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Abstract

Vector autoregressive (VAR) modelling is one of the most popular approaches in
multivariate time series analysis. The parameters interpretation is simple, and pro-
vide an intuitive identification of relationships and Granger causality among time
series. However, the VAR modelling requires stationarity conditions which could
not be valid in many practical applications. Locally stationary or time depen-
dent modelling seem attractive generalizations, and several univariate approaches
have already been proposed. In this paper we propose an estimation procedure
for time-varying vector autoregressive processes, based on wavelet expansions of
autoregressive coefficients. The asymptotic properties of the estimator are derived
and illustrated by computer intensive simulations. We also present an application
to brain connectivity identification using functional magnetic resonance imaging
(fMRI) datasets.
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1 Introduction

Since its description (Sims (1980)), vector autoregressive modelling has
been succesfully applied to the analysis of multivariate time series, focusing
on the identification of complex relationships among several time series. The
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parameters of VAR models can be easily interpreted and provide a simple iden-
tification of Granger causality (Granger (1969)). Hence, due to its high flexi-
bility and generality, several applications can be found in econometrics (Sims
(1982, 1998); Stock and Watson (2001)), natural sciences (Lu et al. (2006))
and neuroscience (Goebel et al. (2003); Baccala and Sameshima (2001); Sato
et al. (2006)).

Several studies in econometrics are founded in VAR modelling, which pro-
vide a quantitative analysis of relationships between financial assets. Some
examples of monetary policies studies based on VAR models can be found
in Lawrence et al. (1999); Sack (2000), and many other examples and appli-
cations of VAR in econometrics are presented in Enders (2005); Stock and
Watson (2001). Considering applications in medical research, Harrison et al.
(2003) and Goebel et al. (2003) introduced the VAR models in functional mag-
netic resonance imaging (fMRI) focusing the brain connectivity modelling. The
concept of Granger causality in the context of brain signals may be interpreted
as the direction of information flow. Baccala and Sameshima (2001) proposed
a frequency domain version of Granger causality: the partial directed coher-
ence measure (PDC), which is based on VAR models. They also showed the
usefulness of partial directed coherence in the analysis of brain connectivity
modelling using eletroencephalography (EEG) data. More details about VAR
properties, estimation and applications can be found in Lutkepohl (1993).

Nevertheless, the classical VAR modelling is adequate only in the analysis of
stationary time series, and in many cases, stationarity assumptions are too
restrictive or not reasonable. In these cases, time-varying parameters or adap-
tative modelling seem to be attractive alternatives. Time varying autoregre-
sive (TVAR) models have been developed in several directions since the early
1980’s, specially in the Bayesian framework. See Prado et al. (2001) for an
excellent review. These models led for example to new methods of time series
decomposition and analysis. West (1997); Huerta and West (1997) and Krys-
tal et al. (1999) use these models in connection with EEG data. For further
applications of TVAR models see Paulik et al. (1994) and Primiceri (2005).

Dahlhaus and co-workers, in a series of articles, developed a theory for locally
stationary processes. Basically this is the same idea of Priestley’s evolutionary
processes, but where an asymptotic theory is feasible. Dahlhaus (Dahlhaus
(1997); Dahlhaus et al. (1999); Dahlhaus (2000)) developed many estimators
and asymptotic results, considering locally stationary processes and functions
projection in adequate spaces.

In this paper, we propose a novel time-varying multivariate estimation, founded
on locally stationary processes, vector autoregression and wavelet decomposi-
tions. The asymptotic properties of estimators and simulations are also pre-
sented. We also illustrate an application of the proposed approach to dynamic
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brain connectivity modelling, considering functional magnetic resonance imag-
ing datasets.

The plan of the article is as follows. In section 2 we introduce the basic back-
ground on wavelets and locally stationary processes. The proposed approach
to estimate time-varying vector autoregressive processes is the subject of sec-
tion 3. Some simulations are performed in section 4 and an application to
brain connectivity modelling is given in section 5. We end the paper with
some comments in section 6.

2 Background

2.1 Wavelets

Wavelet analysis is a very proeminent and flexible tool nowadays. In addi-
tion, it is the focus of several mathematics, statistics (Vidakovic (1999)) and
signal processing research (Percival and Walden (2000)) and many applica-
tions can be found in biology (Bullmore et al. (2003); Gackenheimer (2006)),
geophysics (Jevrejeva et al. (2003); Grinsted et al. (2004)) and image process-
ing (Chambolle et al. (1998)). Similarly to trigonometrics functions, wavelets
generate basis of function spaces (Meyer (1993)), but wavelet decompositions
are well localized in scale and time, allowing the analysis of non-stationary
time series. Furthermore, in contrast to Fourier analysis, wavelets also provide
high adaptativiness in non-homogeneous smoothness spaces.

The main characteristic of wavelet basis is that the space of functions is gener-
ated considering dilations and translations of a unique function ψ(t) (mother
wavelet). Formally, the space is generated by functions of the class

Ψ =

{
ψa,b(x) = |a|−1/2ψ

(
x− b

a

)
, a, b ∈ R, a 6= 0

}
, (1)

and ψ must satisfy the following conditions:
i)
∫∞
−∞ ψ(t)dt = 0;

ii)
∫∞
−∞ |ψ(t)|dt <∞;

iii)
∫∞
−∞

|ψ̂(λ)|
|λ|

dλ <∞, where ψ̂(λ) is the Fourier transform of ψ(t);

iv)
∫∞
−∞ tjψ(t)dt = 0, j = 0, 1, 2, ..., r−1, for at least a r ≥ 1 and

∫∞
−∞ |trψ(t)|dt <

∞.

