KRDB RESEARCH CENTRE

KNOWLEDGE REPRESENTATION

Ontologies and e
Databases

Enrico Franconi
KRDB Research Centre — Free University of Bozen-Bolzano, Italy

http://www.inf .unibz.it/~franconi

Summary

» What is an Ontology
» (Description Logics for Conceptual Modelling)

» Queries via a Conceptual Schema

What is an Ontology

» An ontology is a formal conceptualisation of the world: a conceptual
schema.

» An ontology specifies a set of constraints, which declare what should
necessarily hold in any possible world.

» Any possible world should conform to the constraints expressed by the
ontology.

» Given an ontology, a legal world description is a finite possible world
satisfying the constraints.

Ontologies and Conceptual Data Models

» An ontology language usually introduces concepts (aka classes,
entities), properties of concepts (aka slots, attributes, roles),
relationships between concepts (aka associations), and additional
constraints.

» Ontology languages may be simple (e.g., involving only concepts and
taxonomies), frame-based (e.g., UML, based on concepts, properties,
and binary relationships), or logic-based (e.g. OWL, Description
Logics).

» Ontology languages are typically expressed by means of diagrams.

» Entity-Relationship schemas and UML class diagrams can be
considered as ontologies.

UML Class Diagram

Employee

PaySlipNumber:Integer Works-for
Salary:Integer
1.x
Manager Project
ProjectCode:String
1.1
{disjoint,complete}
Manages
AreaManager TopManager &

1.1

Entity-Relationship Schema

PaySlipNumber(Integer)
O Salary(Integer)

/

@

(L.n)
ProjectCode(String)

Manager
Project

(1.1)

1,1
AreaManager| |TopManager (L) Manages

Semantics

In a specific world:

> A class is a set of instances;
> a n-ary relationship is a set of n-tuples of instances;

> an attribute is a set of pairs of an instance and a domain element.

“pg”

Employee Project String

Semantics

In a specific world:

> A class is a set of instances;
> a n-ary relationship is a set of n-tuples of instances;

> an attribute is a set of pairs of an instance and a domain element.

“pg”

Employee Project String
Works-for

Ontologies and Databases E. Franconi (6/38)

Semantics

In a specific world:

> A class is a set of instances;
> a n-ary relationship is a set of n-tuples of instances;

> an attribute is a set of pairs of an instance and a domain element.

“pg”

Employee Project String
Works-for ProjectCode

Ontologies and Databases E. Franconi (6/38)

A world is described by sets of instances

Employee Project Works-for

The relational representation of a world

Employee Project String
employeeld projectld anystring
E; P “P12a”
E» P> “P02b”
Es Ps3 “P2a/1"
E4 “P9”
Es e
Works-for ProjectCode
employeeld | projectld projectld | pcode
E, P: P | PL2a
E P1 P2 “P02b"
E P2 Ps “P2a/1"
=) Ps
E; P:
E4 P2
E4 P3
Es P3

The graph representation of a world —
e.g. RDF triples

Employee Project

String

:Works-for

Ontologies and Databases E. Franconi (9/38)

The graph representation of a world —
e.g. RDF triples

:ProjectCode

:Works-for

Employee Project String

The graph representation of a world —
e.g. RDF triples

Employee Project String

Works-for

Ontologies and Databases E. Franconi (9/38)

The graph representation of a world —
e.g. RDF triples

Employee Project String

Works-for ProjectCode

Ontologies and Databases E. Franconi (9/38)

The role of a Conceptual Schema

Conceptual
Schema

Data Store
N~

The role of a Conceptual Schema

Constraints

Conceptual
Schema

Data Store
N~

The role of a Conceptual Schema

Constraints

Conceptual
Schema

Logical -
ogica

>chema b m
~——

Data Store
N~

The role of a Conceptual Schema

Reasoning

Constraints

Conceptual
Schema

Logical -
ogica

>chema b m
~——

Data Store
N~

Reasoning

Given an ontology — seen as a collection of constraints — it is possible that
additional constraints can be inferred.

» A class is inconsistent if it denotes the empty set in any legal world

description.

> A class is a subclass of another class if the former denotes a subset of
the set denoted by the latter in any legal world description.

» Two classes are equivalent if they denote the same set in any legal
world description.

> A stricter constraint is inferred — e.g., a cardinality constraint — if it

holds in in any legal world description.

