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Abstract

With epidemiological and astronomical data, it is common to ob-
serve variances that vary with the observations. Further, values for
those variances typically are available from follow-up studies or repli-
cations. This paper deals with consistent estimation and hypothesis
testing in a heteroscedastic polynomial model with measurement error
in both axes and an equation error. For obtaining consistent estima-
tors and consistently assessing their asymptotic variances, we embrace
the corrected score approach. Furthermore, we applied the theoret-
ical results in two real data sets: the WHO MONICA project data
set on cardiovascular diseases and their risk factors and the Chandra

observatory data set. We also simulate the rejection rates for the Wald
statistic in order to study test size and power for small and moderate
samples, indicating that the test behaves satisfactorily in those situa-
tions.

keywords Polynomial regression, measurement error, corrected score,
asymptotic theory

1 Introduction

Recently, heteroscedastic linear errors-in-variables models have been pro-
posed to fit epidemiological (Kulathinal et al., 2002; Cheng and Riu, 2006;
de Castro et al., 2007) and astronomical (Akritas and Bershady, 1996; Kelly,
2007; Kelly et al., 2008) data sets. In Kulathinal et al. (2002) was proposed a
simple EM (Expectation and Maximization) algorithm to find the maximum
likelihood (ML) estimators of a linear heteroscedastic structural errors-in-
variables model. The authors considered that the linear equation is subject
to error and applied this model to a real dataset of the WHO MONICA
project on cardiovascular disease and its risk factors. For this data set, it
was found a significant variance for the equation error, which makes such
more complex models useful in fitting real data sets. In the same way, de
Castro et al. (2007) derived the Fisher information for the parameters which
makes it possible to test conjointly the intercept and inclination parameters
using Wald type statistics. They also proposed testing statistics based on
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the likelihood ratio and score statistics. In a previous study, Akritas and
Bershady (1996) has entertained a similar model (with known covariance
between the errors) and applied it to an astronomical data set. The authors
had proposed a method-of-moment to estimate the model parameters and
gave an approximation for their asymptotic covariance matrix. Motivated
by these applications, we assume a heteroscedastic polynomial model with
error in both axes adding an equation error, which seems not available in lit-
erature. Then, using the data sets produced by the WHO MONICA project
and by the Chandra X-ray observatory, we found evidence of a quadratic
and cubic relationship, respectively, relating the response variable and the
covariate (both inaccessible directly). It is also the case that the model pre-
sented in this paper extends the model considered in Zavala et al. (2007),
where a heteroscedastic polynomial nonequation error model is considered.
The approach is based on the corrected score methodology, which when fea-
sible, yields consistent and asymptotically normal estimators for the model
parameters. Moreover, consistent estimators for the asymptotic variances
can also be obtained. In this paper, we also consider a “flexible” polynomial
model where is possible to fit partial polynomial relationships between yi

(unobservable response variable) and xi (unobservable covariate). That is,
in a third degree polynomial, for example, coefficient for x2 may be taken
as zero.

Most of the literature deal with the homoscedastic case and error in just
one of the axis. See, for example, Chan and Mak (1985), Fuller (1987),
Cheng and Scheneeweis (1998) and Kukush (2005). An exception is Zavala
et al. (2007) where a heteroscedastic polynomial errors-in-variables model
without equation error is considered.

This article is organized as follows. Section 2 gives a way to fit par-
tial polynomial models, specifically, in a heteroscedastic polynomial errors-
in-variables model without equation error (the same model considered by
Zavala et al., 2007). Section 3 considers a more general model which re-
gards an equation error in the model presented in Section 2. Section 4
presents a simulation study where it is shown that the proposed approach
yields Wald tests with empirical levels close to the nominal significance lev-
els for small and moderate samples. Section 5 deals with applications to
the WHO MONICA and Chandra data sets. Section 6 ends the paper with
conclusions and remarks.
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2 Partial polynomial errors-in-variables models with-

out equation error

In this section we present a concise implementation of partial polynomial
models with no equation error to the model considered in Zavala et al. (2007)
where it is specified that:

Yi = yi + ei,
Xi = xi + ui,

(1)

with yi = β0 + β1xi + . . . , βpx
p
i and

(
ei

ui

)
∼ N2

((
0

0

)
;

