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Abstract

This paper provides general matrix formulas for computing the score function, the (expected and observed)
Fisher information and the ∆ matrices (required for the assessment of local influence) for a quite general
model which includes the one proposed by Russo et al. (2009). Additionally, we also present an expression
for the generalized leverage on fixed and random effects. The matrix formulation has notational advantages,
since although the complexity of the postulated model, all general formulas are compact, clear and have nice
forms.
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1. Main results

Recently, Russo et al. (2009) introduce an interesting nonlinear mixed model considering an elliptical
distribution for the response variable. The authors also present a motivating example in a kinetics longi-
tudinal data set which was firstly presented in Vonesh and Carter (1992) and previously analysed under
the assumption of normality. Russo et al. (2009) analyse this dataset considering heavy-tailed distributions
which may accommodate “large” observations. The authors compute the score function, Fisher information
and some influence measures, but some matrices are presented only with the (r, s) element. Expressions
for the entries of the expected Fisher information in a multivariate elliptical distribution was computed
independently by Mitchell (1989) and Lange et al. (1989). Other recent papers have adopted the same
strategy, namely Savalli et al. (2006) and Osorio et al. (2007). Since writing a matrix by entering element by
element is not an efficient way to do it, we present a matrix version of these quantities (considering a more
general model) in which, besides an aesthetic improvement, one can use it for avoiding that cumbersome
task. Moreover, the compactness of the expressions might encourage other researches to study more complex
models. We also show matrix versions of some expectations of a variable with an elliptical distribution that
can be useful to apply in a multivariate context.

The nonlinear model studied in Russo et al. (2009) is given by

yi = f(xi,α) +Zibi + εi, i = 1, . . . , n (1)

and, as defined by the authors, f is an mi-dimensional nonlinear function of α, xi is a vector of covariates,
Zi is a matrix of known constants, α is a p× 1 vector of unknown parameters and bi is an r × 1 vector of
unobserved random regression coefficients, where (yi, bi) follows an elliptical distribution, such that(

yi
bi

)
ind∼ Elmi+r

[(
f(xi,α)

0

)
;

(
ZiDZ

>
i + σ2Imi ZiD
DZ>i D

)]
,

where Imi
is an (mi ×mi) identity matrix.
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For the purpose of avoiding numerical integrations, Russo et al. (2009) consider the marginal model,

that is yi
ind∼ Elmi

(f(xi,α); Σi), where Σi = ZiDZ
>
i + σ2Imi

. The vector of parameters of interest is
defined as θ = (α>,γ>)>, where γ = (γ0, γ1, . . . , γq)

> is the vector of parameters involved in Σi with, in
this case, γ0 = σ2 and γ1, . . . , γq are the parameters involved in D. In addition to the authors’ suppositions,
the functional form of f(xi,α) must be known and twice continuously differentiable with respect to each
element of α.

In this paper, we consider the following model which was studied by Lange et al. (1989) considering a
Student-t distribution,

yi
ind∼ Elmi

(f(xi,α); Σi(wi,γ)), (2)

where wi and xi may have common components. The functional form of the covariance matrix Σi(wi,γ) is
known and twice continuously differentiable with respect to each element of γ. Since θ must be identifiable
in model (1), we suppose that the model fulfills this requirement. To see that model (1) is a special case of
(2), take wi = Zi and Σi(Zi,γ) = ZiDZ

>
i + σ2Imi

. As model (2) is not considering a specific structure
for Σi, it can represent other multivariate models. That is, model (1) can be generalized just by considering
Ri(zi,σ2) instead of σ2Imi , where zi is a vector of extra dispersion covariates. Then, in this context, we
have that Σi(wi,γ) = ZiDZ

>
i +Ri(zi,σ) and γ = (τ>,σ>)>, where wi = (Z>i , z

>
i )>, τ is a q1×1 vector

of dispersion parameters involved in D and σ is a q2×1 vector of dispersion parameters associated with the
model error term. We can go further and assign, for instance, a first-order autoregressive covariance matrix
to the error terms, that is, Σi(wi,γ) = ZiDZ

