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Abstract

We consider the issue of assessing influence of observations in the class of

Birnbaum–Saunders nonlinear regression models, which is useful in lifetime

data analysis. Our results generalize those in Galea et al. [2004, Influence

diagnostics in log-Birnbaum–Saunders regression models. Journal of Applied

Statistics 31, 1049–1064] which are confined to Birnbaum–Saunders linear re-

gression models. Some influence methods, such as the local influence, total

local influence of an individual and generalized leverage are discussed. Addi-

tionally, the normal curvatures for studying local influence are derived under

various perturbation schemes. We also give an application to a real fatigue

data set.

Key words: Birnbaum–Saunders distribution; Fatigue life distribution; Influ-

ence diagnostic; Generalized leverage; Lifetime data; Local influence; Maxi-

mum likelihood estimation.

1 Introduction

The family of distributions proposed by Birnbaum and Saunders (1969), also known

as the fatigue life distribution, has been widely applied for describing fatigue life,

and lifetimes in general. This family of distributions was originally obtained from

a model for which failure follows from the development and growth of a dominant

crack. It was later derived by Desmond (1985) using a biological model which

followed from relaxing some of the assumptions originally made by Birnbaum and

Saunders (1969).
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The random variable T is said to have a Birnbaum–Saunders distribution, say

B-S(α, η), if its density function is given by

fT (t;α, η) =
1

2αη
√

2π

[(
η

t

)1/2

+

(
η

t

)3/2]
exp

{
− 1

2α2

(
t

η
+
η

t
− 2

)}
, t > 0,

where α > 0 and η > 0 are shape and scale parameters, respectively. The density

is right skewed, the skewness decreasing with α. For any k > 0, it follows that

kT ∼ B-S(α, kη). Some interesting results about improved statistical inference for

the B-S(α, η) may be revised in Lemonte et al. (2007, 2008). Some generalizations

and extensions of the Birnbaum–Saunders distribution are presented in Dı́az–Garćıa

and Leiva (2005) and Gómes et al. (2009).

Rieck and Nedelman (1991) proposed a log-linear regression model based on

the Birnbaum–Saunders distribution. They showed that if T ∼ B-S(α, η), then

Y = log(T ) is sinh-normal distributed, say Y ∼ SN (α, µ, σ), with shape, location

and scale parameters given by α, µ = log(η) and σ = 2, respectively. Diagnostic

tools for the Birnbaum–Saunders regression model were developed by Galea et al.

(2004), Leiva et al. (2007) and Xi and Wei (2007). Small-sample adjustments for

the likelihood ratio test can be found in Lemonte et al. (2009).

Recently, Lemonte and Cordeiro (2009) proposed a new class of Birnbaum–

Saunders nonlinear regression models. This class generalizes the regression model

described by Rieck and Nedelman (1991). Additionally, the authors discussed max-

imum likelihood estimation for the model parameters, and derive closed-form ex-

pressions for the second-order biases of these estimates.

Diagnostic analysis is an efficient way to detect influential observations. The first

technique developed to assess the individual impact of cases on the estimation pro-

cess is, perhaps, the case deletion which became a very popular tool. However, case

deletion excludes all information from an observation and we can hardly say whether

that observation has some influence on a specific aspect of the model. To overcome

this problem, one can resort to local influence approach where one again investigates

the model sensibility under small perturbations. In this context, Cook (1986) pro-

poses a general framework to detect influential observations which give a measure

of this sensibility under small perturbations on the data or in the model. Several

authors have extended the local influence method to various regression models; see,

for example, Lawrance (1988), Thomas and Cook (1990), Paula (1993), Lesaffre and

Verbeke (1998) and, more recently, Osorio et al. (2007), Espinheira et al. (2008),

Paula et al. (2009), among others.

