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Abstract This paper develops a bias correction scheme for a multivariate heteroskedas-

tic errors-in-variables model. The applicability of this model is justified in areas such as

astrophysics, epidemiology and analytical chemistry, where the variables are subject to

measurement errors and the variances vary with the observations. We conduct Monte

Carlo simulations to investigate the performance of the corrected estimators. The nu-

merical results show that the bias correction scheme yields nearly unbiased estimates.

We also give an application to a real data set.
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1 Introduction

Heteroskedastic errors-in-variables (or measurement error) models have been exten-

sively studied in the statistical literature and widely applied in astrophysics (to explain

relationships between black hole masses and some variates of luminosities), epidemi-

ology (to model the cardiovascular event with its risk factors), analytical chemistry

(to compare different types of measurement instruments). The applicability of this

model abound mainly in the astronomy literature where all quantities are subject to

measurement errors (Akritas and Bershady, 1996).

It is well-known that, when the measurement errors are ignored in the estima-

tion process, the maximum-likelihood estimators (MLEs) become inconsistent. More

specifically, the estimation of the slope parameter of a simple linear model is attenuated

(Fuller, 1987). When variables are subject to measurement errors, a special inference

treatment must be carried out for the model parameters in order to avoid inconsis-

tent estimators. Usually, a measurement equation is added to the model to capture

the measurement error effect and then the MLEs from this approach are consistent,
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efficient and asymptotically normally distributed. A careful and deep exposition on the

inferential process in errors-in-variables models can be seen in Fuller (1987) and the

references therein.

Although consistent, asymptotically efficient and asymptotically normally distri-

buted, the MLEs are oftentimes biased and point inference can be misleading. This is

not a serious problem for relatively large sample sizes, since bias is typically of order

O(n−1), while the asymptotic standard errors are of order O(n−1/2). However, for

small or even moderate values of the sample size n, bias can constitute a problem.

Bias adjustment has been extensively studied in the statistical literature. For example,

Cook et al. (1986), Cordeiro (1993), Cordeiro and Vasconcellos (1997), Vasconcellos

and Cordeiro (1997) and, more recently, Cordeiro (2008). Additionally, Patriota and

Lemonte (2009) obtained general matrix formulae for the second-order biases of the

maximum-likelihood estimators in a very general model which includes all previous

works aforementioned. The model presented by the authors considers that the mean

vector and the variance-covariance matrix of the observed variable have parameters in

common. This approach includes the heteroskedastic measurement error model that

we are going to study in this paper.

The main goal of this article is to define bias-corrected estimators using the general

second-order bias expression derived in Patriota and Lemonte (2009) assuming that the

model defined by (1) and (2) holds. Additionally, we compare the performance of bias-

corrected estimators with the MLEs in small samples via Monte Carlo simulations. The

numerical results show that the bias correction is effective in small samples and leads

to estimates that are nearly unbiased and display superior finite-sample behavior.

The rest of the paper is as follows. Section 2 presents the multivariate heteroskedas-

tic errors-in-variables model. Using general results from Patriota and Lemonte (2009),

we derive in Section 3 the second-order biases of the MLEs of the parameters. The

result is used to define bias-corrected estimates. In Section 4 the O(n−1) biases of

the estimates bµi and bΣi are given. Monte Carlo simulation results are presented and

discussed in Section 5. Section 6 gives an application. Finally, concluding remarks are

offered in Section 7.

2 The model

The multivariate model assumed throughout this paper is

yi = β0 + β1xi + qi, i = 1, . . . , n, (1)

where yi is a (v × 1) latent response vector, xi is a (m× 1) latent vector of covariates,

β0 is a (v × 1) vector of intercepts, β1 is a (v × m) matrix, the elements of which

are inclinations and qi is the equation error having a multivariate normal distribution

with mean zero and covariance-variance matrix Σq. The variables yi and xi are not di-

rectly observed, instead surrogate variables Yi and Xi are measured with the following

additive structure:

Yi = yi + ηyi
and Xi = xi + ηxi

. (2)

The errors ηyi
and ηxi

are assumed to follow a normal distribution given by

„
ηyi

ηxi

«
ind∼ Nv+m

»„
0

0

«
,

„
τyi

0

0 τxi

«–
,
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where “
ind∼ ” means “independently distributed as” and the covariance-variance matri-

ces τyi
and τxi

are assumed to be known for all i = 1, . . . , n. These matrices may be

attained, for example, through an analytical treatment of the data collection mecha-

nism, replications, machine precision, etc.