>
i + σ2V (ρ), where Vrs(ρ) = ρ|r−s|/(1 − ρ), then wi = Zi,

q2 = 2 and γ = (τ , σ2, ρ)>. The last structure is a common assumption when the vector yi has components
measured in the time line, therefore the correlation of any pair of repeated measurements decreases according
to how far apart they are in time. For instance, for r = q1 = 1 and mi = m assume the following random
effect model: yit = µ + γi + εit, for i = 1, . . . , n and t = 1, . . . ,m, where yit is the measure made in the
tth time for the ith individual. If t1 < t2 < . . . < tm, we expect that Cov(yit1 , yit2) > Cov(yit1 , yit3) >
. . . > Cov(yit1 , yitm). Then, using the last structure for Σi we obtain exactly this behavior, since in this
case Cov(yit1 , yits) = σ2

γ + σ2ρ|t1−ts|/(1 − ρ). However, If we consider Ri = σ2Im, that covariance will be
Cov(yit1 , yits) = σ2

γ + σ2 for any pair of t1 and ts not matter how far they are.
In general, Σi(wi,γ) may be any structured covariance matrix with properties aforementioned. To keep

the same notation, consider γ = (γ0, . . . , γq)
>, i.e., q1 + q2 = q + 1, then, the number of parameters is still

b = p+ q + 1 (here, b is fixed and b� n).
Russo et al. (2009) show that the score functions considering model (1) are given by

Uα =

n∑
i=1

viJ
>
i Σ−1i ri and Uγj = −1

2

n∑
i=1

{
tr
[
Σ−1i Σ̇i(j)

]
− vir>i Σ−1i Σ̇i(j)Σ

−1
i ri

}
for j = 0, . . . , q

where vi = −2Wg(ui), ui = r>i Σ−1i ri, ri = yi−f(xi,α), Ji = ∂f(xi,α)/∂α>, Σ̇i(j) = ∂Σi/∂γj , Wg(ui) =
d log g(ui)/dui and function g(·) is the density generator function with properties defined in Russo et al.
(2009).

The authors also show that the expected Fisher information considering model (1) is given by

Kθθ =

(
Kαα 0

0 Kγγ

)
,

where

Kαα =

n∑
i=1

4dgi
mi

J>i Σ−1i Ji,

and the (r, s) element of Kγγ is given by

Kγrγs =
n∑
i=1

{
arsi

4
(ci − 1) + ci

1

2
tr
[
Σ−1i Σ̇i(r)Σ

−1
i Σ̇i(s)

]}
2



with ci = 4fgi/[mi(mi + 2)] and the quantities dgi, fgi and arsi are well defined in Russo et al. (2009). Note
that, the above score functions and Fisher information are essentially the same of those under model (2),
then the score functions and the Fisher information computed by Russo et al. (2009) hold even for more
general models than the one that was defined by the authors.

This paper is organized as follows. Section 1.1 presents a matrix version for the score function, the
(observed and expected) Fisher information and shows an iterative re-weighted least squares algorithm to
attain the maximum-likelihood estimate for θ. Section 1.2 shows a matrix version for the ∆ matrices
presented by Russo et al. (2009) which are also applicable for model (2). Section 1.3 presents an expression
for the generalized leverage on fixed effects considering model (2) and Section 1.4 shows a connection between
the generalized leverage and the local influence. Section 1.5 discusses the generalized leverage on random
effects. Additionally, Section 2 applies the generalized leverage on fixed and random effects for the same
dataset analysed by Russo et al. (2009) and Section 3 conducts a small simulation study to verify the
computational speed of the matrix and element-by-element formulations. It is worth emphasizing that this
work should be seen just as a complementary material of Russo et al. (2009).