An way to generate wavelets is considering an orthogonal function φ (father
wavelet), which is the solution of the equation
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φ(t) =
√

2
∑

k

lkφ(2t− k), (2)

where

lk =
√

2

∞∫

−∞

φ(t)φ(2t− k)dt. (3)

Considering binary dilations and dyadic translations of φ(t), we obtain a space
generated by the class of function

φj,k(t) = 2j/2φ(2jt− k), (4)

where j, k ∈ Z. Then, we may obtain ψ(t) by filtering φ(t) adequately, using
the relationships

ψ(t) =
√

2
∑

k

hkφ(2t− k), (5)

and

hk =
√

2

∞∫

−∞

ψ(t)φ(2t− k)dt. (6)

The quadrature mirror filter relation is given by hk = (−1)kl1−k, and actually,
the filters lk and hk are low-pass and high-pass filters, respectively. A useful
result is that any function g(t) satisfying

∫∞
−∞ g(t)2dt < ∞ (Hardle et al.

(1997)), can be expanded as

g(t) =
∑

k

cj0,kφj0,k(t) +
∑

j≥j0

∑

k

dj,kψj,k(t), (7)

for some coarse scale j0, usually taken as zero. Here we are using the short
notation “scale j” for 2j−1.

Basically, the coefficient dj,k are associated with changes of averages on scale j
spaced 2j units apart, and cj0,k are smoothed averages over scale j0. Increasing
one unit in j will lead to a increase of 2j+1 − 2j on the number of resolution
points . The coefficient k is the time location coefficient, indicating translations
of the wavelet functions.
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Wavelets commonly used belong to the wavelet class of Daubechies (Daubechies
(1992)), which are obtained by chosing adequate parameters of the low-pass
(lk) and high-pass filters (hk).

2.2 Locally Stationary Processes

Considering practical applications, the locally stationary concept is very
useful, as it allows a formal characterization of time-varying parameters of
stochastic processes. Here we follow Dahlhaus (1997).

Definition 1 A sequence of multivariate Gaussian stochastic processes xt,T =

(x
(1)
t,T , ..., x

(s)
t,T )′ with t = 1, ..., T is a locally stationary process with transfer

covariance matrix A0
t,T (λ) and mean vector µ(t/T ) if there is a representation

xt,T = µ
(
t

T

)
+

π∫

−π

exp(iλt)A0
t,T (λ)dξ(λ), (8)

which must satisfy the following properties:
i) ξ(λ) is a complex orthonormal process vector in [−π, π] with ξa(λ) = ξa(−λ),
E[ξa(λ)] = 0 and

E[dξa(λ)dξb(λ)] = δabη(λ+ µ)dλdµ, (9)

where η(λ) =
∑∞
j=−∞ δ(λ + 2πj) is the extension of Dirac delta function with

period 2π;
ii) There is a constant K and a function matrix 2π peridic A : [0, 1] × R →
Cs×s with A(u, λ) = A(u,−λ) and

sup
t,λ

|A0
t,T (λ)ab −A(t/T, λ)ab| ≤ KT−1 (10)

∀a, b = 1, ..., s and T ∈ N. A(u, λ) and µ(u) are continuous functions in u.
The evolutionary spectral density matrix is defined as f(u, λ) := A(u, λ)A(u, λ)′.

A simple example of an univariate locally stationary process is a time-varying
coefficients moving average process of order q, i.e.

xt,T = u(t/T ) +
q∑

j=1

aj(t/T )ǫt−j,T + ǫt,T , (11)
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where {ǫt,T} is a sequence of independent Gaussian i.i.d. random variables
with mean zero and u(t) and a(t) are functions on [0, 1]. Furthermore, if a
time-varying coefficients autoregressive model can be represented by

xt,T = u(t/T ) + ǫt,T +
∞∑

i=1

ci(t/T )ǫt−i,T , (12)

assuming

sup
t

∞∑

i=1

|ci(t/T )| <∞. (13)

then it is also a locally stationary process (Dahlhaus et al. (1999)). In this
paper, time-varying multivariate autoregressive models which admit an infinite
moving average representation are considered.

2.3 Time-varying Vector Autoregressive Processes

For some positive integer T (number of observations), Let xt, T be a multi-
variate time series with dimension s, xt,T = (x1t,T , x2t,T , . . . , xst,T )′. The time-
varying vector autoregressive model is defined by,

xt,T = u(t/T ) +
p∑

l=1

Al(t/T )xt−l,T + ǫt,T , (14)

V ar(ǫt,T ) = Σ(t/T ) =




σ2
1(t/T ) σ12(t/T ) . . . σ1s(t/T )

σ21(t/T ) σ2
2(t/T ) . . . σ2s(t/T )

...
...

. . .
...

