Multivariate Regression Models With General Parameterization

Alexandre G. Patriota

IME-USP

Joint work with Artur Lemonte, Mário de Castro, Silvia Ferrari and Tatiane Melo

Alexandre G. Patriota (IME-USP)

э

イロト イヨト イヨト イヨト

Table of contents

- Some regression models
 - Distribution for the random terms
 - Elliptical distributions
- The multivariate regression model with general parametrization
 Examples
- 4 Maximum likelihood estimation
- 5 The second-order bias of the MLEs
 - Simulations
- Skovgaard adjustment for LR statisticSimulations
- References

A B b A B b

Some regression models

э

イロン イ理 とく ヨン イ ヨン

(Non)Linear regression model

Linear regression model:

$$Y_i = \boldsymbol{x}_i^\top \boldsymbol{\beta} + e_i, \quad i = 1, \dots, n$$

Non-linear regression model:

$$Y_i = f(\boldsymbol{x}_i, \boldsymbol{\beta}) + e_i, \quad i = 1, \dots, n$$

Assumptions are typically made on x_i , f and e_i to guarantee some properties of estimators and statistics.

イロト 不得 トイラト イラト 一日

Mixed models with non-linear fixed effects

Mixed model with linear fixed effects:

$$\boldsymbol{Y}_i = \boldsymbol{X}_i^\top \boldsymbol{\beta} + \boldsymbol{Z}_i \boldsymbol{b}_i + \boldsymbol{e}_i, \quad i = 1, \dots, n$$

Mixed model with non-linear fixed effects:

$$Y_i = f(X_i, \beta) + Z_i b_i + e_i, \quad i = 1, \dots, n$$

In addition, assumptions on the joint distribution of b_i and e_i (random effect and error model) are typically made.

イロン イヨン イヨン

Errors-in-variables models

A simple measurement error model:

$$z_i = \beta_0 + \beta_1 w_i + q_i, \quad i = 1, \dots, n,$$
$$\begin{cases} Z_i = z_i + e_i, \\ W_i = w_i + u_i. \end{cases}$$

where

- z_i and w_i are **non-observable** response and explanatory variables,
- Z_i and W_i are the surrogate observable variables for z_i and w_i .

Assumptions on the joint distribution of q_i, e_i, u_i, w_i are typically made.

イロト 不得 トイラト イラト 一日

Distribution for the random terms

э

イロン イ理 とく ヨン イ ヨン

Distribution for the random terms

In general, the random terms are assumed to be symmetric around zero.

- Normal errors are symmetric around the mean=median. However, their kurtosis (Karl Pearson) is equal to 3.
- Other distributions are also symmetric around the median and have more flexible kurtosis.

Here, we consider the class of the **elliptical distributions**, which has the normal distribution as a particular instance.

- 4 同 ト 4 三 ト - 4 三 ト - -

Elliptical distributions

Definition: The random vector Y has an elliptical distribution if its density function exists and it is given by

$$f_{\boldsymbol{Y}}(\boldsymbol{y}) = |\boldsymbol{\Sigma}|^{-1/2} g \big[(\boldsymbol{y} - \boldsymbol{\mu})^{ op} \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{\mu}) \big], \quad \boldsymbol{y} \in \mathbb{R}^d,$$

where $g:[0,\infty)\to [0,\infty)$ is such that $\int_0^\infty u^{\frac{d}{2}-1}g(u)du<\infty.$

The function g is known as the generator density function. It is sufficiently smooth and does not contain extra unknown parameters.

Notation:
$$m{Y} \sim \mathcal{E}_dig(m{\mu}, m{\Sigma}, gig)$$
, or, simply, $m{Y} \sim \mathcal{E}_dig(m{\mu}, m{\Sigma}ig)$.

