“This coin is not biased” AND “Theoretical assumptions” ⇔ “θ = 0.5”.

The null hypothesis is then represented by H0 : θ = 0.5, that is H0 is a statement about probabili-

ties: “if the coin is not biased, then [by the above principle and model assumptions] the probability

that the coin turns up head is 0.5”. Notice that, unless the practitioner is totally certain of the

theoretical assumptions, evidence to reject H does not mean evidence to reject the scientific state-

ment. Indeed, we have that not-H implies that either “This coin is biased” or “at least one of the

theoretical assumptions is not adequate”.

Under the null hypothesis H0, the statistical model reduces to (X,M0), where M0 = {g0.5}.
In general, the alternative hypothesis is defined to be H1 : θ 6= 0.5 and under this alternative

hypothesis the statistical model is (X,M1), where M1 = {gθ : θ 6= 0.5}. Notice that the union of

both restricted families under H0 and H1 must be the original family, that is,M0∪M1 =M. This

means that the original statistical model can be partitioned into two separated statistical models,

namely the one generated under H0 and the other generated under H1.

In the binomial model, it is implicitly assumed in the “Theoretical assumptions” that “P (this

coin turns up head)” does not change over all throws. Of course, this assumption is oversimplified

for actual processes, since in each throwing the coin is submitted to impacts causing microscopic

cracks, warps and, consequently, modifications in “P (this coin turns up head)” over time. Other

statistical models can be implemented by relaxing some of the imposed suppositions: 1) latent

random variables can be incorporated to model dependence among the coin flips and 2) covariates

may be inserted to model variations in θ. That is, by changing some “Theoretical assumptions”,

many statistical models could be used to model the outcomes of the very same experiment.

The concept of coin bias can be further elaborated. One may prefer to relate the statement

“this coin is not biased” with the structural topology of the coin, e.g., types of symmetries around

the mass center of the coin, etc. Under this latter definition, it is possible to define degrees of bias

based on a measure of symmetry and another completely different statistical model will emerge.

This simple example illustrates the complexity of statistical models and the problem of translating

a simple scientific hypothesis into a statistical language. This example is applied in problems with

binary outcomes; for instance, the random variable X may be defined to be the number of allergic

patients, out of n, who react positively to a specific treatment.
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3.1 Logical relations between the null and alternative statistical hy-

potheses

In general, a full statistical model is initially specified (X, γ,M). After establishing the null and

alternative hypotheses H0 and H1, reduced statistical models emerge (X, γ,M0) and (X, γ,M1)

under these hypotheses, respectively, where M0 ∪M1 =M. The null hypothesis states “at least

one marginal probability distribution listed in M0 generates the observable random variable”.

Notice that, the alternative hypothesis H1 is not the negation of H0. Moreover, the negation

of the null hypothesis cannot be written in statistical terms, since not-H0 includes all possible

mechanisms, not necessarily probabilistic ones, that could generate the observable variables X.

The negation of H0 is

not-H0 : “It is not the case that ‘at least one marginal probability distribution listed

in M0 generates the observable random variable X’ ”.

Therefore, H1 does imply not-H0, but not-H0 does not imply H1. Therefore, the practitioner

should be aware that a decision between H0 and H1 is very limited, since there is an option beyond

the disjunction “H0 OR H1”. As not-H0 does not imply H1, “not-H0 AND not-H1” is a valid

third option. These logical relations lie at the core of many controversies about null hypothesis

statistical testing. For instance, Bayesian procedures typically use a prior probability π such that

π(H0 OR H1) = 1. The problem with this latter procedure is that it gives the impression that the

alternative hypothesis is the negation of the null hypothesis, since by the probability properties the

following is a consequence: π(H0) = 1−π(H1), which implies probability zero to the logically valid

third option “not-H0 AND not-H1”; which means, in some sense, that the practitioner is sure

that this third option is not relevant for the statistical analysis. This is exactly what is considered

in the analysis derived by Trafimow (2003), which will be discussed in this section.

The statistical hypotheses H0 and H1 are not necessarily exhaustive, because, as said previously,

the family M might not contain the data’s generator mechanism. Even after making post-data

analyses to verify whether the model assumptions are adequate (through residual analyses, simu-

lated envelopes and so on. See Atkinson, 1985; Cook, 1977, 1986, for more details), it is not possible

to guarantee that “not-H0 AND not-H1” is not a relevant option. For the sake of analysis, let

us assume that H0 and H1 are exhaustive and mutually exclusive hypotheses, then the following

inference rules are valid:

• Empirical evidence to reject H0 is empirical evidence to accept H1: not-H0 ⇒ H1.

• Empirical evidence to reject H1 is empirical evidence to accept H0: not-H1 ⇒ H0.

However, if the disjunction “H0 OR H1” is not exhaustive, then the preceding inference rules are

not valid anymore, rather we have the following

• Empirical evidence to reject H0 is not necessarily empirical evidence to accept H1: not-H0 6⇒
H1.

• Empirical evidence to reject H1 is not necessarily empirical evidence to accept H0: not-H1 6⇒
H0.

