
ar
X

iv
:1

50
8.

05
99

4v
1 

 [m
at

h.
S

T
]  

24
 A

ug
 2

01
5

Improved estimation in a general multivariate elliptical model

Tatiane F. N. Melo
Institute of Mathematics and Statistics, Federal University of Goiás, Brazil

email:tmelo@ufg.br

Silvia L. P. Ferrari
Department of Statistics, University of São Paulo, Brazil

email:silviaferrari@usp.br

Alexandre G. Patriota
Department of Statistics, University of São Paulo, Brazil

email:patriota@ime.usp.br

Abstract

The problem of reducing the bias of maximum likelihood estimator in a general multivariate elliptical regression
model is considered. The model is very flexible and allows themean vector and the dispersion matrix to have parameters
in common. Many frequently used models are special cases of this general formulation, namely: errors-in-variables
models, nonlinear mixed-effects models, heteroscedasticnonlinear models, among others. In any of these models, the
vector of the errors may have any multivariate elliptical distribution. We obtain the second-order of maximum likelihood
estimator bias, a bias-corrected estimator, and a bias-reduced estimator. Simulation results indicate the effectiveness of
the bias correction and bias reduction schemes.

Keywords: Bias correction; bias reduction; elliptical model; maximum likelihood estimation; general parameteri-
zation.

1 Introduction

It is well known that, under some standard regularity conditions, maximum-likelihood estimators (MLEs) are consistent
and asymptotically normally distributed. Hence, their biases converge to zero when the sample size increases. However,
for finite sample sizes, the MLEs are in general biased. The bias of an MLE is typically of ordern−1, then, for small
samples, bias correction can play an important role in the point estimation theory.

General expressions for the multiparametern−1 biases of MLEs were given by Cox and Snell (1968). These general
expressions are called second-order biases and can be useful in actual problems. For instance, very high second-order
biases indicate that other than maximum-likelihood estimation procedures should be used. Also, corrected estimators
can be formulated by subtracting the second-order biases from the respective MLEs. It is expected that these corrected
estimators have smaller biases than the uncorrected ones, especially in small samples.
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Cox and Snell’s formulae for second-order biases of MLEs were applied in many models. Cordeiro and McCullagh
(1991) use these formulae in generalized linear models; Cordeiro and Klein (1994) compute them for ARMA models;
Cordeiro et al. (2000) apply them for symmetric nonlinear regression models; Vasconcellos and Cordeiro (2000) obtain
them for multivariate nonlinear Student t regression models. More recently, Cysneiros et al. (2010) study the univariate
heteroscedastic symmetric nonlinear regression models (which are an extension of Cordeiro et al. 2000) and Patriota
and Lemonte (2009) obtain a general matrix formula for the bias correction in a multivariate normal model where the
mean and the covariance matrix have parameters in common.

An alternative approach to bias correction was suggested byFirth (1993). The idea is to adjust the estimating function
so that the estimate becomes less biased. This approach can be viewed as a “preventive” method, since it modifies the
original score function, prior to obtaining the parameter estimates. In this paper, estimates obtained from Cox and
Snell’s approach and Firth’s method will be called bias-corrected estimates and bias-reduced estimates, respectively.
Firth showed that in generalized linear models with canonical link function the preventive method is equivalent to
maximizing a penalized likelihood that is easily implemented via an iterative adjustment of the data. The bias reduction
proposed by Firth has received considerable attention in the statistical literature. For models for binary data, see Mehrabi
and Matthews (1995); for censored data with exponential lifetimes, see Pettitt et al. (1998). In Bill et al. (2002) bias
reduction is obtained for the multinomial logistic regression model. In Kosmidis and Firth (2009) a family of bias-
reducing adjustments was developed for a general class of univariate and multivariate generalized nonlinear models. The
bias reduction in cumulative link models for ordinal data was studied in Kosmidis (2014). Additionally, Kosmidis and
Firth (2011) showed how to obtain the bias-reducing penalized maximum likelihood estimator by using the equivalent
Poisson log-linear model for the parameters of a multinomial logistic regression.

It is well-known and was noted by Firth (1993) and Kosmidis and Firth (2009) that the reduction in bias may
sometimes be accompanied by inflation of variance, possiblyyielding an estimator whose mean squared error is bigger
than that of the original one. Nevertheless, published empirical studies such as those mentioned above show that, in some
frequently used models, bias-reduced and bias-corrected estimators can perform better than the unadjusted maximum
likelihood estimators, especially when the sample size is small.

Our goal in this paper is to obtain bias correction and bias reduction to the maximum likelihood estimators for
the general multivariate elliptical model. We extend the work of Patriota and Lemonte (2009) to the elliptical class of
distributions defined in Lemonte and Patriota (2011). In order to illustrate the ampleness of this model, we mention
some of its submodels: multiple linear regression, heteroscedastic multivariate nonlinear regressions, nonlinear mixed-
effects models (Patriota 2011), heteroscedastic errors-in-variables models (Patriota et al. 2009a,b), structural equation
models, simultaneous equation models and mixtures of them.It is important to note that the usual normality assumption
of the error is relaxed and replaced by the assumption of elliptical errors. The elliptical family of distributions includes
many important distributions such as multivariate normal,Studentt, power exponential, contaminated normal, Pearson
II, Pearson VII, and logistic, with heavier or lighter tailsthan the normal distribution; see Fang et al. (1990).

The paper is organized as follows. Section 2 presents the notation and general results for bias correction and bias
reduction. Section 3 presents the model and our main results, namely the general expression for the second-order bias
of MLEs, in the general multivariate elliptical model. Section 4 applies our results in four important special cases:
heteroscedastic nonlinear (linear) model, nonlinear mixed-effects models, multivariate errors-in-variables models and
log-symmetric regression models. Simulations are presented in Section 7. Applications that use real data are presented
and discussed in Section 6. Finally, Section 7 concludes thepaper. Technical details are collected in one appendix.
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2 Bias correction and bias reduction

Let θ be thep-vector of unknown parameters andθr its rth element. Also, letU(θ) be the score function andUr(θ) = Ur
its rth element. We use the following tensor notation for the cumulants of the log-likelihood derivatives introduced by
Lawley (1956):

κrs = E

(
∂Ur
∂θs

)
, κr,s = E(UrUs), κrs,t = E

(
∂Ur
∂θs

Ut

)
,

κrst = E

(
∂2Ur
∂θs∂θt

)
, κ(t)rs =

∂κrs
∂θt

, κr,s,t = E(UrUsUt),

and so on. The indicesr, s and t vary from 1 to p. The typical(r, s)th element of the Fisher information matrix
K(θ) is κr,s and we denote byκr,s the corresponding element ofK(θ)−1. All κ’s refer to a total over the sample and

are, in general, of ordern. Under standard regular conditions, we have thatκrs = −κr,s, κrs,t = κ
(t)
rs − κrst and

κr,s,t = 2κrst − κ
(t)
rs − κ

(s)
rt − κ

(r)
st . These identities will be used to facilitate some algebraicoperations.

Let Bθ̂(θ) be then−1 bias vector of̂θ whosejth element isBθ̂j (θ), j = 1, 2, . . . , p. It follows from the general

expression for the multiparametern−1 biases of MLEs given by Cox and Snell (1968) that

Bθ̂j(θ) =

p∑

r,s,t=1

κj,rκs,t
{
1

2
κrst + κrs,t

}
. (1)

The bias corrected MLE is defined as
θ̂BC = θ̂ −Bθ̂(θ̂).

The bias-corrected estimatorθ̂BC is expected to have smaller bias than the uncorrected estimator, θ̂.

Firth (1993) proposed an alternative method to partially remove the bias of MLEs. The method replaces the score
function by its modified version

U∗(θ) = U(θ)−K(θ)Bθ̂(θ),

and a modified estimate,̂θBR, is given as a solution toU∗(θ) = 0. It is noticeable that, unlike Cox and Snell’s approach,
Firth’s bias reduction method does not depend on the finiteness ofθ.

3 Model and main results

We shall follow the same notation presented in Lemonte and Patriota (2011). The elliptical model as defined in Fang et
al. (1990) follows. Aq × 1 random vectorY has a multivariate elliptical distribution with location parameterµ and a
definite positive scale matrixΣ if its density function is

fY (y) = |Σ|−1/2g
(
(y − µ)⊤Σ−1(y − µ)

)
, (2)

whereg : [0,∞) → (0,∞) is called the density generating function, and it is such that
∫∞
0 u

q
2−1g(u)du <∞. We will

denoteY ∼ Elq(µ,Σ, g) ≡ Elq(µ,Σ). It is possible to show that the characteristic function isψ(t) = E(exp(it⊤Y )) =
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Table 1: Generating functions of some multivariate elliptical distributions.

Distribution Generating functiong(u)

normal 1
(
√
2π)q

e−u/2

Cauchy
Γ( 1+q

2 )
Γ( 1

2 )
π−q/2(1 + u)−(1+q)/2

Studentt
Γ( ν+q

2 )
Γ( ν

2 )
π−q/2ν−q/2

(
1 + u

ν

)−(ν+q)/2
, ν > 0

power exponential
λΓ( q

2 )
Γ( q

2λ )
2−q/(2λ)π−q/2e−u

λ/2, λ > 0

exp(it⊤µ)ϕ(t⊤Σt), wheret ∈ R
q andϕ : [0,∞) → R. Then, ifϕ is twice differentiable at zero, we have that E(Y ) = µ

and Var(Y ) = ξΣ, whereξ = ϕ′(0). We assume that the density generating functiong does not have any unknown
parameter, which implies thatξ is a known constant. From (2), whenµ = 0 andΣ = Iq, whereIq is aq × q identity
matrix, we obtain the spherical family of densities. A comprehensive exposition of the elliptical multivariate class of
distributions can be found in Fang et al. (1990). Table 1 presents the density generating functions of some multivariate
elliptical distributions.