イロト 不得 トイラト イラト 一日

10/43

3

<ロト <回ト < 回ト < 回ト -

11 / 43

3

イロト イヨト イヨト イヨト

3

イロト イヨト イヨト イヨト

13/43

3

<ロト <回ト < 回ト < 回ト -

Elliptical distributions: useful property

Let A be a $(r \times d)$ matrix of rank r and a be a r-dimensional vector.

Theorem: If $\boldsymbol{Y} \sim \mathcal{E}_d(\boldsymbol{\mu}, \boldsymbol{\Sigma}, g)$, then

$$\boldsymbol{W} = \boldsymbol{A}\boldsymbol{Y} + \boldsymbol{a} \sim \mathcal{E}_r(\boldsymbol{A}\boldsymbol{\mu} + \boldsymbol{a}, \boldsymbol{A}\boldsymbol{\Sigma}\boldsymbol{A}^{ op}, g).$$

That is, the elliptical class is closed under affine transformations.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The multivariate regression model with general parametrization

э

・ 同 ト ・ ヨ ト ・ ヨ ト

The multivariate regression model with general parametrization

Let Y_1, \ldots, Y_n be random q_i -vectors for $i = 1, \ldots, n$, and x_1, \ldots, x_n be known covariates. The regression model is defined by

$$Y_i = \mu_i(\theta) + e_i, \quad i = 1, \dots, n,$$

where $\boldsymbol{e}_i \overset{ind}{\sim} \mathcal{E}_{q_i} \big(\boldsymbol{0}, \boldsymbol{\Sigma}_i(\boldsymbol{\theta}) \big),$

• $\boldsymbol{\theta} \in \Theta \subseteq \mathbb{R}^p$ is the vector of parameters.

• $\boldsymbol{\mu}_i(\boldsymbol{\theta}) := \boldsymbol{\mu}_i(\boldsymbol{\theta}, \boldsymbol{x}_i)$ is a (smooth) vector-valued function,

• $\Sigma_i(\boldsymbol{\theta}) := \Sigma_i(\boldsymbol{\theta}, \boldsymbol{x}_i)$ is a (smooth) positive definite matrix function.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

The multivariate regression model with general parametrization

Then, the response random vectors can be written as

$$\mathbf{Y}_i \stackrel{ind}{\sim} \mathcal{E}_{q_i}(\boldsymbol{\mu}_i(\boldsymbol{\theta}), \boldsymbol{\Sigma}_i(\boldsymbol{\theta})), \quad i = 1, \dots, n.$$
 (1)

- This model extends the one proposed by (Patriota and Lemonte, 2009).
- This model unifies the previous models in one single model (under the assumption that the error terms are jointly elliptically distributed).

Remark: The previous assumption imposes for the error terms the same generator density function.

イロト 不得 トイラト イラト 一日

Linear Models

For the **homoscedastic linear** model:

$$Y_i = \boldsymbol{x}_i^\top \boldsymbol{\beta} + e_i, \quad \text{with} \quad e_i \stackrel{iid}{\sim} \mathcal{E}_1(0, \sigma^2)$$

we have

 $egin{aligned} q_i &= 1, \ oldsymbol{ heta} &= (oldsymbol{eta}^{ op}, \sigma^2)^{ op}, \ oldsymbol{\mu}_i(oldsymbol{ heta}) &= oldsymbol{x}_i^{ op}oldsymbol{eta}, \ oldsymbol{\Sigma}_i(oldsymbol{ heta}) &= \sigma^2. \end{aligned}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Non-Linear Models

For the heteroscedastic non-linear linear model:

$$Y_i = f(\boldsymbol{x}_{1i}, \boldsymbol{\beta}) + e_i$$

with $e_i \stackrel{ind}{\sim} \mathcal{E}_1ig(0, h(m{x}_{2i}, m{\gamma})ig)$ we have

$$egin{aligned} q_i &= 1, \ oldsymbol{ heta} &= (oldsymbol{eta}^ op, oldsymbol{\gamma}^ op)^ op, \ oldsymbol{\mu}_i(oldsymbol{ heta}) &= f(oldsymbol{x}_{1i},oldsymbol{eta}), \ oldsymbol{\Sigma}_i(oldsymbol{ heta}) &= h(oldsymbol{x}_{2i},oldsymbol{\gamma}). \end{aligned}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Mixed models