Recall that, as discussed previously, to accept (or reject) H0 is not the same as to accept (or reject)

the scientific hypothesis, unless the practitioner is certain of the theoretical assumptions, which is
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scarcely the case. The above analysis explicits the main difference between uncertain inference and

decision theory as professor Sir Ronald Fisher argued in some of his papers (Fisher, 1935, 1955).

On the one hand, if the disjunction “H0 OR H1” is not exhaustive, we have uncertain inference and

more difficulties arise, for the universe of possibilities is not closed (we have to deal with the third

option). Under this context, the practitioner must not use the inferential rules “not-H1 ⇒ H0” and

“not-H0 ⇒ H1”. On the other hand, if the disjunction “H0 OR H1” is (assumed to be) exhaustive,

we have decision theory and the space of decisions becomes well defined, for the inferential rules

“not-H1 ⇒ H0” and “not-H0 ⇒ H1” are valid. It is important to note that the classical statistical

model is sufficiently general to allow these two situations discussed above:

1. The Fisherian procedure considers that “H0 OR H1” is not necessarily exhaustive. P-

values were initially defined to be used in this situation, they were designed to detect discrep-

ancies between the null hypothesis and the observed data. It is not required even to define

an alternative hypothesis; in this context, as aforementioned, some inference rules should

not be employed. A very small p-value indicates a large discordance between the postulated

null hypothesis and the observed data, however, a non-significant p-value does not indicate

evidence in favor of the null hypothesis. Fisher (1955) says: “The attempt to reinterpret

the common tests of significance used in scientific research as though they constituted some

kind of acceptance procedure and led to ‘decisions’ in Wald’s sense, originated in several

misapprehensions and has led, apparently, to several more.”

2. The Neyman-Personian procedure considers that “H0 OR H1” is exhaustive. This is

the case for the statistical tests developed by Neyman and Pearson. They developed the

most powerful test for a fixed significance level (the probability of rejecting the null when

it is false). A rejection region is built based on this procedure and a decision is taken

by verifying whether the observed sample lies or not in the rejection region. The Bayesian

procedure is more aligned with the Neyman-Personian procedure than with the Fisherian, for

at least some logical principles are shared between them. Naturally, regarding “H0 OR H1”

as exhaustive is only an artificial assumption to resolve a statistical problem; the statistician

may not consider this as True in an ontological sense.

The above two perspectives lead to different types of statistical inferences. Moreover one cannot

be used to invalidate the other, since they use different principles (one considers that “H0 OR H1”

is exhaustive and the other does not) which lead to different rules of inferences. Many papers in

the scientific literature confound these two intrinsically different perspectives (see Hubbard et al.,

2003, and the references therein).

Recently, Trafimow (2003), by explicitly assuming that “H0 OR H1” is exhaustive, defined

p-values by conditional probabilities and employed the rules of conditional probabilities to show

that p-values are internally flawed. He wrote “the Bayesian analyses presented earlier not only

suggest possible problems with null hypothesis significance testing procedure (NHSTP) but also

demonstrate when these potential problems become actual problems and when they do not”. Trafi-

mow (2003) deliberately applied the Bayesian reasoning to analyze the p-values’ behavior and to

conclude that they are flawed. In a recent Editorial note published by “Basic and Applied Social

Psychology” (BASP), Trafimow and Marks (2015) communicated that the NHSTP was banned

from BASP. The Editorial note said that

“prior to publication, authors will have to remove all vestiges of the NHSTP (p-values,
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t-values, F-values, statements about significant differences or lack thereof, and so on).”

(Trafimow and Marks, 2015, , page 1, in Answer to Question 1)

The attempts of writing classical statistics with Bayesian notation is a strong source of misinter-

pretations and controversies. One reason, as discussed previously, is because their logical reasoning

are different. Another reason is that some conditional statements in the classical statistics are not

probabilistic statements. The p-value is formally defined in the next section; as the reader shall

see, it has nothing to do with the formal definition of conditional probabilities and it is not con-

nected directly with the Bayesian interpretation. In my view, the main problem with the subjective

Bayesian approach is that it excludes all possible probability measures outside M from the very

beginning of the statistical analysis3.

4 Definition of p-values

A p-value is built with the purpose of capturing a disagreement between the observed data and the

postulated null hypothesis. In this context, a first step is to define a positive real statistic T ≡ TH0 ,

it is a function of the random sample X which depends on the null hypothesis H0, such that: the

larger its observed value t, the stronger is the disagreement between the observed data and the null

hypothesis H0 (Cox, 1977; Mayo and Cox, 2006; Patriota, 2013). The set CH0(t) = {x : T (x) ≥ t}
describes all sample values which have stronger disagreements with the postulated null hypothesis

H0 than the observed one t. This set has three important elements, namely: the null hypothesis

of interest H0, the random statistic T and the observed statistic t. Note that T strongly depends

on H0.

