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Abstract

Patriota and Lemonte (2009) introduced a quite general multivariate normal regression model. This model
considers that the mean vector and the covariance matrix share the same vector of parameters. In this paper
we present some influence assessment for this model, such as the local influence, total local influence of an
individual and generalized leverage are discussed. Additionally, the normal curvatures for local influence
studies are derived under some perturbation schemes.
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1. Introduction

It is nowadays a well spread practice, after modeling, to check the model assumptions and conduct
diagnostic studies in order to detect possible influential observations that may distort the results of the
analysis. Diagnostic analysis is an efficient way to detect influential observations. The first technique
developed to assess the individual impact of cases on the estimation process is, perhaps, the case deletion
which became a very popular tool. Cook (1977) presents a great development of case deletion diagnostics
for a general statistical model. Case deletion is an example of a global influence analysis, that is, the effect
of an observation is assessed by completely removing it.

However, case deletion excludes all information from an observation and we can hardly say whether this
observation has some influence on a specific aspect of the model. To overcome this problem, one can resort
to local influence approach where one investigates the model sensitivity under small perturbations. In this
context, Cook (1986) proposes a general framework to detect influential observations which gives a measure
of this sensitivity under small perturbations on the data or in the model. Several authors have extended
the local influence method to various regression models; see, for example, Beckman et al. (1987), Lawrance
(1988), Thomas and Cook (1990), Paula (1993), Lesaffre and Verbeke (1998) and more recently Osorio et al.

(2007), Carrasco et al. (2008), Espinheira et al. (2008), Paula et al. (2009), Vasconcellos and Fernandez
(2009), Russo et al. (2009), Patriota (2010), among others. In particular, Vasconcellos and Fernandez
(2009) discuss the problem of influence analysis for the situation in which the observations must satisfy a
set of homogeneous linear restrictions.

In this paper we focus on influence diagnostics based on case deletion (Cook, 1977) and also develop local
influence diagnostics (Cook, 1986) based on minor perturbations in the data and in the postulated model.
The underlying model is a multivariate normal regression model with the mean vector and the covariance
matrix indexed by the same vector of parameters (Patriota and Lemonte, 2009). It includes many of the
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existing regression models; for instance, mixed models, nonlinear regression models and errors-in-variables
models. Additionally, an expression for the generalized leverage in this general model is derived.

The paper is organized as follows. Section 2 presents the model. In Section 3 we use several diagnostic
measures considering case deletion and the normal curvatures of local influence are derived under various
perturbation schemes. In Section 4, we present some useful examples of the proposed formulation. Finally,
some concluding remarks are made in Section 5.

2. Model and inference

Throughout this paper we consider the situation in which independent qi × 1 observable random vectors
Yi follow a multivariate normal distribution denoted by

Yi
ind∼ Nqi

(
µi(θ),Σi(θ)

)
, i = 1, . . . , n, (1)

where “
ind∼ ” means “independently distributed as” and µi(θ) = µi(θ, xi) and Σi(θ) = Σi(θ, zi) are the mean

vector and the covariance matrix, respectively. Also, xi and zi are mi × 1 and ti × 1 vectors, respectively,
of nonstochastic variables associated with the ith observed response Yi. Notice that xi and zi may have
common components. Additionally, θ is a p × 1 vector of unknown parameters. The functional forms of
µi(θ) and Σi(θ) are known and twice continuously differentiable with respect to each element of θ. Since
θ must be identifiable in model (1), we suppose that the model fulfills this requirement. Note that, if the
location vector and the scale matrix have just a few parameters in common, say µ(θ1, θ2) and Σ(θ1, θ3),
we can always write θ = (θ⊤

1 , θ⊤
2 , θ⊤

3 ) and then µ(θ) and Σ(θ) may represent µ(θ1, θ2) and Σ(θ1, θ3),
respectively, without lost of generality. Therefore, we can just consider µ(θ) and Σ(θ) to have the more
general setting. In other words, to avoid excess of notation, all model parameters can be entirely described
only by θ. Lange et al. (1989) introduce a very general Student-t model where the location vector and the
scale matrix do not share parameters. This model is roboust against outliers. Our model is a particular
case of this model when µi(θ) = µi(α) and Σi(θ) = Σi(γ) for all i = 1, . . . , n.