σs1(t/T ) σs2(t/T ) . . . σ2
s(t/T )




,

where ǫt,T is the innovations vector (independent and with mean zero), u(t/T )
is the vector of intercepts, and Al(t/T ) (l = 1, 2, ..., p) are the autoregressive
coefficients matrices, given by
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u(t/T ) =




u1(t/T )

u2(t/T )
...

us(t/T )




, Al(t/T ) =




a
(l)
11(t/T ) a

(l)
12(t/T ) . . . a

(l)
1s (t/T )

a
(l)
21(t/T ) a

(l)
22(t/T ) . . . a

(l)
2s (t/T )

...
...

. . .
...

a
(l)
s1 (t/T ) a

(l)
s2 (t/T ) . . . a(l)

ss (t/T )




,

l = 1, ..., p, respectively.
In this model, the intercept vector, the autoregressive coefficient matrices and
the innovations covariance matrices are time-varying parameters. Further, de-
spite the fact of being a discrete process, in order to establish asymptotic
properties, all these functions are defined in the support [0, 1]. Hence, this
model is a particular extension of classical vector autoregression to the locally
stationary case. The time-varying properties are very useful, because they re-
lax stationarity assumptions, and they also provide a simple interpretation of
functional coefficients.

The applicability and reliability of time-varying models rely on estimation
procedures. Most of the proposed approaches are based on adaptative filters
or windowed estimation, that provide smooth and reliable estimates in cases
of long time series. However, they are not adequate in cases of short or cyclical
time series, where window width should not be long. An alternative approach
is founded on function expansions in adequate spaces. Considering the uni-
varite case, Dahlhaus et al. (1999) and Chiann and Morettin (1999, 2005)
suggested the wavelet expansions for time-varying linear systems. In this pa-
per, we present the generalization of these approaches to the multivariate case.

3 The Wavelet Approach

As there is a large number of parameters in the multivariate case, in
order to simplify the notation, assume that xt ≡ xt,T and f(t) ≡ f(t/T ),
where xt,T is a stochastic process, f(t/T ) is a function with support in [0, 1],
ψ−1,0(x) = φ0,0(x) and α0,0 = β−1,0. Thus, for any function f(x) ∈ L2, its
wavelet expansion is given by

f(x) =
∞∑

j=−1

∞∑

k=0

βj,kψj,k(x), (15)

where
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βj,k =< f(x);ψj,k > . (16)

Hence, considering that the multivariate time-varying autoregression param-
eters are functions of time and assuming they belong to L2, the model can be
represented as

xt =
∞∑

j=−1

∞∑

k=0

uj,kψj,k(t) +
p∑

l=1

∞∑

j=−1

∞∑

k=0

A
(l)
j,kψj,k(t)xt−l + ǫt,

=
J∑

j=−1

2j−1∑

k=0

uj,kψj,k(t) +
p∑

l=1

J∑

j=−1

2j−1∑

k=0

A
(l)
j,kψj,k(t)xt−l +

∑

j>J

∞∑

k=0

uj,kψj,k(t) +
p∑

l=1

∑

j>J

∞∑

k=0

A
(l)
j,kψj,k(t)xt−l + ǫt,

=
J∑

j=−1

2j−1∑

k=0

uj,kψj,k(t) +
p∑

l=1

J∑

j=−1

2j−1∑

k=0

A
(l)
j,kψj,k(t)xt−l + νt, (17)

where

νt =
∑

j>J

∞∑

k=0

uj,kψj,k(t) +
p∑

l=1

∑

j>J

∞∑

k=0

A
(l)
j,kψj,k(t)xt−l + ǫt = ηt + ǫt, (18)

uj,k are vectors and A
(l)
j,k (l = 1, ..., p, j = 1, 2, ... and k = 1, 2, ...) are matrices

containing the wavelet expansion coefficients. The vector ηt = o(T ) is the
truncation error, considering a finite expansion from j = 0, 1, ..., J = J(T ).

The main idea of time-varying coefficients wavelet expansion is to provide a
simple and consistent estimator. An approximated maximum likelihood esti-
mation could be applied in this case, but depending on the dimension, trun-
cation scale and order of the model, there will be a really large number of pa-
rameters to be estimated and optimization algorithms may even not converge.
Note that considering projections in adequate spaces, we obtain a linear model
in the parameters uj,k and A

(l)
j,k. Hence, we propose an interactive generalized

least square procedure, as an extension of Cochrane and Orcutt algorithm to
the multivariate case.

3.1 Estimation

Firstly, assume that the covariance matrix Σ(t) is known. The model is
given by
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xt =
J∑

j=−1

2j−1∑

k=0

uj,kψj,k(t) +
p∑

l=1

J∑

j=−1

2j−1∑

k=0

A
(l)
j,kψj,k(t)xt−l + νt, (19)

where xt is a s-dimensional locally stationary process and uj,k and A
(l)
j,k contain

all the coefficients to be estimated. Assuming the truncation in the scale J =
J(T ), the model can be represented as follows.

Definition 2 A wavelet time-varying vector autoregressive (WTVAR) is de-
fined as

xt = Λ[Z ⊗ Ψ(t)]′ + νt, (20)

where ⊗ indicates the Kronecker product, Z is a 1× (sp+1) vector containing
lagged values of xt, given by

Z = [1x′t−1, x
′
t−2, . . . , x

′
t−p], (21)

Ψ(t) is a 1 × 2J vector containing wavelets functions,

Ψ(t) = [ψ−1,0(t), ψ0,0(t), . . . , ψJ,2J−1(t)], (22)

and Λ is a s × (sp + 1)2J matrix containing all the wavelet expansion coeffi-
cients.