If CH0(t) is small compared to the total set CH0(0), then the observed experiment provides

strong evidence against H0; this happens when the observed t is large enough to lie in the extreme

right tail of the statistics T ’s distribution. One way to measure the size of CH0
(t) is through

probabilities. As the null hypothesis states probability distributions that represent the scientific

statement of interest, the p-value is computed for the case with the highest probability in H0. Let

us consider the model without latent variables (X,M), where M0 = {gθ : θ ∈ Θ0} is the set of

probability (density) functions restricted under the specifications of H0. Let Pθ be the probability

measure associated with gθ, that is, if gθ is a probability function, then Pθ(A) =
∑
x∈A gθ(x) and

if gθ is a probability density function then Pθ(A) =
∫
A
gθ(x)dx, where A ⊆ X is a measurable set.

3Consider the null hypothesis H0 : θ ∈ Θ0 and the alternative hypothesis H1 : θ ∈ Θ1, where Θ = Θ0 ∪Θ1 and
Θ0 ∩ Θ1 = ∅. Any Bayesian procedures that use a single prior probability over Θ are saying explicitly that either
the null or the alternative are the only possible hypotheses according to the prior distribution. These procedures
exclude all possibilities outside the chosen statistical model a priori. There are many responses to this critic. Here
we present two of them: 1) “it is possible to consider the family of all probability measures for the observed data
given θ and use a prior probability over its subsets”. However, this family maybe too large to be considered a
well-formed set in the ZFC set-theory and the old known contradictions of set theory might arise. Furthermore,
by the choice axiom, many subsets of any non-countable family are non-measurable in a probabilistic sense. That
is to say that many hypotheses cannot be tested inside the Bayesian approach; and 2) “it is always possible to
use another prior probability that gives positive mass for another family of probability measures for the observable
data”. However, all analyses based on this new prior probability will consider again that the chosen family of
possible probability measures for the observable data is certain with probability one. That is, each fixed analysis is
an analysis of certainty regarding the family of probability measures for the observable data. These features reflect
in the permitted rules of inferences to reject or accept a hypothesis. On the other hand, the classical approach does
not impose a prior belief over the class of possible probability measures of the observable data that excludes other
possible statistical models. Instead, it says (implicitly) that the chosen family of probability measures for the data
is only a possibility among others. This feature prohibits some inferential rules, as discussed in the paper.
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The p-value is formally defined by

p(H0, t) = sup
θ∈Θ0

Pθ(CH0
(t)). (4.2)

Therefore, as p(H0, t) is (greater than or equal to) the case with the highest probability in H0,

the smaller the value of p(H0, t), the larger is the evidence against H0. Formula (4.2) explicitly

says that the classical p-value is not a conditional measure in the probabilistic sense, it is instead

a conditional measure in the possibilistic sense. The reader should notice that the usual repre-

sentation p-value = P (T ≥ t|H0) is inadequate, since (a) the probability P is meaningless in the

context of classical statistical models and (b) the conditional probability is being misused, since

its formal definition is being ignored. The conditional probability is defined by P (A|B) = P (A∩B)
P (B) ,

where P (B) > 0 and A and B are events of the same type (they must be listed in the same

sigma-field). As for random variables, the conditional probability is defined analogously for the

probability (density) function gθ. In classical statistics, the events {x : T (x) ≥ t} and H0 are not

of the same type, for they are not listed in the same sigma-field; otherwise it is a Bayesian-like

analysis4. In classical statistics, there is not a probability distribution defined over the subsets of

M = {gθ : θ ∈ Θ} and asM cannot (even ideally) list all possible measures, a probability measure

over the subsets of M would be conceptually ill-defined5.

Technical remark: for each observed statistic t, the quantity Pθ(CH0(t)) is fixed while

Pθ(CH0(T )) is random for each θ ∈ Θ. If, for each fixed t, Pθ1(CH0(t)) = Pθ2(CH0(t))

for all θ1, θ2 ∈ Θ0, then the statistic T will be (informally) said to be ancillary to Θ0,

and then the “sup” operation in (4.2) vanishes. This happens in many problems under

normal distributions when the interest is centered in testing population means and/or

variances. In this context, if T is a continuous random variable and it is ancillary to Θ0,

the distribution of p(H0, T ) is uniform between 0 and 1. This allows the practitioner

to interpret a p-value in terms of ideal replications of the performed experiment:

“if the performed experiment were repeated N times, then it is estimated

that p(H0, t)×N of those experiments would produce p-values smaller than

the observed one.”

This interpretation of repeating sampling from the same population is criticized by

Fisher (1955). The main argument follows: “if we possess a unique sample in student’s

sense on which significance tests are to be performed, there is always, ..., a multiplicity

of populations to each of which we can legitimately regard our sample as belonging.”

(see Section 2 of Fisher, 1955, for more details)

4In my view, it is one of the many theoretical differences between classical and Bayesian approaches. Notice
that, in the classical formulation, as H0 and {x : T (x) ≥ t} are not the same type, it is not allowed to use the same
measure for these two events.