The class of models presented in (1) is quite broad and includes many important statistical models. As a
first example, we can mention linear and nonlinear regression models, either homoskedastic or heteroskedas-
tic. Recently, heteroskedastic structural measurement error models have been studied by many authors
(see, for instance, Kulathinal et al., 2002; Cheng and Riu, 2006; Kelly, 2007; de Castro et al., 2008; Patriota
et al., 2009). These models can also be formulated as in (1). Structural equation models (e.g., Bollen, 1989;
Lee et al., 2006) is a rich class of models with latent variables that can be put as in (1). Simultaneous
equations models (e.g., Zhao and Lee, 1998; Magnus and Neudecker, 2007, Ch. 16) comprise endogenous
and exogenous variables and, in the reduced form, they are a particular case of the general model in (1).
As can be seen, model (1) encompasses a wide range of models and our list of examples is by no means
exhaustive. Section 4 presents some important special cases.

To simplify notation, let µi = µi(θ, xi), Σi = Σi(θ, zi) and ui = Yi − µi. The log-likelihood function
associated with (1), apart from an unimportant constant, is

ℓ(θ) =

n∑

i=1

ℓi(θ), (2)

where ℓi(θ) = − 1
2 log |Σi|− 1

2u⊤

i Σ−1
i ui. We make some assumptions (Cox and Hinkley, 1974, Ch. 9) on the

behavior of ℓ(θ) as n → ∞, such as the regularity of the first two derivatives of ℓ(θ) with respect to θ and

the uniqueness of the maximum likelihood estimator (MLE) of θ, θ̂.
We define the quantities

ai(r) =
∂µi

∂θr
, ai(sr) =

∂2µi

∂θs∂θr
, Ci(r) =

∂Σi

∂θr
, Ci(sr) =

∂2Σi

∂θs∂θr
and Ai(r) = −Σ−1

i Ci(r)Σ
−1
i ,

for r, s = 1, . . . , p. To compute the derivatives of ℓ(θ) we make use of matrix differentiation methods (Magnus
and Neudecker, 2007).
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The score function for θ is

Uθ =

n∑

i=1

D⊤

i Σ−1
i ui −

1

2

n∑

i=1

V ⊤

i (Σ−1
i ⊗ Σ−1

i )vec(Σi − uiu
⊤

i ),

where Di = (ai(1), . . . , ai(p)) and Vi = (vec(Ci(1)), . . . , vec(Ci(p))). Also, the “vec” operator transforms a
matrix into a vector by stacking the columns of the matrix one underneath the other and “⊗” indicates the
Kronecker product. Let

Fi =

(
Di

Vi

)
, Hi =

[
Σ−1

i 0

0 1
2Σ

−1
i ⊗ Σ−1

i

]
and vi =

(
ui

−vec(Σi − uiu
⊤
i )

)
, (3)

where (F⊤
1 , . . . , F⊤

n )⊤ has rank p. Then, Uθ can be written as

Uθ =

n∑

i=1

F⊤

i Hivi. (4)

The observed information matrix of θ is given by −L̈θθ, which is obtained from

L̈θθ =

n∑

i=1

(
Gi − F⊤

i HiMiHiFi

)
,

where Gi is a p × p matrix with (s, r) element given by (a⊤

i(sr)vec(Ci(sr))
⊤)Hivi and

Mi =

[
Σi 2Σi ⊗ u⊤

i

2Σi ⊗ ui Mi;22

]
,

with Mi;22 = 2{(uiu
⊤
i ) ⊗ Σi + Σi ⊗ (uiu

⊤
i ) − Σi ⊗ Σi}. Additionally, noting that E(Mi) = H−1

i and
E(Gi) = 0, the expected information matrix of θ is given by

Kθ = −E(L̈θθ) =

n∑

i=1

F⊤

i HiFi.

The MLE θ̂ satisfies the equation Uθ = 0. The Fisher scoring method can be used to estimate θ by
iteratively solving the equation

(F (m)⊤H(m)F (m))θ(m+1) = F (m)⊤H(m)v∗(m), m = 0, 1, . . . , (5)

where
F (m) = (F

(m)⊤
1 , . . . , F (m)⊤

n )⊤, H(m) = bdiag(H
(m)
1 , . . . , H(m)

n ),

v∗(m) = F (m)θ(m) + v(m), v(m) = (v
(m)⊤
1 , . . . , v

(m)⊤
n )⊤, H = bdiag(H1, . . . , Hn) is a block diagonal matrix

with the matrices H1, . . . , Hn in the diagonal and m is the iteration counter. The cycles through the scheme
(5) consist of iterative re-weighted least squares steps and the iterations go on until convergence is achieved.

Equation (5) shows that the calculation of the MLE θ̂ can be carried out using any software with a matrix
algebra library.