In this article, we present diagnostic methods based on local influence and gen-

eralized leverage in the class of Birnbaum–Saunders nonlinear regression models.
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Our results generalize those in Galea et al. (2004) which are confined to Birnbaum–

Saunders linear regression models. In Section 2, we present the class of Birnbaum–

Saunders nonlinear regression models. The score functions and observed Fisher

information matrix are given as well as the process for estimating the regression

coefficients and the shape parameter. Derivations of the normal curvature under

different perturbation schemes together with generalized leverage are made in Sec-

tion 3. An application to a real dataset are analyzed in Section 4. Finally, Section 5

concludes the paper.

2 Birnbaum–Saunders nonlinear regression model

Let T ∼ B-S(α, η). The density function of Y = log(T ) has the form

π(y;α, µ, σ) =
2

ασ
√

2π
cosh

(
y − µ

σ

)
exp

{
− 2

σ2
sinh2

(
y − µ

σ

)}
, y ∈ IR.

This distribution has a number of interesting properties: (i) It is symmetric around

the location parameter µ; (ii) It is unimodal for α ≤ 2 and bimodal for α > 2;

(iii) E(y) = µ and its variance is a function of α only, and has no closed-form

expression, but Rieck (1989) obtained asymptotic approximations for both small

and large values of α; (iv) If yα ∼ SN (α, µ, σ), then Zα = 2(yα −µ)/(ασ) converges

in distribution to the standard normal distribution when α → 0.

Lemonte and Cordeiro (2009) proposed the following regression model:

yi = fi(xi; β) + εi, i = 1, . . . , n, (1)

where yi is the logarithm of the ith observed lifetime, xi = (xi1, xi2, . . . , xim)⊤ is

an m× 1 vector of known explanatory variables associated with the ith observable

response yi, β = (β1, β2, . . . , βp)
⊤ is a vector of unknown nonlinear parameters, and

εi ∼ SN (α, 0, 2). We assume a nonlinear structure for the location parameter µi

in model (1), say µi = fi(xi; β), where fi is assumed to be a known and twice

continuously differentiable function with respect to β.

The log-likelihood function for the vector parameter θ = (β⊤, α)⊤ from a random

sample y = (y1, y2, . . . , yn)
⊤ obtained from (1), can be expressed as

ℓ(θ) =

n∑

i=1

ℓi(θ), (2)

where ℓi(θ) = − log(8π)/2 + log(ξi1) − ξ2
i2/2,

ξi1 = ξi1(θ) =
2

α
cosh

(yi − µi

2

)
, ξi2 = ξi2(θ) =

2

α
sinh

(yi − µi

2

)
,
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for i = 1, . . . , n. The n × p local matrix D = D(β) = ∂µ/∂β⊤ of partial deriva-

tives of µ = (µ1, µ2, . . . , µn)
⊤ with respect to β is assumed to be of full rank, i.e.,

rank(D) = p for all β.

The score functions for β and α can be expressed, respectively, as

Uβ = D⊤s and Uα = −n
α

+
1

α

n∑

i=1

ξ2
i2,

where s = s(θ) = (s1, s2, . . . , sn)⊤ with si = (ξi1ξi2 − ξi2/ξi1)/2. The MLE θ̂ =

(β̂⊤, α̂)⊤ satisfies p+ 1 equations: Uβ = 0 and Uα = 0. A joint iterative procedure

to obtain the MLEs of β and α is given by (Lemonte and Cordeiro, 2009)

β(m+1) = (D(m)⊤D(m))−1D(m)⊤ζ(m), α(m+1) =
1

2
α(m)(1 + ξ̄

(m)
2 ), m = 0, 1, . . . ,

where ζ(m) = D(m)β(m) + {4/ψ(α(m))}s(m), ξ̄
(m)
2 =

∑n
i=1 ξ

2(m)
i2 /n and ψ(α) = 2 +

4/α2 − α−1
√

2π{1 − erf(
√

2/α)} exp(2/α2). Also, erf(·) is the error function (see,

for example, Gradshteyn and Ryzhik, 2007). It can be shown that ψ(α) ≈ 1 + 4/α2

for α small and ψ(α) ≈ 2 for α large. The above equations show that any software

with a weighted linear regression routine can be used to calculate the MLEs of β and

α iteratively. Starting values β(0) and α(0) for the iterative algorithm are required.