[
λi 0
0 κi

])

with λi and κi known for i = 1, . . . , n. The authors provided consistent
estimators of the model parameters and gave consistent estimates for their
asymptotic covariance matrix. However, if some coefficients in the polyno-
mial equation are equal to zero, then we have to derive the estimators and
consistent estimators for the asymptotic covariance matrix for each case. As
an alternative, we are going to present a general way to fit partial polyno-
mial models which have some of the parameters equal to zero. For that,
consider initially the equation yi = a0β0 + a1β1xi + . . . , apβpx

p
i which, in

matrix notation, can be written as

yi = β⊤

F Aẍi (2)

where

βF =




β0

β1

β2
...

βp




, A =




a0 0 0 . . . 0
0 a1 0 . . . 0
0 0 a2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ap




and ẍi =




1
xi

x2
i
...

xp
i




.

The elements of the matrix A are known in such way that, aj = 0 if
βj = 0 and 1, otherwise, for all j = 0, 1, . . . , p. The model studied by Zavala
et al. (2007) considers that aj = 1 for all j = 0, . . . , p.

To consistently estimate the model (1) parameters considering (2) we
consider the corrected score approach (for details, see Nakamura, 1990)
which depends on a pseudo log-likelihood function ℓ∗(θ,X) =

∑n
i=1 ℓ∗i (θ,X)

satisfying
E(ℓ∗(θ,X)|Y ,x) = ℓ(θ,x),
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where ℓ(θ,x) is the (unobserved) log-likelihood function of (Y ,x) and ℓ∗(θ,X)
is called the corrected log-likelihood function which depends only on the ob-
servable data (Y ,X), where Y = (Y1, . . . , Yn) and X = (X1, . . . ,Xn) and
x = (x1, . . . , xn). Note that we omit the response variable Y in the expres-
sions ℓ(.) and ℓ∗(.) to simplify notation. For the nonequation error model,
the unknown parameter θ is the unknown β. We can then define the fol-
lowing quantities

U∗(θ,X) =
n∑

i=1

∂ℓ∗i (θ,X)

∂θ
and I∗(θ,X) = −

n∑

i=1

∂2ℓ∗i (θ,X)

∂θ∂θ⊤

and suppose that θ̂n is such that U∗(θ̂n,X) = 0, which is the corrected
score estimator of θ. Under the regularity conditions stated in Gimenez
and Bolfarine (1997) the corrected score estimator, θ̂n, is consistent and

asymptotically normal that is,
√

n(θ̂n − θ)
D−→ N (0,Ωn), where Ωn is a

sandwich type matrix which can be consistently estimated by

Ω̂n =
1

n
Λ−1

n (θ̂n)Γn(θ̂n)Λ−1
n (θ̂n),

where

Λn(θ) = − 1

n

n∑

i=1

I∗

i (θ,X) and Γn(θ) =
1

n

n∑

i=1

U∗

i (θ,X)U∗

i (θ,X)⊤,

with U∗
i (θ,X) =

∂ℓ∗
i
(θ,X)
∂θ

and I∗
i (θ,X) =

∂2ℓ∗
i
(θ,X)

∂θ∂θ⊤ .
In order to apply the Nakamura’s approach, we start by writing the

(unobserved) log-likelihood function for model (1) which is given by

ℓ(βF ,x) ∝ −1

2

n∑

i=1

1

λi
(Yi − yi)

2

∝ β⊤

F A

n∑

i=1

Yiẍi

λi
− 1

2
β⊤

F A

n∑

i=1

(
ẍiẍ

⊤

i

λi

)
AβF .

Hence, for the purpose of implementing the corrected score approach,
we have to find the quantities ti,k such that E(ti,k|xi) = xk

i , k = 1, . . . , 2p in
which, under normality, we have that (see Zavala et al., 2007)

ti,0 = 1, ti,1 = Xi and ti,(j+1) = Xiti,j − jκiti,(j−1),

4



j = 1, . . . , 2p. Moreover, defining

Hi =




1 ti,1 ti,2 . . . ti,p
ti,1 ti,2 ti,3 . . . ti,(p+1)

ti,2 ti,3 ti,4 . . . ti,(p+2)
...