Since the estimating function (4) is an unbiased estimating function just by assuming that E(Yi) = µi

and Var(Yi) = Σi, we can also resort to the estimating equation theory. We suppose valid the regularity
conditions stated in Gimenez and Bolfarine (1997) (see also Van der Vaart, 1998, Ch. 5) regarding the
estimating function (4). The sequences {µi}, {Σi}, {xi} and {zi} must be defined to satisfy such conditions.

Then, a consistent estimate for the asymptotic covariance matrix of θ̂ can be formulated as the following
sandwich form

V̂ara(θ̂) =
1

n
Ψ̂−1

n Λ̂nΨ̂−1
n , (6)
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where

Ψn = − 1

n
L̈θθ and Λn =

1

n

n∑

i=1

F⊤

i Hiviv
⊤

i HiFi,

with Ψ̂n = Ψn(θ̂) and Λ̂n = Λn(θ̂). We assume that the limits of Λ̂n and Ψ̂n exist and are positive definite.
Thus, if the normal distribution is not tenable (which can be verified by plotting simulated envelopes or

also by using the transformed distance plots proposed by Lange et al., 1989), we can use the estimator in
(6) instead of the expected information matrix to build confidence regions and test statistics, since we have

also that
√

n(θ̂ − θ)
a∼ Np(0,Ψ−1ΛΨ−1), for n large, where

a∼ denotes approximately distributed, Ψ =
limn→∞ Ψn and Λ = limn→∞ Λn. Under normality we have that Ψ = Λ = K̄θ, where K̄θ = limn→∞

1
nKθ.

It is clear that, if the normal distribution is suitable, we should use the inverse of the information matrix,
since it reaches the Cramér–Rao lower bound and, consequently, the confidence intervals will be more precise.

3. Diagnostic analysis

The first tool to perform diagnostic analysis is by means of global influence starting from case deletion
with Cook (1977). Case deletion is a very common methodology to assess the effect of removing the ith

observation from the data set. Let ℓ[i](θ) be the log-likelihood function without the ith and θ̂[i] be the

corresponding MLE of θ. Thus, the generalized Cook distance is given by GDi = (θ̂[i]− θ̂)⊤(−L̈θθ)(θ̂[i]− θ̂)

and the likelihood displacement LDi = 2{ℓ(θ̂)− ℓ(θ̂[i])}. For the purpose of avoiding the estimation varying

for all observations, we can use the one step approximation θ̂[i] = θ̂ + L̈−1
bθbθ

Ubθ[i] (Cook and Weisberg, 1982),

where Uθ[i] = ∂ℓ[i](θ)/∂θ. Also, Ubθ[i] and L̈−1
bθbθ

denote Uθ[i] and L̈−1
θθ evaluated at θ = θ̂, respectively.

The local influence method is recommended when the concern is related to investigate the model sensitiv-
ity under some minor perturbations in the model (or data). Let ω be a k-dimensional vector of perturbations
restricted to some open subset Ω of R

k. The perturbed log-likelihood function is denoted by ℓ(θ|ω). We con-
sider that exists a no perturbation vector ω0 ∈ Ω such that ℓ(θ|ω0) = ℓ(θ), for all θ. The influence of minor

perturbations on the MLE θ̂ can be assessed by using the likelihood displacement LDω = 2{ℓ(θ̂) − ℓ(θ̂ω)},
where θ̂ω denotes the maximizer of ℓ(θ|ω).

The idea for assessing local influence as advocated by Cook (1986) is essentially the analysis of the local
behavior of LDω around ω0 by evaluating the curvature of the plot of LDω0+ad against a, where a ∈ R and
d is a unit direction. One of the measures of particular interest is the direction dmax corresponding to the
largest curvature Cdmax

. The index plot of dmax may evidence those observations that have considerable
influence on LDω under minor perturbations. Also, plots of dmax against covariate values may be helpful
for identifying atypical patterns. Cook (1986) showed that the normal curvature at the direction d is given

by Cd(θ) = 2|d⊤∆⊤L̈−1
θθ ∆d|, where ∆ = ∂2ℓ(θ|ω)/∂θ∂ω⊤, both ∆ and L̈θθ are evaluated at θ = θ̂ and

ω = ω0. Moreover, Cdmax
is twice the largest eigenvalue of B = −∆⊤L̈−1

θθ ∆ and dmax is the corresponding
eigenvector. The index plot of dmax may reveal how to perturb the model (or data) to obtain large changes
in the estimate of θ.