Let Y1, Y2, ..., Yn ben independent random vectors, whereYi has dimensionqi ∈ N, for i = 1, 2, ..., n. The general
multivariate elliptical model (Lemonte and Patriota 2011)assumes that

Yi = µi(θ, xi) + ei, i = 1, . . . , n,

with ei
ind∼ Elqi(0,Σi(θ, wi)), where “

ind∼ ” means “independently distributed as”,xi andwi aremi × 1 andki × 1
nonstochastic vectors of auxiliary variables, respectively, associated with theith observed responseYi, which may have
components in common. Then,

Yi
ind∼ Elqi(µi,Σi), i = 1, . . . , n, (3)

whereµi = µi(θ, xi) is the location parameter andΣi = Σi(θ, wi) is the definite positive scale matrix. Bothµi andΣi
have known functional forms and are twice differentiable with respect to each element ofθ. Additionally,θ is ap-vector
of unknown parameters (wherep < n and it is fixed). Sinceθ must be identifiable in model (3), the functionsµi andΣi
must be defined to accomplish such restriction.

Several important statistical models are special cases of the general formulation (3), for example, linear and nonlinear
regression models, homoscedastic or heteroscedastic measurement error models, and mixed-effects models with normal
errors. It is noteworthy that the normality assumption for the errors may be relaxed and replaced by any distribution
within the class of elliptical distributions, such as the Studentt and the power exponential distributions. The general
formulation allows a wide range of different specificationsfor the location and the scale parameters, coupled with a large
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collection of distributions for the errors. Section 4 presents four important particular cases of the main model (3) that
show the applicability of the general formulation.

For the sake of simplifying the notation, letzi = Yi−µi andui = z⊤i Σ
−1
i zi. The log-likelihood function associated

with (3), is given by

ℓ(θ) =

n∑

i=1

ℓi(θ), (4)

whereℓi(θ) = − 1
2 log |Σi| + log g(ui). It is assumed thatg(·), µi andΣi are such thatℓ(θ) is a regular log-likelihood

function (Cox and Hinkley 1974, Ch. 9) with respect toθ. To obtain the score function and the Fisher information matrix,
we need to deriveℓ(θ) with respect to the unknown parameters and to compute some moments of such derivatives. We
assume that such derivatives exist. Thus, we define

ai(r) =
∂µi
∂θr

, ai(sr) =
∂2µi
∂θs∂θr

, Ci(r) =
∂Σi
∂θr

, Ci(sr) =
∂2Σi
∂θs∂θr

and
Ai(r) = −Σ−1

i Ci(r)Σ
−1
i ,

for r, s = 1, . . . , p. We make use of matrix differentiation methods (Magnus and Neudecker 2007) to compute the
derivatives of the log-likelihood function. The score vector and the Fisher information matrix forθ can be shortly
written as

U(θ) = F⊤Hs and K(θ) = F⊤H̃F, (5)

respectively, with F =
(
F⊤
1 , . . . , F

⊤
n

)⊤
, H = block-diag{H1, . . . , Hn}, s = (s⊤1 ,

. . . , s⊤n )
⊤, H̃ = HMH andM = block-diag

{
M⊤

1 , . . . ,M
⊤
n

}
, wherein

Fi =

(
Di

Vi

)
, Hi =

[
Σi 0
0 2Σi ⊗ Σi

]−1

, si =

[
vizi

−vec(Σi − viziz
⊤
i )

]
,

where the “vec” operator transforms a matrix into a vector bystacking the columns of the matrix,Di = (ai(1), . . . , ai(p)),
Vi = (vec(Ci(1)), . . . , vec(Ci(p))), vi = −2Wg(ui) andWg(u) = d log g(u)/du. Here, we assume thatF has rankp
(i.e.,µi andΣi must be defined to hold such condition). The symbol “⊗” indicates the Kronecker product. Following
Lange et al. (1989) we have, for theq-variate Studentt distribution withν degrees of freedom,tq(µ,Σ, ν), thatWg(u) =
−(ν + q)/{2(ν + u)}. Following Gómez et al. (1998) we have, for theq-variate power exponentialPEq(µ, δ, λ) with
shape parameterλ > 0 andu 6= 0, thatWg(u) = −λuλ−1/2, λ 6= 1/2. In addition, we have

Mi =

[
4ψi(2,1)

qi
Σi 0

0 2ciΣi ⊗ Σi

]
+ (ci − 1)

[
0 0
0 vec(Σi)vec(Σi)⊤

]
,

where ci = 4ψi(2,2)/{qi(qi + 2)}, ψi(2,1) = E(W 2
g (ri)ri) and ψi(2,2) =

E(W 2
g (ri)r

2
i ), with ri = ||Li||2, Li ∼ Elqi(0, Iqi). Here, we assume thatg(u) is such thatψi(2,1) andψi(2,2) ex-

ist for all i = 1, . . . , n. One can verify these results by using standard differentiation techniques and some standard
matrix operations.

The values ofψi(l,k) are obtained from solving the following one-dimensional integrals (Lange et al. 1989):

ψi(l,k) =

∫ ∞

0

Wg(s
2)lg(s2)rqi+2k−1cqids, (6)
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wherecqi = 2π
qi
2 /Γ( qi2 ) is the surface area of the unit sphere inR

qi andΓ(a) is the well-known gamma function. One
can find these quantities for many distributions simply solving (6) algebraically or numerically. Table 2 shows these
quantities for the normal, Cauchy, Studentt and power exponential distributions.

Table 2: Functionsψi(2,1), ψi(2,2), ψi(3,2), ψi(3,3) for normal, Cauchy, Studentt and power exponential distributions.

ψi(2,1) ψi(2,2) ψi(3,2) ψi(3,3)
normal qi

4
qi(qi+2)

4 − qi(qi+2)
8 − qi(qi+2)(qi+4)

8 qi ≥ 1

Cauchy qi(qi+1)
4(qi+3)

qi(qi+2)(qi+1)
4(qi+3) − qi(qi+2)(qi+1)2

8(qi+3)(qi+5) − qi(qi+2)(qi+4)(qi+1)2

8(qi+3)(qi+5) qi ≥ 1

Studentt qi(qi+ν)
4(qi+ν+2)

qi(qi+2)(qi+ν)
4(qi+ν+2) − qi(qi+2)(qi+ν)

2

8(qi+2+ν)(qi+4+ν) − qi(qi+2)(qi+4)(qi+ν)
2

8(qi+2+ν)(qi+4+ν) qi ≥ 1, ν > 0

power exponential λ2Γ( 4λ−1
2λ )

21/λΓ( 1
2λ )

2λ+1
4 −λ3Γ( 6λ−1

2λ )

21/λΓ( 1
2λ )

− (2λ+1)(4λ+1)
8 qi = 1, λ > 1

4

power exponential λ2Γ(
qi−2

2λ +2)

21/λΓ(
qi
2λ )

qi(2λ+qi)
4 −λ3Γ(

qi−2

2λ +3)

21/λΓ(
qi
2λ )

− qi(2λ+qi)(4λ+qi)
8 qi ≥ 2, λ > 0

It is important to remark that theψi(l,k) ’s may involve unknown quantities (for instance, the degrees of freedom
ν of the Studentt distribution and the shape parameterλ of the power exponential distribution). One may want to
estimate these quantities via maximum likelihood estimation. Here, we consider these as known quantities for the
purpose of keeping the robustness property of some distributions. Lucas (1997) shows that the protection against “large”
observations is only valid when the degrees of freedom parameter is kept fixed for the Studentt distribution. Therefore,
the issue of estimating these quantities is beyond of the main scope of this paper. In practice, one can use model selection
procedures to choose the most appropriate values of such unknown parameters.

Notice that, in the Fisher information matrixK(θ), the matrixM carries all the information about the adopted
distribution, whileF andH contain the information about the adopted model. Also,K(θ) has a quadratic form that can
be computed through simple matrix operations. Under the normal case,vi = 1,M = H−1 and hencẽH = H .

The Fisher scoring method can be used to estimateθ by iteratively solving the equation

(F (m)⊤H̃(m)F (m))θ(m+1) = F (m)⊤H̃(m)s∗(m), m = 0, 1, . . . , (7)

where the quantities with the upper index “(m)” are evaluated at̂θ,m is the iteration counter and

s∗(m) = F (m)θ(m) +H−1(m)M−1(m)s(m).

Each loop, through the iterative scheme (7), consists of an iterative re-weighted least squares algorithm to optimize the
log-likelihood (4). Thus, (5) and (7) agree with the corresponding equations derived in Patriota and Lemonte (2009).
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Observe that, despite the complexity and generality of the postulated model, expressions (5) and (7) are very simple and
friendly.

Now, we can give the main result of the paper.