5The main set must contain (ideally) all possible events. It is possible theoretically to define a probability
measure over the subsets of a set containing not all possible events, but trivial problems arise as, for instance, giving
probability zero to possible events. In the case of the setM, simulated envelopes may be employed to verify if some
outside distribution is more adequate than the ones specified in M.
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5 Problems of p-values and an alternative measure of evi-

dence

The p-value is a coherent measure to verify a possible discrepancy between a fixed null hypothesis

and the observed data. Nevertheless, there is a serious limitation in the use of p-values in nested

hypotheses. Consider that the p-value’s computation under H
(1)
0 is extremely complicated. Let

H
(2)
0 be an auxiliary hypothesis such that H

(1)
0 ⇒ H

(2)
0 , i.e., if H

(1)
0 is true, then H

(2)
0 is true.

By logical reasoning: if H
(2)
0 is false, then H

(1)
0 must also be false. The practitioner, led by this

logical reasoning, would compute the p-value under H
(2)
0 and conclude that if there is evidence

to reject H
(2)
0 , i.e., the p-value computed under H

(2)
0 is significantly small, then there must be

evidence to reject H
(1)
0 . However, p-values do not allow this latter logical reasoning. That is, it

is not guaranteed that p(H
(1)
0 , t) ≤ p(H(2)

0 , t), see Section 6 for numerical examples. This happens

because the test statistic T is built for a specific null hypothesis, therefore, the respective p-value

is valid only for this specific null hypothesis; for more details, see, for instance, Schervish (1996)

and Patriota (2013). In previous work, Patriota (2013) proposed an alternative classical measure

of evidence that meets the above logical reasoning; it is called s-value and will be presented in what

follows.

The general purpose of the s-value is almost the same as of the p-value: to verify a discrepancy

of null hypotheses with the observed data, but maintaining all logical consequence among null

hypotheses. In order to define s-values, let us consider the simplest statistical model without

latent variables (X,M), where M = {gθ : θ ∈ Θ ⊆ Rp} and let Pθ be the probability measure

associated with the probability (density) function gθ. The likelihood-ratio statistic is

λ(θ;x) =
gθ(x)

supθ∈Θ gθ(x)
,

provided that supθ∈Θ gθ(x) > 0. Notice that, 0 ≤ λ(θ;x) ≤ 1 for all θ ∈ Θ. The likelihood-ratio

confidence region with significance level α is defined by

Λα(x) = {θ ∈ Θ : λ(θ;x) ≥ cα(θ)},

where

Pθ(λ(θ;X) ≥ cα(θ)) ≥ 1− α, inf
θ∈Θ

Pθ(λ(θ;X) ≥ cα(θ)) = 1− α

and 0 ≤ cα(θ) ≤ 1. The following equivalent notation may be used

Pθ(λ(θ;X) ≥ cα(θ)) ≡ Pθ(Λα(X) 3 θ).

The quantity Pθ(Λα(X) 3 θ) is the probability of Λα(X) to contain θ, under the measure Pθ. This

is the formal definition of a general confidence region for the parameter θ (Schervish, 1995).

For some statistical models (normal distribution in general), the following occurs:

Pθ(λ(θ;X) ≥ cα(θ)) = 1− α for all θ ∈ Θ,

in this case, the confidence region is said to be exact. For exact confidence regions, the value cα(θ)

is the (1−α)× 100% quantile of the random variable λ(θ,X). Observe that Λα(x) contains all θ’s

that generate likelihood values greater than (or equal to) cα(θ) times the largest likelihood value,
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namely, supθ∈Θ gθ(x). This set is intuitive, for it contains the optimal values for θ ∈ Θ according

to the likelihood function. The definition of s-values follows.

Definition 5.1. Let Θ0 be a non-empty parameter subset related with H0 and let Λα(x) be the

likelihood-ratio confidence region with significance level α. Then, the s-value is defined by

s(H0;x) ≡ s(Θ0;x) ≡ sup{α ∈ [0, 1] : Λα(x) ∩Θ0 6= ∅}.

If Θ0 = ∅, define

s(∅;x) ≡ 0.

This general definition is valid for general hypotheses. Let Θ01 and Θ02 be two parameter

subsets related with the hypotheses H
(1)
0 and H

(2)
0 , respectively. In this context, if H

(1)
0 ⇒ H

(2)
0 ,

then Θ01 ⊆ Θ02; Patriota (2013) showed that the following always occurs s(Θ01;x) ≤ s(Θ02;x). A

possible interpretation for the s-value, under the regular conditions stated in Patriota (2013) and

assuming that Θ0 is non-empty and closed, reads

“s(Θ0, x) is equal to the maximum significance level αM such that ΛαM (x) and Θ0 have

at least one element in common”.

The smaller s(Θ0, x) is, the more distant Θ0 is from the maximum likelihood estimate of θ and,

consequently, the more unlikely H0 is according to the likelihood-ratio confidence region. Observe

that, if H0 : θ = θ0, where θ0 is a given vector (or number if Θ ⊆ R), then Θ0 = {θ0} and the

s-value reduces to

s({θ0};x) = max{α ∈ [0, 1] : θ0 ∈ Λα(x)}

and its interpretation reads

“s({θ0}, x) is equal to the maximum significance level αM such that ΛαM (x) contains

θ0”.