Assume that the parameter vector θ is partitioned as θ = (θ⊤
1 , θ⊤

2 )⊤. The dimensions of θ1 and θ2 are
p1 and p − p1, respectively. Let

L̈θθ =

[
L̈θ1θ1

L̈θ1θ2

L̈⊤

θ1θ2
L̈θ2θ2

]
,

where L̈θ1θ1
= ∂2ℓ(θ)/∂θ1∂θ⊤

1 , L̈θ1θ2
= ∂2ℓ(θ)/∂θ1∂θ⊤

2 and L̈θ2θ2
= ∂2ℓ(θ)/∂θ2∂θ⊤

2 . If the interest lies
on θ1, the normal curvature in the direction of the vector d is Cd;θ1

(θ) = 2|d⊤∆⊤(L̈−1
θθ − L̈22)∆d|, where

L̈22 =

[
0 0

0 L̈−1
θ2θ2

]

and dmax;θ1
here is the eigenvector corresponding to the largest eigenvalue of B1 = −∆⊤(L̈−1

θθ − L̈22)∆

(Cook, 1986). The index plot of the dmax;θ1
may reveal those influential elements on θ̂1.
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In order to have a curvature invariant under a uniform change of scale, Poon and Poon (1999) introduce
the conformal normal curvature Bd(θ) in the direction of the unit vector d at ω = ω0, given by Bd(θ) =
Cd(θ)/||2∆⊤L̈−1

θθ∆||F , where “|| · ||F ” denotes the Frobenius norm defined as ||Z||F = {tr(Z⊤Z)}1/2 with
Z being a l × c matrix. An interesting property of the conformal normal curvature is that 0 ≤ Bd(θ) ≤ 1.
Therefore, this quantity can be seen as a normalized version of Cd(θ).

Another procedure is the total local curvature corresponding to the ith element, which follows by taking
the direction di as a vector of zeros with one at the ith position. Thus, the curvature at the direction di

assumes the form Ci(θ) = 2|∆⊤

i L̈−1
θθ ∆i|, where ∆⊤

i denotes the ith row of ∆. This is named total local
influence by Lesaffre and Verbeke (1998). It is also possible to compute the total local influence of the
ith individual when estimating a subset of the elements of θ. For instance, if the interest lies on θ1, we
have that Ci;θ1

(θ) = 2|∆⊤

i (L̈−1
θθ − L̈22)∆i|. Verbeke and Molenberghs (2000, § 11.3) proposed consider

C̄ =
∑n

i=1 Ci/n as a cut-off value, so that an element is potentially influential if Ci ≥ 2C̄.

Curvature calculations

Next, we derive for three perturbation schemes the matrix

∆ = {∆ri} =

{
∂2ℓ(θ|ω)

∂θr∂ωi

}∣∣∣∣
θ=bθ, ω=ω0

, r = 1, . . . , p and i = 1, . . . , k,

considering the model defined in (1) and its log-likelihood function given by (2). Also, k is the dimension
of the perturbation vector ω for the scheme under consideration. Equations (7), (8) and (9) represent the
main results of the paper.

Case weight perturbation

The perturbation of cases is done by attaching some weight to each observation in the log-likelihood
resulting in

ℓ(θ|ω) =

n∑

i=1

ωiℓi(θ),

where ω = (ω1, . . . , ωn)⊤, with 0 ≤ ωi ≤ 1, for i = 1, . . . , n, and ω0 = 1n = (1, . . . , 1)⊤ is the vector of no
perturbations. Using matrix differentiation rules we find

∆ri =
1

2
tr{Âi(r)(Σ̂i − ûiû

⊤

i )} + â⊤

i(r)Σ̂
−1
i ûi, (7)

for r = 1, . . . , p and i = 1, . . . , n. The matrix version of (7) is

∆ = (F⊤

1 H1v1, . . . , F
⊤

n Hnvn).

In the factor analysis model studied by Kwan and Fung (1998) this perturbation scheme is equivalent to
perturb the covariance matrix of the observed variables.

Perturbations affecting location and scale

Taking into account the generality of our formulation in (1), it is worth studying perturbation schemes
that lead to changes only in the mean vector, only in the covariance matrix or in both, as well. For instance,
in Vasconcellos and Cordeiro (1997) is analyzed a dataset for the growth of winter tillers (Faivre and Masle,
1988). The univariate response, Yi, is the dry weight of the tillers for plants harvested from the same area.
The covariate, xi, is the time measured on a cumulative degree-days scale with a 0◦C base temperature.
In their working model it is considered that E(Yi) = µi = β1 exp(β2xi) and Var(Yi) = Σi = σ1 exp(σ2xi).
Hence, we can use the perturbation scheme derived in this section to verify the sensitivity of this model.
Since the covariate is linked to the mean and the variance, the proposed perturbation scheme is justified.