Model (2) has equation errors for all lines, i.e., yi and xi are not perfectly related.

These equation errors are justified by the influence of other factors than xi in the

variation of yi. It is very reasonable to consider equation errors in (1) to capture extra

variability, since the variances τyi
are fixed and whether some other factor affects the

variation of yi, the estimation of the line parameters will be clearly affected. Supposing

that xi
iid∼ Nm(µx, Σx), where “

iid∼” means “independent and identically distributed

as”, and considering that the model errors (qi, ηyi
and ηxi

) and xi are independent,

we have that the joint distribution of the observed variables can be expressed as

„
Yi

Xi

«
ind∼ Nv+m

"„
β0 + β1µx

µx

«
,

 
β1Σxβ⊤

1 + Σq + τyi
β1Σx

Σxβ⊤
1 Σx + τxi

!#
. (3)

Note that in (3), the mean vector and the covariance-variance matrix of observed

variables have the matrix β1 in common, i.e., they share mv parameters. Kulathinal

et al. (2002) study the univariate case (when v = 1 and m = 1) and propose an EM

(Expectation and Maximization) algorithm to obtain MLEs for model parameters. In

addition, they derived the asymptotic variance of the MLE of the inclination parameter

making it possible to build hypotheses testing of it. Also, de Castro et al. (2008) derive

the observed and expected Fisher information and conduct some simulation studies

to investigate the behavior of the likelihood ratio, score, Wald and C(α) statistics for

testing hypothesis of the parameters and Patriota et al. (2009) study the asymptotic

properties of method-of-moments estimators in the univariate model proposed by Ku-

lathinal et al. (2002). Model (2) is a multivariate version of the model proposed by

Kulathinal et al. (2002).

3 Second-order bias of bθ

In order to follow the same scheme adopted by Patriota and Lemonte (2009), define the

vector of parameters θ = (β⊤
0 , vec(β1)

⊤, µ⊤
x , vech(Σx)⊤, vech(Σq)⊤)⊤, where vec(·)

is the vec operator, which transforms a matrix into a vector by stacking the columns of

the matrix and vech(·) is the vech operator, which transforms a symmetric matrix into a

vector by stacking the on or above diagonal elements. Also, consider Zi = (Y ⊤

i , X⊤

i )⊤

and the mean and covariance-variance function as

µi(θ) =

 
β0 + β1µx

µx

!
and Σi(θ) =

 
β1Σxβ⊤

1 + Σq + τyi
β1Σx

Σxβ⊤
1 Σx + τxi

!
,

respectively.

Moreover, to simplify notation, define the quantities Z = vec(Z1, . . . , Zn), µ =

vec(µ1(θ), . . . , µn(θ)), Σ = block–diag{Σ1(θ), . . . , Σn(θ)} and u = Z − µ. The log-

likelihood function for the vector parameter θ from a random sample, except for con-

stants, can be expressed as

ℓ(θ) = −1

2
log |Σ| − 1

2
tr{Σ−1

uu
⊤}. (4)
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Additionally, for the purpose of computing the score function, the Fisher information

and the second-order biases, also define

ar =
∂µ

∂θr
, asr =

∂2µ

∂θs∂θr
, Cr =

∂Σ

∂θr
, Csr =

∂Cr

∂θs
, Ar = −Σ

−1
CrΣ

−1

and

F
(r)
β0

=
∂β0

∂θr
, F

(s)
β1

=
∂β1

∂θs
, F

(s)
µx

=
∂µx

∂θs
,

F
(s)
Σx

=
∂Σx

∂θs
and F

(s)
Σq

=
∂Σq

∂θs
,

(5)

with r, s = 1, 2, . . . , p, where p is the dimension of θ. The quantities (5) are vec-

tors or matrices of zeros with a unit in the position referring to the sth element

of θ. Let eD = (aβ0
, aβ1

, aµx
,0, 0) and eV = (0, Cβ1

,0, CΣx
, CΣq

), with aβ0
=

(a1, a2, . . . , av), aβ1
= (av+1, . . . , av(m+1)), aµx

= (av(m+1)+1, . . . , av(m+1)+m),

Cβ1
=
`
vec(Cv+1), . . . , vec(Cv(m+1))

´
, CΣx

=
`
vec(C(v+1)(m+1)), . . . , vec(Cp′)

´
and

CΣq
=
`
vec(Cp′+1), . . . , vec(Cp)

´
, where p′ = v(m + 1) + m + m(m + 1)/2.