Theorem 3.1. Then−1 bias vectorBθ̂(θ) under model (3) is given by

Bθ̂(θ) = (F⊤H̃F )−1F⊤H̃ξ, (8)

whereξ = (Φ1, . . . ,Φp)vec((F⊤H̃F )−1), Φr = (Φ⊤
1(r), . . .Φ

⊤
n(r))

⊤, andΦi(r) is given in the Appendix.

Proof. See the Appendix.

In many models the location vector and the scale matrix do nothave parameters in common, i.e.,µi = µi(θ1, xi)
andΣi = Σi(θ2, wi), whereθ = (θ⊤1 , θ

⊤
2 )

⊤. Therefore,F = block–diag{Fθ1 , Fθ2} and the parameter vectorsθ1 and
θ2 will be orthogonal (Cox and Reid 1987). This happens in mixedmodels, nonlinear models, among others. However,
in errors-in-variables and factor analysis models orthogonality does not hold. Model (3) is general enough to encompass
a large number of models even those that do not have orthogonal parameters.

Corollary 3.1. Whenµi = µi(θ1, xi) andΣi = Σi(θ2, wi), whereθ = (θ⊤1 , θ
⊤
2 )

⊤ then−1 bias vector of̂θ1 andθ̂2 are
given by

Bθ̂1(θ) = (F⊤
θ1H̃1Fθ1)

−1F⊤
θ1H̃1ξ1

and
Bθ̂2(θ) = (F⊤

θ2H̃2Fθ2)
−1F⊤

θ2H̃2ξ2,

respectively. The quantitiesFθ1 , Fθ2 , H̃1, H̃2, ξ1 andξ2 are defined in the Appendix.

Proof. See the Appendix.

Formula (8) says that, for any particular model of the general multivariate elliptical class of models (3), it is always
possible to express the bias ofθ̂ as the solution of an ordinary weighted least-squares regression. Also, ifzi ∼ Nqi(0,Σi)

thenci = −ω̃i = 1, η1i = 0, η2i = −2, H̃ = H ,

Ji(r) =

(
0

2(Iqi ⊗ ai(r))Di

)
,

and formula (8) reduces to the one obtained by Patriota and Lemonte (2009).

Theorem 3.1 implies that all one needs to compute bias-corrected and bias-reduced MLEs in the general elliptical
model is: (i) the first and second derivatives of the locationvectorµi and the scale matrixΣi with respect to all the
parameters; (2) the derivativesWg(u); (3) some moments involving the chosen elliptical distribution (these moments
are given in Table 2 for some elliptical distributions). With these quantities, the matrices in (8) can be computed and the
bias vector can be computed through an ordinary weighted least-squares regression.
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4 Special models

In this section, we present four important particular casesof the main model (3). All special cases presented in Patriota
and Lemonte (2009) are also special cases of the general multivariate elliptical model defined in this paper.

4.1 Heteroscedastic nonlinear models

Consider the univariate heteroscedastic nonlinear model defined by

Yi = f(xi, α) + ei, i = 1, 2, . . . , n,

where theYi is the response,xi is a column vector of explanatory variables,α is a column vectorp1 × 1 of unknown
parameters andf is a nonlinear function ofα. Assume thate1, e2, . . . , en are independent, withei ∼ El(0, σ2

i ). Here
σ2
i = σ2

i (γ) = h(ω⊤
i γ), whereγ is ap2 × 1 vector of unknown parameters. Then

Yi
ind∼ El(f(xi, α), σ

2
i ),

which is a special case of (3) withθ = (α⊤, γ⊤)⊤, µi = f(xi, α) andΣi = σ2
i . HereEl stands forEl1. Notice that for

the heteroscedastic linear modelf(xi, α) = x⊤i α.

Then−1 bias vectorBθ̂(θ) comes from (8), which depends on derivatives off(xi, α) andσ2
i with respect to the

parameter vectorθ. Also, it depends on the quantitiesψi(2,1), ψi(2,2), ψi(3,2),ψi(3,3) (see Table 2) andWg(ui) containing
information about the adopted distribution.

4.2 Nonlinear mixed-effects model

One of the most important examples is the nonlinear mixed-effects model introduced by Lange et al. (1989) and studied
under the assumption of a Studentt distribution. Let

Yi = µi(xi, α) + Zibi + ui,

whereYi is theqi × 1 vector response,µi is a qi-dimensional nonlinear function ofα, xi is a vector of nonstochastic
covariates,Zi is a matrix of known constants,α is ap1 × 1 vector of unknown parameters andbi is anr × 1 vector
of unobserved random regression coefficients. Assume thatbi ∼ Elr(0,Σb(γ1)) andui ∼ Elqi(0, Ri(γ2)), whereγ1
is ap2-dimensional vector of unknown parameters andγ2 is ap3 × 1 vector of unknown parameters. Furthermore, the
vectorsb1, b2, . . . , bn, u1, u2, . . . , un are independent. Therefore, the marginal distribution of the observed vector is

Yi ∼ Elqi (µi(xi, α); Σi(Zi, γ)) , (9)

whereγ = (γ⊤1 , γ
⊤
2 )⊤ andΣi(Zi, γ) = ZiΣb(γ1)Z

⊤
i + Ri(γ2). Equation (9) is a special case of (3) withθ =

(α⊤, γ⊤)⊤, µi = µi(xi, α) andΣi = Σi(Zi, γ). From (8) one can compute the bias vectorBθ̂(θ).
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4.3 Errors-in-variables model

Consider the model

x1i = β0 + β1x2i + qi, i = 1, . . . , n,

wherex1i is av×1 latent response vector,x2i is am×1 latent vector of covariates,β0 is av×1 vector of intercepts,β1
is av ×m matrix of slopes, andqi is the equation error having a multivariate elliptical distribution with location vector
zero and scale matrixΣq. The variablesx1i andx2i are not directly observed, instead surrogate variablesX1i andX2i

are measured with the following additive structure:

X1i = x1i + δx1i and X2i = x2i + δx2i . (10)

The random quantitiesx2i, qi, δx1i andδx2i are assumed to follow an elliptical distribution given by



x2i
qi
δx1i

δx2i




ind∼ El2v+2m







µx2

0
0
0


 ,




Σx2 0 0 0
0 Σq 0 0
0 0 τx1i 0
0 0 0 τx2i





 ,

where the matricesτxi andτzi are known for alli = 1, . . . , n. These “known” matrices may be attained, for example,
through an analytical treatment of the data collection mechanism, replications, machine precision, etc (Kulathinal et al.
(2002)).

Therefore, the observed vectorYi = (X⊤
1i, X

⊤
2i)

⊤ has marginal distribution given by

Yi
ind∼ Elv+m(µ(θ),Σi(θ)) (11)

with

µ(θ) =

(
β0 + β1µx2

µx2

)
and Σi(θ) =

(
β1Σx2β

⊤
1 +Σq + τx1i β1Σx2

Σx2β
⊤
1 Σx2 + τx2i

)
,

whereθ = (β⊤
0 , vec(β1)⊤, µ⊤

x2
, vech(Σx2)

⊤, vech(Σq)⊤)⊤, “vech” operator transforms a symmetric matrix into a vec-
tor by stacking into columns its diagonal and superior diagonal elements. The mean vector(θ) and the covariance-
variance matrixΣi(θ) of observed variables have the matrixβ1 in common, i.e., they sharemv parameters. Kulathinal
et al. (2002) study the linear univariate case (v = 1,m = 1).

Equation (11) is a special case of (3) withqi = v +m, θ = (α⊤, γ⊤)⊤, µi = µi(θ) andΣi = Σi(θ). In this case, a
programming language or software that can perform operations on vectors and matrices, e.g.Ox (Doornik, 2013) andR
(Ihaka and Gentleman, 1996), can be used to obtain the bias vectorBθ̂(θ) from (8).

4.4 Log-symmetric regression models

Let T be a continuous positive random variable with probability density function

fT (t; η, φ, g) =
1√
φt
g

(
log2

[(
t

η

) 1
√

φ

])
, η > 0, φ > 0, (12)

9



whereg is the density generating function of a univariate elliptical distribution, and we writeT ∼ LS(η, φ, g). Vanegas
and Paula (2014) called the class of distribution in (12) thelog-symmetric class of distributions. It includes log-normal,
log-Studentt, log-power-exponential distributions, among many others, as special cases. It is easy to verify thatlog(T )
has a univariate elliptical distribution (i.e., symmetricdistribution) with location parameterµ = log(η) and scale param-
eterφ. The parameterη is the median ofT , andφ can be interpreted as a skewness or relative dispersion parameter.

Vanegas and Paula (2015) defined and studied semi-parametric regression models for a setT1, T2, . . . , Tn with
Ti ∼ LS(ηi, φi, g) with ηi > 0 andφi > 0 following semi-parametric regression structures. Here weassume parametric
specification forηi andφi asηi = ηi(xi, α) andφi = φi(ωi, γ).

Hence,

Yi = log(Ti)
ind∼ El (µi(xi, α), φi(ωi, γ)) , (13)

whereµi(xi, α) = log(η(xi, α)). Therefore, (13) is a special case of the general ellipticalmodel (3), and formula (8)
applies.