In the structural equation model investigated by Lee et al. (2006), perturbations on the covariance
matrix of the unique factors, on the manifest and latent variables, as well as on all unknown parameters are
examples in which, once again, the perturbation scheme in this section is meaningful.
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Here we consider that
Yi

ind∼ Nqi
(µ∗

i ,Σ
∗

i ), i = 1, . . . , n,

where µ∗

i = µi(θ, ωi) and Σ∗

i = Σi(θ, ωi) are the perturbed mean vector and covariance matrix with ωi =
(ωi1, . . . , ωiki

)⊤ and ω = (ω⊤
1 , . . . , ω⊤

n )⊤. The vector of no perturbations is defined as ω0 = (ω⊤
01, . . . , ω

⊤
0n)⊤

such that µi(θ, ω0i) = µi(θ) and Σi(θ, ω0i) = Σi(θ). For instance, consider the model studied by Vasconcel-
los and Cordeiro (1997), if we perturb the covariate as x∗

i = xi+ωi, we will have that µ∗
i = β1 exp(β2(xi+ωi))

and Σ∗

i = σ1 exp(σ2(xi + ωi)), so the mean and variance are perturb at the same time.
Define

a∗

i(r) =
∂µ∗

i

∂θr
, a∗

ωis
=

∂µ∗

i

∂ωis
, a∗

i(rs) =
∂2µ∗

i

∂θr∂ωis
, C∗

i(r) =
∂Σ∗

i

∂θr
, C∗

i(rs) =
∂2Σ∗

i

∂θr∂ωis
,

A∗

i(r) = −Σ∗−1
i C∗

i(r)Σ
∗−1
i , A∗

ωis
= −Σ∗−1

i C∗

ωis
Σ∗−1

i and C∗

ωis
=

∂Σ∗

i

∂ωis
.

Clearly, the expressions above depends on the chosen perturbation scheme. Then,

∆ris =
1

2
tr{(Â∗

i(r)Σ̂iÂ
∗

ωis
+ Â∗

ωis
Σ̂iÂ

∗

i(r) − Σ̂−1
i Ĉ∗

i(rs)Σ̂
−1
i )(Σ̂i − ûiû

⊤

i ) + Â∗

ωis
Ĉ∗

i(r)}

+ â∗⊤

i(r)Â
∗

ωis
ûi + â∗⊤

ωis
Â∗

i(r)ûi + â∗⊤

i(rs)Σ̂
−1
i ûi − â∗⊤

i(r)Σ̂
−1
i â∗

ωis
,

(8)

for r = 1, . . . , p, s = 1, . . . , ki and i = 1, . . . , n. Here, ∆ is a p×∑n
i=1 ki matrix formed by the 1× ki vectors

∆ri with ∆ri = (∆ri1, . . . , ∆riki
).

However, if one is interested only on the scale perturbation Σ∗
i = ωiΣi, then (8) becomes

∆ri =
1

2
û⊤

i Âi(r)ûi − â⊤

i(r)Σ̂
−1
i ûi,

for r = 1, . . . , p and i = 1, . . . , n, since a∗
ωis

= a∗

i(rs) = 0 and a∗

i(r) = ai(r), A∗
ωis

= −Σ−1
i , C∗

i(rs) = Ci(r) and

A∗

i(r) = Ai(r) for ω = ω0. Here, ∆ = {∆ri} is a p×n matrix. In this context, the vector of no perturbation
is the unit one.

On the other hand, if one is interested only on the location perturbation µ∗
i = µi(θ, ωi), we have that

A∗
wis

= C∗

i(rs) = C∗
ωis

= 0 and A∗

i(r) = Ai(r) for ω = ω0. Thus, (8) becomes

∆ris = û⊤

i Âi(r)â
∗

ωis
+ û⊤

i Σ̂−1
i â∗

i(rs) − â∗⊤

i(r)Σ̂
−1
i â∗

ωis
,

for r = 1, . . . , p, s = 1, . . . , ki and i = 1, . . . , n. Again, ∆ is a p×∑n
i=1 ki matrix with element given by the

1 × ki vector ∆ri with ∆ri = (∆ri1, . . . , ∆riki
) and the vector of no perturbation is the zero one.