The asymptotic inference for the parameter vector θ = (β⊤, α)⊤ can be based

on the normal approximation of the MLE of θ, θ̂ = (β̂⊤, α̂)⊤. Let Σθ the asymp-

totic variance-covariance matrix for θ̂. Then, for n large, θ̂
a∼ Np+1(θ,Σθ), where

a∼ denotes approximately distributed. Additionally, Σθ may be approximated by

−L̈−1
bθbθ

, where L̈bθbθ
is the (p+ 1)× (p+ 1) observed information matrix evaluated at

θ̂, obtained from

L̈θθ =

[
L̈ββ L̈βα

L̈αβ L̈αα

]
=

[
D⊤V D + [s⊤][G] D⊤h

h⊤D tr(K)

]
,

where V = diag{v1, v2, . . . , vn}, vi = vi(θ) = −{2ξ2
i2 + 4/α2 − 1 + ξ2

i2/ξ
2
i1}/4, h =

(h1, h2, . . . , hn)⊤, hi = hi(θ) = −ξi1ξi2/α, K = diag{k1, k2, . . . , kn}, ki = ki(θ) =

1/α2 − 3ξ2
i2/α

2, G = G(β) = ∂2µ/∂β∂β⊤ is an array of dimension n × p × p and

tr(·) is the trace operator. Finally, [·][·] represents the bracket product of a matrix

by an array as defined by Wei (1998, p. 188).1

1If B is an m × n matrix and A is an n × p × q array, then C = [B][A] is called the bracket

product of B and A, that is an m × p × q array with elements Ytij =
∑n

k=1
BtkAkij .
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3 Diagnostic analysis

3.1 Local Influence

The local influence method is recommended when the concern is related to investi-

gate the model sensibility under some minor perturbations in the model (or data).

Let ω ∈ Ω be a k-dimensional vector of perturbations, where Ω ⊂ R
k is an open set.

The perturbed log-likelihood function is denoted by ℓ(θ|ω). We consider that exists

a non perturbation vector, namely ω0 ∈ Ω, such that ℓ(θ|ω0) = ℓ(θ). The influence

of minor perturbations on the maximum likelihood estimate θ̂ can be assessed by

using the log-likelihood displacement LDω = 2{ℓ(θ̂)− ℓ(θ̂ω)}, where θ̂ω denotes the

maximum likelihood estimate under ℓ(θ|ω).

The Cook’s idea for assessing local influence is essentially to analyse the local

behavior of LDω around ω0 by evaluating the curvature of the plot of LDω0+ad

against a, where a ∈ IR and d is a unit norm direction. One of the measures of

particular interest is the direction dmax corresponding to the largest curvature Cdmax.

The index plot of dmax may evidence those observations that have considerable

influence on LDω under minor perturbations. Also, plots of dmax against covariate

values may be helpful for identifying atypical patterns. Cook (1986) shows that the

normal curvature at the direction d is given by

Cd(θ) = 2|d⊤∆⊤L̈−1
θθ∆d|,

where ∆ = ∂2ℓ(θ|ω)/∂θ∂ω⊤, both ∆ and L̈θθ are evaluated at θ̂ and ω0. Hence,

Cdmax/2 is the largest eigenvalue of B = −∆⊤L̈−1
θθ∆ and dmax is the corresponding

unit norm eigenvector. The index plot of dmax for the matrix B may show how to

perturb the model (or data) to obtain large changes in the estimate of θ.

However, if the interest lies in computing the local influence for β, the normal

curvature in the direction of the vector d is Cd;β(θ) = 2|d⊤∆⊤(L̈−1
θθ − L̈22)∆d|,

where

L̈22 =

[
0 0

0 L̈−1
αα

]
,

and dmax;β here is the unit norm eigenvector corresponding to the largest eigenvalue

of B1 = −∆⊤(L̈−1
θθ − L̈22)∆ (see Cook, 1986, Eq. (26)). The index plot of the

largest eigenvector of B1 may reveal those influential observations on β̂.

Another procedure is the total local curvature corresponding to the ith element,

which follows by taking di or an n× 1 vector of zeros with one at the ith position.