1.1. Matrix version for the score function and Fisher information

The following two matrix results will be intensively used in the computation of the expressions derived in
this paper. Let A, B, C and D be n×n matrices, define also A = (a1,a2, . . . ,an) and C = (c1, c2, . . . , cn),
where ai and ci are n× 1 vectors, then

tr{A>CDB>} = vec(A)>(B ⊗C)vec(D) and A>BC = {a>r Bcs} (3)

where vec(·) is the vec operator, which transforms a matrix into a vector by stacking the columns of the
matrix one underneath the other, “⊗” indicates the Kronecker product. These results and other methods in
matrix differential calculus can be studied in Magnus and Neudecker (2007).

Define the following quantities,

Fi =

(
Ji 0
0 Vi

)
, Hi =

(
Σ−1i 0

0 1
2Σ−1i ⊗Σ−1i

)
, u̇i =

(
viri

−vec(Σi − virir>i )

)
and Vi =

(
vec(Σ̇i(0)), . . . , vec(Σ̇i(q))

)
, where (F>1 , . . . ,F

>
n )> has rank b (i.e., the functions f and Σi must

be defined to hold such condition). Then, by using (3) and after a somewhat algebra, we have that the score
function and the expected Fisher information, considering model (2), can be written, respectively, as

Uθ =

n∑
i=1

F>i Hiu̇i and Kθθ =

n∑
i=1

F>i HiOiHiFi (4)

where

Oi = ci

( 4dgi
mici

Σi 0

0 2Σi ⊗Σi

)
+ (ci − 1)

(
0 0
0 vec(Σi)vec(Σi)

>

)
.

Fisher information given in (4) can clearly be interpreted as a quadratic form which can be easily
attained through direct matrix operations. Thus, a joint iterative procedure for attaining the MLE of θ can
be formulated as the following re-weighted least squares algorithm

θ̂(m+1) =

(
n∑
i=1

F
(m)>
i H̃

(m)
i F

(m)
i

)−1( n∑
i=1

F
(m)>
i H̃

(m)
i ũ

(m)
i

)
, m = 1, 2, . . . (5)

where the quantities with the upper script “(m)” are evaluated at θ̂(m), H̃i = HiOiHi, ũi = H−1i O−1i u̇i +

Fiθ̂ and m is the iteration counter. Under normality we have that ci = 1, Oi = H−1i and vi = 1, and it is
easy to see that this iterative procedure (under normality) is a special case of the one proposed in Patriota
and Lemonte (2009).
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In the sequence, we provide a matrix formulation for the observed Fisher information which requires
harder matrix operations than the one spent in the expected Fisher information. The observed Fisher
information presented in Russo et al. (2009), that is the same observed Fisher information considering
model (2), is given by −L̈θθ = −

∑n
i=1 L̈θθ,i, with

L̈θθ,i =
∂Li(θ)

∂θ∂θ>
=

(
L̈αα,i L̈αγ,i
L̈γα,i L̈γγ,i

)
where

L̈αα,i = 2J>i Σ−1i
{
Wg(ui)Σi + 2W ′g(ui)rir

>
i

}
Σ−1i Ji − 2Wg(ui)[Ip ⊗ r>i Σ−1i ]Di,

L̈αγ,i = (L̈αγ0,i, L̈αγ1,i, . . . , L̈αγq,i) (6)

with L̈αγj ,i = 2J>i Σ−1i
{
Wg(ui)Σi +W ′g(ui)rir

>
i

}
Σ−1i Σ̇i(j)Σ

−1
i ri and the element (j, k) of L̈γγ,i has the

form

1

2
tr

{
Σ−1i

[
Σ̇i(j)Σ

−1
i Σ̇i(k) − Σ̇i(jk)

]}
+ r>i Σ−1i

{
W ′g(ui)Σ̇i(j)Σ

−1
i rir

>
i Σ−1i Σ̇i(k) −Wg(ui)Σ̇i(jk) (7)

+Wg(ui)Σ̇i(j)Σ
−1
i Σ̇i(k) +Wg(ui)Σ̇i(k)Σ

−1
i Σ̇i(j)

}
Σ−1i ri

with

Σ̇i(jk) =
∂2Σi

∂γj∂γk
, Di =

ai(11) . . . ai(1p)
...