5 Simulation results

In this section, we shall present the results of Monte Carlo simulation experiments in which we evaluate the finite sample
performances of the original MLEs and their bias-correctedand bias-reduced versions. The simulations are based on the
univariate nonlinear model without random effects (Section 4.1) and the errors-in-variables model presented in Section
4.2, whenYi follows a normal distribution, a Studentt distribution withν degrees of freedom, or a power exponential
distribution with shape parameterλ. For all the simulations, the number of Monte Carlo replications is 10,000 (ten
thousand).

First consider the model described in (9) withqi = 1, Zi = 0, Σi = σ2 and

µi(α) = µi(xi, α) = α1 +
α2

1 + α3x
α4

i

, i = 1, . . . , n. (14)

Here the unknown parameter vector isθ = (α1, α2, α3, α4, σ
2)⊤. The values ofxi were obtained as random draws from

the uniform distributionU(0, 100). The sample sizes considered aren = 10, 20, 30, 40 and50. The parameter values
areα1 = 50, α2 = 500, α3 = 0.50, α4 = 2 andσ2

i = 200. For the Studentt distribution, we fixed the degrees of
freedom atν = 4, and for the power exponential model the shape parameter is fixed atλ = 0.8.

Tables 3-4 present the bias, and the root mean squared errors(
√
MSE) of the maximum likelihood estimates, the

bias-corrected estimates and the bias-reduced estimates for the nonlinear model with normal and Studentt distributed
errors, respectively. To save space, the corresponding results for the power exponential model are reported in the online
Supplement (Table 1). We note that the bias-corrected estimates and the bias-reduced estimates are less biased than the
original MLE for all the sample sizes considered. For instance, whenn = 20 and the errors follow a Studentt distribution
(see Table 4) the estimated biases ofσ̂2 are−41.24 (MLE), −12.30 (bias-corrected) and−4.55 (bias-reduced). For the
normal case withn = 10 (see Table 3), the estimated biases ofα̂2 are2.16 (MLE), 0.70 (bias-corrected) and−0.27
(bias-reduced). We also observe that the bias-reduced estimates are less biased than the bias-corrected estimates in most
cases. Asn increases, the bias and the root mean squared error of all theestimators decrease, as expected. Additionally,
we note that the MLE ofα2 have

√
MSE larger than those of the modified versions. For the estimation of σ2,

√
MSE

is smaller for the original MLE. In other cases, we note that the estimators have similar root mean squared errors.
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Table 3: Biases and
√
MSE of the maximum likelihood estimate and its adjusted versions; nonlinear model; normal

distribution.

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√
MSE Bias

√
MSE Bias

√
MSE

α1 −0.29 6.69 −0.13 6.67 −0.01 6.67
α2 2.16 20.07 0.70 19.40 −0.27 19.06

10 α3 0.01 0.13 0.00 0.12 0.00 0.12
α4 0.03 0.30 0.01 0.29 −0.00 0.29
σ2 −80.05 106.44 −32.06 103.32 9.09 128.72

α1 −0.08 4.07 −0.01 4.07 0.01 4.07
α2 0.66 17.94 −0.08 17.84 −0.27 17.82

20 α3 0.00 0.09 0.00 0.09 −0.00 0.09
α4 0.02 0.21 0.01 0.20 0.00 0.20
σ2 −40.07 69.73 −8.09 68.95 0.86 72.02

α1 −0.10 3.11 −0.04 3.10 −0.02 3.10
α2 0.71 17.24 −0.05 17.15 −0.18 17.13

30 α3 0.00 0.09 −0.00 0.09 −0.00 0.09
α4 0.02 0.20 0.00 0.19 0.00 0.19
σ2 −26.41 55.26 −3.26 55.11 0.82 56.32

α1 −0.08 2.69 −0.02 2.69 −0.01 2.69
α2 0.83 16.80 0.09 16.70 0.01 16.69

40 α3 0.00 0.09 0.00 0.09 0.00 0.09
α4 0.02 0.19 0.00 0.18 −0.00 0.18
σ2 −20.04 47.26 −2.04 47.13 0.33 47.74

α1 −0.08 2.39 −0.03 2.38 −0.02 2.38
α2 1.07 14.25 0.30 14.12 0.23 14.11

50 α3 0.00 0.08 0.00 0.08 0.00 0.08
α4 0.01 0.19 0.00 0.18 −0.00 0.18
σ2 −15.93 41.41 −1.21 41.30 0.36 41.67
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Table 4: Biases and
√
MSE of the maximum likelihood estimate and its adjusted versions; nonlinear model; Studentt

distribution.

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√
MSE Bias

√
MSE Bias

√
MSE

α1 −0.51 8.66 −0.31 8.63 −0.20 8.56
α2 3.34 28.47 1.39 27.34 2.05 27.67

10 α3 0.01 0.17 0.00 0.16 0.01 0.16
α4 0.06 0.42 0.03 0.39 −0.01 0.38
σ2 −93.18 127.60 −54.24 130.73 −17.40 170.35

α1 −0.17 5.03 −0.07 5.02 −0.04 5.01
α2 2.01 25.64 0.91 25.11 1.29 24.98

20 α3 0.01 0.14 0.01 0.14 0.01 0.13
α4 0.04 0.29 0.01 0.28 0.00 0.27
σ2 −41.24 85.51 −12.30 89.41 −4.55 93.08

α1 −0.10 3.81 −0.01 3.80 0.01 3.82
α2 2.25 25.75 1.13 25.34 1.61 25.41

30 α3 0.01 0.14 0.01 0.14 0.01 0.14
α4 0.04 0.29 0.01 0.27 0.00 0.26
σ2 −27.15 70.02 −6.15 72.64 −1.78 107.53

α1 −0.10 3.27 −0.02 3.26 −0.01 3.26
α2 1.82 24.94 0.75 24.67 1.18 24.78

40 α3 0.01 0.12 0.00 0.12 0.01 0.12
α4 0.03 0.26 0.01 0.25 0.00 0.25
σ2 −20.38 60.43 −4.01 62.21 −1.82 62.98

α1 −0.13 2.86 −0.05 2.85 −0.03 2.85
α2 1.48 18.86 0.38 18.59 0.24 18.46

50 α3 0.01 0.11 0.00 0.11 0.00 0.11
α4 0.02 0.24 0.00 0.23 0.00 0.23
σ2 −15.40 53.99 −1.94 55.56 −0.43 56.11
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We now consider the errors-in-variables model described in(10). The sample sizes considered aren = 15, 25, 35 and
50. The parameter values areβ0 = 0.70 1v×1, β1 = 0.40 1v×m, µx2 = 70 1m×1, Σq = 40 Iv×1 andΣx2 = 250 Im×1.
Here,1r×s is asr×smatrix of ones andIr×s is the identity matrix with dimensionr×s. For the Studentt distribution,
we fixed the degrees of freedom atν = 4 and, for power exponential model, the shape parameter was fixed atλ = 0.7.
We considerv ∈ {1, 2} andm = 1.

In Tables 5-6, we present the MLE, the bias-corrected estimates, the bias-reduced estimates, and corresponding
estimated root mean squared errors for the normal and power exponential distributions, for the errors-in-variables model.
For the Studentt distribution, see Table 2 of the online Supplement. We observe that, in absolute value, the biases of
the bias-corrected estimates and bias-reduced estimates are smaller than those of the original MLE for different sample
sizes. Furthermore, the bias-reduced estimates are less biased than the bias-corrected estimates in most cases. This can
be seen e.g. in Table 6 whenv = 1,m = 1, Yi follows a power exponential distribution andn = 15. In this case, the bias
of the MLE, the bias-corrected estimate and the bias-reduced estimate ofΣq are−4.92, −0.66 and−0.17, respectively.
WhenYi follows a normal distribution,n = 15, v = 1 andm = 1 we observe the following biases of the estimates of
Σx2 : −16.15 (MLE), −0.53 (bias-corrected) and0.58 (bias-reduced); see Table 5. We note that the root mean squared
errors decrease withn. The MLEs ofΣx2 andΣq have

√
MSE smaller than the modified versions. In other cases, the

estimators have similar root mean squared errors.

For the sake of saving space, the simulation results for the normal, Studentt and power exponential errors-in-variable
models withv = 2 andm = 1 are presented in the online Supplement (Tables 3–5). Overall, our findings are similar to
those reached for the other models.

6 Applications

6.1 Radioimmunoassay data

Tiede and Pagano (1979) present a dataset, referred here as the radioimmunoassay data, obtained from the Nuclear
Medicine Department at the Veterans Administration Hospital, Buffalo, New York. Lemonte and Patriota (2011) ana-
lyzed the data to illustrate the applicability of the elliptical models with general parameterization. Following Tiede and
Pagano (1979) we shall consider the nonlinear regression model (14), withn = 14. The response variable is the observed
radioactivity (count in thousands), the covariate corresponds to the thyrotropin dose (measured in micro-international
units per milliliter) and the errors follow a normal distribution or a Studentt distribution withν = 4 degrees of free-
dom. We assume that the scale parameter is unknown for both models. In Table 7 we present the maximum likelihood
estimates, the bias-corrected estimates, the bias-reduced estimates, and the corresponding estimated standard errors are
given in parentheses. We note that all the estimates presentsmaller standard errors under the Studenttmodel than under
the normal model (Table 7).