Thus, the curvature at the direction di assumes the form Ci(θ) = 2|∆⊤

i L̈−1
θθ∆i|,

where ∆⊤

i denotes the ith row of ∆. This is named total local influence (see, for

instance, Lesaffre and Verbeke, 1998). It is also possible to compute the total local
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influence of the ith individual when estimating a subset of the elements of θ. For

instance, if the interest lies in β, we have that Ci;β(θ) = 2|∆⊤

i (L̈−1
θθ − L̈22)∆i|.

Verbeke and Molembergs (2000, § 11.3) propose considering as point out those cases

such that Ci ≥ 2C̄, where C̄ =
∑n

i=1Ci/n.

3.2 Curvature calculations

Next, we calculate, for three different perturbation scheme, the matrix

∆ = {∆ri}(p+1)×n =

{
∂2ℓ(θ|ω)

∂θr∂ωi

}∣∣∣∣
θ=bθ,ω=ω0

, r = 1, . . . , p+ 1 and i = 1, . . . , n,

considering the model defined in (1) and its log-likelihood function given by (2).

3.2.1 Case-weights perturbation

The perturbation of cases is done by defining some weights for each observation in

the log-likelihood function as follows:

ℓ(θ|ω) =

n∑

i=1

ωiℓi(θ),

where ω = (ω1, ω2, . . . , ωn)
⊤ is the total vector of weights, with 0 ≤ ωi ≤ 1, for

i = 1, . . . , n, and ω0 = (1, 1, . . . , 1)⊤ is the vector of no perturbations. The matrix

∆ is given by

∆ =

(
∆β

∆α

)
,

where ∆β = D̂⊤Ŝ with Ŝ = diag{ŝ1, ŝ2, . . . , ŝn}, and ∆α = (̂b1, b̂2, . . . , b̂n) with

b̂i = −1/α̂ + ξ̂2
i2/α̂. Note that, for linear models, the matrix ∆ reduces to the one

given in Galea et al. (2004).

3.2.2 Response perturbation

We will consider here that each yi is perturbed as yiw = yi +ωiSy, where Sy is a scale

factor that may be estimated standard deviation of y. In this case, the perturbed

log-likelihood function is given by

ℓ(θ|ω) = −n
2

log(8π) +

n∑

i=1

log(ξi1w1) −
1

2

n∑

i=1

ξ2
i2w1

,

where ξi1w1 = ξi1w1(θ) = 2α−1 cosh([yiw −µi]/2), ξi2w1 = ξi2w1(θ) = 2α−1 sinh([yiw −
µi]/2) and ω0 = (0, 0, . . . , 0)⊤ is the vector of no perturbations. The matrix ∆

assumes the form

∆ =

(
∆β

∆α

)
,
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where ∆β = −SyD̂
⊤V̂ and ∆α = −Syĥ. It is noteworthy that the matrix ∆

reduces to the one given in Galea et al. (2004) for linear models.

3.2.3 Explanatory variable perturbation

Consider now an additive perturbation on a particular continuous explanatory vari-

able, namely xj, by making xijw = xij +ωiSx, where Sx is a scale factor that may be

estimated standard deviation of xj. This perturbation scheme leads to the following

expression for the log-likelihood function:

ℓ(θ|ω) = −n
2

log(8π) +
n∑

i=1

log(ξi1w2) −
1

2

n∑

i=1

ξ2
i2w2

,

where ξi1w2 = ξi1w2(θ) = 2α−1 cosh([yi − µiw]/2), ξi2w2 = ξi2w2(θ) = 2α−1 sinh([yi −
µiw]/2) and µiw = fi(xiw,β), with xiw = (xi1, . . . , xijw, . . . , xim)⊤. Here, ω0 =

(0, 0, . . . , 0)⊤ is the vector of no perturbations. The matrix ∆ is given by

∆ =

(
∆β

∆α

)
,

where ∆β is a p×n matrix with ∆ri elements that assume the form (for r = 1, . . . , p

and i = 1, . . . , n)

∆ri = µ̈irwŝi + µ̇iwµ̇irwv̂i,

with

µ̈irw =
∂2µiw

∂βr∂ωi

∣∣∣∣
θ=bθ,ω=ω0

, µ̇iw =
∂µiw

∂ωi

∣∣∣∣
θ=bθ,ω=ω0

and µ̇irw =
∂µiw

∂βr

∣∣∣∣
θ=bθ,ω=ω0

.

