
Current Development in Theory and Applications of Wavelets

:tionClassifica jectSub sMathematic 2000 62M10, 62G05.

Keywords and phrases: autocorrelation, semi-parametric estimation, smoothing, wavelets.

This work was partially supported by CNPq and FAPESP (grant 03/10105-2).

Received February 7, 2007

 2007 Pushpa Publishing House

WAVELET SMOOTHING FOR DATA WITH

AUTOCORRELATED ERRORS

ROGÉRIO F. PORTO, JOÃO R. SATO,

ELISETE C. Q. AUBIN and PEDRO A. MORETTIN

Institute of Mathematics and Statistics
University of São Paulo, Rua do Matão 1010
05508-090-São Paulo-SP, Brazil
e-mail: rdporto@ime.usp.br

Abstract

This paper presents an alternative approach to wavelet smoothing

procedure for a time series model of signal added to autocorrelated

stationary errors. The aim is to estimate the signal globally with

near minimum risk. The usual approach to this problem is to threshold

the wavelet coefficients with different thresholds in each level. In this

paper, the autocorrelation is taken account in a parametric way letting

the wavelet methods for the funcion estimation only. Thus, an iterative

semi-parametric method is proposed. This iterative method borrows

some ideas from the Cochrane-Orcutt procedure. The simulation results

show that the proposed method is at least as good as other benchmark

wavelet methods independent of the type of autocorrelation present in

the error term.

1. Introduction

Let nyyy ...,,, 21  be a sequence of observations from the model

( ) ,tt ntfY ε+= (1)
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where ,...,,2,1 nt =  tY  is a random variable, f is an unknown function to

be estimated, and the sequence { }ntt 1=ε  is a stationary zero mean

Gaussian  process. This process can be autocorrelated or not.

The goal is to estimate f globally. One measure of the performance of

an estimator f̂  is the global squared 2L  norm risk,

( ) ( ( ) ( )) ,ˆ,ˆ
1

0

2








−= ∫ dttftfEffR

where the integral must be well defined.

There are some methods for estimation of f in this context using
kernels, splines and wavelets. Wavelet methods are appropriate mainly
when the function f is non stationary with transients and fractal-like
structures [10]. The function f is estimated by a wavelet series expansion
where the coefficients are estimated using shrinkage or threshold
techniques. These techniques were pioneered in the wavelet context by
Donoho and Johnstone [3, 4].

Although these techniques were developed for non-correlated errors,
wavelet methods were extended to the situation when they are correlated
[8]. In this article, it is developed an alternative approach to wavelet
smoothing for the model with autocorrelated stationary errors.

The paper is organized as follows. Section 2 reviews some basics on
wavelets and wavelets for correlated errors. Section 3 describes the
proposed method and Section 4 shows some simulation results. In Section
5 the proposed method is applied to a real data set and in Section 6 some
aspects of the proposed method are discussed and some suggestions for
future research are given.

2. Wavelets and Wavelet Approximations

Some basic wavelet results are summarized in this section for the
sake of notation.

An orthonormal wavelet basis is generated from dilations and

translations of a “father” wavelet φ (or scaling function) and a “mother”
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wavelet ψ. These functions are assumed to be compactly supported in

[ ]N,0  and φ satisfies .1=φ∫  A wavelet is r-regular if it has r vanishing

moments and r continuous derivatives.

Let Z  be the set of all integers and

( ) ( ) ( ) ( ) .,,22,22 2
,

2
, Z∈−ψ=ψ−φ=φ kjkttktt jj

kj
jj

kj

It follows that kj,ψ  has support [ ( )].2,2 kNk jj +−−  Denote the

periodized wavelets by

( ) ( ) ( ) ( )∑∑
∈∈

−ψ=ψ−φ=φ
ZZ l

kj
p

kj
l

kj
p

kj lttltt ,, ,,,,

for [ ].1,0∈t  These are the wavelets to be used in this paper and so the

superscript “p” will be suppressed thereafter. The collection

j
kj

j
kj kjjk 2...,,1,,;2...,,1, 0,,

0
0

=≥ψ=φ

constitutes an orthonormal basis of [ ],1,02L  for some coarse scale .0j

An orthonormal wavelet basis has an associated exact orthogonal
discrete wavelet transform that transforms sampled data into the
wavelet
coefficient domain. To see this denote inner product by ., ⋅⋅  For a given

square-integrable function f on [ ],1,0  denote

.,,, ,,,, kjkjkjkj fdfc ψ=φ= (2)

So the function f can be expanded into a wavelet series:

( ) ( ) ( )∑ ∑∑
=

∞

= =

ψ+φ=
0

0
00

2

1

2

1
,,,, .

j j

k jj k
kjkjkjkj ntdntcntf (3)

Wavelets completely characterize many traditional smoothness
spaces like Hölder, Sobolev and Besov spaces but this will not be of
concern here.