For all parameters, the original MLEs are very close to the bias-corrected MLE and the bias-reduced MLE when the
Studentt model is used. However, under the normal model, significant differences in the estimates ofα1 are noted. The
estimates forα1 are0.44 (MLE), 0.65 (bias-corrected MLE) and1.03 (bias-reduced MLE).
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Table 5: Biases and
√
MSE of the maximum likelihood estimate and its adjusted versions; errors-in-variables model;

v = 1 andm = 1; normal distribution.

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√
MSE Bias

√
MSE Bias

√
MSE

β0 −0.06 8.36 −0.05 8.36 −0.05 8.36
β1 0.00 0.12 0.00 0.12 0.00 0.12

15 µx2 −0.04 4.11 −0.04 4.11 −0.04 4.11
Σx2 −16.15 90.40 −0.53 94.88 0.58 95.30
Σq −5.42 14.94 −0.72 15.80 0.00 16.07

β0 −0.11 6.22 −0.10 6.22 −0.10 6.22
β1 0.00 0.09 0.00 0.09 0.00 0.09

25 µx2 −0.01 3.18 −0.01 3.18 −0.01 3.18
Σx2 −10.08 69.68 −0.47 71.71 −0.07 71.82
Σq −3.21 11.59 −0.20 12.03 0.06 12.10

β0 −0.06 5.17 −0.05 5.16 −0.05 5.16
β1 0.00 0.07 0.00 0.07 0.00 0.07

35 µx2 0.01 2.70 0.01 2.70 0.01 2.70
Σx2 −7.18 59.02 −0.23 60.26 −0.02 60.31
Σq −2.34 9.86 −0.15 10.13 −0.01 10.16

β0 −0.02 4.24 −0.01 4.24 −0.01 4.24
β1 0.00 0.06 0.00 0.06 0.00 0.06

50 µx2 0.01 2.24 0.01 2.24 0.01 2.24
Σx2 −5.02 49.76 −0.11 50.50 −0.01 50.52
Σq −1.68 8.15 −0.12 8.29 −0.06 8.31
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Table 6: Biases and
√
MSE of the maximum likelihood estimate and its adjusted versions; errors-in-variables model;

v = 1 andm = 1; power exponential distribution.

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√
MSE Bias

√
MSE Bias

√
MSE

β0 −0.12 9.25 −0.11 9.25 −0.11 9.24
β1 0.00 0.13 0.00 0.13 0.00 0.13

15 µx2 −0.02 6.47 −0.02 6.47 −0.02 6.47
Σx2 −9.27 103.32 0.52 107.51 0.82 107.64
Σq −4.92 15.67 −0.66 17.55 −0.17 17.76

β0 0.02 6.83 0.03 6.83 0.03 6.83
β1 0.00 0.09 −0.00 0.09 −0.00 0.09

25 µx2 −0.02 4.98 −0.02 4.98 −0.02 4.98
Σx2 −5.60 80.20 0.36 81.95 0.47 81.99
Σq −3.04 12.94 −0.36 13.49 −0.18 13.54

β0 0.01 5.59 0.02 5.58 0.02 5.58
β1 −0.00 0.08 −0.00 0.08 −0.00 0.08

35 µx2 −0.04 4.21 −0.04 4.21 −0.04 4.21
Σx2 −3.53 68.01 0.77 69.10 0.82 69.12
Σq −2.14 11.11 −0.18 11.46 −0.08 11.49

β0 0.03 4.67 0.03 4.67 0.03 4.67
β1 −0.00 0.06 −0.00 0.06 −0.00 0.06

50 µx2 −0.03 3.52 −0.03 3.52 −0.03 3.52
Σx2 −2.83 56.89 0.18 57.51 0.21 57.52
Σq −1.51 9.21 −0.12 9.41 −0.07 9.42
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Table 7: Estimates and standard errors (given in parentheses); radioimmunoassay data.

Normal distribution

θ MLE Bias-corrected MLE Bias-reduced MLE

α1 0.44 (0.80) 0.65 (0.99) 1.03 (1.06)
α2 7.55 (0.95) 7.34 (1.16) 6.91 (1.25)
α3 0.13 (0.06) 0.13 (0.06) 0.13 (0.08)
α4 0.96 (0.24) 0.93 (0.28) 0.95 (0.34)
σ2 0.31 (0.12) 0.40 (0.15) 0.50 (0.19)

Studentt distribution

θ MLE Bias-corrected MLE Bias-reduced MLE

α1 0.90 (0.12) 0.91 (0.13) 0.90 (0.15)
α2 7.09 (0.17) 7.08 (0.19) 7.07 (0.22)
α3 0.09 (0.01) 0.09 (0.01) 0.09 (0.02)
α4 1.31 (0.08) 1.31 (0.09) 1.29 (0.10)
σ2 0.02 (0.01) 0.02 (0.01) 0.03 (0.01)

6.2 Fluorescent lamp data

Rosillo and Chivelet (2009) present a dataset referred hereas the fluorescent lamp data. The authors analyze the lifetime
of fluorescent lamps in photovoltaic systems using an analytical model whose goal is to assist in improving ballast design
and extending the lifetime of fluorescent lamps. Following Rosillo and Chivelet (2009) we shall consider the nonlinear

regression model (9) withqi = 1, Zi = 0, Σi = σ2, θ =
(
α⊤, σ2

)⊤
=
(
α0, α1, α2, α3, σ

2
)⊤

and

µi(α) =
1

1 + α0 + α1xi1 + α2xi2 + α3x2i2
, i = 1, . . . , 14,

where the response variable is the observed lifetime/advertised lifetime (Y ), the covariates correspond to a measure of
gas discharge (x1) and the observed voltage/ad- vertised voltage (measure ofperformance of lamp and ballast -x2) and
the errors are assumed to follow a normal distribution. Herewe also assume a Studentt distribution withν = 4 degrees
of freedom for the errors.

In Table 8 we present the maximum likelihood estimates, the bias-corrected estimates, the bias-reduced estimates,
and the corresponding estimated standard errors. As in the previous application, the estimates present smaller standard
errors under the Studentt model than under the normal model.

The original MLEs forα0 andα3 are bigger than the corresponding corrected and reduced versions by approximately
one unit (normal and Studentt models). The largest differences are among the estimates ofα2; for example, for the
normal model we have−56.33 (MLE), −54.45 (bias-corrected MLE) and−53.86 (bias-reduced MLE).

We now use the Akaike Information Criterion (AIC, Akaike, 1974), the Schwarz Bayesian criterion (BIC, Schwarz,
1978) and the finite sampleAIC (AICC , Hurvich and Tsai, 1989) to evaluate the quality of the normal and Studentt
fits. For the normal model we haveAIC = −9.98, BIC = −6.79 andAICC = −2.48. For thet model we have
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AIC = −11.24,BIC = −8.04 andAICC = −3.74. Therefore, thet model presents the best fit for this dataset, since
the values of theAIC, BIC andAICC are smaller.

Let

D̂ =

14∑

j=1

(Ŷ − Ŷ(j))
⊤(Ŷ − Ŷ(j)),

whereŶ andŶ(j) are the vectors of predicted values computed from the model fit for the whole sample and the sample

without thejth observation, respectively. The quantitŷD measures the total effect of deleting one observation in the
predicted values. For a fixed sample size, it tends to be high if a single observation can highly influence the prediction
of new observations. We havêD = 0.119, 0.120, and0.123 (normal model) and̂D = 0.101, 0.100, and0.095 (Student
t model) when using the MLE, the bias-corrected estimate, andthe bias-reduced estimate, respectively. Notice thatD̂
is smaller for the Studentt model regardless of the estimate used. This is evidence thatthe Studentt model is more
suitable than the normal model for predicting lifetime of fluorescent lamps in this study.

Table 8: Estimates and standard errors (given in parentheses); fluorescent lamp data.

Normal distribution

θ MLE Bias-corrected MLE Bias-reduced MLE

α0 29.49 (5.21) 28.54 (5.66) 28.25 (5.84)
α1 9.99 (4.69) 9.68 (5.21) 9.62 (5.42)
α2 −56.33 (10.10) −54.45 (10.93) −53.86 (11.26)
α3 26.53 (4.89) 25.61 (5.28) 25.31 (5.43)
σ2 1.40× 10−2 (5.00× 10−3) 1.80× 10−2 (7.00× 10−3) 1.90× 10−2 (7.00× 10−3)

Studentt distribution

θ MLE Bias-corrected MLE Bias-reduced MLE

α0 30.66 (4.64) 29.94 (5.05) 29.85 (5.20)
α1 8.48 (4.00) 8.24 (4.42) 8.46 (4.57)
α2 −58.20 (8.94) −56.79 (9.71) −56.67 (10.00)
α3 27.27 (4.30) 26.58 (4.66) 26.55 (4.80)
σ2 7.30× 10−3 (3.60× 10−3) 9.20× 10−3 (4.60× 10−3) 9.80× 10−3 (4.90× 10−3)

6.3 WHO MONICA data

We now turn to a dataset from the WHO MONICA Project that was considered in Kulathinal et al. (2002). This dataset
was first analyzed under normal distributions for the marginals of the random errors (Kulathinal et al. 2002; Patriota
et al. 2009a). Thereafter, it was studied under a scale mixture of normal distributions for the marginals of the random
errors (Cao et al., 2012). The approach used in the present paper is different from the others because here we consider a
joint elliptical distribution for the vector of random errors. The other authors assumed that the distributions of the errors
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were independent, while we assume that they are uncorrelated but not independent. For our proposal, the errors will
only be independent under normality.