For the mixed model with non-linear fixed effects:

$$oldsymbol{Y}_i = oldsymbol{f}(oldsymbol{X}_i,oldsymbol{eta}) + oldsymbol{Z}_ioldsymbol{b}_i + oldsymbol{e}_i$$

with

$$egin{pmatrix} m{b}_i \ e_i \end{pmatrix} \stackrel{ind}{\sim} \mathcal{E}_{m+q_i}igg(m{0},igg(m{\Gamma}(m{\gamma}) & m{0} \ m{0} & m{\Lambda}(m{\sigma})igg)igg) \end{pmatrix}$$

we have

$$egin{aligned} oldsymbol{ heta} &= (oldsymbol{eta}^{ op},oldsymbol{\gamma}^{ op},oldsymbol{\sigma}^{ op})^{ op}, \ oldsymbol{x}_i &= (extsf{vec}(oldsymbol{X}_i)^{ op}, extsf{vec}(oldsymbol{Z}_i)^{ op})^{ op}, \ oldsymbol{\mu}_i(oldsymbol{ heta}) &= oldsymbol{f}(oldsymbol{X}_i,oldsymbol{eta}), \ oldsymbol{\Sigma}_i(oldsymbol{ heta}) &= oldsymbol{Z}_i oldsymbol{\Gamma}(oldsymbol{\gamma}) oldsymbol{Z}_i^{ op} + oldsymbol{\Lambda}(\sigma). \end{aligned}$$

3

イロン イ理 とく ヨン イ ヨン

Structural Errors-in-variables model

$$\begin{aligned} z_i &= \beta_0 + \beta_1 w_i + q_i, \quad i = 1, \dots, n, \\ \mathbf{Y}_i &= \begin{pmatrix} Z_i \\ W_i \end{pmatrix} = \begin{pmatrix} z_i + e_i \\ w_i + u_i \end{pmatrix} \begin{pmatrix} q_i \\ e_i \\ u_i \\ w_i - \mu_w \end{pmatrix} \stackrel{ind}{\sim} \mathcal{E}_4(\mathbf{0}, \mathbf{Q}_i), \\ \end{aligned}$$
where $\mathbf{Q}_i = \begin{pmatrix} \sigma_q^2 & 0 & 0 & 0 \\ 0 & \sigma_{e_i}^2 & 0 & 0 \\ 0 & 0 & \sigma_{u_i}^2 & 0 \\ 0 & 0 & 0 & \sigma_w^2 \end{pmatrix}.$

we have

$$\begin{split} \boldsymbol{\theta} &= (\beta_0, \beta_1, \mu_w, \sigma_w^2, \sigma_q^2)^\top, \\ \boldsymbol{\mu}_i(\boldsymbol{\theta}) &= \begin{pmatrix} \beta_0 + \beta_1 \mu_w \\ \mu_w \end{pmatrix} \text{ and } \boldsymbol{\Sigma}_i(\boldsymbol{\theta}) = \begin{pmatrix} \beta_1^2 \sigma_w^2 + \sigma_q^2 + \sigma_{e_i}^2 & \beta_1 \sigma_w^2 \\ \beta_1 \sigma_w^2 & \sigma_w^2 + \sigma_{u_i}^2 \end{pmatrix}, \end{split}$$

Alexandre G. Patriota (IME-USP)

Maximum likelihood estimation

Alexandre G. Patriota (IME-USP)

3

イロト イヨト イヨト イヨト

Maximum likelihood estimation

Let
$$oldsymbol{\mu}_i = oldsymbol{\mu}_i(oldsymbol{ heta}, oldsymbol{x}_i)$$
, $oldsymbol{\Sigma}_i = oldsymbol{Y}_i - oldsymbol{\mu}_i$ and $u_i = oldsymbol{z}_i^ op oldsymbol{\Sigma}_i^{-1} oldsymbol{z}_i$.