The first derivative of (4) with respect to the rth element of θ is

Ur =
1

2
tr{Ar(Σ − uu

⊤)} + tr{Σ−1
aru

⊤}; (6)

the expectation of the derivative of (6) with respect to the sth element of θ is given by

κsr =
1

2
tr{ArCs} − a

⊤
s Σ

−1
ar.

Under general regularity conditions (Cox and Hinkley, 1974, Ch. 9), −κsr is the (s, r)th

element of the expected Fisher information. The score function and the expected Fisher

information are given, respectively, by Uθ = eD⊤Σ−1u− 1
2
eV ⊤ eΣ−1vec(Σ−uu⊤) and

Kθ = eD⊤Σ−1 eD + 1
2
eV ⊤ eΣ−1 eV , with eΣ = Σ ⊗ Σ and ⊗ is the Kronecker product.

Defining

eu =

„
u

−vec(Σ − uu⊤)

«
, eF =

 
eD
eV

!
and fH =

„
Σ 0

0 2 eΣ

«−1

,

we can write the score function and the Fisher information in a short form as

Uθ = eF ⊤fH eu and Kθ = eF ⊤fH eF .

The Fisher scoring method can be used to estimate θ iteratively solving the equa-

tion

θ
(m+1) = ( eF (m)⊤fH(m) eF (m))−1 eF (m)⊤fH(m)eu∗(m), m = 0, 1, 2, . . . , (7)

where eu∗(m) = eF (m)θ(m)+ eu(m). Each loop, through the iterative scheme (7), consists

of an iterative re-weighted least squares algorithm to optimize the log-likelihood (4).

Using equation (7) and any software (MAPLE, MATLAB, Ox, R, SAS) with a weighted linear

regression routine one can compute the MLE, bθ, iteratively. Initial approximation θ(0)

for the iterative algorithm is used to evaluate eF (0), fH(0) and eu∗(0) from which these

equations can be used to obtain the next estimate θ(1). This new value can update eF ,
fH and eu∗ and so the iterations continue until convergence is achieved.
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The general matrix formulae derived by Patriota and Lemonte (2009) for the n−1

bias vector B(bθ) of bθ is given by

B(bθ) = ( eF ⊤fH eF )−1 eF ⊤fH eξ, (8)

where eξ = (Φ1, . . . , Φp)vec{( eF ⊤fH eF )−1} and Φr = − 1
2 (Gr +Jr), r = 1, 2, . . . , p, with

Gr =

»
a1r · · · apr

vec(C1r) · · · vec(Cpr)

–
and Jr =

»
0

2(Inq ⊗ ar) eD

–
,

where Ik denotes the k × k identity matrix. The bias vector B(bθ) is simply the set of

coefficients from the ordinary weighted lest-squares regression of the eξ on the columns

of eF , using weights in fH . The bias vector B(bθ) will be small when eξ is orthogonal

to the columns of fH eF and it can be large when n is small. Note that equation (8)

involves simple operations on matrices and vectors and we can calculate the bias B(bθ)

numerically via software with numerical linear algebra facilities such as Ox (Doornik,

2006) and R (R Development Core Team, 2008) with minimal effort.

After some algebra, we have

ar = 1n ⊗
 

F
(r)
β0

0

!
, as = 1n ⊗

 
F

(s)
β1

µx

0

!
, at = 1n ⊗

 
β1F

(t)
µx

F
(t)
µx

!
and au = 0,

for r = 1, . . . , v; s = v + 1, . . . , v(m + 1); t = v(m + 1) + 1, . . . , v(m + 1) + m; and

u = (v + 1)(m + 1), . . . , p; where p = v(m + 1) + m + m(m + 1)/2 + v(v + 1)/2. (Here,

1n denotes an n × 1 vector of ones.) Moreover,

ars = 1n ⊗
 

F
(s)
β1

F
(r)
µx

0

!
,

for all r and s,

Cs = In ⊗
 

F
(s)
β1

Σxβ⊤

1 + β1ΣxF
(s)⊤
β1

F
(s)
β1

Σx

F
(s)
β1

Σx 0

!
, Ct = In ⊗

 
β1F

(t)
Σx

β⊤
1 β1F

(t)
Σx

F
(t)
Σx

β⊤
1 0

!