...
...

. . .
...

ti,p ti,(p+1) ti,(p+2) . . . ti,2p




,

hi = Yi (1 ti,1 ti,2 . . . ti,p)
⊤ , Tn =

n∑

i=1

Hi/λi and Fn =
n∑

i=1

hi/λi,

it can be verified, by showing that E[ℓ∗(βF ,X)|x] = ℓ(βF ,x) holds, that
the corrected log-likelihood function for the observed data (Y ,X) is given
by

ℓ∗(βF ,X) ∝ β⊤

F AFn − 1

2
β⊤

F ATnAβF .

Notice that we can use the decomposition A = ∆∆⊤, in such a way
that β = ∆⊤βF is the vector which has all components different from zero,
so that the corrected log-likelihood function for β can be written as

ℓ∗(β,X) ∝ β⊤Ḟn − 1

2
β⊤Ṫnβ, (3)

where Ḟn = ∆Fn and Ṫn = ∆⊤Tn∆. Therefore, differentiating the cor-
rected log-likelihood function (3) we have the corrected score function and
it is given by

U∗(β,X) =
∂ℓ∗(β,X)

∂β
= Ḟn − Ṫnβ (4)

Equating (4) to zero, we assess consistent estimators for β by solving
the equation Ṫnβ̂n = Ḟn, leading to

β̂n = Ṫ−1
n Ḟn (5)

We can estimate the asymptotic covariance matrix of the estimator β̂n

using the asymptotic distribution for the corrected score estimator (see
Gimenez and Bolfarine, 1997) given by

Ṫ−1
n ΛnṪ−1

n , (6)
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where Λn =
∑n

i=1 U∗

i (β̂n,X)U∗

i (β̂n,X)⊤ and U∗

i (β̂n,X) = 1
λi

(
ḧi − Ḧiβ̂n

)

with Ḧi = ∆⊤Hi∆ and ḧi = ∆⊤hi.
In addition, for testing H0 : Gβ = d we may use the Wald statistic given

by

ξn = (Gβ̂n − d)⊤
(
GṪ−1

n ΛnṪ−1
n G⊤

)−1
(Gβ̂n − d).

Under the assumptions stated in Zavala et al. (2007), that is, there exists
a γ > 0 such that

lim
1

n1+γ/2

n∑

i=1

|xp
i |(2+γ) = 0 and (7)

0 < lim inf
1

n

n∑

i=1

(xi − x̄)2(2p−1) ≤ lim sup
1

n

n∑

i=1

(xi − x̄)2(2p−1) < ∞,

then ξn
D−→ χ2(g), where g = rank(G) and “

D−→” means convergence in
distribution.

For the partial cubic model yi = β0 + β1xi + β3x
3
i we have that a0 = 1,

a1 = 1, a2 = 0 and a3 = 1. The matrix ∆ is as follows

∆ =




1 0 0
0 1 0
0 0 0
0 0 1




and a consistent estimator for β = (β0, β1, β3)
⊤ is computed by (5) and its

asymptotic covariance by (6) where

Ṫn =
n∑

i=1

1

λi




1 ti,1 ti,3
ti,1 ti,2 ti,4
ti,3 ti,4 ti,6


 and Ḟn =

n∑

i=1

1

λi




Yi

Yiti,1
Yiti,3


 .

3 Partial polynomial errors-in-variables models with

equation error

In this paper, we also consider that

yi|xi ∼ N (βF Aẍi;σ
2), (8)
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i.e., the equation is subject to error. This means that the true variables
yi and xi are not perfectly related (Cheng and Riu, 2006). Therefore, the
log-likelihood function considering (8) is given by

ℓ(θF ,x) ∝ −1

2

n∑

i=1

log τi −
1

2

n∑

i=1

1

τi
(Yi − yi)

2

∝ −1

2

n∑

i=1

log τi −
1

2

n∑

i=1

Y 2
i

τi
+

+β⊤

F A

n∑

i=1

Yiẍi

τi
− 1

2
β⊤

F A

n∑

i=1

(
ẍiẍ

⊤
i

τi

)
AβF ,

where τi = λi + σ2 and θF = (β⊤

F , σ2)⊤. Define

Tn(σ2) =
n∑

i=1

Hi/τi, Fn(σ2) =
n∑

i=1

hi/τi, T̈n(σ2) =
n∑

i=1

Ḣi/τi

and F̈n(σ2) =
n∑

i=1

ḣi/τi,

where Hi, hi, Ḣi and ḣi are the same quantities defined in Section 2. Then,
the corrected log-likelihood function for the observed data (Y ,X) is given
by