Additionally, ∆α = (ê1, ê2, . . . , ên) with êi = µ̇iwĥi.

For linear models, i.e. µi = x⊤

i β, the matrix ∆β reduces to the one given in

Galea et al. (2004). Note that µiw = x⊤

i β + βjwiSx. Thus, µ̈irw = 0 (r 6= j) and

µ̈irw = Sx (r = j), µ̇irw = xir and µ̇iw = Sxβ̂j . Clearly, ∆α also reduces to the one

given in Galea et al. (2004) for linear models.

3.3 Generalized leverage

In what follows we shall use the generalized leverage proposed by Wei et al. (1998),

which is defined as GL(θ̃) = ∂ỹ/∂y⊤, where θ is an s-vector such that E(y) = µ(θ)

and θ̃ is an estimator of θ, with ỹ = µ(θ̃). Here, the (i, l) element of GL(θ̃), i.e. the

generalized leverage of the estimator θ̃ at (i, l), is the instantaneous rate of change in

ith predicted value with respect to the lth response value. As noted by the authors,

the generalized leverage is invariant under reparameterization and observations with
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large GLij are leverage points. Wei et al. (1998) have shown that the generalized

leverage is obtained by evaluating

GL(θ) = Dθ(−L̈θθ)−1L̈θy,

at θ = θ̂, where Dθ = ∂µ/∂θ⊤ and L̈θy = ∂2ℓ(θ)/∂θ∂y⊤.

Under model defined in (1), we have that

Dθ =
[
D 0

]
and L̈θy = −

[
D⊤V

h

]
.

It is noteworthy that GL(θ) reduces to the one given in Galea et al. (2004) for

linear models.

4 Application

The fatigue processes are by excellence ideally modeled by the Birnbaum–Saunders

distribution due to its genesis. We analyze an application to a biaxial fatigue data

set reported by Rieck and Nedelman (1991) on the life of a metal piece in cycles

to failure. The response N is the number of cycles to failure and the explanatory

variable w is the work per cycle (mJ/m3). The data of forty six observations were

taken from Table 1 of Galea et al. (2004).

Rieck and Nedelman (1991) proposed the following model for the biaxial fatigue

data:

yi = β1 + β2 logwi + εi, i = 1, . . . , 46 (3)

where yi = logNi and εi ∼ SN (α, 0, 2). Rieck and Nedelman (1991) takes the

logarithm of w to ensure a linear relationship between the response variable (y) and

the covariate (w) in (3). However, this model does not consider the real scale of the

covariate. Galea et al. (2004) apply diagnostics methods in this dataset considering

model (3).

Lemonte and Cordeiro (2009) proposed the nonlinear regression model

yi = β1 + β2 exp(β3/wi) + εi, i = 1, . . . , 46, (4)

for the biaxial fatigue data, where εi ∼ SN (α, 0, 2). The authors showed that the

nonlinear model (4) fits satisfactorily to the fatigue data. The maximum likelihood

estimates (the standard errors in parentheses) for the parameters of model (4) are:

β̂1 = 8.9876 (0.7454), β̂2 = −5.1802 (0.5075), β̂3 = −22.5196 (7.3778) and α̂ =

0.40 (0.0417).
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Here, we proposed a new nonlinear model for the biaxial fatigue data, that is,

we consider

yi = β1w
β2

i + εi, i = 1, . . . , 46, (5)

where also εi ∼ SN (α, 0, 2). The maximum likelihood estimates (the standard

errors in parentheses) for the parameters of model (5) are: β̂1 = 15.9166 (0.9271),

β̂2 = −0.2618 (0.0169), and α̂ = 0.41 (0.0422). Figure 1 gives the scatter-plot of the

data, together with the fitted curves of models (4) and (5). As can be seen, both

fitted models fits satisfactorily to the fatigue data.