and

Cu = In ⊗
 

F
(u)
Σq

0

0 0

!
,

for s = v + 1, . . . , v(m + 1); t = v(m + 1) + 1, . . . , v(m + 1) + m; and u = (v + 1)(m +

1), . . . , p. Additionally,

Crs = In ⊗
 

F
(s)
β1

ΣxF
(r)⊤
β1

+ F
(r)
β1

ΣxF
(s)⊤
β1

0

0 0

!

and

Ctu = In ⊗
 

F
(u)
β1

F
(t)
Σx

β⊤
1 + β1F

(t)
Σx

F
(s)⊤
β1

F
(u)
β1

F
(t)
Σx

F
(t)
Σx

F
(u)⊤
β1

0

!
,

for r, s, u = v + 1, . . . , v(m + 1); t = v(m + 1) + 1, . . . , v(m + 1) + m; and Crs = 0

otherwise.

Therefore, in the measurement error model defined by the equations (1) and (2), all

quantities necessary to compute the O(n−1) bias of bθ using expression (8) are given.
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On the right-hand side of expression (8), consistent estimates of the parameter θ can

be inserted to define the corrected MLE eθ = bθ− bB(bθ), where bB(·) denotes the MLE of

B(·), that is, the unknown parameters are replaced by their MLEs. The bias-corrected

estimate (BCE) eθ is expected to have better sampling properties than the uncorrected

estimator, bθ. In fact, we present some simulations in Section 5 to show that eθ has

smaller bias than its corresponding MLE, thus suggesting that the bias corrections

have the effect of shifting the modified estimates toward to the true parameter values.

The BCEs can always be defined if the joint cumulants of the derivatives of the

log-likelihood function and the MLEs exist. Although, in some situations (for example,

homoskedastic simple errors-in-variables model), the first moment of the MLEs is not

defined, it is still possible to define such “corrected” estimators from B(bθ). In this case,

the interpretation of B(bθ) may not be the second-order bias of bθ, but it is still being

an “adjustement” factor of the location of the MLEs. Patriota and Lemonte (2009)

present some simulation studies considering a simple linear errors-in-variables model

in which is shown that the BCEs have better performance than the MLEs for finite

sample sizes. In general, it is very hard to verify if the MLEs of the parameters of the

model considered in this paper have defined expectations, but the simulation studies

presented in Section 5 indicate a better performance of the corrected estimators than

the uncorrected ones and, therefore, we advise to use the corrected estimators.

4 Biases of the MLEs bµi and bΣi

In this section, we give matrix formulae for the O(n−1) biases of the MLEs of the ith

mean µi = µi(θ) and ith variance-covariance vector Σ∗

i = vech(Σi(θ)). Let q1 = v+m

and q2 = q1(q1 + 1)/2. Additionally, let A = [A1, . . . , An]⊤ be a np× p matrix, where

Ai is a p × p matrix, then we define tr∗(A) = [tr(A1), . . . , tr(An)]⊤.

From a Taylor series expansion of bµi = µi(bθ), we obtain up to an error of order

O(n−2):

B(bµi) = LiB(bθ) +
1

2
tr∗[MiCov(bθ)],

where Li is a q1 × p matrix of first partial derivatives ∂µi/∂θr (for r = 1, 2, . . . , p),

Mi = [Mi1, . . . , Miq1
]⊤ is a q1p × p matrix of second partial derivatives, where Mil

is a p × p matrix with elements ∂2µil/∂θr∂θs (for r, s = 1, . . . , p and l = 1, 2, . . . , q1),

Cov(bθ) = K−1
θ

is the asymptotic covariance matrix of bθ and the vector B(bθ) was

defined before. All quantities in the above equation should be evaluated at bθ. The

asymptotic variance of bµi can also be expressed explicitly in terms of the covariance

of bθ by

Var(bµi) = LiCov(bθ)L⊤

i .

The second-order bias of bΣ∗

i is obtained by expanding bΣ∗

i = Σ∗

i (bθ) in Taylor

series. Then, the O(n−1) bias of bΣ∗

i is written as:

B( bΣ∗

i ) = L
∗

i B(bθ) +
1

2
tr∗[M ∗

i Cov(bθ)],

where L∗

i is a q2 × p matrix of first partial derivatives ∂Σ∗

i /∂θr (for r = 1, 2, . . . , p),

M ∗

i = [M ∗

i1, . . . , M ∗

iq2
]⊤ is a q2p × p matrix of second partial derivatives, where M ∗

il

is a p × p matrix with elements ∂2Σ∗

il/∂θr∂θs (for r, s = 1, . . . , p and l = 1, 2, . . . , q2).
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Therefore, we are now able to define the following second-order bias-corrected es-

timators for bµi and bΣ∗

i :

eµi = bµi − bB(bµi) and eΣ∗

i = bΣ∗

i − bB( bΣ∗

i ).