Simple reasoning example

Person

I

{disjoint}

Italian

L&disjoint,covering}

English

I

Lazy

LatinLover

Gentleman

Hooligan

JAY

Simple reasoning example

Person

I

{disjoint}
Italian English
L&disjoint,covering} L‘x
Lazy LatinLover Gentleman Hooligan
| JA

LatinLover = 0

Italian C Lazy
Italian = Lazy

Reasoning: cute professors

Italian

JAN

{disjoint,complete}

Lazy

Mafioso

LatinLover

ItalianProf

Reasoning: cute professors

Italian

JAN

{disjoint,complete}

Lazy Mafioso

LatinLover

ItalianProf

implies
ItalianProf C LatinLover

Reasoning with Conceptual Schemas

Employee

PaySlipNumber:Integer Works-for

Salary:Integer

|

Manager Project
ProjectCode:String

1.1
le{disjoint,complete}

AreaManager]| TopManager Manages

» Managers do not work for a project (she/he just manages it):
Vx.Manager(x) — Vy.-WORKS-FOR(x, y)

Reasoning with Conceptual Schemas

Employee
PaySlipNumber:Integer Works-for
Salary:Integer 1 L%
T 1.x
Manager Project
ProjectCode:String
1.1
le{disjoint,complete}
AreaManager TopManager Manages
1.1

» Managers do not work for a project (she/he just manages it):
Vx.Manager(x) — Vy.-WORKS-FOR(x, y)

» If the minimum cardinality for the participation of employees to the
works-for relationship is increased, then ...

The democratic company

Supervisor 2..2

supervises

Employee

The democratic company

Supervisor || 2..2

supervises

Employee

implies
“the classes Employee and Supervisor necessarily contain an infinite
number of instances”.

Since legal world descriptions are finite possible worlds satisfying the
constraints imposed by the conceptual schema, the schema is inconsistent.

How many numbers?

Natural Number 1..1

rel

Even Number

How many numbers?

Natural Number 1..1

rel

Even Number

implies

“the classes Natural Number and Even Number contain the same number
of instances”.

How many numbers?

Natural Number 1..1

rel

Even Number

implies

“the classes Natural Number and Even Number contain the same number
of instances”.

Only if the domain is finite: Natural Number = Even Number

Summary

» Logic and Conceptual Modelling

> ‘Description Logics for Conceptual Modelling

» Queries via a Conceptual Schema

Encoding Conceptual Schemas in
(Description) Logics

» Object-oriented data models (e.g., UML and ODMG)
» Semantic data models (e.g., EER and ORM)
» Frame-based and web ontology languages (e.g., RDFS, OWL)

Encoding Conceptual Schemas in
(Description) Logics

» Object-oriented data models (e.g., UML and ODMG)

» Semantic data models (e.g., EER and ORM)

» Frame-based and web ontology languages (e.g., RDFS, OWL)

» Theorems prove that a conceptual schema and its encoding as DL
knowledge bases constrain every world description in the same way —

i.e., the models of the DL theory correspond to the legal world
descriptions of the conceptual schema, and vice-versa.

Works-for
Manages
Employee

T
Manager
AreaManager
TopManager
Project

I

M

Employee
PaySlipNumber:Integer Works-for
Salary:Integer

1.x
Manager Project
ProjectCode:String
1.1
le{disjoint,complete}
AreaManager TopManager Manages
1.1

emp/2 : Employee [Mact/2 : Project

man/2 : TopManager M prj/2 : Project

3=t [worker](PaySlipNumber Mnum/2 : Integer)rl
3=![payee](Salary Mamount/2 : Integer)
3=1[num](PaySlipNumber M worker/2 : Employee)
Employee I (AreaManager L TopManager)
Manager 1 —TopManager

Manager M 3! [man]Manages

321[act]Works-for M 3=![prj]Manages

Set-based Constraints

Works-for C Employee x Project

Manages C TopManager x Project

Employee C {e | §(PaySlipNumber N ({e} x Integer)) > 1}
Employee C {e | §(Salary N ({e} x Integer)) > 1}
Project C {p | §(ProjectCode N ({p} x String)) > 1}
TopManager C {m | 1 > #§(Manages N ({m} x Q)) > 1}
Project C {p | 1 > #(Manages N (2 x {p})) > 1}
Project C {p | #(Works-for N (2 x {p})) > 1}