Therefore, the farther away θ0 is from the center of Λα(x), which in regular conditions is the

maximum likelihood estimative, the more the observed evidence is against H0. Patriota (2015)

studied the likelihood-ratio statistic as a measure of evidence and compared it with the s-value and

posterior distributions. González et al. (2016) employed the s-value to study confidence sets for

observed samples.

5.1 Types of decisions

In this section, some types of decisions are studied. Let θ̂ be the maximum likelihood estimative

of θ, then, under regular conditions (Cox and Hinkley, 1974, Ch. 9), we have that θ̂ ∈ Θ and it

exists.

First case: no alternative hypothesis is defined, then the general advice of this paper is to use

the s-value as a thermometer of discrepancy between null hypotheses and the observed data. The

smaller is s(Θ0, x), the stronger is the evidence against H0. Patriota (2013) showed that if θ̂ ∈ Θ0,

then s(Θ0, x) = 1 and the observed data produce no evidence against H0, which does not mean

evidence in favor of H0. In a working paper, we are showing that s-values are always greater than

p-values (based on the likelihood-ratio statistic) for some specific models. This indicates that if

a s-value is small, then the respective p-value must be even smaller. Therefore, one could just
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compute the s-value to verify discrepancies of the null hypothesis with the observed data. The

use of s-values is also justified for general hypotheses, because p-values are much more difficult to

compute than s-values and furthermore p-values do not satisfy the logical consequence.

Second case: an alternative hypothesis H1 is defined and let Θ1 be its related parameter space.

Patriota (2013) showed that, on the one hand, if θ̂ ∈ Θ0, then s(Θ0, x) = 1; on the other hand if

θ̂ ∈ Θ1, then s(Θ1, x) = 1. If the practitioner wants to decide between H0 or H1, then there are

three possibilities

• If s(Θ1, x) = 1 and s(Θ0, x) = a, then reject H0 and accept H1 whenever a is sufficiently

small.

• If s(Θ1, x) = b and s(Θ0, x) = 1, then accept H0 and reject H1 whenever b is sufficiently

small.

• If s(Θ1, x) = s(Θ0, x) = 1 and neither a nor b are sufficiently small, then neither reject nor

accept H0. More data are required.

The threshold values for a and b are being studied. They depend on the sample size, effect

sizes, error of type I and II, power of the test, severity (Mayo and Spanos, 2006; Mayo and Cox,

2006), and/or other factors. Notice also that more than one alternative hypotheses H1, . . . ,Hk can

be defined. It is possible to use the s-value in the latter context, but it is beyond the scope of this

paper.

Izbicki and Esteves (2015) investigated some properties of statistical test procedures, namely:

monotonicity, intersection consonance, union consonance and invertibility. According to Izbicki

and Esteves (2015):

1. Monotonicity is a property related to nested hypothesis: if H0 → H ′0, then a testing scheme

that rejects H ′0 should also reject H0.

2. Intersection consonance is a property related to conjunctions: if a testing scheme rejects

“H0 AND H ′0”, then it should also reject at least one of the hypotheses H0 or H ′0.

3. Union consonance is a property related to disjunctions: if a testing scheme rejects each of

the hypotheses H0 and H ′0, then it should also reject the disjunction “H0 OR H ′0”.

4. Invertibility is a property related with the null and alternative hypotheses: if a testing scheme

rejects the null hypothesis, then it should accept the alternative one and vice-verse.

The s-value satisfies the following property:

∀ Θ0 ⊆ Θ, s(Θ0, x) = sup
θ∈Θ0

s({θ}, x). (5.3)

By property stated in Equation (5.3), the following property is entailed: for all Θ0 ⊆ Θ′0 ⊆ Θ,

s(Θ0, x) ≤ s(Θ′0, x). Provided that the hypotheses are statements regarding to the parameter

space, namely H0 : θ ∈ Θ0 and H ′0 : θ ∈ Θ′0, we have that: (1) H0 → H ′0 ⇐⇒ Θ0 ⊆ Θ′0;

(2) “H0 AND H ′0” ⇐⇒ θ ∈ Θ0 ∩ Θ′0; and (3) “H0 OR H ′0” ⇐⇒ θ ∈ Θ0 ∪ Θ′0. By property

stated in Equation (5.3), it is straightforward to show that the testing scheme based on the s-

value satisfies monotonicity, intersection consonance and union consonance. The testing scheme

based on the s-value does not satisfy invertibility, since the s-value allows us to maintain both
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hypotheses whenever the observed evidence is not strong enough against at least one of the null or

the alternative hypotheses.

Some alternative Bayesian measures of evidence can be seen in Diniz et al. (2012). The authors

studied some relationships between Bayesian and frequentist significance indices. It is beyond the

scope of this paper to compare the classical and Bayesian approaches.