It is clear that the O(n−1) bias of any other function of θ, say Ψ (θ) (h × 1), can

be obtained easily by Taylor series expansion:

B( bΨ ) = ∇
(1)
Ψ

B(bθ) +
1

2
tr∗[∇

(2)
Ψ

Cov(bθ)],

where ∇
(1)
Ψ

is a h×p matrix of first partial derivatives ∂Ψ/∂θr (for r = 1, 2, . . . , p) and

∇
(2)
Ψ

= [∇
(2)
Ψ1, . . . , ∇

(2)
Ψh]⊤ is a hp× p matrix of second partial derivatives, where ∇

(2)
Ψ l

is a p × p matrix with elements ∂2Ψl/∂θr∂θs (for r, s = 1, . . . , p and l = 1, 2, . . . , h).

5 Numerical results

We shall use Monte Carlo simulation to evaluate the finite sample performance of

the MLEs attained using the iterative formula (7) and of their corresponding bias-

corrected versions for a heteroskedastic errors-in-variables model presented in (2) with

m = v = 1. The sample sizes considered were n = 40, 60, 100 and 200, the number

of Monte Carlo replications was 10,000. All simulations were performed using the R

programming language (R Development Core Team, 2008).

We consider the simple errors-in-variables model

Yi = yi + ηyi
and Xi = xi + ηxi

,

with yi|xi
ind∼ N (β0+β1xi, σ

2). This model was studied by Kulathinal et al. (2002). The

errors ηyi
and ηxi

are independent of the unobservable covariate xi and are distributed

as „
ηyi

ηxi

«
ind∼ N2

»„
0

0

«
,

„
τyi

0

0 τxi

«–
,

where the variances τyi
and τxi

are known for all i = 1, . . . , n. Supposing in addition

that xi
iid∼ N (µx, σ2

x), we have that the joint distribution of the observed variables can

be expressed as

„
Yi

Xi

«
ind∼ N2

»„
β0 + β1µx

µx

«
,

„
β2
1σ2

x + τyi
+ σ2 β1σ2

x

β1σ2
x σ2

x + τxi

«–
.

Define θ = (β0, β1, µx, σ2
x, σ2)⊤,

µi(θ) =

 
β0 + β1µx

µx

!
and Σi(θ) =

„
β2
1σ2

x + σ2 + τyi
β1σ2

x

β1σ2
x σ2

x + τxi

«
.

From the previous expressions, we have immediately that

a1 = 1n ⊗
„

1

0

«
, a2 = 1n ⊗

„
µx

0

«
, a3 = 1n ⊗

„
β1

1

«
, a4 = a5 = 0
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and ars = 0 for all r, s except for

a23 = a32 = 1n ⊗
„

1

0

«
.

Also, C1 = C3 = 0 and

C2 = In ⊗
„

2β1σ2
x σ2

x

σ2
x 0

«
, C4 = In ⊗

„
β2
1 β1

β1 1

«
and C5 = In ⊗

„
1 0

0 0

«
.

Additionally, Crs = 0 for all r, s except for

C22 = In ⊗
„

2σ2
x 0

0 0

«
and C24 = C42 = In ⊗

„
2β1 1

1 0

«
.

Thus, eD = (a1, a2, a3, 0,0) and eV = (0, vec(C2),0, vec(C4), vec(C5)). Therefore, all

the quantities necessary to calculate B(bθ) using expression (8) are given.

In order to analyze the point estimation results, we computed, for each sample size

and for each estimator: relative bias (the relative bias of an estimator bθ is defined as

{E(bθ) − θ}/θ, its estimate being obtained by estimating E(bθ) by Monte Carlo) and

root mean square error, i.e.,
√

MSE, where MSE is the mean squared error estimated

from the 10,000 Monte Carlo replications. For practical reasons and without loss of

generality, we adopt the same setting of parameters chosen by de Castro et al. (2008).