Manager C Employee

AreaManager C Manager

TopManager C Manager

AreaManager N TopManager =)

Manager C AreaManager U TopManager

Deducing constraints

Employee
PaySlipNumber:Integer

Works-for

Salary:Integer

1.x

Manager Project
ProjectCode:String

|
1.1

llx{disjoint,complete}

AreaManager|]| TopManager Manages

Managers are employees who do not work for a project (she/he just manages it):
Employee M —(32![emp]Works-for) C Manager, Manager T —(3=![emp]Works-for)

Deducing constraints

Employee
PaySlipNumber:Integer

Works-for

Salary:Integer

1.x

Manager Project
ProjectCode:String

|
1.1

llx{disjoint,complete}

AreaManager|]| TopManager Manages

Managers are employees who do not work for a project (she/he just manages it):
Employee M —(32![emp]Works-for) C Manager, Manager T —(3=![emp]Works-for)

’: For every project, there is at least one employee who is not a manager:
Project C 32*[act](Works-for M emp : —Manager)

iecom: Intelligent Conceptual Modelling

» iecom allows for the specification of multiple EER (or UML) diagrams
and inter- and intra-schema constraints;

» Complete logical reasoning is employed by the tool using a hidden
underlying DLR inference engine;

> iecom verifies the specification, infers implicit facts and stricter
constraints, and manifests any inconsistencies during the conceptual
modelling phase.

Summary

» Logic and Conceptual Modelling

» Description Logics for Conceptual Modelling

> ‘Queries via a Conceptual Schema

The role of a Conceptual Schema -
revisited

Conceptual
Schema

A
Y

Logical
Schema

A

The role of a Conceptual Schema -
revisited

Constraints

Conceptual
Schema

A
Y

Logical
Schema

A

The role of a Conceptual Schema -
revisited

Constraints

Conceptual
Schema

A
Y

Logical Q -
Schema uery

A

The role of a Conceptual Schema -
revisited

Reasoning

Constraints

Conceptual
Schema

A
Y

Logical Q -
Schema uery

A

The role of a Conceptual Schema -
revisited

Reasoning

Constraints

Conceptual
Schema

A
Y

Logical Q -
Schema uery

A

The role of a Conceptual Schema -
revisited

Reasoning

Constraints

Conceptual
Schema

A
Y

Logical Q -
Schema uery

A

The role of a Conceptual Schema -
revisited

Reasoning

Constraints P
Conceptual Quer ~——

Schema 4 Result
A N~
\4 —
Logical Quer ~———

Schema Y Result
A N~

The role of a Conceptual Schema -

revisited

Reasoning

Constraints P
Conceptual - ~——
Schema 1 Result
Logical Q ~——
Schema uery Result
Ontologies and Databases E. Franconi

(24/38)

The role of a Conceptual Schema -
revisited

Reasoning

Constraints

Conceptual
Schema

A |

\4 \J
Logical Q
Schema uery

A

Data Store

Ontologies and Databases E. Franconi (24/38)

The role of a Conceptual Schema -
revisited

Reasoning

Constraints

Conceptual
Schema

Logical
Schema

Data Store

Ontologies and Databases E. Franconi (24/38)

The role of a Conceptual Schema -
revisited

Reasoning

Constraints

Conceptual
Schema

Logical
Schema

<— Knowledge Level

<—— Information Level

<— Data Level

Data Store

Ontologies and Databases E. Franconi (24/38)

Queries via Conceptual Schemas:
the DB assumption

» Basic assumption: consistent information with respect to the
constraints introduced by the conceptual schema
» DB assumption: complete information about each term appearing in

the conceptual schema
» Problem: answer a query over the conceptual schema vocabulary

Queries via Conceptual Schemas:
the DB assumption

v

Basic assumption: consistent information with respect to the
constraints introduced by the conceptual schema

v

DB assumption: complete information about each term appearing in
the conceptual schema

v

Problem: answer a query over the conceptual schema vocabulary
Solution: use a standard DB technology (e.g., SQL, datalog, etc)

v

Example with DB assumption

Employee Works-for 1.4 Project

|

Manager

Example with DB assumption

Employee Works-for 1.4 Project

|

Manager

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Example with DB assumption

Employee Works-for 1.4 Project

|

Manager

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)
= { John }

Weakening the DB assumption

» The DB assumption is against the principle that a conceptual schema
presents a richer vocabulary than the data stores (i.e., it plays the role
of an ontology).