We can rewrite this discrete wavelet transform W in matrix form
applied to Y which is the n-vector of observations ....,,1 nYY  Suppose
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that Jn 2=  for some natural number J and take ,00 =J  then write

( ) ,2...,,1,1...,,1,0,,,
j

kjkj kJjWYd =−== (4)

where the remaining element 1,0jc  is generically labeled as .1,1−d  Let

Wf=θ  be the wavelet transform of the signal ( )( )ntntff 1==  and

ε= Wz  be the wavelet transform of the noise.

For the construction of the estimator, define the hard threshold
function

( ) ( ),, λ≥=λη ddIdH

where ( )⋅I  denotes the indicator function. The threshold λ is commonly

chosen to be nlog2σ=λ  when the errors iε  are independently

identically distributed (i.i.d.) ( )2,0 σN  random variables with known .2σ

In practice one may replace the hard threshold function by a soft one

( ) ( ) ( ).sign, λ−=λη dddS

Soft thresholding is generally smoother than hard thresholding and has
better and smoother visual presentation.

The Donoho-Johnstone estimator [3] is then constructed by
thresholding the wavelet coefficients (4) at threshold λ and then

transforming back. Thus we define θ̂  by

( )λη=θ ,ˆ
,, kjkj d

and the estimator f̂  by

,ˆˆ θ= TWf (5)

where η denotes soft or hard thresholding, or some compromise between
the two, and T denotes transpose.

Now, suppose that the errors iε  have a multivariate normal

distribution with mean 0 and covariance matrix ,nΓ  as in model (1).

Since we have assumed that the errors are stationary, nΓ  has entries
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,tsr −  say. Let ( )zVn Cov=  be the covariance matrix of the wavelet

transform of the error vector so that it can be obtained by the following
orthogonal transform:

.T
nn WWV Γ=

It can be shown [8, 5] that since the filters used to construct the
discrete wavelet transform are time invariant, within each level the

distribution of the kjz ,  will be stationary, and the variance of kjz ,  will

depend only on the level j. We write

( ),Var ,
2

kjj z=σ

for each j.

In view of this, a natural extension of the usual wavelet thresholding
method is to apply level-dependent thresholding to the transformed data

d. Let jλ  be a sequence of thresholds to be applied to the coefficients at

level j, and define θ̂  to be the estimator

( ),,ˆ
,, jjkjkj d λση=θ

with the corresponding estimator of θ denoted by ,θ̂  and set

.ˆˆ θ= TWf

In practice, one may wish to threshold only coefficients at higher
levels, where there is a considerable number of coefficients at each level

and the signal kj,θ  can be assumed to be sparse. Also, the noise variance

2
jσ  can be estimated from the data [3], usually through the use of robust

estimators.

Finally, the choice of nlog2σ=λ  is attractive from certain

theoretical perspectives since it is conservative for the following reason.

If nZZ ...,,1  are normaly distributed random variables with mean 0 and

variances ,2
iσ  then

( ) 0log2max
1

→>σ
≤≤

nZP iini
(6)

as ∞→n  whether or not the variables are independent [8].
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This consistency property will be useful for the development of our
estimator, which will be discussed in the next section.

3. Proposed Iterative Method

In this section it is described the proposed method in an intuitive way
and it is given some justification for its performance.

The proposed estimator is obtained as a result of an iterative process
which borrow some ideas from the Cochrane-Orcutt procedure [1]. The
useful consistency property of the thresholding policy described earlier is
also similar to what is obtained from least squares. Time series
regression, using time as explanatory variable and ordinary least
squares, leads to unbiased and consistent estimators when the time
series is stationary, since they generally satisfy the Grenander conditions
[6]. As least squares estimators, the use of wavelet thresholding ignoring
error correlation gives non-optimal estimators. Thus, some improvement
can be achieved through level-thresholding algorithms.