(The parameters are the MLEs for the model parameters using a real data set presented

in the next section.) We take β0 = −2, β1 = 0.5, µx = −2, σ2
x = 4 and σ2 = 10. We also

consider two types of heteroskedasticity as studied by Patriota et al. (2009), namely:

(a)
√

τxi
∼ U(0.5, 1.5) and

√
τyi

∼ U(0.5, 4), where U(a, b) means uniform distribution

on [a, b]; (b)
√

τxi
= 0.1|xi| and

√
τyi

= 0.1| − 2 + 0.51xi|, i.e., the variances depend

on the unknown covariate. We remark that the variances are considered to be known

and kept fixed in all Monte Carlo simulations.

Table 1 shows simulation results for an errors-in-variables model with a uniform

heteroskedasticity. The figures in this table reveal that the maximum-likelihood esti-

mators of the parameters can be substantially biased when the sample size is small,

and that the bias correction we derived in the previous section is very effective. For

instance, when n = 40 the biases of the estimators of β0, β1, µx, σ2
x and σ2 aver-

age −0.02244 whereas the biases of the corresponding bias-adjusted estimators average

−0.00276; that is, the average bias (in value absolute) of the MLEs is almost ten times

greater than that of the corrected estimators. In particular, the maximum-likelihood

estimators of σ2
x and σ2 display substantial bias, and the bias correction proves to be

quite effective when applied to these estimators.

Table 2 displays simulation results for an errors-in-variables model with a nonuni-

form heteroskedasticity. We note that the bias-adjusted estimator again displays smaller

bias than the standard maximum-likelihood estimator. This suggests that the second-

order bias of MLEs should not be ignored in samples of small to moderate sizes since

they can be nonnegligible. Note also that root mean square error decrease with n, as

expected. Additionally, we note that all estimators have similar root mean squared

errors.

It is interesting to note that the finite-sample performance of the estimator of σ2
x

deteriorate when we pass from the model with a uniform heteroskedasticity to the

model with a nonuniform heteroskedasticity (see Tables 1 and 2). For instance, when

n = 100, the relative biases of bσ2
x (MLE) were −0.0135 (uniform heteroskedasticity)
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Table 1 Relative bias and
√

MSE of uncorrected and corrected estimates with a uniform
heteroskedasticity:

√
τxi

∼ U(0.5, 1.5) and
√

τyi
∼ U(0.5, 4).

MLE BCE

n θ Rel. bias
√

MSE Rel. bias
√

MSE

40 β0 −0.0173 0.99 −0.0043 0.97

β1 0.0315 0.38 0.0054 0.37

µx −0.0018 0.35 −0.0018 0.35

σ2
x −0.0351 1.11 −0.0045 1.13

σ2 −0.0895 3.31 −0.0086 3.38

60 β0 −0.0139 0.77 −0.0061 0.76

β1 0.0213 0.29 0.0058 0.29

µx 0.0009 0.28 0.0009 0.28

σ2
x −0.0239 0.89 −0.0036 0.90

σ2 −0.0548 2.60 −0.0018 2.64

100 β0 −0.0100 0.68 −0.0037 0.67

β1 0.0168 0.26 0.0042 0.25

µx 0.0001 0.25 0.0001 0.25

σ2
x −0.0135 0.80 0.0022 0.81

σ2 −0.0424 2.40 0.0003 2.43

200 β0 −0.0049 0.59 −0.0006 0.59

β1 0.0127 0.22 0.0041 0.22

µx 0.0013 0.23 0.0013 0.23

σ2
x −0.0116 0.70 0.0008 0.70

σ2 −0.0350 2.09 −0.0014 2.11

BCE: bias-corrected estimator.

and −0.0484 (nonuniform heteroskedasticity), which amounts to an increase in relative

biases of nearly 3.5 times.

6 Application

We shall now present an application of the model described in Section 2 where v =

m = 1. We analyze a epidemiological data set from the WHO MONICA (World Health

Organization Multinational MONitoring of trends and determinants in CArdiovascular

disease) Project. This data set was previously studied by Kulathinal et al. (2002) and

de Castro et al. (2008) where the ML approach was adopted to estimate the model

parameters.

The main goal of this project is to monitor trends in cardiovascular diseases and

relate it with known risk factors. Here, y is the trends in cardiovascular mortality and

coronary heart disease and x is the changes in known risk factors. The risk score was

defined as a linear combination of smoking status, systolic blood pressure, body mass

index and total cholesterol level. Note that, these variables are non-observable indexes

therefore they need to be estimated in some way. Follow up studies where conducted

using proportional hazards models which can provide the observed (Y and X) indexes

and the measurement error variances.