Weakening the DB assumption

» The DB assumption is against the principle that a conceptual schema
presents a richer vocabulary than the data stores (i.e., it plays the role
of an ontology).

» Partial DB assumption (or conceptual schema with DBox): complete
information about some term appearing in the conceptual schema

» Standard DB technologies do not apply

» The query answering problem in this context is inherently complex

Example with partial DB assumption

Employee Works-for 1.4 Project

|

Manager

Manager = { John, Paul }
Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Example with partial DB assumption

Employee Works-for 1.4 Project

|

Manager

Manager = { John, Paul }
Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)

Example with partial DB assumption

Employee Works-for 1.4 Project

|

Manager

Manager = { John, Paul }
Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)
= { John, Paul, Mary }

Example with partial DB assumption

Employee Works-for 1.4 Project

|

Manager

Manager = { John, Paul }
Works-for = { (John,Prj-A), (Mary,Prj-B) }
Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)
= { John, Paul, Mary }

— Q’ (X) :- Manager(X) U Works-for(X,Y)

Andrea’s Example

OfficeMate

Employee

Supervised

Manager

llx{disjoint,complete}

AreaManager || TopManager
JAN JAY
AreaManager,j | TopManager,

Andrea’s Example

OfficeMate

Employee = { Andrea, Paul, Mary, John }
Manager = { Andrea, Paul, Mary}

Employee AreaManager, = { Paul }
TopManager, = { Mary }
Supervised = { (John,Andrea), (John,Mary) }
OfficeMate = { (Mary,Andrea), (Andrea,Paul) }

Supervised
Manager

llx{disjoint,complete}

AreaManager || TopManager

AreaManager,j | TopManager,

Andrea’s Example

OfficeMate Employee = { Andrea, Paul, Mary, John }
Manager = { Andrea, Paul, Mary}
Employee AreaManager, = { Paul }
TopManager, = { Mary }
Supervised = { (John,Andrea), (John,Mary) }
OfficeMate = { (Mary,Andrea), (Andrea,Paul) }
Suplervised
Manager
John
llx{distint,complete} Supervﬁ/ \Iipervlsed
And M O:EflceMateM TooM
AreaManager || TopManager ndrea:tanager ary:toptlanagerpy
N\ N\ OfficeMate
Paul:AreaManagerp

AreaManager,j | TopManager,

Andrea’s Example (cont.)

OfficeMate

Employee

Supervised

Manager

llx{disjoint,complete}

AreaManager || TopManager

AreaManager,j | TopManager,

Andrea’s Example

OfficeMate

Employee

Supervised

Manager

llx{disjoint,complete}

AreaManager || TopManager

AreaManager,j | TopManager,

(cont.)

John
Supervijig//// Supervised
folceMate
Andrea:Manager Mary:TopManager,
OfficeMate

Paul:AreaManagerp

Andrea’s Example

OfficeMate

Employee

Supervised

Manager

llx{disjoint,complete}

AreaManager || TopManager

AreaManager,j | TopManager,

(cont.)

Supervi?/

Andrea:Manager

John

Supervised

fo iceMate
Mary:TopManager,

OfficeMate

Paul:AreaManagerp

Q(X) :- Supervised(X,Y),

Officemate(Y,Z),

TopManager(Y),
AreaManager(Z)

Andrea’s Example (cont.)

OfficeMate

Employee

Suplervised
Manager
llx{disjoint,complete}
AreaManager || TopManager
JAN JAY

AreaManager,j | TopManager,

John
Supervised

Supervi?/

fo iceMate
Andrea:Manager

Mary:TopManager,
OfficeMate

Paul:AreaManagerp

Q(X) :- Supervised(X,Y), TopManager(Y),
Officemate(Y,Z), AreaManager(Z)

= { John }

Partial incomplete DB assumption

» Partial DB assumption (or conceptual schema with DBox): complete
information about some term appearing in the conceptual schema

» Partial incomplete DB assumption (or conceptual schema with
ABox): incomplete information about some term appearing in the
conceptual schema

» The partial incomplete DB assumption (conceptual schema with
ABox) is crucial in data integration scenarios.