Instead of applying level-thresholding algorithms, the proposed
method is to apply simple wavelet thresholding and estimate the error
covariance matrix from the resulting residuals. This process would be
iterated until a convergence criterion be achieved.

Suppose we postulate model (1) and use estimator (5) as a primary
estimator. Then we obtain the residuals

( ) ....,,1,ˆ ntntfye tt =−=

Since f̂  is a consistent estimator of the true f function ( ( ) ),0,ˆ
∞→

→
n

ffR

the residuals te  are good predictors of the errors ....,,1, ntt =ε  Since

the sequence { }nt 1ε  is a stationary zero mean Gaussian process, it can be

modeled as an autoregressive process of sufficient large order p, briefly
( ).pAR  This can be achieved in an automatic way using any information

criterium like Akaike ( )AIC  or Schwarz’s BIC. We propose to choose p as

the order that minimizes the AIC of the AR model adjusted to the

residual sequence { } .1
n

te  Denote this model by
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,11 tptptt aeee +φ++φ+µ= −− (7)

where ta  are i.i.d. ( )2,0 εσN  random variables, for ....,,1 nt =

The estimates of pφφ ...,,1  in (7) can be used to construct an estimate

of the covariance matrix nΓ  described in Section 2 under AR setting.

Being { }nte 1  a real stationary zero mean process and autocovariance

function ( ),τ+τ =γ tteeE  then if te  follows an ( )pAR  process, it can be

shown [10] that for ,0≥τ

,0for,
1 11

2

0 =τ
ρφ−−ρφ−

σ
=γ ε

pp
(8)

and

.0for,2211 >τγφ++γφ+γφ=γ −τ−τ−ττ pp (9)

The idea is that the estimates tsr −τ ≈γ̂  for ,ts −=τ  where tsr −  are

the entries of the covariance matrix nΓ  giving rise to an estimated

covariance matrix .ˆ
nΓ

Once we obtain ,ˆ
nΓ  we are ready to decorrelate the data in order to

obtain an efficient wavelet smoother of the function f. Denote by

nnn SS ′=Γ ˆˆˆ

the Cholesky decomposition of the estimated covariance matrix since it
should be a positive definite matrix. To decorrelate the original errors,
simply do

,ˆ 1YSY n
−=′

then obtain an efficient wavelet estimator through simple thresholding,

,f̂ ′  say.

The final step in this procedure is to apply back nŜ  to f ′ˆ  putting

back all the covariance structure that was estimated in order to get a new

estimate for the true function f. Let us call this estimate ( ).ˆ 1f
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This process can be iterated producing estimates ( ) ( ) ...,ˆ...,,ˆ 2 sff

until a selected convergence criterion is achieved. Since the main concern

of wavelet thresholding methods is the minimization of the risk ( ),,ˆ ffR

a suitable choice is to minimize the mean square error (MSE) defined by

( ) ( ( )( ) ) ,ˆ1

1

2∑
=

−=
n

t
t

s Yntf
n

sMSE (10)

where ( )( )ntf sˆ  is the estimate obtained from the s-th iteration through

the application of an inverse discrete wavelet transform. The iterative

process goes on until ( ( ) )YfMSE s
s ,ˆmin  is achieved. Simulations show

that convergence is achieved in a few iterations, commonly 4 or 5, and the
entire process is very fast even for large n, e.g., n = 2048.

In short, the suggested steps are:

1. postulate model (1) and use estimator (5), ( ) ,ˆˆ 0 θ= TWf  as an

initial estimator and calculate ( );0MSE

2. calculate the residuals ( )( ) ;...,,1,ˆ 0 ntntfye tt =−=

3. fit an autoregressive model ( )pAR  to the residuals choosing the

order p that minimizes AIC and do ;0=s

4. use the estimates of pφφ ...,,1  in the fitted model to construct an

estimate of the covariance matrix nΓ  through the difference equation (9);

5. find the Cholesky decomposition of the estimated error covariance

matrix denoted by ,ˆ
nS  and decorrelate the residuals by letting

;ˆ 1YSY n
−=′

6. apply a wavelet thresholding algorithm to the decorrelated data Y ′

in order to obtain an estimator ;f̂ ′

7. calculate the residuals ( ) ( )( ) ;...,,1,ˆ ninifye s
i

s
i =−=

8. do ;1+= ss  multiply nŜ  to f ′ˆ  and get a new estimate ( )sf̂  to the
true function f;
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9. calculate ( )sMSE  as in (10):

9a. if ( ) ( ),1 sMSEsMSE −−  for ,0>s  is greater than the

convergence criterion, go back to step 4;

9b. if ( ) ( ),1 sMSEsMSE −−  for ,0>s  is less than or equal to the

convergence criterion, stop.