Assuming that we have observed xt for t = 1, 2, ..., T , define the following
matrices

Xt =




x1,(p+1) x2(,p+1) . . . xs,(p+1)

x1,(p+2) x2,(p+2) . . . xs,(p+2)

...
...

. . .
...

x1,T x2,T . . . xs,T




,

Xt−l =




x1,(p−l+1) x2,(p−l+1) . . . xs,(p−l+1)

x1,(p−l+2) x2,(p−l+2) . . . xs,(p−l+2)

...
...

. . .
...

x1,(T−l) x2,(T−l) . . . xs,(T−l)




,
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l = 1, ..., p and also

Ψ =




ψ−1,0(p+ 1) ψ0,0(p+ 1) . . . ψJ,2J−1(p+ 1)

ψ−1,0(p+ 2) ψ0,0(p+ 2) . . . ψJ,2J−1(p+ 2)
...

...
. . .

...

ψ−1,0(T ) ψ0,0(T ) . . . ψJ,2J−1(T )




.

Definition 3 If ai and bi are row vectors, i = 1, ..., N , the row-Kronecker
product ⊗R is defined as




a1

a2

...

aN




⊗R




b1

b2
...

bN




=




a1 ⊗ b1

a2 ⊗ b2
...

aN ⊗ bN




.

Further, define the following matrices

W = [1N−p ⊗R Ψ,Xt−1 ⊗R Ψ, . . . ,Xt−l ⊗R Ψ], (23)

M= Is ⊗ W, (24)

and the vector

Y = vec(Xt). (25)

The innovation covariance matrix νt is defined as

Σ =




diag[σ2
1(t)] diag[σ12(t)] . . . diag[σ1s(t)]

diag[σ21(t)] diag[σ2
2(t)] . . . diag[σ2s(t)]

...
...

. . .
...

diag[σs1(t)] diag[σs2(t)] . . . diag[σ2
s(t)]




,

where diag[h(t)] stands for the diagonal matrix of h(t), for t = (p + 1), (p +
2), ..., T .
Hence, the WTVAR model of order p can be represented in the linear model
form

Y = Mβ + ν. (26)
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The generalized least square estimator (GLS) of β = vec(Λ) is given by

β̂= (M′Σ−1M)−1M′Σ−1Y

= (D′D)−1D′V (27)

with

D=Σ− 1

2M, (28)

V =Σ− 1

2Y. (29)

Assume the following conditions:

(C1) (Dahlhaus et al. (1999)) Assume that the functions to be estimated
in the WTVAR model u(t), Ai(t) and Σ(t) are real, bounded and belong to

Fi =



fi(x) : fi(x) =

∞∑

j=−1

∞∑

k=0

β
(i)
j,kψj,k(x) | ‖β(i)

.. ‖mi,pi,qi <∞


 , (30)

where

‖β(i)
.. ‖mi,pi,qi =



∑

j≥l


2jsipi

∑

k∈Ij

|β(i)
j,k|pi



qi/pi




1/qi

, (31)

where si = mi + 1/2 + 1/pi and Ij = {k : k = 0, . . . , 2j − 1}. Here mi denote
the degree of smothness of Fi and 1 ≤ pi, qi ≤ ∞ specify the norm of Fi.
Examples of such spaces are Besov, Sobolev and Hölder spaces. See Triebel
(1992) for details.

(C2) φ and ψ are compact supported and they belong to C r[0, 1], the set
of all continuous functions, with continuous derivatives up to order r, with
r > m = max{mi}. Further, assume that

∫
φ(t)dt = 1 and

∫
ψ(t)tkdt = 0 for

0 ≤ k ≤ r.

(C3) There is γ ≥ 0 where |cumn(νt)| ≤ Cn(n!)1+γ ∀n, t. Here C is a positive
constant.

(C4) xt is a locally stationary process, with an infinite moving average rep-
resentation,

xt = u(t) +
∞∑

i=0

Ci(t)ǫt−i,
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and

sup
t

(
∞∑

i=0

|Ci(t)|) ≤ ∞. (32)

(C5) ‖Σ−1‖2 <∞, where ‖ · ‖2 indicates the spectral norm.

Remarks: (i) Under C1, the wavelet coefficients satisfy

sup
fi∈Fi




∑

j≥J

∑

k

|β(i)
jk |2



 = O

(
2−2Js̃i

)
,

where s̃i = mi + 1/2 − 1/p̃i, with p̃i = min{pi, 2} It can be shown (Donoho
et al. (1995)) that the loss in the reconstruction of xt in (17) is of order
T−2mi/(2mi+1), if we choose J such that 2J−1 ≤ T 1/2 ≤ 2J . This will be used in
the proof of Proposition 1.

(ii) The Gaussian distribution satisfies C3. For γ = 0, this condition is valid
for the Gamma and Inverse Gaussian distributions. It also holds for γ > 0 and
some fatter tail distributions.

(iii) In practice, these assumptions require a certain degree of smoothness of
the function to be estimated and also constraint the random errors distribu-
tion. For most applications, the estimation of smooth functions and Gaussian
distributed errors are reasonable assumptions.

