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8 THE EXPONENTIAL MATRIX:

AN EXPLICIT FORMULA BY AN

ELEMENTARY METHOD

Oswaldo Rio Branco de Oliveira

Abstract

We show an explicit formula, with a quite easy deduction, for the

exponential matrix e
tA of a real square matrix A of order n× n. The el-

ementary method developed requires neither Jordan canonical form, nor

eigenvectors, nor resolution of linear systems of differential equations, nor

resolution of linear systems with constant coefficients, nor matrix inver-

sion, nor complex integration, nor functional analysis. The basic tools

are power series and the method of partial fraction decomposition. Two

examples are given. A proof of one well-known stability result is given.
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1 Introduction.

In this article we give an explicit formula, with a quite easy proof, for the
exponential matrix etA of a square real matrix A of order n× n, where t is an
arbitrary real number. The method developed in what folows requires neither
Jordan canonical form, nor eigenvectors, nor resolution of linear systems of
differential equations, nor resolution of linear systems with constant coefficients,
nor matrix inversion, nor functional analysis (as required for the integration of
functions of one complex variable taking values in the Banach space of the square
complex matrices of order n × n). The basic tools employed in this work are
(1) some basic results on complex power series and (2) the method of partial
fraction decomposition.

As is well-known, the question of computing the exponential matrix etA

arises from the problem of finding a solution x : R → Rn of the constant
coefficients linear system of ordinary differential equations

{

x′(t) = Ax(t)
x(0) = x0,
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where A is a real square matrix of order n×n and x0 is a fixed point in Rn. As
is also well-known, the unique solution is x(t) = etAx0.

Two of the best methods of finding the exponential matrix etA are the
method that employs Jordan canonical form, see Gantmacher [3, pp. 149–
152], and Putzer’s method, see Apostol [1, pp. 205–208]. Some authors, short
of employing Jordan canonical form, resort to the linear algebra primary de-
composition theorem, see Taylor [9, pp. 146–157]. It is worth to point out that
the nice method developed by Putzer requires solving another linear system of
differential equations (although a handicap, this new system is not a hard one).

Among others ways of computing etA we mention Kirchner [2]. In it Kirchner
also find an explicit formula for etA. However, his method requires to compute
the inverse of a matrix and this can be troublesome. On the other hand, the
method provided in this article avoids matrix inversion.

It is important to notice that a fairly sophisticated generalization of the
method developed in this work is basically presented in some other texts. Such
general and quite abstract method employs the Cauchy integral formula for
functions of one complex variable taking values in complex Banach spaces (e.g.,
Rudin [8, pp. 258–267]). Nevertheless, three comments are worthwhile regard-
ing this generalization presented by Rudin (and some other texts). First, the
Symbolic Calculus very nicely explained in his book requires knowledge of the
complex integration theory and a bit of functional analysis. Second, the result
presented by Rudin is not explicit on how to use the method of the partial frac-
tion decomposition in order to obtain the exponential matrix etA (although that
is is not hard to figure out). Third and foremost, this quite advanced approach
is unnecessary in order to find the exponential matrix etA.

For those who are also interested on numerical analysis and computational
algorithms to evaluate the matrix etA, we refer Moler and Van Loan [5]. In it,
they focus specially the cases where A is a matrix of order n× n with n ≤ 100.

2 Preliminaries - Power series.

Let us denote by z the complex variable in C. We indicate the usual norm of
a complex number z by |z|. Given a0, a1, a2, . . . a sequence of complex numbers,
it is well-known that if the real series

∑+∞
n=0 |an| converges then the complex

series
∑+∞

n=0 an also does. We say that the series
∑+∞

n=0 an converges absolutely

if the series
∑+∞

n=0 |an| converges.

We also write
∑+∞

n=0 an < ∞ if the series converges.
Let us denote a complex sequence a0, a1, a2, . . . by (an) = (a0, a1, . . .), and

a complex power series with complex coefficients (an) by

f(z) = a0 + a1z + a2z
2 + · · · .

We say that such power series converges at a given point ζ ∈ C if the
numerical series

∑+∞
n=0 anζ

n converges in C. Then we define f(ζ) =
∑+∞

n=0 anζ
n.
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The three results on power series shown in this section, all three enunciated
for the entire complex plane, have analogous versions and proofs that are valid
for complex power series defined on the open ball B(0, 1) = {z ∈ C : |z| < 1}.