The log-likelihood function, except for a constant term, is given by

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ell_i(\boldsymbol{\theta}), \tag{2}$$

イロト イヨト イヨト イヨト 二日

where $\ell_i(\boldsymbol{\theta}) = -\frac{1}{2} \log |\boldsymbol{\Sigma}_i| + \log g(u_i)$.

The Score function and the Fisher information

The score function and the expected Fisher information are given by

$$oldsymbol{U}_{oldsymbol{ heta}} = \sum_{i=1}^n oldsymbol{F}_i^ op oldsymbol{H}_i oldsymbol{s}_i ~~$$
 and $oldsymbol{K}_{oldsymbol{ heta}} = \sum_{i=1}^n oldsymbol{F}_i^ op oldsymbol{H}_i oldsymbol{M}_i oldsymbol{H}_i oldsymbol{F}_i,$

with

$$egin{aligned} m{F}_i &= egin{pmatrix} rac{\partial m{\mu}_i}{\partial m{ heta}^{ op}} \ rac{\partial m{\mu}_i}{\partial m{ heta}^{ op}} \end{pmatrix}, \ m{H}_i &= egin{pmatrix} m{\Sigma}_i & m{0} \ 2 m{\Sigma}_i \otimes m{\Sigma}_i \end{bmatrix}^{-1}, \ m{s}_i &= egin{pmatrix} v_i m{z}_i \ - ext{vec}(m{\Sigma}_i - v_i m{z}_i m{z}_i^{ op}) \end{bmatrix}, \ m{M}_i &= egin{pmatrix} rac{4d_{gi}}{q_i} m{\Sigma}_i & m{0} \ m{0} & rac{8f_{gi}}{q_i(q_i+2)} m{\Sigma}_i \otimes m{\Sigma}_i \end{bmatrix} + egin{pmatrix} m{0} & m{0} \ m{0} & egin{pmatrix} rac{4f_{gi}}{q_i(q_i+2)} - m{1} \end{pmatrix} ext{vec}(m{\Sigma}_i) ext{vec}(m{\Sigma}_i)^{ op} \end{bmatrix}, \end{aligned}$$

where v_i , d_{gi} and f_{gi} are quantities related with the elliptical distribution.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We assume also that

$$\boldsymbol{F} = (\boldsymbol{F}_1^{ op}, \dots, \boldsymbol{F}_n^{ op})$$

has rank p

and the functions $g(\cdot)$, μ_i and Σ_i must be defined in such way that $\ell(\theta)$ be a regular function with respect to θ (Cox and Hinkley, 1974, Ch. 9).

э

- (四) - (三) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-) - (2) - ((-

The Fisher scoring method

The Fisher scoring method:

$$(\mathbf{F}^{(m)\top}\mathbf{W}^{(m)}\mathbf{F}^{(m)})\mathbf{\theta}^{(m+1)} = \mathbf{F}^{(m)\top}\mathbf{W}^{(m)}\mathbf{s}^{*(m)}, \ m = 0, 1, \dots$$