The dataset considered here corresponds to the data collected for men (n = 38). As describe in Kulathinal et al.
(2002), the data are trends of the annual change in the event rate(y) and trends of the risk scores (x). The risk score is
defined as a linear combination of smoking status, systolic blood pressure, body mass index, and total cholesterol level.
A follow-up study using proportional hazards models was employed to derive its coefficients, and provides the observed
risk score and its estimated variance. Therefore, the observed response variable,X1, is the average annual change in
event rate (%) and the observed covariate,X2, is the observed risk score (%). We use the heteroscedastic model (10)
with v = m = 1 and zero covariance between the errorsδx1i andδx2i .

Table 9 gives the MLE and the bias-corrected/reduced estimates (standard errors are given in parentheses). We
considered the full sample (n = 38) and randomly chosen sub-samples ofn = 10, 20 and30 observations.

The original MLEs forβ0, β1 andµx2 are practically the same as their bias-corrected and bias-reduced versions for
all sample sizes. The largest differences are among the estimates ofΣq; for example, forn = 10 we have6.17 (MLE),
8.14 (bias-corrected MLE) and8.81 (bias-reduced MLE). In general, as expected, larger samplesizes correspond to
smaller standard errors. Forn = 10 andn = 20 standard errors are somewhat smaller when using bias correction than
when using bias reduction.

Table 9: Estimates and standard errors (given in parentheses); WHO MONICA data.

n θ MLE Bias-corrected MLE Bias-reduced MLE

β0 −2.58 (1.34) −2.58 (1.44) −2.45 (1.47)
β1 0.05 (0.60) 0.05 (0.63) 0.07 (0.64)

10 µx2 −1.54 (0.58) −1.54 (0.61) −1.53 (0.62)
Σx2 2.89 (1.50) 3.22 (1.65) 3.29 (1.69)
Σq 6.17 (3.99) 8.14 (4.93) 8.81 (5.25)

β0 −2.68 (0.65) −2.69 (0.68) −2.69 (0.69)
β1 0.48 (0.30) 0.47 (0.31) 0.43 (0.31)

20 µx2 −1.29 (0.44) −1.29 (0.46) −1.29 (0.46)
Σx2 3.53 (1.25) 3.73 (1.31) 3.76 (1.32)
Σq 3.00 (1.66) 3.59 (1.87) 3.73 (1.92)

β0 −2.22 (0.54) −2.22 (0.55) −2.20 (0.55)
β1 0.43 (0.24) 0.43 (0.25) 0.42 (0.25)

30 µx2 −0.77 (0.42) −0.77 (0.42) −0.77 (0.42)
Σx2 4.71 (1.34) 4.88 (1.39) 4.89 (1.39)
Σq 4.36 (1.86) 4.89 (2.01) 4.88 (2.01)

β0 −2.08 (0.53) −2.08 (0.54) −2.08 (0.54)
β1 0.47 (0.23) 0.47 (0.24) 0.46 (0.24)

38 µx2 −1.09 (0.36) −1.09 (0.36) −1.09 (0.36)
Σx2 4.32 (1.10) 4.44 (1.13) 4.45 (1.13)
Σq 4.89 (1.78) 5.34 (1.89) 5.30 (1.88)
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7 Concluding remarks

We studied bias correction and bias reduction for a multivariate elliptical model with a general parameterization
that unifies several important models (e.g., linear and nonlinear regressions models, linear and nonlinear mixed models,
errors-in-variables models, among many others). We extendthe work of Patriota and Lemonte (2009) to the elliptical
class of distributions defined in Lemonte and Patriota (2011). We express the second order bias vector of the maximum
likelihood estimates as an ordinary weighted least-squares regression.

As can be seen in our simulation results, corrected-bias estimators and reduced-bias estimators form a basis of
asymptotic inferential procedures that have better performance than the corresponding procedures based on the original
estimator. We further note that, in general, the bias-reduced estimates are less biased than the bias-corrected estimates.
Computer packages that perform simple operations on matrices and vectors can be used to compute bias-corrected and
bias-reduced estimates.
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Appendix

Lemma A.1. Let zi ∼ Elqi(0,Σi, g), andci andψi(2,1) as previously defined. Then,

E
(
vizi

)
= 0,

E
(
v2i ziz

⊤
i

)
=

4ψi(2,1)

qi
Σi,

E
(
v2i vec(ziz

⊤
i )z

⊤
i

)
= 0,

E
(
v2i vec(ziz⊤i )vec(ziz⊤i )

⊤) = ci
(
vec(Σi)vec(Σi)⊤ + 2Σi ⊗ Σi

)
,

E
(
v3i vec(ziz⊤i )vec(ziz⊤i )

⊤) = −c∗i
(
vec(Σi)vec(Σi)⊤ + 2Σi ⊗ Σi

)
,

E
(
v3i z

⊤
i Ai(t)ziz

⊤
i Ai(s)ziz

⊤
i Ai(r)zi

)
= −8ω̃i

(
tr{Ai(t)Σi}tr{Ai(s)Σi}tr{Ai(r)Σi}

+ 2tr{Ai(t)Σi}tr{Ai(s)ΣiAi(r)Σi}
+ 2tr{Ai(s)Σi}tr{Ai(t)ΣiAi(r)Σi}
+ 2tr{Ai(r)Σi}tr{Ai(t)ΣiAi(s)Σi})
+ 8tr{Ai(t)ΣiAi(s)ΣiAi(r)Σi}

)
,

where c∗i = 8ψi(3,2)/{qi(qi + 2)}, ψi(3,2) = E(W 3
g (ri)r

2
i ), ω̃i = ψi(3,3)/{qi(qi + 2)(qi + 4)} and ψi(3,3) =

E(W 3
g (ri)r

3
i ).

Proof. The proof can be obtained by adapting the results of Mitchell(1989) for a matrix version.

From Lemma A.1, we can find the cumulants of the log-likelihood derivatives required to compute the second-order
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biases.

Proof of Theorem 3.1: Following Cordeiro and Klein (1994), we write (1) in matrix notation to obtain then−1 bias
vector ofθ̂ in the form

Bθ̂(θ) = K(θ)−1Wvec(K(θ)−1), (15)

whereW = (W (1), . . . ,W (p)) is ap × p2 partitioned matrix, eachW (r), referring to therth component ofθ, being a
p× p matrix with typical(t, s)th element given by

w
(r)
ts =

1

2
κtsr + κts,r = κ

(r)
ts − 1

2
κtsr =

3

4
κ
(r)
ts − 1

4
(κt,s,r + κ(t)sr + κ

(s)
rt ).

BecauseK(θ) is symmetric and thetth element ofWvec(K(θ)−1) is w(1)
t1 κ

1,1 + (w
(1)
t2 + w

(2)
t1 )κ1,2 + · · · + (w

(s)
tr +

w
(r)
ts )κs,r + · · ·+ (w

(p−1)
tp + w

(p)
t(p−1))κ

p−1,p + w
(p)
tp κ

p,p, we may write

w
(r)
ts =

1

2
(w

(s)
tr + w

(r)
ts ) =

1

4
(κ

(r)
ts + κ

(s)
tr − κ(t)sr − κt,s,r). (16)

Comparing (15) and (8) we note that for the proof of this theorem it suffices to show thatF⊤H̃ξ =Wvec((F⊤H̃F )−1),
i.e.,

W = F⊤HMH(Φ1, . . . ,Φp).

Notice that

κsr =
n∑

i=1

{
ci
2

tr{Ai(r)Ci(s)} −
4ψi(2,1)
qi

a⊤i(s)Σ
−1
i ai(r)

− (ci − 1)

4
tr{Ai(s)Σi}tr{Ai(r)Σi}

}
.

(17)

The quantitiesψi(2,1) andψi(2,2) do not depend onθ and hence, the derivative of (17) with respect toθt is

κ(t)sr =

n∑

i=1

{
ci
2

tr{Ai(t)ΣiAi(s)Ci(r) +Ai(s)ΣiAi(t)Ci(r) + Ci(ts)Ai(r)

+ Ci(tr)Ai(s)}
}
−

n∑

i=1

{
4ψi(2,1)

qi

(
a⊤i(ts)Σ

−1
i ai(r) + a⊤i(s)Ai(t)ai(r)

+ a⊤i(s)Σ
−1
i ai(tr)

)}
+

n∑

i=1

{
(ci − 1)

4
tr{Ai(t)Ci(s) +Σ−1

i Ci(ts)}tr{Ai(r)Σi}
}

+

n∑

i=1

{
(ci − 1)

4
tr{Ai(t)Ci(r) +Σ−1

i Ci(tr)}tr{Ai(s)Σi}
}
.

Therefore,
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κ
(r)
st + κ

(s)
tr − κ(t)sr =

n∑

i=1

{
ci
2

tr{Ai(r)ΣiAi(s)Ci(t) +Ai(s)ΣiAi(r)Ci(t)

+ 2Ci(rs)Ai(t)}
}
−

n∑

i=1

{
4ψi(2,1)

qi

(
2a⊤i(t)Σ

−1
i ai(sr)

+ a⊤i(t)Ai(s)ai(r) + a⊤i(s)Ai(r)ai(t) − a⊤i(s)Ai(t)ai(r)
)}

+

n∑

i=1

{
(ci − 1)

2
tr{Ai(r)Ci(s) +Σ−1

i Ci(rs)}tr{Ai(t)Σi}
}
.