ℓ∗(θ,X) ∝ −1

2

n∑

i=1

log τi −
1

2

n∑

i=1

Y 2
i

τi
+ β⊤

n∑

i=1

ḧi

τi
− 1

2
β⊤

n∑

i=1

Ḧi

τi
β,

where θ = (β⊤, σ2)⊤. Differentiating the corrected log-likelihood function
we have the corrected score functions which are given by

U∗

σ2(β,X) =
∂ℓ∗(θ,X)

∂β
=

n∑

i=1

{
ḧi − Ḧiβ

τi

}
(9)

and

U∗(σ2,X) =
∂ℓ∗(θ,X)

∂σ2
=

1

2

n∑

i=1

{
ci

τ2
i

− 1

τi

}
, (10)

where ci = Y 2
i − 2β⊤ḧi + β⊤Ḧiβ. Equating (9) and (10) to zero we assess

consistent estimators for β and σ2 that are obtained solving the following
equations
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T̈n(σ̂2)β̂n = F̈n(σ̂2) and
n∑

i=1

1

τ̂i
=

n∑

i=1

ĉi

τ̂2
i

, (11)

where τ̂i = λi + σ̂2 and ĉi = Y 2
i − 2β̂⊤

n ḧi + β̂⊤
n Ḧiβ̂n. Equations in (11) do

not have analytical solutions, though we can find the estimates using the
following numerical procedure:

1. Start the procedure by setting v = 0 and find the initial estimates θ̂(v) =

(β̂
(v)⊤
n , σ̂2(v))⊤, where β̂

(0)
n and σ̂2(0) are the initial estimates for β and σ2;

2. Compute

θ̂(v+1) = θ̂(v) + k
[
V ∗

(
θ̂(v),X

)]−1
U∗

(
θ̂(v),X

)
,

where k ∈ (0, 1] is a constant to avoid non-convergence (usually k = 1),

V ∗

(
θ̂,X

)
=

n∑

i=1

̂
E

(
−∂U∗

i (θ)

∂θ

)
=

[
T̈n(σ̂2) 0

0⊤ L(σ̂2)

]

with

L(σ2) = E

(
−∂U∗(σ2,X)

∂σ2

)
=

1

2

n∑

i=1

1/τ2
i ;

and
3. Increment v by one and repeat the step 2. until convergence.

It is allowed to assess the asymptotic covariance of the estimators pro-
duced equating (9) and (10) to zero by using the sandwich estimator given
by 1

nΓ−1
n ΛnΓ

−1
n , where

Γn =
1

n
V ∗

(
θ̂,X

)
and Λn =

1

n

n∑

i=1

U∗

i (θ̂,X)U∗

i (θ̂,X)⊤

with

U∗

i (θ̂,X) =




1
τ̂i

(ḧi − Ḧiβ̂p)

1
2

ĉi

τ̂2

i

− 1
2τ̂i


 .

Hence, when an equation error is added to the model, the corrected score
approach requires numerical (or iterative) procedures, which is not the case
with the model considered in Zavala et al. (2007). The linear case, where

yi|xi ∼ N (β0 + β1xi, σ
2),
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has to be treated as a subcase of the general polynomial model. That is,
there is no analytical solution as in the case of the moments estimators
(Kulathinal et al., 2002; Cheng and Riu, 2006) and the algorithm described
above for the polynomial case may also be used for the linear situation.
Estimates for the asymptotic covariance matrix can also be obtained from
the general expression described above for the polynomial situation. To the
best of our knowledge this approach is not in the literature.

Therefore, for testing H0 : Gθ = d it allows to use the following Wald
statistic

ξn = n(Gθ̂ − d)⊤
(
GΓ−1

n ΛnΓ
−1
n G⊤

)−1
(Gθ̂ − d), (12)

which, under (7), has asymptotic chi-square distribution with rank-of-G
degrees of freedom. Naturally, this convergence is only valid for testing
values when d ∈ Rp × R+ where R+ is the positive real set (excluding
zero).