20 40 60 80 100

5
6

7
8

y

µ̂ = β̂1 + β̂2exp(β̂3 w)
µ̂ = β̂1wβ̂2

Figure 1: Scatter-plot and the fitted models.

Following Xie and Wei (2007), we obtain the residuals ε̂i = yi − µ̂i and R̂i =

2α̂−1 sinh(ε̂i/2). Figure 2 gives the scatter-plot of R̂i versus the predicted values µ̂i

for models (4) and (5). Note that the distribution of R̂i is approximately normal and

have the same behaviour for both models. Based upon the fact that U ∼ SN (α, µ, σ)

if 2α−1 sinh{(U −µ)/σ} ∼ N (0, 1), then the residual ε̂i should follow approximately

a sinh-normal distribution.

For the purpose of verifying which nonlinear model better represent the true rela-

tionship between y and w, we also conduct a hypothesis testing proposed by Vuong

(1989). Consider choosing between two nonnested models: model Fµ1 with den-

sity function π(yi|µ1i) and model Fµ2 with density function π(yi|µ2i), where µ1i =

9



5.0 5.5 6.0 6.5 7.0 7.5 8.0

−2

−1

0

1

2

µ = β1 + β2exp(β3/w)

5 6 7 8

−2

−1

0

1

2

µ = β1wβ2

Figure 2: Scatter-plot of R̂i versus µ̂i.

µ1i(xi; θ) and µ2i = µ2i(xi; γ). The test statistic can be written as

TLR,NN =

{
1√
n

n∑

i=1

log
π(yi|µ̂1i)

π(yi|µ̂2i)

}
×

×
{

1

n

n∑

i=1

(
log

π(yi|µ̂1i)

π(yi|µ̂2i)

)2

−
(

1

n

n∑

i=1

log
π(yi|µ̂1i)

π(yi|µ̂2i)

)2}−1/2

,

(6)

where µ̂1i = µ̂1i(xi; θ̂) and µ̂2i = µ̂2i(xi; γ̂), i = 1, . . . , n. For strictly nonnested

models, the statistic (6) converges in distribution to a standard normal distribution

under the null hypothesis of equivalence of the models (Vuong, 1989). Thus, the

null hypothesis is not rejected if |TLR,NN | ≤ zρ/2. On the other hand, we reject

at significance level ρ the null hypothesis of equivalence of the models in favor of

model Fµ1 being better (or worse) than model Fµ2 if TLR,NN > zρ (or TLR,NN < −zρ).

Let µ̂1i = β̂1 + β̂2 exp(β̂3/wi) and µ̂2i = β̂1w
bβ2. The test statistic (TLR,NN) equals

0.9123 and the corresponding p-value is 0.17. Therefore, the test indicates that both

nonlinear models are equivalent.

Next, we will apply the generalized leverage and local influence methods devel-

oped in the previous sections considering both nonlinear models (4) and (5).

Figures 3 and 4 give the |lmax| (local influence) and Ci (total local influence),

respectively, corresponding to θ̂, β̂ and α̂ for different perturbation schemes consid-

ering model (4). Based on these figures, we observed that cases 1, 2, 3, 4, 5, 12, 32

and 46, have more pronounced influence than the other observations. Additionally,

Figures 5 and 6 give the |lmax| and Ci, respectively, corresponding to θ̂, β̂ and α̂ for

different perturbation schemes for the nonlinear model (5). From Figures 5 and 6,

the same observations detected in Figures 3 and 4 are detected.
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Figure 3: Index plots of |lmax| for θ̂, β̂ and α̂ under case weighting, response and

covariate perturbation schemes; µ = β1 + β2 exp(β3/w).
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Figure 4: Index plots of Ci for θ̂, β̂ and α̂ under case weighting, response and

covariate perturbation schemes; µ = β1 + β2 exp(β3/w).
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Figure 5: Index plots of |lmax| for θ̂, β̂ and α̂ under case weighting, response and

covariate perturbation schemes; µ = β1w
β2.
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Figure 6: Index plots of Ci for θ̂, β̂ and α̂ under case weighting, response and

covariate perturbation schemes; µ = β1w
β2.
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Thus, based on the Figures 3 to 6, we eliminated those most influential obser-

vations and refitted the models. Tables 1 and 2 depict the relative changes of the