where

$$\begin{split} \boldsymbol{W}^{(m)} &= \boldsymbol{H}^{(m)} \boldsymbol{M}^{(m)} \boldsymbol{H}^{(m)}, \qquad \boldsymbol{F}^{(m)} = (\boldsymbol{F}_{1}^{(m)\top}, \boldsymbol{F}_{2}^{(m)\top}, \dots, \boldsymbol{F}_{n}^{(m)\top})^{\top}, \\ \boldsymbol{H}^{(m)} &= \mathsf{block-diag}\{\boldsymbol{H}_{1}^{(m)}, \boldsymbol{H}_{2}^{(m)}, \dots, \boldsymbol{H}_{n}^{(m)}\}, \\ \boldsymbol{M}^{(m)} &= \mathsf{block-diag}\{\boldsymbol{M}_{1}^{(m)\top}, \boldsymbol{M}_{2}^{(m)\top}, \dots, \boldsymbol{M}_{n}^{(m)\top}\}, \\ \boldsymbol{s}^{*(m)} &= \boldsymbol{F}^{(m)} \boldsymbol{\theta}^{(m)} + \boldsymbol{H}^{-1(m)} \boldsymbol{M}^{-1(m)} \boldsymbol{s}^{(m)} \\ \boldsymbol{s}^{(m)} &= (\boldsymbol{s}_{1}^{(m)\top}, \boldsymbol{s}_{2}^{(m)\top}, \dots, \boldsymbol{s}_{n}^{(m)\top})^{\top} \end{split}$$

and m is the iteration counter.

э

★ ∃ ► < ∃ ►</p>

The second-order bias of the MLEs

Alexandre G. Patriota (IME-USP)

3

イロト イヨト イヨト イヨト

Bias Correction of the Maximum Likelihood Estimators

- Under regular conditions, the MLEs are **consistent** and asymptotically **normally distributed**.
- For finite samples and non-linear models, the MLEs can be strongly **biased** (producing misleading diagnostic analysis). Their biases are typically of order $\mathcal{O}(n^{-1})$.
- Cox and Snell (1968) provide the second-order biases of the MLEs
 - By considering higher order terms in the score function expansion.
 - The corrected MLEs are, in general, **lesser biased** than the non-corrected ones for small samples.

イロト 不得 トイヨト イヨト

The second-order bias

The second-order bias vector $B_{\widehat{\theta}}(\theta)$ under the general model is given by

$$B_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{\theta}) = (\boldsymbol{F}^{\top} \boldsymbol{W} \boldsymbol{F})^{-1} \boldsymbol{F}^{\top} \boldsymbol{W} \boldsymbol{\xi},$$

where $\boldsymbol{\xi}$ is a given in Melo et al. (2017a).

The bias-corrected estimator is defined as

$$\tilde{\boldsymbol{\theta}} = \widehat{\boldsymbol{\theta}} - \widehat{B_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{\theta})}$$

Remark: This result extends the one attained by Patriota and Lemonte (2009) under normally distributed errors.

- 4 回 ト 4 三 ト 4 三 ト

(3)

Simulations

Consider
$$q_i = 1$$
, $\boldsymbol{\theta} = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)^{\top}$, $\boldsymbol{\Sigma}_i(\boldsymbol{\theta}) = \sigma^2$ and
 $\boldsymbol{\mu}_i(\boldsymbol{\theta}) = \alpha_1 + \frac{\alpha_2}{1 + \alpha_3 x_i^{\alpha_4}}, \quad i = 1, \dots, n.$ (4)

- The values of x_i were obtained as random draws from the uniform distribution U(0, 100).
- The sample sizes considered are n = 10, 20, 30, 40 and 50.
- The parameter values are $\alpha_1 = 50$, $\alpha_2 = 500$, $\alpha_3 = 0.50$, $\alpha_4 = 2$ and $\sigma_i^2 = 200$.
- Distributions: normal and Student t ($\nu = 4$).