The latent variables y and x are linearly related as

yi = β0 + β1xi + qi, i = 1, . . . , n.
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Table 2 Relative bias and
√

MSE of uncorrected and corrected estimates with a nonuniform
heteroskedasticity:

√
τxi

= 0.1|xi| and
√

τyi
= 0.1|β0 + β1xi|.

MLE BCE

n θ Rel. bias
√

MSE Rel. bias
√

MSE

40 β0 −0.0026 0.73 −0.0018 0.73

β1 0.0292 0.27 0.0276 0.27

µx −0.0228 0.32 −0.0228 0.32

σ2
x −0.0594 0.91 −0.0354 0.92

σ2 −0.0540 2.26 −0.0056 2.30

60 β0 0.0008 0.59 0.0013 0.59

β1 0.0203 0.22 0.0192 0.22

µx −0.0208 0.26 −0.0208 0.26

σ2
x −0.0502 0.76 −0.0340 0.75

σ2 −0.0332 1.85 −0.0002 1.88

100 β0 0.0013 0.51 0.0016 0.51

β1 0.0184 0.19 0.0176 0.19

µx −0.0198 0.23 −0.0198 0.23

σ2
x −0.0484 0.65 −0.0363 0.65

σ2 −0.0223 1.61 0.0027 1.64

200 β0 0.0036 0.45 0.0039 0.45

β1 0.0165 0.17 0.0159 0.17

µx −0.0186 0.20 −0.0186 0.20

σ2
x −0.0474 0.59 −0.0377 0.58

σ2 −0.0204 1.41 −0.0004 1.43

BCE: bias-corrected estimator.

As the variables yi and xi are not directly observable, surrogate variables Yi and Xi

are observed in their place, respectively. Such surrogate variables are attained from an

analytical treatment of the data collection process. The data set are divided into two

groups, namely: men (n = 38) and women (n = 36).

In what follows, we compare the MLEs with the bias-corrected estimators. Table

3 presents the MLEs, its standard deviation, its second-order biases and the corrected

estimates. It can be seen that, the greater is the standard deviation of the MLE, the

more distant from zero is its respectively second-order bias. As concluded in the simu-

lation studies, the biases of the variances estimates are larger than of those produced

by the line estimators. The second-order biases of the MLEs can be expressed as a

percentage of the MLEs. That is, for the men data set, the second-order biases are

−0.21%, 0.85%, 0.00%, −2.92% and −9.21% of the total amount of the MLEs of β0,

β1, µx, σ2
x and σ2, respectively. For the women data set, the second-order biases are

52.96%, 1.21%, 0.00%, −3.16% and −10.19% of the MLEs of β0, β1, µx, σ2
x and σ2,

respectively. It shows that the second-order biases of the MLEs are more pronounced

in the women data set, mainly for the intercept estimator.

7 Conclusions

We derive a bias-adjustment scheme to eliminate the second-order biases of the max-

imum-likelihood estimates in a heteroskedastic multivariate errors-in-variables regres-

sion model using the general matrix formulae for the second-order bias derived by

Patriota and Lemonte (2009). The simulation results presented show that the MLEs
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Table 3 MLEs and bias-corrected estimates.

Parameter MLEs S.E. Bias BCEs

β0 −2.0799 0.5285 0.0044 −2.0843

β1 0.4690 0.2339 0.0040 0.4650

Men µx −1.0924 0.3550 0.0000 −1.0924

σ2
x 4.3163 1.0969 −0.1261 4.4423

σ2 4.8883 1.7790 −0.4501 5.3384

Parameter MLEs S.E. Bias BCEs

β0 0.0321 1.1121 0.0170 0.0151

β1 0.6790 0.4072 0.0082 0.6708

Women µx −2.0677 0.3386 0.0000 −2.0677

σ2
x 3.6243 0.9695 −0.1146 3.7389

σ2 11.0809 4.2425 −1.1289 12.2098

BCE: bias-corrected estimates.

can be considerably biased. The bias correction derived in this paper is very effective,

even when the sample size is large. Indeed, the bias correction mechanism adopted

yields modified maximum-likelihood estimates which are nearly unbiased. Addition-

ally, many errors-in-variables models are special cases of the proposed model and the

results obtained here can be easily particularized to these submodels. We also present

an application to a real data set.
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