5.2 Steps to compute the s-value

The steps to compute the s-value are:

1. Define the statistical model (X,M). Remember that X represents the observable sample

and contains n random variables, namely X = (X1, . . . , Xn);

2. Define the null hypothesis H0 and its related set Θ0;

3. If required, define the alternative hypothesis H1 and its related set Θ1;

4. Compute the likelihood-ratio statistic λ(θ;x);

5. Compute cα(θ);

6. Compute Λα(x);

7. Compute s(Θ0, x).

8. If required, compute s(Θ1, x).

The step 5 is somewhat difficult to execute for some complex statistical models, since for those

models the distribution of λ(θ,X) is not trivial and may depend on θ. In those cases, under

regular conditions (Cox and Hinkley, 1974), the practitioner may apply the limiting distribution of

−2 log
(
λ(θ,X)

)
, which is a chi-squared distribution with p degrees of freedom, where dim(Θ) = p.

Then, step 4 reduces to

cα(θ) = exp

(
− 1

2
χ2
p,1−α

)
, for all θ ∈ Θ,

where χ2
p,1−α is the (1 − α) × 100% quantile of a chi-squared distribution with p degrees of free-

dom. This approximation reduces the complexity, since cα(θ) does not depend on θ. Under this

asymptotic approximation, the “asymptotic” s-value, denoted by sa, reduces simply to

sa(Θ0, x) = 1− inf
θ∈Θ0

Fχ2
p

(
− 2 log(λ(θ, x))

)
= 1− Fχ2

p

(
− 2 log

(
sup
θ∈Θ0

λ(θ, x)
))
,

where Fχ2
p

is the cumulative distribution of a chi-squared distribution with p degrees of freedom

and log is the natural logarithm function. If Θ0 = {θ0}, then the asymptotic p-value (i.e., the

asymptotic approximation for the p-value) based on the likelihood-ratio statistic coincides with the

above asymptotic s-value. Nevertheless, if dim(Θ0) > 0 (the Lebesgue dimension), the asymptotic

p-value and asymptotic s-value will probably differ from each other. In the asymptotic p-value, the

degree of freedom of the chi-squared distribution varies with the dimension of Θ0; more precisely,

the asymptotic p-value based on the likelihood-ratio statistic is

pa(Θ0;x) = 1− Fχ2
q

(
− 2 log

(
sup
θ∈Θ0

λ(θ, x)
))
,
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where q = dim(Θ)−dim(Θ0), where dim(Θ) = p. That is, the cumulative distribution function Fχ2
q

varies with the chosen null hypothesis, whereas for the s-value Fχ2
p

does not vary with the chosen

null hypothesis. Patriota (2013, 2014) showed that the asymptotic s-value and p-values (based on

the likelihood-ratio statistic) are connected through the following relation

sa(Θ0, x) = 1− Fχ2
p

(
F−1
χ2
q

(1− pa(Θ0, x))
)
.

That is, from a p-value (based on the likelihood-ratio statistic) we can compute the s-value via the

above formulae. If p = q, then s(Θ0, x) = p(Θ0, x).

6 Numerical examples

In this section, the s-value is applied for univariate and bivariate normal distributions. We consider

known variances (and covariances) to maintain the simplicity. All required steps are computed.

Example 6.1. (Normal distribution, variance known: z test) Let X = (X1, . . . , Xn) be a sample

from a normal distribution with population mean θ and variance 1. Let H0 : θ = θ0 be the null

hypothesis of interest. The statistical model is (X,M), where M = {gθ : θ ∈ R} and

gθ(x) =
1

(2π)
n
2

exp

(
− 1

2

n∑
i=1

(xi − θ)2

)
.

The likelihood-ratio statistic is

λ(θ, x) = exp

(
− 1

2

n∑
i=1

(xi − θ)2 +
1

2

n∑
i=1

(xi − x̄)2

)
= exp

(
− n

2
(x̄− θ)2

)
,

where x̄ = 1
n

∑n
i=1 xi is the maximum likelihood estimate for θ. It is known that

−2 log(λ(θ,X))
Pθ∼ χ2

1,

where the symbol “
Pθ∼ χ2

p” means “follows a chi-squared distribution with p degrees of freedom, under

the law Pθ”. Then,

cα(θ) = exp

(
− 1

2
χ2

1,1−α

)
and

Λα(x) =

{
θ ∈ R : n(x̄− θ)2 ≤ χ2

1,1−α

}
=

[
x̄−

√
1

n
χ2

1,1−α, x̄+

√
1

n
χ2

1,1−α

]
.

The quantity
√
χ2

1,1−α coincides with the normal (1− α/2)-quantile z1−α/2, for instance, for α =

0.05, we have
√
χ2

1,0.95 = z0.97 ≈ 1.96. That is, in this example, Λα is the usual (1−α)-confidence

interval for the population mean.

Let H0 : θ = θ0 be the null hypothesis of interest. The s-value is computed by finding the α-value

such that the border of the observed confidence interval Λα(x) is θ0. The solution is

s({θ0}, x) = 1− Fχ2
1

(
n(x̄− θ0)2

)
.