Lemma 1 (Convergence and absolute convergence). The complex power
series

f(z) =

+∞
∑

n=0

anz
n,where z ∈ C,

converges for all z ∈ C if and only if
∑+∞

n=0 |anz
n| converges for all z ∈ C.

Proof. We already know that absolute convergence implies convergence.
Let us show the other implication. The case z = 0 is obvious. So, let us fix

a point z 6= 0. Then we take the positive number 2|z|. By hypothesis we have

+∞
∑

n=0

an(2|z|)
n < ∞.

Thus, we have the convergence an2
n|z|n −→ 0 if n → ∞ and then there exists

N = N(z) such that we have |an||z|
n2n ≤ 1 for all n ≥ N . Then, it is clear that

+∞
∑

n=0

|anz
n| ≤ (|a0|+ · · ·+ |aNzN |) +

+∞
∑

n=N+1

1

2n
< ∞.

�

Lemma 2 (Differentiation of power series). Let us consider the two com-
plex power series

f(z) =

+∞
∑

n=0

anz
n and g(z) =

+∞
∑

n=1

nanz
n−1.

Then, one power series converges at every point in the complex plane if and
only if the other one also does. In such cases we have

f ′(z) = g(z) for all z.

Proof. Let us split the proof into two parts: convergence and differentiation.

⋄ Convergence. Evidently, both power series converge at the origin. More-
over, given any z ∈ C we have the inequality

+∞
∑

n=0

|anz
n| ≤ |a0|+ |z|

+∞
∑

n=1

|nanz
n−1|.
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By the other hand, and noticing that we have 2n ≥ n for all n, given any
z 6= 0 we find the inequality

+∞
∑

n=1

|nanz
n−1| =

1

|z|

+∞
∑

n=1

n

2n
|an(2z)

n| ≤
1

|z|

+∞
∑

n=0

|an(2z)
n|.

Thus, by lemma 1 we conclude that
∑+∞

n=0 anz
n converges everywhere (in

the complex plane) if and only if
∑+∞

n=1 nanz
n−1 converges everywhere.

⋄ Differentiation. Let us suppose that both power series converge everywhere.
Then, let us fix a point z ∈ C and R > |z|. Next, we consider an increment
h ∈ C such that 0 < |h| < r = R− |z|. Fixing any n ≥ 2 we find that























(z+h)n−zn

h
= nzn−1 + h

n
∑

p=2

(

n
p

)

zn−php−2

and
∣

∣

∣

(z+h)n−zn

h
− nzn−1

∣

∣

∣
≤ |h|

r2

n
∑

p=2

(

n
p

)

|z|n−p rp ≤ |h|
r2

Rn.

We notice that|z + h| < R. Therefore we conclude that
∣

∣

∣

∣

∣

+∞
∑

n=0

an
(z + h)n − zn

h
−

+∞
∑

n=0

nanz
n−1

∣

∣

∣

∣

∣

≤
|h|

r2

+∞
∑

n=0

|an|R
n.

Letting h → 0 we find f ′(z) = g(z). �

As a convention, the null polynomial has degree −∞. Let us assume the
fundamental theorem of algebra (for a proof of it, see Oliveira [7]).

Lemma 3 (Dividing power series by polynomials). Let us consider a
complex and everywhere convergent power series

f(z) =

+∞
∑

n=0

anz
n where z ∈ C,

and a complex polynomial p(z) = (z−λ1)
m1 · · · (z−λm)mm with distinct complex

zeros λ1, . . . , λm and degree(p) = m1 + · · ·+mm = n ≥ 1. Then we have

f(z) = q(z)p(z) + r(z) for all z ∈ C,

with q a power series centered at the origin that converges everywhere in C and r
a complex polynomial satisfying degree(r) < degree(p). Such q and r are unique.

Proof. Let us split it into three parts: initial case, induction, and uniqueness.