We compute the ML estimator $\widehat{\theta}$ and its bias-corrected version

$$\widetilde{\boldsymbol{\theta}} = \widehat{\boldsymbol{\theta}} - \widehat{B_{\widehat{\boldsymbol{\theta}}}(\boldsymbol{\theta})}$$

イロト 不得 トイラト イラト 一日

Results: Normal distribution

		MLE				Bias-corrected MLE			
n	θ	В	ias	\sqrt{MS}	E	Bias	\sqrt{N}	ISE	
10	α_1	-0.	-0.29		69	-0.13		6.67	
	α_2	2.	2.16		07	0.70	1	19.40	
	α_3	0.	01	0.	13	0.00		0.12	
	α_4	0.03		0.30		0.01		0.29	
	σ^2	-80.	05	106.	44	-32.06	10	3.32	
	α_1	-0.	-0.08		07	-0.01		4.07	
	α_2	0.66		17.	94	-0.08	17.84		
20	α_3	0.00		0.	09	0.00		0.09	
	α_4	0.	0.02		21	0.01		0.20	
	σ^2	-40.	-40.07		73	-8.09	6	68.95	
30	α_1	-0.	10	3.	11	-0.04		3.10	
	α_2	0.71		17.24		-0.05	1	7.15	
	α_3	0.00		0.09		-0.00		0.09	
	α_4	0.	02	0.	20	0.00		0.19	
	σ^2	-26.	41	55.	26	-3.26	5	5.11	
40	α_1	-0.08		2.69		-0.02		2.69	
	α_2	0.83		16.80		0.09	1	6.70	
	α_3	0.00		0.09		0.00		0.09	
	α_4	0.02		0.19		0.00	0.18		
	σ^2	-20.04		47.26		-2.04	47.13		
	α_1	-0.08		2.39		-0.03		2.38	
50	α_2	1.07		14.	25	0.30	1	4.12	
	α_3	0.00		0.	08	0.00		0.08	
	α_4	0.01		0.19		0.00		0.18	
	σ^2	-15.93		41.41		-1.21		1.30	
					r	ı		-	
		-	10	20	30	40	50	-	
	$\frac{B(\hat{\sigma})}{B(\tilde{\sigma})}$	$\frac{2}{2} = \frac{2}{2}$	2.5	5	8.1	9.8	13.2		

2

< 注入 < 注入

Results: Student-t distribution $\nu = 4$

			ML	Ξ		Bias-co	orrected	MLE	
n	θ	В	ias	\sqrt{MS}	\overline{E}	Bia	s 🗸	MSE	
	α_1	-0.	51	8.6	6	-0.31	L	8.63	-
	α_2	3.34		28.47		1.39)	27.34	
10	α_3	0.01		0.17		0.00)	0.16	
	α_4	0.06		0.42		0.03	3	0.39	
	σ^2	-93.	18	127.6	0	-54.24	1 1	30.73	
	α_1	-0.	17	5.03		-0.07	7	5.02	
	α_2	2.01		25.64		0.91	L	25.11	
20	α_3	0.01		0.14		0.01		0.14	
	α_4	0.04		0.29		0.01		0.28	
	σ^2	-41.24		85.51		-12.30		89.41	
	α_1	-0.10		3.81		-0.01	L	3.80	-
	α_2	2.25		25.75		1.13	3	25.34	
30	α_3	0.01		0.14		0.01	L	0.14	
	α_4	0.	04	0.2	9	0.01	L	0.27	
	σ^2	-27.	15	70.0	2	-6.15	5	72.64	
	α_1	-0.	10	3.2	7	-0.02	2	3.26	-
	α_2	1.82		24.94		0.75	5	24.67	
40	α_3	0.01		0.12		0.00)	0.12	
	α_4	0.03		0.26		0.01	L	0.25	
	σ^2	-20.	38	60.4	3	-4.01	L	62.21	
	α_1	-0.	-0.13		6	-0.05	5	25.14 0.14 0.28 89.41 3.80 25.34 0.14 0.27 72.64 3.26 24.67 0.12 0.25 62.21 2.85 18.59 0.11 0.23 55.56	-
	α_2	1.48		18.86		0.38	3	18.59	
50	α_3	0.01		0.11		0.00)	0.11	
	α_4	0.02		0.24		0.00)	0.23	
	σ^2	-15.	40	53.9	9	-1.94	1	55.56	
					n			_	_
		~	10	20	30	40	50	_	
	$\frac{B(\hat{\sigma})}{B(\tilde{\sigma})}$	$\frac{B(\hat{\sigma}^2)}{B(\tilde{\sigma}^2)} = 1.7$		3.4	4.4	4 5.1	7.9		
	Β(σ	-,					< D	▼ ∢ 🗇	•