Partial incomplete DB assumption

Employee Works-for 1..x Project

Partial incomplete DB assumption

Employee Works-for 1..x Project

DBox:

Works-for = { (John,Prj-A), (Mary,Prj-A) }
Project = { Prj-A, Prj-B }

Partial incomplete DB assumption

Employee Works-for 1..x Project

DBox:

Works-for = { (John,Prj-A), (Mary,Prj-A) }
Project = { Prj-A, Prj-B }

= INCONSISTENT

Partial incomplete DB assumption

Employee Works-for 1..x Project

DBox:

Works-for = { (John,Prj-A), (Mary,Prj-A) }
Project = { Prj-A, Prj-B }

= INCONSISTENT

ABox:

Works-for O { (John,Prj-A), (Mary,Prj-A) }
Project O { Prj-A, Prj-B }

Partial incomplete DB assumption

Employee Works-for 1.4 Project

ABox:

Works-for O { (John,Prj-A), (Mary,Prj-A) }
Project O { Prj-A, Prj-B }

Partial incomplete DB assumption

Employee Works-for 1.4 Project

ABox:

Works-for O { (John,Prj-A), (Mary,Prj-A) }
Project O { Prj-A, Prj-B }

Q(X) :- Works-for(Y,X)

Partial incomplete DB assumption

Employee Works-for 1.4 Project

ABox:

Works-for O { (John,Prj-A), (Mary,Prj-A) }
Project O { Prj-A, Prj-B }

Q(X) :- Works-for(Y,X)
= { Prj-A, Prj-B }

Partial incomplete DB assumption

Employee Works-for 1.4 Project

ABox:

Works-for O { (John,Prj-A), (Mary,Prj-A) }
Project O { Prj-A, Prj-B }

Q(X) :- Works-for(Y,X)
= { Prj-A, Prj-B }

= Q’ (X) :- Project(X) U Works-for(Y,X)

View based Query Processing

» Mappings between the conceptual schema terms and the information
source terms are not necessarily atomic.
» Mappings can be given in terms of a set of ABox (or DBox) facts:
» GAV (global-as-view): ABox (or DBox) facts over the information
source vocabulary are associated to terms in the conceptual schema

> both the DB and the partial DB assumptions are special cases of GAV
> an ER schema can be easily mapped to its corresponding relational
schema in some normal form via a GAV mapping

» LAV (local-as-view): a ABox or DBox over the conceptual schema
vocabulary is associated to each term in the information source;
» GLAV: mix of the above.
» It is non-trivial, even in the pure GAV setting - which is wrongly
believed to be computable by simple view unfolding.

Sound GAV mapping

Employee

PaySlipNumber:Integer

Works-for 1.«

Project

Salary:Integer

Manager

ProjectCode:String

Sound GAV mapping

Employee

PaySlipNumber:Integer

Works-for 1.«

Project

Salary:Integer

Manager

ProjectCode:String

1-Employee (PaySlipNumber ,Salary,ManagerP)
2-Works-for (PaySlipNumber ,ProjectCode)

Sound GAV mapping

Employee
PaySlipNumber:Integer
Salary:Integer

Works-for 1..x Project
ProjectCode:String

Manager

1-Employee (PaySlipNumber ,Salary,ManagerP)
2-Works-for (PaySlipNumber ,ProjectCode)

Employee(X) :- 1-Employee(X,Y,false) Works-for (X,Y)
Manager(X) :- 1-Employee(X,Y,true) Salary(X,Y)
Project(Y) :- 2-Works-for(X,Y)

2-Works-for (X,Y)
1-Employee (X,Y,Z)

Sound GAV mapping

Employee
PaySlipNumber:Integer Works-for 1.«
Salary:Integer

Project
ProjectCode:String

Manager

1-Employee (PaySlipNumber ,Salary,ManagerP)
2-Works-for (PaySlipNumber ,ProjectCode)

Employee(X) :- 1-Employee(X,Y,false) Works-for (X,Y)
Manager(X) :- 1-Employee(X,Y,true) Salary(X,Y)
Project(Y) :- 2-Works-for(X,Y)

Q(X) :- Employee(X)

2-Works-for (X,Y)
1-Employee (X,Y,Z)