. . .
...

ai(p1) . . . ai(pp)

 and ai(rs) =
∂2f

∂αr∂αs
.

Note that, quantities (6) and (7) are not written in a matrix form, in the following we present a compact
matrix version of L̈θθ.

L̈θθ =

n∑
i=1

{
F>i HiÖiHiFi +

[
u̇>i Hi

] [∂Fi
∂θ

]}
(8)

where

Öi = 2Wg(ui)

(
Σi 2Σi ⊗ r>i

2Σi ⊗ ri 2(Σi ⊗ (rir
>
i ) + (rir

>
i )⊗Σi)

)
+ 2

(
0 0
0 Σi ⊗Σi,

)
+ 4W ′g(ui)

(
rir
>
i (rir

>
i )⊗ r>i

(rir
>
i )⊗ ri vec(rir

>
i )vec(rir

>
i )>

)
,

∂Fi

∂θ is an mi(mi+1)×b×b array,
[
u̇>i Hi

] [
∂Fi

∂θ

]
is the bracket product of u̇>i Hi and ∂Fi

∂θ (for further details
see Wei, 1998, on pg. 188).

In what follows, we present some matrix results on elliptical variables. Here, ri
ind∼ Elmi

(0,Σi), then
adapting the results of Mitchell (1989) for a matrix version, we have that

a) E(rivi) = 0,

b) E(rir
>
i vi) = Σi,

c) E(rir
>
i v

2
i ) = 4dgi/miΣi

d) E(vec(rir
>
i )r>i v

2
i ) = 0

e) E(vec(rir
>
i )vec(rir

>
i )>v2i ) = ci

(
vec(Σi)vec(Σi)

>+Σi⊗Σi+Pi(Σi⊗Σi)

)
, where Pi is a comutation

maltrix such that vec(A) = Pivec(A>) for any matrix A with appropriated dimensions.

Therefore, as we are considering a function g(·) with regular properties (differentiation and integration
are interchangeable), we have that E(u̇i) = 0, and E(−L̈θθ) = Kθθ.
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1.2. Matrix version for ∆

The diagnostic technique developed in Cook (1986) is a well-spread tool to check the model assumptions
and conduct diagnostic studies. The author proposes to look at the likelihood displacement LD(ω) =

2{L(θ̂) − L(θ̂ω)} to find possible influential observations in the MLEs, where L(θ) =
∑
i Li(θ) is the log-

likelihood function and ω is an s×1 vector of perturbation restricted in an open set Ω ⊂ Rs. It is also defined
a vector of no perturbation as ω0 ∈ Ω in which LD(ω0) = 0, i.e., L(θω0

) = L(θ). In his seminal paper, Cook
shows that the normal curvature at the unit direction ` has the following form C`(θ) = 2|`>∆>(L̈θθ)−1∆`|
where ∆ = ∂2L(θ|ω)/∂θ∂ω>, both ∆ and L̈θθ are evaluated at θ = θ̂ and ω = ω0. Thus, Cdmax is twice
the largest eigenvalue of B = −∆>L̈−1θθ∆ and dmax is the corresponding eigenvector. The index plot of
dmax may reveal how to perturb the model (or data) to obtain large changes in the estimate of θ. For a
more detailed information, we refer the reader to the work of Russo et al. (2009) and the references therein.

The main goal of this section is to give matrix versions of the ∆ matrices computed by Russo et al.
(2009) for each perturbation scheme. Note that, by using the defined quantities, we can write the b × n
matrix ∆ in the case-weight perturbation (i.e., Li(θω0) = ωiLi(θ)) and the scale perturbation (i.e., the
perturbed log-likelihood function Li(θω) is built replacing Σi with ω−1i Σi in Li(θ)), respectively, by

∆ =

(
F̂>1 Ĥ1

̂̇u1, . . . , F̂
>
n Ĥn

̂̇un) and ∆ =

(
F̂>1 Ĥ1

̂̇v1, . . . , F̂>n Ĥn
̂̇vn), (9)

where the quantities with “̂” are evaluated at θ̂ and

v̇i = −2(Wg(ui) + uiW
′
g(ui))

(
ri

vec(rir
>
i )

)
.