An important point is that the order of the AR(p) process must be
chosen only once at the beginning of the iterative process, in order to
achieve convergence of the algorithm.

4. Simulations

In order to evaluate the performance of the proposed iterative
method, some simulations were done along other two procedures, using
universal thresholding [3, 4] and SURE thresholding by level [8]. SURE
is a label for “Stein Unbiased Risk Estimate”. The conservative
properties of the universal threshold (6) come at the price of high

threshold levels: in terms of 2L -loss, better performance should be
obtained with smaller thresholds that can be achieved by SURE
thresholds by level [8], in the case of correlated errors. A data-based
SURE threshold choice can then be obtained simply by minimizing an
unbiased estimate for the mean squared error with respect to a possible

threshold over the range [ ].log2,0 nσ

The simulation was done with 3 different functions. For each function
( )ntf  it was added a noise that could be a Gaussian white noise, an

autoregressive of order 1 with coefficient 8.01 =φ  or .8.01 −=φ  Each of

these nine simulations was done with 3 sample sizes ( 128,64=n  and

256 points) and replicated 1000 times. The errors were scaled so that the
simulations were done with a signal-to-noise ratio ,1=SNR  where

( ) ( ( ) )
( )noise

1
21

Var

fntfn
SNR t∑ −−

=
−

and

( )∑−=
t

ntfnf .1
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The functions used in the simulations were, for :...,,1 nt =

• Gaussian density: ( ) ( )( )( ),28100 ntnntf +φ×=  where ( )⋅φ
denotes the standard Normal density;

• Heavisine function:

( ) ( ) ( ) ( ).72.0sign3.0ntsign4sin4 ntntntf −−−−π=

• Doppler function:

( ) ( ) ( ) ( )( ).05.005.012sin1 ++π∗−= ntntntntf

These functions are shown with dashed lines in Figures 1, 2 and 3,
respectively.

At the end, some statistics were computed that allow useful
comparisons and analysis. The statistics computed are sample cases of

squared bias, average of the MSE (10) and standard error of MSE.

Comments on these statistics are given in next subsection. All the

simulations were done using the R language [15]. The wavelet

calculations were done in R with the Waveslim package [18]. The

routines are available upon request to the authors.

4.1. Results

In this section the results of the simulations are discussed. For the
sake of simplicity, we refer the estimation methods simply as “universal”,

“SURE” and “iterative”, instead of “wavelet estimator using the universal

threshold”, for example.
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Figure 1. Simulation results for the Gaussian density function,
autoregressive coefficient = 0.8, sample size = 256; estimator (continuous
line), true function (dashed line) and estimator ±1 standard error (dotted
lines).

Figure 2. Simulation results for the Heavisine function, autoregressive
coefficient = 0.8, sample sizes = 256; estimator (continuous line), true
function (dashed line) and estimator ±1 standard error (dotted lines).
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Figure 3. Simulation results for the Doppler function, autoregressive
coefficient ,8.0−=  sample sizes = 256; estimator (continuous line), true

function (dashed line) and estimator ±1 standard error (dotted lines).

Figure 1 and Table 1 show results for the Gaussian case. Visually, all
the three methods give equivalent results in terms of mean and
variability. For smaller sample sizes, the iterative method seems to have
less variability and less bias when the errors are correlated. For

uncorrelated errors, the SURE estimators seem to have larger average

MSE.

For the Heavisine function, the results can be seen in Figure 2 and
Table 2. The same general pattern observed for the Gaussian case was
observed here. It is important to note the higher variability supposedly
due to the discontinuities in the function. The superiority of the iterative
method can be observed better for autoregressive errors with negative
coefficients and small sample size. For large sample sizes, both iterative

and universal have similar performance, while SURE has larger average

MSE for all sample sizes.
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Table 1. Simulations: Gaussian function

Iterative Universal Sure by level

N AR Bias2 MSE s.e.(MSE) Bias2 MSE s.e.(MSE) Bias2 MSE s.e.(MSE)