Proposition 1 Assuming that the conditions (C1) − (C5) are satisfied, the
order p is fixed and we assume Gaussian innovations with known covariance
matrix Σ, then

√
NH(β̂ − β)

a∼ Z (33)

where Z is a k-dimensional multivariate normal with zero mean and covariance
matrix Γ,

Γ = limN→∞NHE[D′D]−1H′, (34)

H is a k row matrix with the same number of columns of D, and N = (T −p).

Remark: The matrix H is used to obtain only a finite subpartition of β.

Proof: See Appendix.
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Let ξ̂ be a subpartition of β̂ containing all the estimators of coefficients of
the wavelet expansion of a function f(t). Thus, a natural estimator of f(t) at
each t is

f̂(t) = ξ̂′ψ(t) =
J∑

j=0

∑

k

β̂j,kψj,k(t), (35)

where ψ(t) is a vector containing the respective wavelet functions of ξ̂ evalu-
ated on the time t. Let Σξ̂ be the covariance matrix of ξ̂, a subpartition of the

covariance matrix of β̂, then

Proposition 2 Under the conditions of Proposition 1, for each t we have

(f̂(t) − f)
a∼ N(0, ψΣξ̂ψ

′). (36)

Proof: The result is an immediate consequence of the previous proposition.

3.2 Hypothesis Testing

Define the following estimator of the innovations variance in the trans-
formed model

σ̂2 =

(
1

s[(T − p) − p2J ]

)
[D′D − β̂ ′D′Y ]. (37)

(38)

The estimated covariance matrix of β̂ is given by

V̂ar(β̂) = σ̂2(M′Σ−1M)−1. (39)

Thus, the Wald statistic for contrasts is

W =
(Cβ̂ −m)′[C(D′D)−1C′]−1(Cβ̂ −m)

σ̂
, (40)

where m is a vector and C is the contrast matrix of the following test:

H0: Cβ = m,

13



HA: Cβ 6= m.

Under the null hypothesis, it follows from Proposition 1 and the Cochran
theorem that W has an asymptotic chi-square distribution with rank(C) de-
grees of freedom.

3.3 Innovations Covariance Matrix Estimation

In most applications to real data, the innovations covariance matrix Σ used
in the generalized least square estimator is unknown. Assume that the inno-
vations ǫlt have zero mean and time-vaying variance σ2

l (t), then

E(ǫ2lt) =Var(ǫ2lt) + E(ǫlt)
2

=Var(ǫ2lt) = σ2
l (t). (41)

Thus, a reasonable estimator for σ2
l (t) is the squared residuals, since

E(r2
lt)=E[(Slt + ǫlt)

2] + o(1)

=E(ǫ2lt) + 2E(Sltǫlt) + E(S2
lt) + o(1), (42)

where Slt = o(1) is a truncation error. Hence

lim
T→∞

E(r2
lt) = σ2

l (t). (43)

Analogously a reasonable estimator to the time-varying covariance σ2
lm(t) of

the innovations of two time series xlt and xmt is given by rltrmt. Then, consid-
ering the wavelet expansion, we have

σ̂2
l (t) =

∑

j

∑

k

vj,kψj,k(x), (44)

σ̂lm(t) =
∑

j

∑

k

cj,kψj,k(x), (45)

where the coefficients vj,k and cj,k can be obtained by a classical wavelet
smoothing of squared and cross residual, resulting in a consistent estimator of
Σ.

Hence, we propose an interactive generalized least square algorithm given by:

14



Step 1. Assume Σ = I and apply GLS;

Step 2. Obtain estimates of the innovations variances and covariances;

Step 3. Apply the GLS using the estimated innovations covariance matrix;

Step 4. Return to step 2 until convergence.

A practical problem to the application of this algorithm is that in some cases,
the estimated innovation’s covariance matrix is almost singular or not posi-
tive definite. Hence, one may have problems in matrix inversion or Cholesky
decompositions steps. By simulations, we noticed that it could happen cases
when the innovations variances is too small. For these cases, we suggest a nor-
malization of the time series variance multiplying the time series by a constant,
or including an inferior bound constraint in the diagonal of the estimated co-
variance matrix.

Proposition 3 Let Σ̂ be a consistent estimator of Σ (i.e., ‖Σ̂−mathbfΣ‖2
P→

0), and define

β̂Σ̂ =(M′Σ̂−1M)−1M′Σ̂−1Y. (46)

Then the asymptotic distribution of β̂Σ̂ is the same as that of β̂.

Proof: Σ̂ − Σ
P→ 0. Thus,

T (M′Σ̂−1M)−1 =T (M′[Σ̂ −Σ + Σ]−1M)−1

=T (M′Σ−1M)−1 + op(1). (47)

The result follows from the Slutsky theorem.2

4 Simulations

Computational simulations were performed focusing the evaluation of the
proposed estimators and the small sample approximation by asymptotic re-
sults. All simulations consist on 500 experiments of bivariate time series with
length T = 128, Gaussian errors, wavelet D16 and function expansions con-
sidering 4 wavelets (24 coefficients). The innovations covariance matrix was
also estimated, as the iterated GLS algorithm was applied in all simulations.
The theoretical asymptotic properties describe coefficients with normal distri-
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bution and small biases. Based on all simulations, the average and standard
deviation of the estimated curves (at each time-point) were calculated.