Response perturbation

We consider here that each Yi is perturbed according to Y ∗

i = Yi + ωi, where ωi denotes the qi × 1
perturbation vector and ω = (ω⊤

1 , . . . , ω⊤
n )⊤, so that the no perturbation vector is ω0 = 0, where ω ∈

R
N , where N =

∑n
i=1 qi. In this case, the perturbed log-likelihood function is also given by ℓ(θ|ω) =∑n

i=1 ℓi(θ|ω). We obtain

∆ri = −Âi(r)ûi + Σ̂−1
i âi(r), (9)

for r = 1, . . . , p and i = 1, . . . , n. In matrix notation defined previously, we have that

∆ =
(
F̂⊤

1 Ĥ1Ĝ1, . . . , F̂
⊤

n ĤnĜn

)
, where Gi =

[
Iqi

2ui ⊗ Iqi

]
.
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3.1. Generalized leverage

Let Y = vec(Y1, . . . , Yn) and µ(θ) = vec(µ1, . . . , µn). In what follows we shall use the generalized
leverage proposed by Wei et al. (1998). The authors have shown that the generalized leverage is obtained
by evaluating the N × N matrix

GL(θ) = Dθ(−L̈θθ)−1L̈θY ,

at θ = θ̂, where Dθ = ∂µ(θ)/∂θ⊤ and L̈θY = ∂2ℓ(θ)/∂θ∂Y ⊤. The main idea behind the concept of
leverage is that of evaluating the influence of Yi on its own predicted value. As noted by the authors, the
generalized leverage is invariant under reparameterizations and observations with large GLii are leverage
points.

Under the model defined in (1), we have that

Dθ = (D⊤

1 , D⊤

2 , . . . , D⊤

n )⊤ and L̈θY = {L̈θYi
},

where L̈θYi
= {−Ai(r)ui + Σ−1

i ai(r)}, for r = 1, . . . , p and i = 1, . . . , n. Again, by using the matrix

notation defined previously, we have L̈θY =
(
F⊤

1 H1G1, . . . , F
⊤
n HnGn

)
. Index plots of GLii may reveal

those observations with high influence on their own predicted values.

3.2. Connection between local influence and generalized leverage

There is a connection between local influence and generalized leverage. In order to deduce such relation-
ship we must define some quantities. Define Fi = (F⊤

1i , F
⊤

2i )
⊤, Gi = (G⊤

1i, G
⊤

2i)
⊤ where F1i = Di, F2i = Vi,

G1i = Iqi
and G2i = 2ui ⊗ Iqi

. Define also,

F ∗ = (F⊤

1 , . . . , F⊤

n )⊤ and F̃ = (F̃⊤

1 , F̃⊤

2 )⊤,

where F̃j = (F⊤

j1 , . . . , F
⊤

jn)⊤ for j = 1, 2. Notice that there exists a permutation matrix I∗ such that

F ∗ = I∗F̃ (see, for instance, Magnus and Neudecker, 2007, Ch. 1). Therefore, we have that

∆⊤(−L̈θθ)−1∆ = P⊤I∗F̃ (−L̈θθ)−1∆,

where P = bdiag(H1G1, . . . , HnGn). Note also that P⊤I∗ = (P ∗⊤
1 , P ∗⊤

2 ), where

P ∗

1 = bdiag(Σ−1
1 G11, . . . ,Σ

−1
n G1n) and P ∗

2 = (1/2) bdiag
(
(Σ−1

1 ⊗ Σ−1
1 )G21, . . . , (Σ

−1
n ⊗ Σ−1

n )G2n

)
.

Hence, the relationship between the local influence (under additive response perturbations) and the gener-
alized leverage is

∆⊤(−L̈θθ)−1∆ = P ∗⊤

1 GL(θ) + P ∗⊤

2 F̃2(−L̈θθ)−1∆.

Then, the normal curvature under additive perturbations in the response values can be rewritten as
Cd(θ) = 2|d⊤P ∗⊤

1 GL(θ)d − d⊤P ∗⊤
2 F̃2(L̈θθ)−1∆d| in the general case.

4. Special models

In this section we present some particular cases of our general model defined in (1). To the best of our
knowledge, the results obtained here had not been reported in the statistical literature.
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4.1. Heteroskedastic mixed model with nonlinear fixed effects

The mixed model considered here generalizes many of the most important mixed models presented in the
literature, for example, Beckman et al. (1987) and Lesaffre and Verbeke (1998). We define the heteroskedastic
mixed model with nonlinear fixed effects by the stochastic equation