0 0.218 0.728 0.011 0.218 0.739 0.011 0.249 1.434 0.021

64 0.8 0.018 2.544 0.030 0.006 2.898 0.025 0.251 2.376 0.030

-0.8 0.032 0.323 0.014 0.352 0.503 0.010 0.324 1.253 0.031

0 0.002 0.082 0.002 0.002 0.078 0.002 0.001 0.292 0.005

128 0.8 0.001 0.495 0.005 <0.001 0.650 0.003 0.001 0.503 0.005

-0.8 0.002 0.031 0.002 0.002 0.026 0.002 0.001 0.217 0.007

0 <0.001 0.016 <0.001 <0.001 0.015 <0.001 <0.001 0.064 0.001

256 0.8 <0.001 0.104 0.001 <0.001 0.155 <0.001 <0.001 0.123 0.001

-0.8 <0.001 0.005 <0.001 <0.001 0.004 <0.001 <0.001 0.048 0.002

Table 2. Simulations: Heavisine function

Iterative Universal Sure by level

N AR Bias2 MSE s.e.(MSE) Bias2 MSE s.e.(MSE) Bias2 MSE s.e.(MSE)

0 1.556 3.824 0.033 1.138 3.548 0.030 2.779 6.125 0.060

64 0.8 0.220 8.833 0.083 0.045 8.640 0.077 2.281 8.565 0.088

-0.8 0.271 1.486 0.049 2.958 3.414 0.027 2.924 5.433 0.088

0 0.072 5.742 0.057 0.025 7.534 0.037 0.126 5.931 0.052

128 0.8 0.129 0.574 0.019 0.266 0.557 0.020 0.089 2.657 0.084

-0.8 0.040 0.263 0.010 0.048 0.227 0.010 0.016 2.241 0.075

0 0.045 0.780 0.011 0.045 0.736 0.010 0.021 2.937 0.047

256 0.8 0.034 4.915 0.037 0.015 7.178 0.021 0.025 5.775 0.038

-0.8 0.040 0.263 0.010 0.048 0.227 0.010 0.016 2.241 0.075
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Table 3. Simulations: Doppler function

Iterative Universal Sure by level

N AR Bias2 MSE s.e.(MSE) Bias2 MSE s.e.(MSE) Bias2 MSE s.e.(MSE)

0 0.027 0.054 <0.001 0.023 0.051 <0.001 0.026 0.068 0.001

64 0.8 0.005 0.088 0.001 0.004 0.089 0.001 0.020 0.090 0.001

-0.8 0.013 0.036 0.001 0.047 0.055 <0.001 0.027 0.056 0.001

0 0.013 0.027 <0.001 0.013 0.026 <0.001 0.005 0.043 <0.001

128 0.8 0.005 0.070 <0.001 0.002 0.078 <0.001 0.004 0.070 <0.001

-0.8 0.007 0.014 <0.001 0.017 0.022 <0.001 0.003 0.030 0.001

0 0.007 0.016 <0.001 0.007 0.016 <0.001 0.003 0.035 <0.001

256 0.8 0.004 0.057 <0.001 0.002 0.071 <0.001 0.002 0.063 <0.001

-0.8 0.003 0.008 <0.001 0.009 0.012 <0.001 0.001 0.023 0.001

The last function used in the simulations was the Doppler function
and the results are shown in Figure 3 and Table 3. Still the proposed
iterative method has the same general behavior as before. For small
sample sizes the iterative and universal performs about in the same way
concerning biases and average MSE, while for larger sample sizes SURE
has smaller biases but larger average MSE. Overall SURE presents
larger average MSE.

The above results can be better analyzed through Figures 4 to 6.
Figure 4 shows simulation results for the Doppler function with
autoregressive errors (coefficient 8.01 =φ ). The average of the mean

square error - MSE (10) for each of three sample sizes are diplayed along
with line segments representing its sample standard deviation. As
expected, the average MSE gets smaller with increasing sample size,
leading to better fits. Since there is positive autocorrelation, SURE
generally gives better results than universal. This also occurs with other
values for the autoregressive coefficient and to other functions (see
tables).

Fixing the autoregressive coefficient at 8.01 =φ  and the sample size

at ,256=n  then Figure 5 shows that the iterative method has smaller

average MSE than universal and than SURE, independently of the curve
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homogeneity. It should be noted the large variability of the MSE for the
Heavisine function, again supposedly due to discontinuities.