Finally, the b × N matrix ∆ under the response perturbation (i.e., the perturbed log-likelihood function
Li(θω) is built replacing yi with yi + ωi in Li(θ)) becomes

∆ =

(
F̂>1 Ĥ1Ĝ1, . . . , F̂

>
n ĤnĜn

)
, (10)

where N =
∑n
i=1mi and

Gi = −2

(
Wg(ui)Imi + 2W ′g(ui)rir

>
i Σ−1i

2ri ⊗
(
Wg(ui)Imi +W ′g(ui)rir

>
i Σ−1i

)) .
Note that, formulas (9) and (10) are easily handled through any statistical software.

1.3. Generalized leverage on fixed effects

In this section, we compute the generalized leverage proposed by Wei et al. (1998). The generalized
leverage is a measure of the importance of individual observations on the estimator. It is one of the measures
of influence analysis in regression models. Let y = vec(y1, . . . ,yn) and µ(α) = vec(f(α,x1), . . . ,f(α,xn)).
The authors have shown that the generalized leverage is obtained by evaluating the N ×N matrix

GL(θ) = Dθ(−L̈θθ)−1L̈θy,

at θ = θ̂, where Dθ = ∂µ(α)/∂θ> and L̈θy = ∂2L(θ)/∂θ∂y>. The main idea behind the concept of
leverage is that of evaluating the influence of yi on its own predicted value. As noted by the authors, the
generalized leverage is invariant under reparameterizations and observations with large GLii are leverage
points. Under the model defined in (2), we have that

Dθ =


J1 0
J2 0
...

...
Jn 0

 and L̈θY =
(
F>1 H1G1, . . . ,F

>
n HnGn

)
.
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Consider now that γ is fixed. Then, the generalized leverage is

GL(α) = Dα(−L̈αα)−1L̈αy, (11)

at α = α̂, where Dα = ∂µ(α)/∂α> and L̈αy = ∂2L(α)/∂α∂y>. Under model (2), we find Dα =

(J>1 , . . . ,J
>
n )> and L̈αy = (J>1 Σ−11 G11, . . . ,J

>
n Σ−1n G1n), whereG1i = −2(Wg(ui)Imi +2W ′g(ui)rir

>
i Σ−1i ).

Index plots of GLii may reveal those observations with high influence on their own predicted values.

1.4. Connection between local influence and generalized leverage

There is a connection between local influence and generalized leverage. In order to deduce such relation-
ship we must define some quantities. Define Fi = (F>1i ,F

>
2i )
>, Gi = (G>1i,G

>
2i)
> where F1i = (Ji 0), F2i =

(0 Vi), G1i = −2(Wg(ui)Imi + 2W ′g(ui)rir
>
i Σ−1i ) and G2i = −2

[
2ri ⊗

(
Wg(ui)Imi + W ′g(ui)rir

>
i Σ−1i

)]
.

Define also,
F ∗ = (F>1 , . . . ,F

>
n )> and F̃ = (F̃>1 , F̃

>
2 )>,

where F̃j = (F>j1, . . . ,F
>
jn)> for j = 1, 2. Notice that, there exist a matrix of permutations I∗ such that

F ∗ = I∗F̃ . This matrix is given by

I∗ =



Im1 0 . . . 0 0 0 0 . . . 0 0
0 0 . . . 0 0 Im2

1
0 . . . 0 0

0 Im2
. . . 0 0 0 0 . . . 0 0

0 0 . . . 0 0 0 Im2
2

. . . 0 0
...

...
...

...
...

...
...

...
...

0 0 . . . Imn−1
0 0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . Im2
n−1

0

0 0 . . . 0 Imn
0 0 . . . 0 0

0 0 . . . 0 0 0 0 . . . 0 Im2
n


,

where the matrices of zeros have appropriated dimensions. Therefore, we have that

∆>(−L̈θθ)−1∆ = P>I∗F̃ (−L̈θθ)−1∆,

where P = blc diag(H1G1, . . . ,HnGn). Note also that, P>I∗ = (P ∗>1 ,P ∗>2 ), where

P ∗1 = blc diag(Σ−11 G11, . . . ,Σ
−1
n G1n) and P ∗2 = 1/2blc diag

(
(Σ−11 ⊗Σ−11 )G21, . . . , (Σ

−1
n ⊗Σ−1n )G2n

)
.