Yi = µi(β) + Zibi + ei, i = 1, . . . , n, (10)

where bi
ind∼ Nmi

(0,Γi(σ1)) independent of ei
ind∼ Nqi

(0, Ri(σ2)). The dimensions of β, σ1 and σ2 are p1,
p2 and p−p1−p2, respectively. Defining σ = (σ⊤

1 , σ⊤
2 )⊤ and Σi(σ) = ZiΓi(σ1)Z

⊤
i +Ri(σ2), the marginal

distribution of Yi can be written as Yi
ind∼ Nqi

(µi(β),Σi(σ)). It is noteworthy that the mean vector and the
covariance-variance matrix do not share parameters and, of course, it is a particular case of general model
(1).

The mean vector may depend on extra covariates, i.e., µi(β) = µi(β, xi). In addition, it allows nonlinear
relationships with them. The covariance-variance matrices Γi(σ1) and Ri(σ2) may also vary with the
observation; for instance, each element of these matrices may depend on xi, characterizing a heteroskedastic
model. It is noteworthy that model (10) reduces to the model studied by Beckman et al. (1987) just by
taking µi(β) = Xiβ, Ri(σ2) = σ2Iqi

and Γi(σ1) is a diagonal matrix with an appropriated structure, where
Iqi

is the qi × qi identity matrix.
Next, we obtain the matrix ∆ for four perturbation schemes (case weighting, scale matrix, location

and response perturbation). Define Γi(r) = ∂Γi(σ1)/∂θr and Ri(r) = ∂Ri(σ2)/∂θr. Notice that, from the
general expressions given in (7), (8) and (9), it is easy to obtain

∆ =




∆β

∆σ1

∆σ2




for the scheme under consideration. We have immediately that:

Case weight perturbation

∆ri =





â⊤

i(r)Σ̂
−1
i ûi, for r = 1, . . . , p1,

− 1
2 tr{Σ̂−1

i ZiΓ̂i(r)Z
⊤

i Σ̂−1
i (Σ̂i − ûiû

⊤

i )}, for r = p1 + 1, . . . , p1 + p2,

− 1
2 tr{Σ̂−1

i R̂i(r)Σ̂
−1
i (Σ̂i − ûiû

⊤

i )}, for r = p1 + p2 + 1, . . . , p,

for i = 1, . . . , n.

Scale matrix perturbation – Σ∗
i = ωiΣi

∆ri =





−â⊤

i(r)Σ̂
−1
i ûi, for r = 1, . . . , p1,

− 1
2 û⊤

i Σ̂−1
i ZiΓ̂i(r)Z

⊤
i Σ̂−1

i ûi, for r = p1 + 1, . . . , p1 + p2,

− 1
2 û⊤

i Σ̂−1
i R̂i(r)Σ̂

−1
i ûi, for r = p1 + p2 + 1, . . . , p,

for i = 1, . . . , n.

Location perturbation – µ∗

i = µi(θ, ωi)

∆ris =





û⊤

i Σ̂−1
i â∗

i(rs) − â∗⊤

i(r)Σ̂
−1
i â∗

ωis
, for r = 1, . . . , p1,

−û⊤

i Σ̂−1
i ZiΓ̂i(r)Z

⊤

i Σ̂−1
i â∗

ωis
, for r = p1 + 1, . . . , p1 + p2,

−û⊤

i Σ̂−1
i R̂i(r)Σ̂

−1
i â∗

ωis
, for r = p1 + p2 + 1, . . . , p,

for i = 1, . . . , n.
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Response perturbation

∆ri =





Σ̂−1
i âi(r), for r = 1, . . . , p1,

Σ̂−1
i ZiΓ̂i(r)Z

⊤

i Σ̂−1
i ûi, for r = p1 + 1, . . . , p1 + p2,

Σ̂−1
i R̂i(r)Σ̂

−1
i ûi, for r = p1 + p2 + 1, . . . , p,

for i = 1, . . . , n.

4.2. Heteroskedastic multivariate nonlinear regression

This section considers a heteroskedastic multivariate nonlinear regression. The model is

Yi = µi(β) + ei, i = 1, . . . , n,

where ei
ind∼ Nqi

(0,Σi(σ)). The response variable is such that Yi
ind∼ Nqi

(µi(β),Σi(σ)). The vector of
parameters is θ = (β⊤, σ⊤)⊤. Let p1 and p − p1 be the dimensions of β and σ, respectively.