Now, the only quantity that remains to obtain isκt,s,r = E(UtUsUr). Noting thatzi is independent ofzj for i 6= j,
we have

κt,s,r =
1

8

n∑

i=1

E

{[
tr{Ai(t)(Σi − viziz

⊤
i )}tr{Ai(s)(Σi − viziz

⊤
i )}

tr{Ai(r)(Σi − viziz
⊤
i )}

]
+ 4tr{Ai(t)(Σi − viziz

⊤
i )}(v2i a⊤i(r)Σ−1

i

ziz
⊤
i Σ

−1ai(s)) + 4tr{Ai(r)(Σi − viziz
⊤
i )}(v2i a⊤i(t)Σ−1

i ziz
⊤
i Σ

−1

ai(s)) + 4tr{Ai(s)(Σi − viziz
⊤
i )}(v2i a⊤i(t)Σ−1

i ziz
⊤
i Σ

−1ai(r))

}
.

Then, by using Lemma A.1 and from (16), we have, after lengthyalgebra, that

W (r) =

n∑

i=1

F⊤
i HiMiHiΦi(r), (18)

where

Φi(r) = −1

2

(
H−1
i M−1

i Bi(r)HiFi +
∂Fi
∂θr

)
,

and

Bi(r) = −1

2

(
η1iCi(r) 2η1iΣi ⊗ a⊤i(r)

2η2iΣi ⊗ ai(r) 2(ci − 1)S1i(r)

)

− 1

4

(
η1iΣitr{Ci(r)Σ−1

i } 2η1iai(r)vec(Σi)⊤

2η1ivec(Σi)a⊤i(r) 2(ci + 8ω̃i)S2i(r)

)
,

with
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η1i = c∗i + 4ψi(2,1)/qi, η2i = c∗i − 4ψi(2,1)/qi,

S1i(r) = vec(Σi)vec(Ci(r))
⊤ +

1

2
vec(Σi)vec(Σi)⊤tr{Ci(r)Σ−1

i } and

S2i(r) = vec(Ci(r))vec(Σi)⊤ + vec(Σi)vec(Ci(r))
⊤ + 4Σi ⊗ Ci(r)

+
[
Σi ⊗ Σi +

1

2
vec(Σi)vec(Σi)⊤

]
tr{Ci(r)Σ−1

i }.

Using (18) and (15) the theorem is proved.

Proof of Corollary 3.1: It follows from Theorem 3.1, eq. (8), when

F = block–diag{Fθ1 , Fθ2}, H̃ = block–diag{H̃1, H̃2} andξ = (ξ⊤1 , ξ
⊤
2 )⊤,

whereFθj =
[
F⊤
θj(1)

, . . . , F⊤
θj(n)

]⊤
andH̃j = block-diag{H̃j(1), . . . , H̃j(n)} for j = 1, 2, with Fθ1(i) = ∂µi/∂θ

⊤
1 ,

Fθ2(i) = ∂[vec(Σi)]/∂θ⊤2 , H̃1(i) =
4ψi(2,1)

qi
Σ−1
i andH̃2(i) = ci (2Σi ⊗ Σi)

−1
+(ci − 1)vec(Σ−1

i )vec(Σ−1
i )⊤. Further-

more,ξ1 =
[
ξ⊤1(1), . . . , ξ

⊤
1(n)

]⊤
andξ2 =

[
ξ⊤2(1), . . . , ξ

⊤
2(n)

]⊤
with

ξ1(i) = − 1

2
Ḟθ1(i) vec((F⊤

θ1H̃(1)Fθ1)
−1),

ξ2(i) =
1

4
M∗
i P

∗
i vec((F⊤

θ1H̃(1)Fθ1)
−1) +

1

8

(
M∗
i Q

∗
i − 4 Ḟθ2(i)

)

vec((F⊤
θ2H̃(2)Fθ2)

−1).

Also, Ḟθ1(i) = [F 1
θ1(i)

, . . . , F p1θ1(i)], Ḟθ2(i) = [F 1
θ2(i)

, . . . , F p2θ2(i)], Q∗
i = [Q∗

i(1),

. . . , Q∗
i(p2)

], P ∗
i = [P ∗

i(1), . . . , P
∗
i(p1)

], F rθ1(i) =
∂Fθ1(i)

∂θ1(r)
, F sθ2(i) =

∂Fθ2(i)

∂θ2(s)
, whereθ1(r) andθ2(s) are therth andsth

elements ofθ1 andθ2, respectively,r = 1, . . . , p1, s = 1, . . . , p2 and

M∗
i =

1

ci

(
Iq2i − vec(Σi)vec(Σi)⊤

2ci + vec(Σi)⊤vec(Σi)

)
,

Q∗
i(s) =

(
(ci − 1)S1i(s) +

1

2
(ci + 8ω̃i)S2i(s)

)(
Σ−1
i ⊗ Σ−1

i

)
Fθ2(i),

P ∗
i(r) =

(
2η2i(Iqi ⊗ ai(r)) + η1ivec(Σi)a⊤i(r)Σ

−1
i

)
Fθ1(i).
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Supplement

Additional Monte Carlo simulation results

Tables 10-14 report simulation results to complement our analysis in Section 5 of the main article.

Table 10: Biases and
√
MSE of the maximum likelihood estimate and its adjusted versions; nonlinear model; power

exponential distribution.

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√
MSE Bias

√
MSE Bias

√
MSE

α1 −0.34 8.43 −0.11 8.41 −0.02 8.41
α2 3.25 25.61 0.98 24.35 2.61 24.70

10 α3 0.01 0.16 0.00 0.15 0.02 0.15
α4 0.05 0.39 0.02 0.37 −0.02 0.36
σ2 −84.16 110.90 −40.38 107.40 −8.30 128.57

α1 −0.11 5.09 −0.00 5.08 0.03 5.08
α2 1.48 23.11 0.35 22.87 0.61 23.02

20 α3 0.00 0.12 0.00 0.12 0.00 0.12
α4 0.04 0.27 0.01 0.26 0.00 0.26
σ2 −40.95 74.29 −10.90 74.50 −3.51 77.20

α1 −0.04 3.85 0.06 3.85 0.07 3.85
α2 1.10 22.11 −0.06 21.90 0.30 22.06

30 α3 0.01 0.12 0.00 0.12 0.00 0.12
α4 0.03 0.26 0.01 0.25 0.00 0.25
σ2 −27.24 60.14 −5.48 60.62 −1.99 61.73

α1 −0.05 3.31 0.04 3.31 0.05 3.31
α2 1.35 21.43 0.22 21.23 0.59 21.38

40 α3 0.01 0.11 0.00 0.11 0.00 0.11
α4 0.03 0.25 0.00 0.24 0.00 0.23
σ2 −20.41 51.38 −3.44 51.72 −1.32 52.34

α1 −0.05 2.96 0.04 2.96 0.05 2.95
α2 1.20 18.02 0.04 17.78 −0.03 17.73

50 α3 0.00 0.11 −0.00 0.10 −0.00 0.10
α4 0.03 0.24 0.01 0.23 0.01 0.23
σ2 −16.22 45.76 −2.33 46.08 −0.89 46.46
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Table 11: Biases and
√
MSE of the maximum likelihood estimate and its adjusted versions; errors-in-variables model;

v = 1 andm = 1; Studentt distribution.

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√
MSE Bias

√
MSE Bias

√
MSE

β0 −0.00 9.90 0.01 9.90 0.01 9.89
β1 0.00 0.14 0.00 0.14 0.00 0.14

15 µx2 0.05 4.82 0.05 4.82 0.05 4.82
Σx2 5.18 129.34 2.91 128.12 2.66 127.86
Σq −3.64 19.52 −0.68 20.72 −0.42 20.85

β0 −0.02 7.14 −0.01 7.14 −0.01 7.14
β1 0.00 0.10 0.00 0.10 0.00 0.10

25 µx2 0.03 3.69 0.03 3.69 0.03 3.69
Σx2 3.61 97.32 2.25 96.76 2.17 96.69
Σq −2.31 14.87 −0.47 15.41 −0.38 15.44

β0 −0.02 5.93 −0.02 5.93 −0.02 5.93
β1 0.00 0.08 0.00 0.08 0.00 0.08

35 µx2 −0.01 3.12 −0.01 3.12 −0.01 3.12
Σx2 1.94 79.78 0.98 79.45 0.94 79.44
Σq −1.65 12.63 −0.31 12.96 −0.26 12.97

β0 −0.01 4.92 −0.01 4.92 −0.01 4.92
β1 0.00 0.07 0.00 0.07 0.00 0.07

50 µx2 0.01 2.59 0.01 2.59 0.01 2.59
Σx2 1.04 65.50 0.37 65.33 0.36 65.33
Σq −1.18 10.53 −0.24 10.78 −0.21 10.79
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Table 12: Biases and
√
MSE of the maximum likelihood estimate and its adjusted versions; errors-in-variables model;

v = 2 andm = 1; normal distribution.