Hence, the relationship between the local influence (under additive response perturbations) and the gener-
alized leverage is

∆>(−L̈θθ)−1∆ = P ∗>1 GL(θ) + P ∗>2 F̃2(−L̈θθ)−1∆.

This connection was studied by Osorio et al. (2007) for the linear case considering fixed the disper-
sion parameters. Thus, following the same idea we can consider γ fixed and find the generalized lever-
age for α. The matrix B of the local influence under the response perturbation considering γ fixed is
B = ∆>α (−L̈αα)−1∆α, where ∆α = L̈αY with L̈αY defined in the previous section. Thus, the connection
between the local influence and the generalized leverage (for γ fixed) is B = P ∗>1 GL(α).

Then, the normal curvature under additive perturbations in the response values can be rewritten as
C`(θ) = 2|`>P ∗>1 GL(θ)`− `>P ∗>2 F̃2(L̈θθ)−1∆`| in the general case and C`(α) = 2|`>P ∗>1 GL(α)`| for γ
fixed.
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1.5. Generalized leverage on random effects

In this section we apply the idea of Nobre and Singer (2010) to verify the importance of individual

observations on the random effect components of the conditional fitted values ỹ = µ(α̂) + Zb̂ for γ fixed,

where Z = blc diag(Z1, . . .Zn) and b̂ = vec(b̂1, . . . , b̂n) with the predictor b̂i = DZ>i Σ−1i (yi − f(xi, α̂))
computed by Russo et al. (2009). Therefore, in matrix notation we have

GLp =
∂ỹ

∂y>
= GL(α) +GLb

where GLb = Z(In ⊗D)Z>Σ−1(IN −GL(α)), Σ = blc diag(Σ1, . . .Σn) and GL(α) given in (11). The
first idea for the generalized leverage on random effect effects was proposed independently by Nobre (2004)
and Demidenko and Stukel (2005). They suggest using the quantity GLb. However, as noted by Nobre
and Singer (2010) this quantity carries the leverages for the fixed effects, therefore the same authors suggest
using the quantity GLb∗ = Z(In ⊗D)Z> rather than GLb to measure the leverage on random effects. It
is very reasonable, since outlying observations in the vector space spanned by the explanatory variables in
Z should affect the random effect component of the conditional fitted values and consequently affect the
estimate of the within-unit variability explained by the presence of the random effects (Nobre and Singer,
2010). Then the ith individual have high leverage on the random effects if tr{ZiDZ>i }/mi is sufficiently
large. The jth observation of the ith individual is said to have high leverage on the random effects if the
jth diagonal element of ZiDZ

>
i is sufficiently large. Sufficiently large can be understood as greater than

2tr{GLb∗/N}.

2. Application of the Generalized leverage

This section applies the generalized leverage on the dataset analysed by Russo et al. (2009). This dataset
is called ‘Dialyzer’ and can be found in the library ‘nlme’ of the software R Development Core Team (2009).
As expected, the maximum likelihood estimates and their standard deviations obtained by using the matrix
formulation are the very same of those given in Table 1 of Russo et al. (2009).