Finally, taking the Doppler function and fixing the sample size at 256
observations, Figure 6 makes clear a fact superficially touched when the
graphics of Figures 1, 2 and 3 were analyzed. When the errors are

correlated, SURE would be expected to give smaller average MSE than

universal, since the variance of the wavelets coefficients is different at
each level. Nevertheless the simulations showed that this is true for
autoregressive coefficients greater than zero; for autoregressive
coefficients less than zero, universal had a better performance in

 

Figure 4. Simulation results for the Doppler function, autoregressive
coefficient = 0.8, three sample sizes: average of the mean square
errors - MSE (10), with line segments representing its sample standard
deviation.

Figure 5. Simulation results for three functions, autoregressive
coefficient = 0.8, sample size = 256: average of the mean square errors -
MSE (10) with line segments representing its sample standard deviation.
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Figure 6. Simulation results for the Doppler function, sample
size = 256, three values for autoregressive coefficient: average of mean
square errors - MSE (10) with line segments representing its sample
standard deviation.

terms of average MSE. Besides that, the proposed iterative method gives
better results in any case. This adaptability of the iterative method is
appreciated since in practice we may find cases where there is no
information about the nature of the autocorrelation.

In the next subsection some brief discussion will be carried out on the
results described above.

4.2. Comments

The last subsection discussed a number of results from the
simulation
study that was carried out. In this subsection we make some further
comments. These will be given in an intuitive way and no formal proofs
will be given. Some reasons for the validity of the main results will be
only conjectured.

Universal is consistent as sample size goes to infinity. It has also
almost optimal rates of convergence for a wide range of function classes.
The same occurs with SURE. Since the iterative method uses universal
thresholding it is reasonable that all the three methods are equivalent for
large sample sizes. For small sample sizes, the iterative method has
better performance apparently because it uses the information better
than SURE. Maybe a hybrid method [4] could give yet better results.
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For negative autocorrelations, the variance of the wavelet coefficients
still vary among levels. However, they vary less than for high positive
autocorrelations. Besides that, negative autocorrelations do not generate

local trends apparently causing SURE to take the errors as i.i.d. For

these cases, universal had better performance. By the way, the iterative
method estimates the covariance structure with moment estimators
independently if the autocorrelation is negative or positive. Maybe this is
the reason for the iterative method to have better fit even for small
samples.

Since the error covariance term is incorporated in the model through
a moment estimator, and the signal part is estimated by wavelet
thresholding, the pros and cons of each seems to be balanced giving rise
to a better method by the use of iterations in order to achieve minimum

MSE for finite samples, independently of the signal homogeneity or the

autocorrelation signal.

Finally, although the presented results were done only for ,1=SNR

the iterative method has a little better relative performance when

.1<SNR  This advantage decreases for 1>SNR  but it still continues to

be close to the best method.

In summary, when there is positive autocorrelation, SURE has better

performance but the iterative method has similar performance. When
there is negative autocorrelation, the iterative method has performance
near to universal which is the best method. When there is no
autocorrelations, it seems that universal and the iterative methods are

barely better than SURE, maybe because of signal sparsity in some

levels. Thus, in any case, the proposed iterative method behaves at least
as well as the benchmark.

A lot of thresholding methods has been developed beyond Universal

and SURE. Recently, some attention has been paid to a method named

EbayesThresh [9]. It uses empirical Bayes methods to take advantage
from the sparsity of the wavelet coefficients and to achieve better
thresholds. Simulation results (not shown) with this method did not
change the general conclusions above, since EbayesThresh had
performances a little bit better than Universal (which is worse than
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SURE in some cases) but still worse than the proposed iterative method.

In fact, the proposed iterative method presented here uses Universal
thresholding just for simplicity and popularity. Any other method could
easily substitute Universal. Actually, the proposed method is an
alternative to leveldependent thresholding; not a new thresholding
method.

5. An Application

In this section the proposed iterative method is applied to financial
data to illustrate its usefulness. A sample of size 2048 from Nasdaq
Composite daily index from 5-May-1998 to 23-June-2006 was used to
motivate the analysis. The respective log-returns have zero mean and an
apparent conditional heteroskedasticity. The series and the returns are
presented in Figures 7(a) and 7(b), respectively.