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√
MSE Bias

√
MSE Bias

√
MSE

β
(1)
0 0.01 8.36 0.02 8.36 0.02 8.36

β
(2)
0 −0.05 8.33 −0.04 8.33 −0.04 8.33

β
(1)
1 −0.00 0.12 −0.00 0.12 −0.00 0.12

β
(2)
1 0.00 0.12 0.00 0.12 0.00 0.12

15 µx2 −0.02 4.08 −0.02 4.08 −0.02 4.08
Σx2 −16.33 89.71 −0.72 94.10 0.39 94.52

Σ
(11)
q −5.40 14.86 −0.71 15.70 0.01 15.97

Σ
(12)
q 0.03 9.85 0.04 11.16 0.04 11.37

Σ
(22)
q −5.52 14.88 −0.85 15.69 −0.13 15.95

β
(1)
0 0.00 6.15 0.01 6.15 0.01 6.15

β
(2)
0 −0.03 6.20 −0.02 6.20 −0.02 6.20

β
(1)
1 −0.00 0.09 −0.00 0.09 −0.00 0.09

β
(2)
1 0.00 0.09 0.00 0.09 0.00 0.09

25 µx2 0.02 3.16 0.02 3.16 0.02 3.16
Σx2 −9.80 69.34 −0.17 71.39 0.23 71.50

Σ
(11)
q −3.17 11.58 −0.18 12.03 0.08 12.11

Σ
(12)
q −0.00 7.81 0.01 8.44 0.01 8.49

Σ
(22)
q −3.35 11.43 −0.37 11.81 −0.11 11.88

β
(1)
0 0.02 5.11 0.03 5.11 0.03 5.11

β
(2)
0 −0.05 5.10 −0.05 5.10 −0.05 5.10

β
(1)
1 −0.00 0.07 −0.00 0.07 −0.00 0.07

β
(2)
1 0.00 0.07 0.00 0.07 0.00 0.07

35 µx2 0.00 2.68 0.00 2.68 0.00 2.68
Σx2 −7.26 58.99 −0.31 60.21 −0.10 60.26

Σ
(11)
q −2.30 9.85 −0.11 10.13 0.03 10.16

Σ
(12)
q −0.02 6.71 −0.02 7.09 −0.02 7.12

Σ
(22)
q −2.44 9.71 −0.26 9.94 −0.12 9.97

β
(1)
0 0.03 4.21 0.03 4.21 0.03 4.21

β
(2)
0 −0.07 4.21 −0.06 4.21 −0.06 4.21

β
(1)
1 −0.00 0.06 −0.00 0.06 −0.00 0.06

β
(2)
1 0.00 0.06 0.00 0.06 0.00 0.06

50 µx2 −0.01 2.24 −0.01 2.24 −0.01 2.24
Σx2 −5.06 49.79 −0.15 50.52 −0.05 50.54

Σ
(11)
q −1.67 8.09 −0.11 8.23 −0.05 8.25

Σ
(12)
q −0.05 5.65 −0.04 5.88 −0.04 5.89

Σ
(22)
q −1.72 8.09 −0.16 8.23 −0.10 8.2427



Table 13: Biases and
√
MSE of the maximum likelihood estimate and its adjusted versions; errors-in-variables model;

v = 2 andm = 1; Studentt distribution.

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√
MSE Bias

√
MSE Bias

√
MSE

β
(1)
0 −0.02 9.64 −0.01 9.63 −0.01 9.63

β
(2)
0 −0.00 9.48 0.01 9.48 0.01 9.48

β
(1)
1 0.00 0.13 0.00 0.13 0.00 0.13

β
(2)
1 −0.00 0.13 −0.00 0.13 −0.00 0.13

15 µx2 0.04 4.80 0.04 4.80 0.04 4.79
Σx2 7.12 130.46 3.11 128.28 2.70 127.89

Σ
(11)
q −2.49 19.77 0.19 20.99 0.40 21.11

Σ
(12)
q 0.18 12.51 0.19 13.38 0.20 13.45

Σ
(22)
q −3.05 19.46 −0.42 20.58 −0.20 20.68

β
(1)
0 0.01 6.95 0.02 6.95 0.02 6.95

β
(2)
0 −0.02 7.00 −0.02 7.00 −0.02 7.00

β
(1)
1 0.00 0.10 0.00 0.10 0.00 0.10

β
(2)
1 0.00 0.10 0.00 0.10 0.00 0.10

25 µx2 0.04 3.65 0.04 3.65 0.04 3.65
Σx2 4.46 95.94 2.08 94.96 1.96 94.88

Σ
(11)
q −1.51 14.97 0.14 15.52 0.22 15.55

Σ
(12)
q 0.17 9.44 0.18 9.84 0.18 9.85

Σ
(22)
q −1.78 14.99 −0.14 15.52 −0.07 15.54

β
(1)
0 −0.01 5.87 −0.00 5.87 −0.00 5.87

β
(2)
0 −0.04 5.75 −0.03 5.75 −0.03 5.75

β
(1)
1 0.00 0.08 0.00 0.08 0.00 0.08

β
(2)
1 0.00 0.08 0.00 0.08 0.00 0.08

35 µx2 0.03 3.05 0.03 3.05 0.03 3.04
Σx2 3.37 79.82 1.68 79.23 1.62 79.19

Σ
(11)
q −1.17 12.40 0.02 12.72 0.06 12.73

Σ
(12)
q 0.16 8.02 0.17 8.26 0.17 8.27

Σ
(22)
q −1.22 12.68 −0.03 13.00 0.01 13.02

β
(1)
0 0.00 4.77 0.00 4.77 0.00 4.77

β
(2)
0 0.01 4.79 0.02 4.79 0.02 4.79

β
(1)
1 0.00 0.07 0.00 0.07 -0.00 0.07

β
(2)
1 -0.00 0.07 -0.00 0.07 -0.00 0.07

50 µx2 0.03 2.55 0.03 2.55 0.03 2.55
Σx2 2.28 65.53 1.09 65.19 1.07 65.18

Σ
(11)
q -0.71 10.54 0.14 10.74 0.15 10.75

Σ
(12)
q 0.12 6.64 0.13 6.78 0.13 6.79

Σ
(22)
q -0.89 10.58 -0.05 10.76 -0.04 10.7628



Table 14: Biases and
√
MSE of the maximum likelihood estimate and its adjusted versions; errors-in-variables model;

v = 2 andm = 1; power exponential distribution.

MLE Bias-corrected MLE Bias-reduced MLE

n θ Bias
√
MSE Bias

√
MSE Bias

√
MSE

β
(1)
0 0.03 9.06 0.04 9.05 0.04 9.05

β
(2)
0 0.08 9.15 0.09 9.14 0.09 9.14

β
(1)
1 −0.00 0.12 −0.00 0.12 −0.00 0.12

β
(2)
1 −0.00 0.12 −0.00 0.12 −0.00 0.12

15 µx2 0.06 6.82 0.06 6.82 0.06 6.82
Σx2 −9.63 99.78 0.48 103.49 0.78 103.61

Σ
(11)
q −4.70 15.97 −0.47 17.07 0.01 17.27

Σ
(12)
q −0.07 10.50 −0.07 11.74 −0.08 11.88

Σ
(22)
q −5.16 16.04 −1.00 17.00 −0.52 17.18

β
(1)
0 0.03 6.71 0.03 6.71 0.03 6.71

β
(2)
0 0.02 6.81 0.03 6.81 0.03 6.81

β
(1)
1 −0.00 0.09 −0.00 0.09 −0.00 0.09

β
(2)
1 −0.00 0.09 −0.00 0.09 −0.00 0.09

25 µx2 0.02 5.39 0.02 5.39 0.02 5.38
Σx2 −5.75 78.28 0.42 80.03 0.53 80.07

Σ
(11)
q −2.75 12.54 −0.07 13.10 0.10 13.16

Σ
(12)
q 0.01 8.50 0.02 9.10 0.02 9.14

Σ
(22)
q −3.00 12.56 −0.35 13.06 −0.18 13.12

β
(1)
0 0.01 5.53 0.02 5.53 0.02 5.53

β
(2)
0 −0.04 5.58 −0.03 5.58 −0.03 5.58

β
(1)
1 −0.00 0.07 −0.00 0.07 −0.00 0.07

β
(2)
1 0.00 0.08 0.00 0.08 0.00 0.08

35 µx2 0.02 4.48 0.02 4.48 0.02 4.48
Σx2 −3.80 66.28 0.64 67.37 0.70 67.39

Σ
(11)
q −1.91 10.65 0.04 11.00 0.13 11.03

Σ
(12)
q −0.03 7.23 −0.03 7.59 −0.03 7.61

Σ
(22)
q −2.05 10.62 −0.10 10.95 −0.01 10.98

β
(1)
0 0.00 4.60 0.00 4.60 0.00 4.60

β
(2)
0 −0.01 4.69 −0.01 4.69 −0.01 4.69

β
(1)
1 −0.00 0.06 −0.00 0.06 −0.00 0.06

β
(2)
1 −0.00 0.06 −0.00 0.06 −0.00 0.06

50 µx2 0.04 3.80 0.04 3.80 0.04 3.80
Σx2 −2.74 55.93 0.38 56.56 0.41 56.57

Σ
(11)
q −1.30 8.92 0.09 9.14 0.13 9.15

Σ
(12)
q 0.05 6.08 0.05 6.30 0.05 6.30

Σ
(22)
q −1.51 8.97 −0.12 9.16 −0.08 9.1729
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