4 Simulation

This section presents the results of simulation studies in order to guide us
regarding the behavior of the statistic (12) for small and moderate sample
sizes. The asymptotic distribution of (12) can be used, however, as an
approximation for testing when the sample size is small or moderate. To
further study this issue, we designed a Monte Carlo study by generating
10 000 samples which were used to compute the empirical level and power
of the statistics at the 5% nominal level. The simulation setting was taken
to represent the real data set of the WHO MONICA project presented in
the next section.

We carry out two types of simulation, namely: linear and quadratic
relationship between the unobservable variables yi and xi. In both cases,
we consider that Xi|xi ∼ N (xi, κi) where

√
κi ∼ U(0.5, 1.5) and Yi|xi ∼

N (yi, λi) where
√

λi ∼ U(0.5, 4). The (unknown) values of xi was generated
from the normal distribution with mean µx = −2 and variance σ2

x = 4. The
approach presented in this paper is distribution free concerning xi and the
results, for the corrected score approach, are similar whatever be the values
of xi. As for the linear relationship, we consider (β0, β1) on a neighborhood
of (0, 1). For the quadratic relationship, we consider β0 = 0 and (β1, β2) on
a neighborhood of (1, 0).

Table 1 presents the results for a linear relationship, which considers the
following model: yi|xi ∼ N (β0 + β1xi, 10) and also depicts the results of a

9



Table 1: Rejection rates for the linear and quadratic models (at a 5% nomi-
nal level) using the Wald statistics (12) and for n = 40, n = 80 and n = 100.

Linear relationship Quadratic relationship

β0 β1 β2 β1

n = 40 0.6 1 1.4 n = 40 0.6 1 1.4

-2 0.5831 0.8261 0.9798 -0.15 0.5568 0.5402 0.9990
0 0.3469 0.0993 0.3171 0.00 0.8897 0.1543 0.9455
2 0.9862 0.8394 0.5486 0.15 0.9918 0.4964 0.6014

n = 80 0.6 1 1.4 n = 80 0.6 1 1.4

-2 0.8764 0.9866 0.9999 -0.15 0.2917 0.5591 0.9989
0 0.4386 0.0721 0.3986 0.00 0.8121 0.0904 0.8880
2 1.0000 0.9861 0.8443 0.15 0.9936 0.4999 0.3557

n = 100 0.6 1 1.4 n = 100 0.6 1 1.4

-2 0.8779 0.9940 0.9998 -0.15 0.3945 0.7667 0.9999
0 0.6361 0.0667 0.5870 0.00 0.9731 0.0825 0.9917
2 1.0000 0.9950 0.8508 0.15 1.0000 0.7300 0.4964

quadratic relationship that considers the following model: yi|xi ∼ N (β1xi +
β2x

2
i , 10). It can be seen from Table 1 that the empirical nominal levels

(middle cells in bold) get closer to the nominal level (5%) as n increases and
for n = 100 the results are quite satisfactory.

5 Applications

5.1 Data set of the WHO MONICA project

The WHO MONICA project is a monitoring study of cardiovascular dis-
eases, for more information go to http://www.ktl.fi/monica which provides
a full description of the project. The data analyzed in this section are trends
of the risk scores for women (n = 36) and for men (n = 38) in each pop-
ulation. According to Kulathinal et al. (2002), the risk score was defined
as a linear combination of smoking status, systolic blood pressure, body
mass index and total cholesterol level. Furthermore, a proportional hazards
models was taken in order to derive its coefficients and the sampling errors
of the trend estimates were considered as measurement errors. Therefore,
it is possible to assess the variances in each experimental unit. Additional
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information about data sets can be found in Kuulasmaa et al. (2000). The
data set has been previously analyzed in the literature (Kulathinal et al.,
2002; de Castro et al., 2007; Kuulasmaa et al., 2000), where a linear model
has been considered. We consider now the possibility of fitting a quadratic
model to this data set, that is,

yi|xi ∼ N (β0 + β1xi + β2x
2
i , σ

2). (13)

Table 2 shows the estimates (and the standard-errors) of the model
parameters in (13). Figure 1 presents the scatter plot with a estimated
quadratic and linear regressions for both men and women data sets.