As aforementioned, for this simple null hypothesis, the s-value is precisely the p-value based on the
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likelihood-ratio statistic and coincides with the famous z-test. Table 1 depicts numerical s-values to

illustrate the univariate normal distribution example for n = 10 and σ2 = 1. The null hypothesis

is H0 : θ = θ0, where θ0 = −1, 0, 1.

Example 6.2. (Bivariate Normal distribution, with known variances and covariances) Let X =

(X1, . . . , Xn) be a sample from a bivariate normal distribution with population mean θ = (µ1, µ2)>

and covariance-variance matrix

(
1 0

0 1

)
. The statistical model is (X,M), where M = {gθ : θ ∈

R2} and

gθ(x) =
1

(2π)n
exp

(
− 1

2

n∑
i=1

(xi − θ)>(xi − θ)
)
.

The likelihood-ratio statistic is

λ(θ, x) = exp

(
− 1

2
(x̄− θ)>(x̄− θ)

)
,

where x̄ = (x̄1, x̄2)> is the maximum estimate for θ, where x̄1 and x̄2 are the sample averages of

the bivariate sample. Observe that, here p = 2. It is also known that

−2 log(λ(θ,X))
Pθ∼ χ2

2.

Then,

cα(θ) = exp

(
− 1

2
χ2

2,1−α

)
and

Λα(x) =

{
θ ∈ R : n(x̄− θ)>(x̄− θ) ≤ χ2

2,1−α

}
.

Null hypothesis 1: Let H
(1)
0 : θ = θ0 be the null hypothesis of interest, where θ0 = (µ10, µ20)>

is a given vector; then Θ01 = {θ0}. The s-value is computed by finding the α-value such that the

border of the observed confidence interval Λα(x) is θ0. The solution is (which is also equal to the

p-value based on the likelihood-ratio statistic)

s({θ0}, x) = 1− Fχ2
2

(
n(x̄− θ0)>(x̄− θ0)

)
.

Null hypothesis 2: Let H
(2)
0 : µ1 = µ2 be the null hypothesis of interest, then Θ02 = {θ ∈ R2 :

µ1 = µ2}. The s-value is computed by finding the maximum α-value such that

Λα(x) ∩Θ02 = {θ ∈ Θ02 : n(x̄− θ)>(x̄− θ) ≤ χ2
2,1−α}

has at least one element. The solution is (which is not equal to the p-value based on the likelihood-

ratio statistic)

s(Θ02, x) = 1− Fχ2
2

(
n min
θ∈Θ02

(x̄− θ)>(x̄− θ)
)
.

Notice that

min
θ∈Θ02

(x̄− θ)>(x̄− θ) = min
µ∈R

[(x̄1 − µ)2 + (x̄2 − µ)2] =
n

2
(x̄1 − x̄2)2.

Then,

s(Θ02, x) = 1− Fχ2
2

(
n

2
(x̄1 − x̄2)2

)
.
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Recall that the p-value based on the likelihood-ratio statistic is

p(Θ02;x) = 1− Fχ2
1

(
n

2
(x̄1 − x̄2)2

)
Table 2 presents numerical s-values to illustrate the bivariate normal distribution example for

n = 10 and covariance-variance matrix

(
1 0

0 1

)
. The null hypotheses considered are H01 : µ1 =

µ2 = 0 and H02 : µ1 = µ2 for which it is expected to find more evidence against H01 than H02.

The s-values were defined to hold this expected behavior. We purposely choose values for x̄1 and

x̄2 such that p-values are problematic. The figures of Table 2 show that all p-values fail to hold the

logical condition for all sample, except for x̄1 = x̄2 = 0.

The behavior of p-values depicted in Tables 1 and 2 is not restricted to the examples where

dispersion parameters are known. This feature happens also for unknown dispersion parameters,

other test statistics, and other statistical models. Here, we consider likelihood-ratio statistics, since

we are interested in comparing the p-value with the s-value. The distribution of −2 log(λ(θ;X))

is not trivial when the dispersion parameters are unknown and in order to avoid cumbersome

computations, we consider only the case with known dispersion parameters.

7 Conclusion

This paper discusses some conceptual and technical problems related to the null hypothesis statisti-

cal testing. The scientific and statistical hypotheses and the theoretical assumptions are connected

by rules of inferences called modus ponnes and modus tollens, as studied in Section 3. Unless the

practitioner is totally certain of the theoretical assumptions, evidence to reject the null statisti-

cal hypothesis does not mean evidence to reject the scientific hypothesis, since the assumptions

of a statistical model interfere in this process. Types of decisions in null hypothesis statistical

testing depend on important assumptions that are not always made explicit. On the one hand,

if the practitioner considers the null and alternative statistical hypotheses are mutually exclusive

and exhaustive, then procedures to accept-reject the null statistical hypothesis are justifiable (e.g.,