⋄ Initial case. Fixing a point z and α = λ1 we factorize

f(z)− f(α) =

+∞
∑

n=0

anz
n −

+∞
∑

n=0

anα
n =

+∞
∑

n=1

an(z
n − αn)

= (z − α)

+∞
∑

n=1

an(z
n−1 + zn−2α+ · · ·+ zαn−2 + αn−1).
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Now, let us fix ρ satisfying 0 ≤ max{|z|, |α|} < ρ. Then we have

∑

n∈{1,...,N}
k∈{0,...,n−1}

|an||z|
n−1−k |α|k ≤

+∞
∑

n=1

|an|nρ
n−1, for all N.

This last series is finite by Lemma 2. Under such condition, in order to
compute the sum

∑

n,k anz
n−1−kαk, we can freely associate its terms (see

Lang [4], Oliveira [6]). Therefore, we may write

∑

n≥1

an(z
n−1 + zn−2α+ · · ·+ zαn−2 + αn−1) =

∑

n≥0

bnz
n,

with (bn) a complex sequence. This is true for all z. This shows

f(z) = (z − α)Q1(z) + f(α), with Q1(z) =
∑

n≥0

bnz
n for all z.

⋄ Induction. Iterating the initial case, it is fairly trivial to see that we have
f(z) = q(z)p(z) + r(z) with q(z) a power series centered at the origin and
convergent over C, and r(z) a polynomial with degre(r) <degree(p).

⋄ Uniqueness. Let us suppose that we have two decompositions

f(z) = q1(z)p(z) + r1(z) and f(z) = q2(z)p(z) + r2(z),

both satisfying the requirements in the statement. Then we find

(q2 − q1)p = r1 − r2.

Let us suppose that r1 − r2 is not the null polynomial. Let λ be a zero of
multiplicity j ≥ 1 of p. It is not difficult to see that there exists

lim
z→λ

r1(z)− r2(z)

(z − λ)j
.

This shows that λ is a zero of r1 − r2 with multiplicity k ≥ j. This is true
for every zero of p. Thus we have degree(r) ≥ degree(p), a contradiction.

So, we have r1 = r2 and then q1(z)p(z) = q2(z)p(z) for all z. From this,
it is quite clear that we have q1(z) = q2(z) for all z. �

Remark 1 Lemma 3 has an analogous result, valid if we suppose that f(z) is a
complex power series convergent in B(0, 1) and p(z) = (z−λ1)

m1 · · · (z−λm)mm

is a polynomial with its zeros λ1, . . . , λm inside B(0, 1). It is not difficult to
figure out a proof of such result that almost replicates the one right above.
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3 Partial fraction decomposition.

Lemma 4 (Useful derivatives). Let us consider a point λ ∈ C, the complex
variable z ∈ C, an open ball B(λ, ρ) = {z ∈ C : |z − λ| < ρ} centered at λ with
radius ρ > 0, an integer N ≥ 1, and an infinitely differentiable function

g : B(λ, ρ) → C.

Then we have

dk
{

(z − λ)N
}

dzk

∣

∣

∣

z=λ
=







0 for all k 6= N

N ! if k = N

and
dk

{

(z − λ)Ng(z)
}

dzk

∣

∣

∣

z=λ
= 0 for all k = 0, . . . , N − 1.

Proof. It is trivial and we leave it to the reader. �

A complex polynomial p = p(z) is monic if its dominant coefficient is 1.

Theorem 1 (Partial fraction decomposition). Let f and q be power series
convergent over C, and p and r be polynomials, all as in Lemma 3. That is,

f(z) = q(z)p(z) + r(z) with degree(r) < n = degree(p).

Let us suppose that p is monic and degree(p) = n ≥ 1. Let λ1, . . . , λm be the
distinct zeros of p(z), with respective multiplicities m1, . . . ,mm. Let us write

p(z) = (z − λ1)
m1 · · · (z − λm)mm .

Then, there are n constants C11, . . . , C1,m1 , . . . , Cm11, . . . , Cm1mm
such that we

have the decomposition

f(z)

p(z)
= q(z)+

[

C11

z − λ1
+ · · ·+

C1m1

(z − λ1)m1

]

+· · ·+

[

Cm1

z − λm

+ · · ·+
Cmmm

(z − λm)mm

]

,

for all z ∈ C \ {λ1, . . . , λm}. These constants are unique and given by the
derivatives



















Cjkj
=

g
(mj−kj )

j
(λj)

(mj−kj)!
for all j = 1, . . . ,m and all kj = 1, . . . ,mj ,

where

gj(z) =
f(z)(z−λj)

mj

p(z) = f(z)∏

l 6=j

(z−λl)ml
.