Sound GAV mapping

Employee
PaySlipNumber:Integer Works-for 1.«
Salary:Integer

Project
ProjectCode:String

Manager

1-Employee (PaySlipNumber ,Salary,ManagerP)
2-Works-for (PaySlipNumber ,ProjectCode)

Employee(X) :- 1-Employee(X,Y,false) Works-for (X,Y)
Manager(X) :- 1-Employee(X,Y,true) Salary(X,Y)
Project(Y) :- 2-Works-for(X,Y)

Q(X) :- Employee(X)
- Q’ (X) :- 1-Employee(X,Y,Z) U 2-Works-for(X,W)

2-Works-for (X,Y)
1-Employee (X,Y,Z)

Sound GAV mapping

Employee

PaySlipNumber:Integer

Works-for 1..x

Project

Salary:Integer

Manager

ProjectCode:String

1-Employee (PaySlipNumber ,Salary,ManagerP)
2-Works-for (PaySlipNumber ,ProjectCode)

Employee(X) :-
Manager(X) :-
Project(Y) :-

Q)

== Q> X)

:- Employee(X)
:- 1-Employee(X,Y,Z) U 2-Works-for(X,W)

1-Employee(X,Y,false)
1-Employee(X,Y,true)
2-Works-for(X,Y)

Works-for (X,Y)
Salary(X,Y)

2-Works-for (X,Y)
1-Employee (X,Y,Z)

< not coming from
unfolding!

Sound LAV mapping

Employee

PaySlipNumber:Integer

Works-for 1..x

Project

Salary:Integer

Manager

ProjectCode:String

Sound LAV mapping

Employee

PaySlipNumber:Integer

Works-for 1..x

Project

Salary:Integer

Manager

ProjectCode:String

1-Employee (PaySlipNumber ,Salary,ManagerP)
2-Works-for (PaySlipNumber ,ProjectCode)

Sound LAV mapping

Employee
PaySlipNumber:Integer
Salary:Integer

Works-for 1.« Project
ProjectCode:String

Manager

1-Employee (PaySlipNumber ,Salary,ManagerP)
2-Works-for (PaySlipNumber ,ProjectCode)

1-Employee(X,Y,Z) := Manager(X), Salary(X,Y), Z=true
1-Employee(X,Y,Z) :- Employee(X), —Manager(X), Salary(X,Y), Z=false
2-Works-for(X,Y) :- Works-for(X,Y)

Sound LAV mapping

Employee
PaySlipNumber:Integer
Salary:Integer

Works-for 1.« Project
ProjectCode:String

Manager

1-Employee (PaySlipNumber ,Salary,ManagerP)
2-Works-for (PaySlipNumber ,ProjectCode)

1-Employee(X,Y,Z) := Manager(X), Salary(X,Y), Z=true
1-Employee(X,Y,Z) :- Employee(X), —Manager(X), Salary(X,Y), Z=false
2-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

Sound LAV mapping

Employee
PaySlipNumber:Integer
Salary:Integer

Works-for 1.« Project
ProjectCode:String

Manager

1-Employee (PaySlipNumber ,Salary,ManagerP)
2-Works-for (PaySlipNumber ,ProjectCode)

1-Employee(X,Y,Z) := Manager(X), Salary(X,Y), Z=true
1-Employee(X,Y,Z) :- Employee(X), —Manager(X), Salary(X,Y), Z=false
2-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)
== Q’ (X) :- 1-Employee(X,Y,true), 2-Works-for(X,Z)

Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

Employee
PaySlipNumber:Integer Works-for
Salary:Integer
T Vx.Manager(x) — Vy. -WORKS-FOR(x, y)
1.x
Manager Project
ProjectCode:String
llx{disjoint,complete} L1
AreaManager || TopManager Manages

Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

Employee
PaySlipNumber:Integer Works-for
Salary:Integer
T Vx. Manager(x) — Vy. —WORKS-FOR(x, y)
1.x
Manager Project

ProjectCode:String

1.1
llx{disjoint,complete}

AreaManager || TopManager Manages

~ INCONSISTENT QUERY!

Conclusions

Ontologies and Databases E. Franconi (38/38)

Conclusions

Do you want to exploit conceptual schema knowledge
(i.e., an ontology)
in your data intensive application?

Conclusions

Do you want to exploit conceptual schema knowledge
(i.e., an ontology)
in your data intensive application?

Pay attention!