4.1 Group 1

The aim of this first group of simulations is the evaluation of estimator
performance in cases of smooth continuous curves,

xt = u(t) + A(t)xt−1 + ǫt, (48)

where

u(t) =




sin( 2πt
128

+ π)

−0.6


 ,A(t) =




0.5 − sin( 2πt
128

)

4
−0.5 +

cos( 2πt
128

)

4

0.5 − sin( 2πt
128

)

4
−0.3




and

Σ(t) =




1.4 1.4
(
1 +

cos( 2πt
128

)

4

)

1.4
(
1 +

cos( 2πt
128

)

4

)
2
(
1 +

cos( 2πt
128

)

4

)2


 ,

where u(t) is the intercept vector, A(t) is the autoregressive coefficient matrix
and Σ(t) is the innovations covariance matrix. The results of these simulations
are presented in Figures 1, 2 and 3.

4.2 Group 2

In this second group of simulation, we would like to evaluate the estima-
tors performance and small sample approximations in the case where the true
curves cannot be described using few wavelet functions. In this case, the num-
ber of coefficients estimated is not enough to describe the true curves in details.
This suggests that a good selection of wavelet basis is necessary in order to
avoid bias. However, this issue is not simple, as priori knowledge about the
target curves is required. Focusing on the aims of these simulations, we used
few smooth functions (D16) to estimate non-continuous curves, although Haar
wavelets might lead to better results. Two threshold functions f1(t) and f2(t)
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Fig. 1. Simulation 1: The theoretical autoregressive functions and average of esti-
mates are presented in dotted and solid lines, respectively. The label i− > j de-
scribes the influence curve from series i to j (i-th column at j-th row of the matrix
A(t)). The dashed lines show the interval of one standard deviation. At each time
point, the average and standard deviation were calculated over 500 experiments.

were considered, and they are defined by,

f1(t) =





1, if T
2
< t ≤ T ,

0, otherwise

and

f2(t) =





1, if T
4
< t < 3T

4
,

0, otherwise
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Fig. 2. Simulation 1: The theoretical covariance functions and average of estimates
are presented in dotted and solid lines, respectively. The dashed lines show the
interval of one standard deviation. At each time point, the average and standard
deviation were calculated over 500 experiments.

The time-varying multivariate autoregressive model considered in the simula-
tions is also of order 1, with parameters given by

u(t) =




0.25f1(t)

0.3


 ,A(t) =



−0.3g(t) −0.4f2(t)

0.2f(t) −0.3




and

Σ(t) =




0.5 + 0.5f1(t) (0.5 + 0.5f1(t))(0.5 + 0.5f2(t))

(0.5 + 0.5f1(t))(0.5 + 0.5f2(t)) 2(0.5 + 0.5f2(t))


 .

The results are presented in Figures 4, 5 and 6.
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Fig. 3. Normal QQ-plots of estimated coeficients (1st to 12th). The label i-j de-
scribes the QQ-plot of the j-th coefficient of the i-th curve. The results for coeficients
13th to 24th are analogous.

4.3 Conclusions

The first group of simulations shows a satisfactory performance of the pro-
posed approach. The average of estimated curves for both intercept, autore-
gressive and covariance functions are similar to the true curves (Figures 1 and
2). Finally even in a small sample, we verify a satisfactory approximation of
the estimators distribution to the expected Gaussian distribution (Figure 3).

Additionally, the second group of simulations also points toward the validity
of the asymptotic distribution even in cases where the number of functions
is not large. Further, considering the scale of detail chosen (J = 2, 4 wavelet
functions), the average of estimated and true curves are similar (Figures 4 and
5). This means that despite the fact of being biased, the curves estimators still
capture the long-run variations. In addition, the QQ-plots of the estimated
wavelet coefficients in Figure 6 yields evidence of a satisfactory approximation
to normal distribution.

In conclusion, the simulations results point toward a high similarity between
the estimator distribution in finite samples and the expected Gaussian one.
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Fig. 4. Simulation 2: The theoretical autoregressive functions and average of esti-
mates are presented in dotted and solid lines, respectively. The label i− > j de-
scribes the influence curve from series i to j (i-th column at j-th row of the matrix
A(t)). The dashed lines show the interval of one standard deviation. At each time
point, the average and standard deviation were calculated over 500 experiments.

5 Application to Real Data

In this section, an application of the time-varying autoregressive models
to brain connectivity modelling, using functional magnetic resonance time
series (fMRI) is presented. The fMRI data consist on temporal acquisition of
BOLD (blood oxigenation level dependent) signal of several brain areas, which
can be interpreted as an indirect measure of neuronal activation (Ogawa et
al. (1990)). Thus, the dataset is a multivariate time series representing the
neuronal activity in the brain. The aim of this study is the identification
of cortical/subcortical connectivity differences between healthy subjects and
patients with Parkinson disease.

Parkinson’s disease (PD) is a movement disorder resulting from the lack of
dopamine, a neurotransmitter which has an important role in motor control.
The clinical result is bradikynesia/akynesia, rigidity, and also some involun-
tary movements as tremors. The motor circuitry connection in PD works ab-
normally; the exact extension of damage and the strategies to get more from
it to improve movement are still unknown. There are electrical evidences of
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Fig. 5. Simulation 2: The theoretical covariance functions and average of estimates
are presented in dotted and solid lines, respectively. The dashed lines show the
interval of one standard deviation. At each time point, the average and standard
deviation were calculated over 500 experiments.

abnormal activity in the secondary motor areas, due to a delay in movement
programming.