æ

Skovgaard adjustment for LR statistic

Alexandre G. Patriota (IME-USP)

э

(4 回) (4 回) (4 回)

The likelihood-ratio statistic

Consider the null and alternative hypotheses are

 $H_0: \boldsymbol{\psi} = \boldsymbol{\psi}_0 \quad \text{and} \quad H_1: \boldsymbol{\psi} \neq \boldsymbol{\psi}_0,$

where $\boldsymbol{\psi}_0$ is known and $\boldsymbol{\theta} = (\boldsymbol{\psi}^{\top}, \boldsymbol{\omega}^{\top}) \in \Theta \subseteq \mathbb{R}^p$.

Under regular conditions (Severine, 2000), the $(-2 \log$ -) Likelihood-ratio statistic

$$LR_n = 2\left(\ell(\widehat{\boldsymbol{\theta}}) - \ell(\widetilde{\boldsymbol{\theta}}_0)\right) \xrightarrow{D} \chi_q^2, \quad \text{under } H_0$$

where $\widehat{\theta}$ is the MLE and $\widetilde{\theta}_0$ is the restricted MLE under the null hypothesis.

Remark: For small samples, this approximation may not be good.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - ヨー のへの

Skovgaard adjustment for the likelihood-ratio statistic

Skovgaard (2001)'s adjustment for the likelihood-ratio statistic

$$LR_n^{**} = LR_n - 2\log\rho_n \qquad (LR^{**} \xrightarrow{D} \chi_q^2), \quad \text{under } H_0$$

where ρ_n depends on $\hat{\theta}$, $\tilde{\theta}_0$, some derivatives of $\ell(\cdot)$ and an ancillary statistic \boldsymbol{a} such that $(\hat{\theta}, \boldsymbol{a})$ be a sufficient statistic.

Problem: It is not easy to find an ancillary statistic a. All the other quantities are achievable through integration and differentiation.

Solution: Melo et al. (2017b) used an approximate ancillary statistic for the general model, namely, $\boldsymbol{a} = (\boldsymbol{a}_1^\top, \dots, \boldsymbol{a}_n^\top)^\top$, where

$$\boldsymbol{a}_i = \widehat{\boldsymbol{P}}_i(\boldsymbol{Y}_i - \widehat{\boldsymbol{\mu}}_i),$$

where P_i is a lower triangular matrix such that $P_i P_i^{ op} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j=1}^{$

Simulations

Consider the mixed model:

$$egin{aligned} Y_i &= oldsymbol{X}_i oldsymbol{eta} + oldsymbol{Z}_i oldsymbol{b}_i + oldsymbol{e}_i, & ext{where} \ oldsymbol{b}_i &= egin{pmatrix} \sigma^2 oldsymbol{I}_{q_i} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{\Lambda}(oldsymbol{\gamma}) \end{pmatrix} & ext{and} \ oldsymbol{\Lambda}(oldsymbol{\gamma}) &= egin{pmatrix} \gamma_{1} & \gamma_{2} \ \gamma_{2} & \gamma_{3} \end{pmatrix}, \end{aligned}$$

with $q_i \in \{1, ..., 5\}$ chosen randomly and n = 16.

- Normal, Student-t ($\nu = 3$) and Power Exponential ($\lambda = 7$) distributions were considered.
- $X_i = (1 \ x_{i1} \ x_{i2} \ x_{i3} \ x_{i4})$ and $Z_i = (1 \ x_{i1})$, where x_{i1} is the first q_i components of $\{5, 10, 15, 30, 60\}$, x_{ij} are dummies variables, j = 2, 3, 4.