Again, from the general expressions given in (7), (8) and (9), it is easy to obtain

∆ =

(
∆β

∆σ

)

for the scheme under consideration. We have immediately the Delta matrices for different perturbation
schemes:

Case weight perturbation

∆ri =

{
â⊤

i(r)Σ̂
−1
i ûi, for r = 1, . . . , p1,

− 1
2 tr{Σ̂−1

i Ĉi(r)Σ̂
−1
i (Σ̂i − ûiû

⊤

i )}, for r = p1 + 1, . . . , p,

for i = 1, . . . , n.

Scale matrix perturbation — Σ∗

i = ωiΣi

∆ri =

{
−â⊤

i(r)Σ̂
−1
i ûi, for r = 1, . . . , p1,

− 1
2 û⊤

i Σ̂−1
i Ĉi(r)Σ̂

−1
i ûi, for r = p1 + 1, . . . , p,

for i = 1, . . . , n.

Location perturbation – µ∗

i = µi(θ, ωi)

∆ri =

{
û⊤

i Σ̂−1
i â∗

i(rs) − â∗⊤

i(r)Σ̂
−1
i â∗

ωis
, for r = 1, . . . , p1,

−û⊤

i Σ̂−1
i Ĉi(r)Σ̂

−1
i â∗

ωis
, for r = p1 + 1, . . . , p,

for i = 1, . . . , n.

Response perturbation

∆ri =

{
Σ̂−1

i âi(r), for r = 1, . . . , p1,

Σ̂−1
i Ĉi(r)Σ̂

−1
i ûi, for r = p1 + 1, . . . , p,

for i = 1, . . . , n.
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4.3. Heteroskedastic measurement error model

Kulathinal et al. (2002) analyzed an epidemiological dataset where the response variable, yi, is an index
of the cardiovascular mortality and the covariate, xi, is an index composed by its risk factors. A linear rela-
tionship yi = α+βxi +ηi is postulated, where ηi represents the equation error. Both response and covariate
are subject to measurement errors and the working model is an errors-in-variables one with observations

Yi = yi + ei and Xi = xi + ui, where ei
ind∼ N (0, τei

) and ui
ind∼ N (0, τui

), respectively, are the measurement

errors with variances τei
and τui

supposedly known. It is also assumed that xi
iid∼ N (µx, σ2

x), ηi
iid∼ N (0, σ2

η)
and the variables (e, u, η, x) are all independent. In this setup, the mean vector and the covariance matrix
of the observed vector Yi = (Yi, Xi)

⊤ are given, respectively, by

µi =

(
α + βµx

µx

)
and Σi =

[
β2σ2

x + σ2
η + τei

βσ2
x

βσ2
x σ2

x + τui

]
, i = 1, . . . , n.

Therefore, one might be interested if small perturbations on τei
and τui

have high influence on the ML
estimates of the model parameters θ = (α, β, µx, σ2

x, σ2
η)⊤. Thus, the perturbation scheme

Σ∗

i = Σi(θ, ω) =

[
β2σ2

x + σ2
η + ωiτei

βσ2
x

βσ2
x σ2

x + ωiτui

]

might be considered, with ωi > 0 and ω0 = 1n. For this case, we have immediately from (8) that

∆ri =
1

2
tr{(Âi(r)Σ̂iÂ

∗

ωi
+ Â∗

ωi
Σ̂iÂi(r))(Σ̂i − ûiû

⊤

i ) + Â∗

ωi
Ĉi(r)} + â⊤

i(r)Â
∗

ωi
ûi,

for r = 1, . . . , p and i = 1, . . . , n, since a∗
ωis

= a∗

i(rs) = 0 and C∗

i(rs) = 0, and a∗

i(r) = ai(r), A∗

i(r) = Ai(r)

and C∗

i(r) = Ci(r) for ω = ω0. Here, C∗
ωi

= diag(τei
, τui

).

5. Concluding remarks

We have discussed in this paper applications of local influence and generalized leverage methods in a
multivariate normal regression model with general parameterization. This model considers that the mean
vector and the covariance matrix share the same vector of parameters. It includes many regression models
as particular cases. Appropriate matrices for assessing local influence on the parameter estimates under
different perturbation schemes are obtained. Our results are very general and can be applied to any model
as defined by (1), that is, this paper can be used as a guide for computing diagnostics measures in practical
applications. In particular, we derive the normal curvature of local influence under some perturbation
schemes for a large class of heteroskedastic nonlinear models with longitudinal structure (mixed model).
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