MLE of the location parameters (RC1) and their asymptotic standard deviations es-

timates (RC2) considering models (4) and (5), respectively. These relative chances

are defined as follows: RC1 = (β̂j − β̂j(i))/β̂j and RC2 = (σ̂bβj
− σ̂bβj(i)

)/σ̂bβj
, where

β̂j(i) and σ̂bβj(i)
denotes the maximum likelihood estimate for βj and σbβj

, respectively,

after observation ith is removed. Note that RC2 can also be interpreted as the rel-

ative change of the confidence interval amplitude by removing the ith observation.

It is another measure to verify the influence of one observation in the maximum

likelihood estimation, since when the hypothesis is far away from the estimates the

p-value will not indicate a change in the conclusions even if great changes occur in

the estimates of the asymptotic standard deviations of the MLEs.

The results are grouped in Tables 1 and 2. As can be seen, figures in Table 1

shows that the relative changes in the location estimates of β3 are large and also

the relative changes in the confidence interval amplitude are very pronounced. On

the other hand, Table 2 shows no large chances for either location and confidence

interval amplitude relative changes. Therefore, we conclude that model (5) has lesser

influence of such observations than model (4).

Table 1: Relatives changes (%) dropping the cases indicated – µ = β1+β2 exp(β3/w).

β1 β2 β3

Eliminated RC1 RC2 RC1 RC2 RC1 RC2

1 −3.0066 −48.9443 −3.7817 −60.8956 9.5434 −16.6047

2 4.1151 13.2806 4.9367 18.7542 −15.8260 −14.5069

3 −4.0912 −25.5935 −5.8549 −36.7778 11.2002 4.3046

4 3.0072 13.4428 4.4898 16.0104 −9.1079 −4.0841

5 −3.4389 −11.2195 −5.6328 −18.0936 7.9576 9.1715

12 1.4290 15.7545 0.3269 19.6946 −8.9273 1.5680

32 0.2551 3.0730 1.5735 2.7544 0.0585 1.6377

42 2.0782 13.1594 0.2066 20.1666 −11.1417 −6.3048

In all cases p-value < 0.01 (H0 : βj = 0).

1) Graficos dos leverages

2) Paragrafo final falando das vantagens do novo modelo em relacao ao

modelo inicial: interpretecao, numero de parametros, mudanca das esti-

mativas (erros padrao), etc.
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Table 2: Relatives changes (%) dropping the cases indicated – µ = β1w
β2.

β1 β2

Eliminated RC1 RC2 RC1 RC2

1 −1.7690 −9.9580 -1.8071 −7.1242

2 1.8828 −3.6739 1.9408 −4.7617

3 −2.5050 −4.9348 −2.4887 −1.7996

4 2.6404 1.8452 2.6597 −0.1303

5 −3.1094 −1.3577 −3.0219 2.1018

12 −0.9929 1.8466 −0.7859 2.9390

32 1.4066 4.3495 1.8816 2.7667

46 −1.6605 −3.8179 −1.9948 −2.7323

In all cases p-value < 0.01 (H0 : βj = 0).

5 Concluding remarks

The Birnbaum–Saunders distribution is widely used to model times to failure for

materials subject to fatigue. In this paper, we developed influence diagnostics for

the class of Birnbaum–Saunders nonlinear regression models which can be useful for

modeling lifetime or reliability data. Appropriate matrices for assessing local influ-

ence on the parameter estimates under different perturbation schemes are obtained.

Our results are very general and can be applied to any nonlinear regression model

defined by (1). In particular, our results generalize those in Galea et al. (2004) which

are confined to Birnbaum–Saunders linear regression models. Additionally, we also

present an application to real data.
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