•
$$\beta_0 = 0.7, \ \beta_1 = 0.5, \ \underbrace{\beta_2 = \beta_3 = \beta_4 = 0}_{H_0:\psi=0}, \ \gamma_1 = 500, \ \gamma_2 = 2, \ \gamma_3 = 200, \ \underbrace{\beta_2 = \beta_3 = \beta_4 = 0}_{H_0:\psi=0}$$

 $\sigma^2 = 5.$

▲日▼▲□▼▲ヨ▼▲ヨ▼ ヨークタの

Relative p-value discrepancy

The relative p-value discrepancy is defined by the difference between the **exact** and the **asymptotic** p-values divided by the asymptotic p-value.

• The *exact p*-values are based on the LR statistics and their distributions obtained through Monte Carlo's simulations.

• The asymptotic *p*-values are based on the LR statistics and their asymptotic distributions.

"relative p-value discrepancy" = $\frac{\text{"exact }p\text{-value"} - \text{"asymptotic }p\text{-value"}}{\text{"asymptotic }p\text{-value"}}$

P-value discrepancies

Alexandre G. Patriota (IME-USP)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Other works

Normal distribution

• Bias correction for the MLEs and influence diagnostics were developed in 2009 and 2010, respectively.

Patriota, AG, Lemonte, AJ. (2009). Bias correction in a multivariate normal regression model with general parameterization, *Statistics & Probability Letters*, **79**, 1655–1662.

2

Patriota, AG, Lemonte, AJ, de Castro, M. (2010b). Influence diagnostics in a multivariate normal regression model with general parameterization, *Statistical Methodology*, **7**, 644–654.

Elliptical distributions

- Influence diagnostics, bias correction for the MLEs and Skovgaard adjustments for the LR statistic were developed in 2011, 2017 and 2017, respectively
 - Lemonte, AJ, Patriota, AG. (2011). Multivariate elliptical models with general parameterization, Statistical Methodology, 8, 389–400.
 - Melo, TFN, Ferrari, SLP, Patriota, AG. (2017a). Improved estimation in a general multivariate elliptical model, Brazilian Journal of Probability and Statistics. In Press.
 - Melo, TFN, Ferrari, SLP, Patriota, AG. (2017b). Improved hypothesis testing in a general multivariate elliptical model, Journal of Statistical Computation and Simulation, 87, 1416–1428.

References

Alexandre G. Patriota (IME-USP)

3

イロト イヨト イヨト イヨト

References:

- Barndorff-Nielsen, O.E. (1986). Inference on full or partial parameters, based on the standardized signed log likelihood ratio. *Biometrika*, 73, 307–322.
- Cook, R. D. (1986). Assessment of local influence (with discussion). *Journal of the Royal Statistical Society B.* **48**:133–169.
- Cox, D.R., Hinkley, D.V. (1974). *Theoretical Statistics*. London: Chapman and Hall.
- Cox, D.R., Snell, E. (1968). A general definition of residuals (with discussion). *Journal of the Royal Statistical Society B* 30:248–275.
- Crepeau, H., Koziol, J., Reid, N. and Yuh, Y.S. (1985). Analysis of incomplete multivariate data from repeated measurement experiments. *Biometrics*, 41, 505–514.
- Lucas, A. (1997). Robustness of the student t based M-estimator. Communications in Statistics, Theory and Methods. **26**:1165–1182.

イロト 不得 トイヨト イヨト

References:

- Severini TA. Likelihood methods in statistics. New York: Oxford University Press, 2000.
- Skovgaard, I.M. (2001). Likelihood asymptotics. Scandinavian Journal of Statistics, 28, 3–32.
- Tiede, J.J. and Pagano, M. (1979). Application of robust calibration to radioimmunoassay. *Biometrics*, **35** 567–574.

く 同 ト く ヨ ト く ヨ ト

Thank you

3

イロト イヨト イヨト イヨト