Seven right handed healthy volunteers and seven patients with PD partici-
pated in this fMRI study. Both groups performed a simple motor task: self-
paced finger tapping movement of dominant hand, in an cyclical event-related
paradigm. The whole dataset have been acquired in the Radiology Institute
of the Clinics Hospital (University of São Paulo, Brazil), in a 1.5T Signa
LX scanner (GE, Milwaukee, USA), equipped with 23 mT/m gradients and
echo-planar capability, with head coil. The acquisitions were based on a 2D
gradient eco EPI, TR = 2sec, TE = 40ms, FA = 90o, bandwidth=64kHz,
FOV = 20cm, 64 × 64 voxels, 7 mm thick slices with 0.7mm gap, 15 slices
oriented according to the bicomissural plane. The subjects were instructed
to perform the finger tapping sequence only once, in response to a verbal
command, with a constant inter-stimulus interval of 20 seconds.

The fMRI images were preprocessed applying motion realignment, slice time
correction, and spatial normalization (SPM2, http://www.fil.ion.ucl.ac.uk/spm/ )
to the stereotatic space of Talairach and Tornoux (Talairach and Tornoux
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Fig. 6. Normal QQ-plots of estimated coeficients (1st to 12th). The label i-j de-
scribes the qq-plot of the j-th coefficient of the i-th curve. The results for coeficients
13th to 24th are analogous.

(1998)). Focusing on the connectivity analysis, we selected three regions of in-
terest (ROI’s) in the local maxima of activation (SPM2) in cerebelum (CER),
supplementar motor area(SMA) and primary motor cortex (M1) (Figure 7),
obtaining trivariate time series for each subject.

In the stationary case, the vector autoregressive model were sucessfully ap-
plied in brain information flow identification (Goebel et al. (2003)). Here, the
time-varying vector autoregressive modelling was applied focusing the iden-
tification of a dynamic connectivity structure, considering the autoregressive
functions as information flow intensity. Further, as the paradigm design is pe-
riodic, we assume that the connectivity structure in each cycle is the same.
Thus, the connectivity structure is assumed periodic (replications), allowing
a more precise estimation. The autoregressive functions (connectivity) were
estimated for each subject separately, considering the D16 wavelets (p = 1),
as smooth variations are expected. The group connectivity function was de-
fined as the autoregressive functions average between all subjects. In order
to detect connectivity differences between healthy and Parkinson groups, the
Mann-Whitney test was applied for each time point. The results are presented
in Figure 8.
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Fig. 7. ROI’s BOLD signal for subject 1.

Applying the proposed approach for connectivity modelling, we observed that
the information flow intensity from M1 to SMA is different during a short
time interval after the finger tap execution. Furthermore, there are no evi-
dences that the connectivity intensities from CER to SMA and from M1 to
CER are different, at some short time after the task. Basically, one may in-
fer that parkinsonians have a basal connectivity (CER to SMA and M1 to
CER) different from healthy subjects. However, when patients perform a task
involving cortical activations, this connectivity structure comes close to the
normal one. Furthermore, motor programming network involves interactions
between SMA and M1 (Ito et al. (1999)). Parkinsonians have alterations in
motor planning, as a result of disorders in thalamic/cortex network (DeLong
(1990)). Hence, it is expected alterations in this network, when patients per-
form motor tasks, as evidenced by the panel (M1 to SMA) in Figure 8. These
results have a reasonable neurophysiological interpretation and they are im-
portant to the characterization of Parkinson’s disease.

Finally, we conclude that the results obtained via wavelet time-varying autore-
gressive modelling are satisfactory, and they also emphasize the connectivity
alterations present in parkinsonians, which is in agreement with theories found
in literature.
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Fig. 8. The black and dashed curves indicate the connectivity strenght of normal and
Parkinson patients, respectively. The points in (+) indicate the timepoints where
the curves are significantly different (p − value < 0.05). The finger tapping task is
performed in t=1.

6 Conclusions

Most studies which focus on the relationships or causality structure iden-
tification among time series are founded in vector autoregressive modelling.
However, in many practical applications, stationarity conditions are not rea-
sonable. In this paper, we proposed the wavelet time-varying autoregressive
modelling, which is based on multivariate locally stationary processes. The
usefulness of the proposed approach is illustrated via simulations and appli-
cations to functional magnetic resonance datasets.
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A Appendix

Lemma 1 Assuming that the conditions (C1)-(C5) are satisfied,

NH(D′D)−1H′ P→ Γ, (A.1)

where

Γ = limN→∞NHE[D′D]−1H′. (A.2)

Remark: Note that each cell in limN→∞E[D′D]/N may be written as

limN→∞

N∑

t=1

f(t/N)/N =

1∫

0

f(t)dt.