Neyman-Pearsonian and Bayesian procedures). On the other hand, if the practitioner considers

that the null and alternative statistical hypotheses are mutually exclusive but not exhaustive, then

procedures to reject the null statistical hypothesis are preferable (e.g., Fisherian procedures or

some other procedures that do not use a belief measure that excludes all possibilities outside the

null or alternative hypotheses), since a third option “not-H0 AND not-H1” must be taken into

account. A statistical procedure developed under one assumption will certainly fail to be appropri-

ated under the other, therefore an extra caution must be taken when comparing different statistical

procedures (classical versus Bayesian). By construction, p-values do not respect the following log-

ical reasoning: if H01 ⇒ H02, then p-value(H02) 6≤ p-value(H01). That is, the practitioner must

not use the p-value to extrapolate the inference made for H02 to H01. This is not a defect in

the classic statistical reasoning, because s-values do respect this logic and can be employed in the

place of p-values. Asymptotic versions of s-values are simpler to compute than p-values. S-values

can be used as a complementary measure of evidence and, as any other statistical measure, some

care is needed when using it to make inferences; rules of thumb must be avoided, the inferential

conclusions must be always complemented with other statistical tools.
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My personal view is that models are useful tools, they can be adequate or inadequate in spe-

cific contexts. As for null hypotheses, they can be compatible or incompatible with the observed

data; their degree of (in)compatibility with the observed data can be verified through measures of

evidence (p-values, s-values, etc.). Statistical analyses have hard philosophical issues that should

not be taken for granted, namely: translation problems, meaning of uncertainty, domain of appli-

cability of each method, underlying (philosophical, scientific, logical and statistical) principles and

so on. My impression is that science would be more trustful if these issues were taken seriously

into account in the statistical analyses. For instance, a p-value (or any other quantitative measure

of evidence) smaller than a certain threshold (e.g., 0.05) should not be used directly to reject a

scientific hypothesis without further investigations regarding model assumptions, test statistics,

sample size, scientific relevance, rules of inferences, adopted principles and so on.
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Table 1: S-values for testing H0 : θ = θ0, where θ0 = 0, 1 for some observed values of x̄ when
n = 10.

x̄ θ0 = 0 θ0 = 1
0.0 1.0000 0.0016
0.1 0.7518 0.0044
0.2 0.5271 0.0114
0.3 0.3428 0.0269
0.4 0.2059 0.0578
0.5 0.1138 0.1138
0.6 0.0578 0.2059
0.7 0.0269 0.3428
0.8 0.0114 0.5271
0.9 0.0044 0.7518
1.0 0.0016 1.0000
1.1 0.0005 0.7518
1.2 0.0001 0.5271
1.3 <0.0001 0.3428
1.4 <0.0001 0.2059
1.5 <0.0001 0.1138
1.6 <0.0001 0.0578
1.7 <0.0001 0.0269
1.8 <0.0001 0.0114
1.9 <0.0001 0.0044
2.0 <0.0001 0.0016
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Table 2: S-values and p-values for testing H01 : µ1 = µ2 = 0 (the s-values and p-values are
identical) and H02 : µ1 = µ2 (the s-values and p-values differ) for some observed values of (x̄1, x̄2)
that generate problematic p-values (showing that p-values do not respect the logical consequence).
The sample size is n = 10.

H01 : µ1 = µ2 = 0 H02 : µ1 = µ2

(x̄1, x̄2) x̄1 − x̄2 s-value p-value s-value p-value
(0.00, 0.00) 0.0 1.0000 1.0000 1.0000 1.0000
(0.05,-0.05) 0.1 0.9753 0.9753 0.9753 0.8231
(0.09,-0.11) 0.2 0.9039 0.9039 0.9048 0.6547
(0.14,-0.16) 0.3 0.7977 0.7977 0.7985 0.5023
(0.19,-0.21) 0.4 0.6697 0.6697 0.6703 0.3711
(0.23,-0.27) 0.5 0.5331 0.5331 0.5353 0.2636
(0.28,-0.32) 0.6 0.4049 0.4049 0.4066 0.1797
(0.33,-0.37) 0.7 0.2926 0.2926 0.2938 0.1175
(0.37,-0.43) 0.8 0.2001 0.2001 0.2019 0.0736
(0.42,-0.48) 0.9 0.1308 0.1308 0.1320 0.0442
(0.47,-0.53) 1.0 0.0813 0.0813 0.0821 0.0253
(0.51,-0.59) 1.1 0.0478 0.0478 0.0486 0.0139
(0.56,-0.64) 1.2 0.0269 0.0269 0.0273 0.0073
(0.61,-0.69) 1.3 0.0144 0.0144 0.0146 0.0037
(0.65,-0.75) 1.4 0.0073 0.0073 0.0074 0.0017
(0.70,-0.80) 1.5 0.0035 0.0035 0.0036 0.0008
(0.75,-0.85) 1.6 0.0016 0.0016 0.0017 0.0003
(0.79,-0.91) 1.7 0.0007 0.0007 0.0007 0.0001
(0.84,-0.96) 1.8 0.0003 0.0003 0.0003 0.0001
(0.89,-1.01) 1.9 0.0001 0.0001 0.0001 <0.0001
(0.93,-1.07) 2.0 <0.0001 <0.0001 <0.0001 <0.0001
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