Table 2: Estimates (standard-error) of the model parameters (13) using
Monica data for men and women

Men Women
Linear Quadratic Linear Quadratic

β0 −2.0888 (0.4352) −2.7183 (0.5095) −0.0705 (0.8602) −0.5811 (0.9123)
β1 0.4705 (0.2381) 0.4857 (0.1901) 0.6434 (0.3376) 1.2133 (0.4050)
β2 - 0.1278 (0.0477) - 0.2047 (0.0975)
σ2 4.8746 (1.4308) 4.4000 (1.6195) 11.1092 (5.0150) 10.0241 (5.0665)

5.2 Data set of the Chandra X-ray Observatory Center

The Chandra X-ray observatory is the NASA’s flagship mission for X-ray
astronomy. One of the most studied astronomical problem is to investigate
how the “X-ray photon index” emission depends on the Eddington ratio of
quasars (see Kelly et al., 2008, for details). There are many problems regard-
ing the data collection such as sample selection and censoring, as discussed
in Kelly (2007) and Akritas and Bershady (1996). The data set analyzed
in this paper has no censored observations, however, it is subject to sample
selection as reported in Kelly (2007). We modeled this data set disregard-
ing the bias produced by the data collection just to show the applicability
of our approach. We are engaged in future researches to take into account
these sample peculiarities in a polynomial relationship relating the response
variable (X-ray photon index) and the covariate (base-10 logarithm of the
Eddington ratio of quasars).
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Figure 1: Quadratic (full line) and Linear (dash-dot line) regressions using
MONICA data for men (a) and women (b)

The Eddington ratio of quasars is a function of the black hole mass,
which is necessary to estimate. Therefore, the covariate is subject to error.
In addition, it is allowed to assess the precision related to this measure
in each experimental unit (defining heteroscedastic errors). The “X-ray
photon index” and its precision was obtained from Chandra observatory
measurements. The equation error (or intrinsic scatter in the astronomy
jargon) is expected for this problem. For a full information, see Kelly et al.
(2008).

Kelly et al. (2008) found that the relationship between the response vari-
able, yi, and the covariate, xi, is not linear. Figure 2 shows the scatter plot
(with the error bars) of the observed X-ray photon index and the observed
base-10 logarithm of the Eddington ratio of quasars (n = 153), which sug-
gests a quadratic relationship. However, the algorithm for a quadratic model
diverges from this data set which indicates false relationship or larger mea-
surement error in the surrogate variable (our simulation study shows the
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larger the measurement error the greater the chance for non-convergence.
Besides, we found that when a polynomial model of order p is true and a
polynomial model of order q < p is fitted, non-convergence might happen).
Also, non-convergence occurs with the linear regression. Then, we consider
a cubic model. The only configuration that presents statistic significance is
considering that β0 = β2 = 0. That is, the model formulated for this data
set is given by

yi|xi ∼ N (β1xi + β3x
3
i , σ

2), (14)

Table 3: Estimates (standard-error) of the model parameters (14) using
Chandra data

Estimates

β1 -2.1202 (0.3944)
β3 0.3415 (0.2156)
σ2 0.1156 (0.0293)

Table 3 gives the estimates and their standard-error (in parenthesis) for
the parameters of the model (14). Figure 2 presents the scatter plot with a
estimated cubic regression for the Chandra data set.

6 Conclusions and remarks

We studied a heteroscedastic polynomial with measurement error model in
both axes, allowing to model partial polynomial regressions. Furthermore,
it is possible to test general linear hypothesis using a Wald statistic with an
asymptotic (central) chisquare distribution. We also modeled a quadratic
regression with measurement error in both axes to the real dataset of the
WHO MONICA project and a cubic partial regression model to the Chandra

observations showing the usefulness of our approach. We remark that the
regressions fitted in this paper are valid only for the observed range of the
covariate, extrapolations of it might not be reliable. Moreover, the model
studied here can be used as an approximation for complex functions in order
to fitting data sets more accurately than the linear regression.
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Figure 2: Cubic regression using Chandra observations.
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