Figure 1 presents index plots of leverages on the fixed and random effects, where (a), (b) and (c) refer to
the fixed effects considering Normal, Student-t and Power-Exponential distributions, respectively and (d),
(e) and (f) refer to the random effects considering Normal, Student-t and Power-Exponential distributions,
respectively. As cut-off points we consider 2tr{GL(θ)/N} for the fixed effects and 2tr{GLb∗/N} for the
random effects (the dashed line in the Figure 1), we also consider Q3 + 1.5(Q3 −Q1) (the full line in Figure
1), where Q3 is the third quartile and Q1 is the first quartile of the diagonal elements of GL(θ) for the
fixed effects and GLb∗ for the random effects. The latter cut-off point is used in the boxplot graph to show
the outliers of a dataset and it takes into account the dispersion of the points. As can be seen, there is no
evident leverages on the random effects. For the leverages on the fixed effects and considering the cut-off
point based on the quartiles, we find that 13 points seem to be leverages under the Normal distribution
(1.1, 2.1, 3.1, 4.1, 5.1, 6.1, 9.1, 10.1, 11.1, 12.1, 14.1, 15.1, 16.1, where i.j means jth replication of the ith
individual), five points under the Student-t distribution (2.1, 3.1, 5.1, 6.1, 16.1) and four points under the
Power-Exponential distribution (2.1, 3.1, 6.1, 16.1).

For the response perturbation, Russo et al. (2009) found that the measures with the largest influence
under normal model are 4.4, 1.7, 12.6, 1.5, 4.7, 7.4, 12.7, 9.7, 8.7 and 10.5. Under Student-t model they are
2.1, 6.7, 9.7, 16.5, 3.5 and 19.7 and finally under Power-Exponential they are 2.1, 6.7, 9.7 and 12.6. As can
be seen, these points are not leverage points. Therefore, although the relation between the local influence
under response perturbation and the general leverage, the matrices Dθ and ∆ contain different information
about the data.

3. Simulation study

In this section we conduct a small simulation study to show some advantages and disadvantages of using
the matrix notation. We use the software R Development Core Team (2009) running in a computer Intel
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Figure 1: Index plots of leverages on the fixed effects θ̂ (considering (a) Normal, (b) Student-t and (c) Power-Exponential
distributions) and random effects (considering (d) Normal, (e) Student-t and (f) Power-Exponential distributions). The dashed
line is 2tr{GL/N} and the full line is Q3 + 1.5(Q3−Q1), where Q3 is the third quartile and Q1 is first quartile of the diagonal
elements of GL.
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Core 2 CPU, 2.14 GHz with 1 Gb of RAM. We use only the formula of the expected Fisher information.
We use the following three versions of the Fisher information

Kαα and Kγγ =

n∑
i=1

V >i

[
ci
2

Σ−1i ⊗Σ−1i + (1− ci)vec(Σ−1i )vec(Σ−1i )>
]
Vi, (12)

Kθθ =

n∑
i=1

F>i H̃iFi. (13)

and

Kαα and Kγrγs =

n∑
i=1

{
arsi

4
(ci − 1) + ci

1

2
tr
[
Σ−1i Σ̇i(r)Σ

−1
i Σ̇i(s)

]}
for k, s = 0, . . . , q (14)

where all quantities are defined previously. A question that may arise is: when the matrix formulation ((12)
and (13)) is faster than the element-by-element formulation (14)? To answer this question, we generate
matrices and compute formulas (12), (13) and (14). We consider Vi = {1/100}, Di = {1/10} and Σi,
for i = 1, . . . , n, full non-structured matrices generated from a Wishart distribution for each i (i.e., these
matrices vary with i). Notice that the constants ci, for i = 1, . . . , n and the way of generating such matrices
are not important, which is important here is the time spent to compute the above formulas. We consider
n = 20, m ∈ {7, 14, 21, 28, 35} and q ∈ {3, 6, 10, 15, 21}. The values of q were chosen to match with the
number of parameters in a non-structured matrix, e.g., for q = 3 we have a 2× 2 matrix, for q = 6 we have
a 3× 3 matrix and so forth. In the dataset analysed in Russo et al. (2009), these values were n = 20, m = 7
and q = 3.