An autoregressive model of order 13 was fitted to these log-returns.
The squared residuals from this fit are shown in Figure 7(c). A
GARCH(2,1) model, with two ARCH terms and 1 GARCH term, was
fitted to the residuals from the AR(13) fit in order to model the
conditional volatility as common practice prescribes. Residual analysis of
this GARCH fit indicates that the final AR-GARCH model is adequate
(Figure 7(d)). A GARCH model implies a deterministic model for
volatility which cannot always be the case in practice. This means that
the volatility should be modelled stochastically. Such modelling is often
carried in practice by a stochastic volatility model, but this supposes
independent errors in the volatility equation, and independent of the
errors in the mean equation. The GARCH fit to the data of Figure 7(c) is
shown in Figure 8(a).

Thus, the proposed iterative method seems to be appropriate in this
situation. The iterative method was applied to the squared residuals from
the AR(13) model fitted to the Nasdaq log-returns. In this case, model (1)
was applied to the volatility, represented by the squared residuals.
Convergence occurred in only two iterations. The GARCH fit of Figure
8(a) is smoother, showing local trends and smaller values when compared
to the fit obtained from the iterative method (Figure 8(b)).
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Figure 7. (a) 2048 Nasdaq daily index series. (b) Log-returns from the series in (a). (c)

Squared residuals from an AR(2) fit to the series in (b). (d) Sample autocorrelation function

of the residuals from a GARCH(2,1) fit to the series in (c).

Figure 8. (a) GARCH fit to the squared log-returns of Figure 7(c).

(b) Fit to the data of Figure 7(c) obtained with the proposed iterative method. (c) Conditional

volatility from the fitted GARCH(2,1) model and smoothed lowess curve. (d) Conditional

volatility from the fitted model using the proposed iterative method.
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Conditional heteroskedasticity or volatility is important for
macroeconomic [12] and financial modeling [16], mainly in the areas of
derivative pricing, risk management and asset allocation [17]. In
Finance, asset returns are usually assumed to be normally distributed
but extensive research shows that these are not normal. Stylized facts
about return distributions include negative skewness and excess kurtosis
[7, 13, 14]. Specifically, excess kurtosis (roughly the fourth moment of the
distribution) makes extreme observations more likely than in the normal
case.

Plots of the estimated volatility against returns commonly show some
curvature (“smile” in Finance jargon) [19] indicating excess kurtosis and
making market asymmetries clearer. Volatility smile and smirk effects
are closely related to the presence of excess kurtosis and negative
skewness in the underlying asset returns distribution [2]. Also, skewness
affects the persistence in variance and have different impacts on the
volatility because it increases uncertainty and risk.

Analysis of this conditional volatility again highlights the smaller

values obtained from the GARCH model. In Figure 8(c), a smoothed curve

was obtained by the “lowess” method. It shows little curvature and no

skewness for the conditional volatility values from the GARCH model.

Meanwhile, the proposed iterative method shows that a polynomial
of higher order could be useful since Figure 8(d) shows much more
curvature for the conditional volatility obtained from the iterative
method. Also, the values from the iterative method are less variable for

returns near zero than its correspondents from the GARCH model. Little

or no skewness was observed in this plot, indicating that probably
asymmetric models are not needed.

Thus, the proposed iterative method shows some important facts

about the conditional volatility that were hidden by the GARCH model.

This probably occurs because of the deterministic nature of the variance

in the GARCH model (given all the past information), and because of the

separated treatment given to the covariance structure of the volatility
in the iterative method.
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6. Conclusion

Correlation is a common factor in practical applications. This
correlation can have important consequences on the statistical properties
of the estimator.

In this article a method for function estimation using wavelets
in the presence of correlated errors was proposed. Similar ideas were
briefly touched by some authors [8] for the case where the correlation
structure was known and comparisons were advocated as an interesting
topic.

A simulation study was carried out in order to evaluate risk and
bias of the proposed iterative procedure. The results were reported and
compared with two other wavelet methods. To illustrate the usefulness
of the method, it was applied to a financial situation were the signal-to-
noise is usually rather low. It was tentatively shown that the proposed
method is at least as good as other benchmark wavelet methods
independently of the type of autocorrelation of the error term.

The proposed iterative method uses Universal but any other
threshold could easily substitute it. Actually, the proposed method is an
alternative to leveldependent thresholding; not a new thresholding
method.

Research to develop theoretical properties for the proposed iterative
method is in progress. It seems that order of convergence and asymptotic
distributional properties are not hard to obtain under mild conditions.
For results regarding kernel - and splines - based methods under
correlation see [11] for a review.
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