Proof: Firstly, note that D is a block diagonal matrix. Let dij be the i-th row,
and j-th column cell of a non-null block of D. Then,

dtj = ftjXtj , (A.3)

where ftj is a function obtained by the product of a wavelet function and the
generalized least square transformation and Xtj is a local stationary process.
Let (dd)lm the l-th row, m-th column cell of any subpartition of D′D. Then
(dd)lm can be written as

(dd)lm=
N∑

t=1

dtldtm =
N∑

t=1

ftlXtlftmXtm

=
N∑

t=1

ftlftm
∞∑

j=0

∞∑

v=0

θlj(t)θmv(t)ǫl,(t−j)ǫm,(t−v)

+
N∑

t=1

ftlftmµl(t)
∞∑

v=0

θmv(t)ǫm,(t−v) +
N∑

t=1

ftlftmµm(t)
∞∑

j=0

θlj(t)ǫl,(t−j)

+
N∑

t=1

ftlftmµm(t)µl(t).

If we denote

z
(1)
lmt =

N∑

t=1

ftlftm
∞∑

j=0

∞∑

v=0

θlj(t)θmv(t)
[
ǫl,(t−j)ǫm,(t−v) − E[ǫl,(t−j)ǫm,(t−v)]

]
,
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z
(2)
lmt =

N∑

t=1

ftlftmµl(t)
∞∑

v=0

θmv(t)ǫm,(t−v),

z
(3)
lmt =

N∑

t=1

ftlftmµm(t)
∞∑

j=0

θlj(t)ǫl,(t−j),

then

E
[
z

(1)
lmt|Ft−h

]
=

N∑

t=1

ftlftm
∞∑

j=h

∞∑

v=h

(
θlj(t)θmv(t)ǫl,(t−j)ǫm,(t−v) − E[ǫl,(t−j)ǫm,(t−v)]

)
,

E‖E
[
z

(1)
lmt|Ft−h

]
‖≤

N∑

t=1

|ftlftm|
∞∑

j=h

∞∑

v=h

|θlj(t)||θmv(t)|E‖
[
ǫl,(t−j)ǫm,(t−v) −E[ǫl,(t−j)ǫm,(t−v)]

]
‖

≤
∞∑

j=h

∞∑

v=h

|θlj(t)||θmv(t)|K = ξlmh.

Analogous results hold for z
(2)
lmt and z

(4)
lmt and from the MA representation,

the sequence θj(t)
∞
j=0 converges, then limh↑∞ ξlmh = 0, and taking ct = 1, we

obtain that z
(1)
lmt, z

(2)
lmt and z

(3)
lmt are L1-Mixingales. The result follows from the

Weak Law for L1-Mixingales (Andrews (1988)).2

Lemma 2 Assuming that the conditions (C1)-(C5) are satisfied,

(1/
√
N)G(D′e)

D→ Z, (A.4)

where Z is a random variable with multivariate normal distribution, with null
mean and covariance matrix Γ∗−1 = limN→∞

GE[D′
D]G′

N
.

Proof: Let (de)j the j-th element of the vector (D′e). It can be writen as

(de)j =
N∑

t=1

(de)jt =
N∑

t=1

htjXtjet, (A.5)

where (de)jt = htjXtjet and {et}Nt=1 are independent processes, Xtj is a locally
stationary process and htj is a function obtained by the product of a wavelet
function and the generalized least square transformation function.

The vector D′e may be written as D′e =
∑N
t=1 bt, where bt is a vector whose

elements are (de)jt.

Further define Ft−1 as denoting the information up to time (t− 1), we have
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E[bt|Ft−1] = 0, (A.6)

and thus, {bt}∞t=1 is a vector martingale differences sequence. Further,

E

[∑N
t=1 btb

′
t

N

]
= E

[
D′ee′D

N

]
= E

[
E

[
D′ee′D

N
|D
]]

= E

[
D′D

N

]
(A.7)

GE

[∑N
t=1 btb

′
t

N

]
G′ = GE

[
D′D

N

]
G′ → Γ∗−1, (A.8)

where

Γ∗−1 = limN→∞
GE[D′D]G′

N
. (A.9)

The result follows from the central limit theorem for vector martingale differences.2

Proof of Proposition 1: Note that

β̂= (D′D)−1D′V

= (D′D)−1D′(Dβ + S + e)

= β + (D′D)−1D′e+ (D′D)−1D′S

= β + T1 + T2. (A.10)

Considering T2, analogously to Donoho et al.(1995) and Dahlhaus et al. (1999),

sup


∑

j≥J

∑

k

‖β(i)
j,k‖2


=O(T

−
2mi

2mi+1 ), (A.11)

T2 = (D′D)−1D′S,

‖T2‖2 ≤‖(D′D)−1‖2‖D′S‖2

=Op

(
(2−J min{s̃}i + T−1/22−J min{mi−1/2−1/(2pi)})

√
log(T )

)

=Op(T
−1/2−τ(J)), (A.12)

where τ(J) > 0, and then
√
T‖T2‖2 = Op(T

−τ(J)) = op(1). Further, from
Lemma 1,

√
TT1 = NH(D′D)−1H′ P→ Γ, (A.13)

where
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Γ = limN→∞NHE[(D′D−1)]H′ (A.14)

Applying Lemma 2 we have

√
TH(β̂ − β) =

√
TT1 + op(1),√

TH(β̂ − β) = Z + op(1),

where Z is a random vector, which is multivariate normally distributed, with
zero mean and covariance matrix Γ. Hence, the result follows from the Slutsky
theorem.2
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