We generate 1000 Monte Carlo samples and compute the mean of the time spent (in seconds) for com-
puting each case. The standard deviations are around 10−5 for all cases. Table 1 depicts the average time
(in seconds) to compute: (a) formula (12), (b) formula (13) and (c) formula (14). Table 2 presents the ratios:
(d) between the figures of (a) and (b) of Table 1; (e) between the figures of (c) and (b) of Table 1 and (f)
between the figures of (c) and (a) of Table 1. As expected, when q increases, the matrix formulations (12)
and (13) become faster than the element-by-element one. In particular, if in Russo et al. (2009) dataset
the matrix D had dimensions 5 × 5 (q = 21), then the matrix formulation is around 115 (using formula
(12)) times faster than the element-by-element one. On the one hand, the time spent to compute the matrix
formulation seems to increase very slowly with q, while for the element-by-element approach this increasing
is more pronounced. On the other hand, the time spent for computing the element-by-element formula-
tion seems to increase slowly with m, while for the matrix approach this increasing is more pronounced.
Moreover, as expected, computing Kαα and Kγγ in (12) is faster than computing Kθθ directly in (13).

Table 1: Time in seconds: (a) for computing formula (13). (b) for computing formula (14) and (c) for computing formula (12).

(a) (b) (c)
m m m

7 14 21 28 35 7 14 21 28 35 7 14 21 28 35
3 0.0∗ 0.0∗ 0.2 0.7 1.8 0.0∗ 0.2 0.7 2.5 6.5 0.1 0.1 0.1 0.2 0.3
6 0.0∗ 0.1 0.2 0.7 1.9 0.0∗ 0.1 0.7 2.4 6.5 0.2 0.3 0.4 0.7 1.1

q 10 0.0∗ 0.1 0.3 0.8 2.1 0.0∗ 0.2 0.8 2.4 6.6 0.4 0.8 1.3 2.2 3.4
15 0.0∗ 0.1 0.3 0.9 2.4 0.0∗ 0.2 0.8 2.6 6.9 0.9 1.9 3.4 5.9 9.2
21 0.0∗ 0.1 0.3 1.0 2.6 0.0∗ 0.2 0.8 2.7 7.2 2.0 4.3 8.2 14.0 21.8

∗ lesser than 0.05

4. Final remarks and conclusions

In this short communication, we presented a matrix formulation of the score function, the (expected
and observed) Fisher information, the generalized leverage and the ∆ matrices under case weight, scale and
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Table 2: Ratios: (d) the figures of (a) divided by (b); (e) the figures of (c) divided by (b); and (f) the figures of (c) divided by
(a).

(d) (e) (f)
m m m

7 14 21 28 35 7 14 21 28 35 7 14 21 28 35
3 0.8 0.3 0.3 0.3 0.3 1.8 0.5 0.2 0.1 0.0∗ 2.2 1.6 0.6 0.3 0.2
6 0.4 0.3 0.3 0.3 0.3 5.2 1.7 0.6 0.3 0.2 12.5 5.1 1.9 1.0 0.6

q 10 0.4 0.3 0.4 0.3 0.3 13.6 4.7 1.8 0.9 0.5 35.2 13.5 4.6 2.7 1.6
15 0.5 0.4 0.4 0.4 0.3 27.0 11.2 4.4 2.3 1.3 59.0 29.3 12.1 6.5 3.9
21 0.4 0.4 0.4 0.4 0.4 51.7 23.3 9.8 5.1 3.0 115.5 58.8 24.8 13.3 8.3

∗ is equal to 0.046

response perturbations for a very general elliptical model which includes the nonlinear mixed-effects elliptical
model proposed in Russo et al. (2009). The general expressions derived in this paper can be applied in many
other models and they are easily interpretable.

Although the matrix formulation may have a high computational cost when the dimension of the observed
variable is large, if a proper matrix software is used, the storage requirements of the presented matrix
formulation are quite minimal, since in general we are dealing with symmetric and sparse matrices. For
instance, by using the packages Matrix or/and SparseM of the software R Development Core Team (2009)
we can have a significant performance improvements in memory utilization for applications involving large
sparse matrices (Koenker and Ng, 2009). Regarding the computational speed, on the one hand, we suggest
using the element-by-element approach when the dimension of the observed variable (m) is large and q is
relatively small. On the other hand, when the dimension of the observed variable is small and q is relatively
large we suggest using the matrix formulation.
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