Proof. Let us split it into three parts: decomposition, formula, and uniqueness.
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⋄ Decomposition. Let us show it by induction on n, where n = degree(p).
The case n = 1 is trivial.

Given n ≥ 2, let us suppose that the decomposition holds for polynomials
with degree smaller or equal to n − 1. Then, given p = p(z) with degree
equal to n, by the fundamental theorem of algebra we may write

{

p(z) = (z − λ1)
m1P (z),

with 0 ≤ degree(P ) < n and P (λ1) 6= 0.

Next, we may write

r(z) =
r(λ1)

P (λ1)
P (z) +

[

r(z)−
r(λ1)

P (λ1)
P (z)

]

.

Clearly, the polynomial inside brackets has a zero at z = λ1.

Thus, the Euclidean algorithm guarantees a polynomial s(z) satisfying

r(z)−
r(λ1)

P (λ1)
P (z) = (z − λ1)s(z) with degree(s) ≤ n− 2.

Hence, by the identity p(z) = (z − λ1)
m1P (z) we arrive at

r(z)

p(z)
=

r(λ1)/P (λ1)

(z − λ1)m1
+

s(z)

(z − λ1)m1−1P (z)
.

We have degree(s) ≤ n−2 < n−1 = degree[(z−λ1)
m1−1P (z)]. Therefore,

arguing by induction we arrive at the desired decomposition.

⋄ Formula. Let us fix j = 1. Given k1 ∈ {1, . . . ,m1}, following the above
decomposition and the definition of g1 (given in the statement) we find

g1(z) = C11(z − λ1)
m1−1 + · · ·+ C1k1 (z − λ1)

m1−k1 + · · ·+ C1m1

+(z − λ1)
m1









q(z) +
∑

2≤ j ≤m
1≤ kj ≤mj

Cjkj
(z − λj)mj









.

We notice that the function inside brackets is infinitely differentiable on a
neighborhood of the point z = λ1.

From Lemma 4 it follows that

g
(m1−k1)
1 (λ1) = (m1 − k1)!C1k1 .

The argument for j = 2, . . . ,m is analogous.

⋄ Uniqueness. The uniqueness of C11, . . . , Cmmm
follows from the formula.�
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4 The explicit formula for e
tA.

The following result is well-known and we omit its proof (see Apostol [1]).

Lemma 5 (Cayley-Hamilton Theorem). Let A be a real square matrix of
order n × n and pA(z) = det(zI − A) = zn + an−1z

n−1 + · · · + a1z + a0 its
characteristic polynomial. Then we have

pA(A) = An + an−1A
n−1 + · · ·+ a1A+ a0I = 0.

Theorem 2 (Explicit Formula for etA). Let A be a real square matrix of
order n× n with characteristic polynomial

pA(z) = (z − λ1)
m1 · · · (z − λm)mm ,

where λ1, . . . , λm are the distinct zeros of pA with m1, . . . ,mm their respective
algebraic multiplicities. For each j = 1, . . . ,m and each kj = 1, . . . ,mj, let us
consider the polynomial (a total of n polynomials)

pjkj
(z) = (z − λj)

mj−kj

∏

l 6=j

(z − λl)
ml

[

=
pA(z)

(z − λj)kj

]

.

Then we have (to simplify, we omit the set where the indices take values)

etA =
∑

Cjkj
pjkj

(A),

where

Cjkj
=

1

(mj − kj)!

dmj−kj

dzmj−kj

{

etz(z − λj)
mj

pA(z)

}

∣

∣

∣

z=λj

.

Proof. Fixing an arbitrary t ∈ R, the function z 7→ etz is given by a power
series that converges over the entire complex plane. By Lemma 3 we have

etz = q(z)pA(z)+r(z), with

{

q a power series that converges over C,
r a polynomial with degree(r) < degree(pA).

Since A comutes with powers of A and with the identity matrix, we find that

etA = q(A)pA(A) + r(A).

The Cayley-Hamilton theorem shows that pA(A) = 0. Thus we have

etA = r(A).

By the decomposition in Theorem 1 we may write

r(z)

pA(z)
=

∑

1≤j≤m
1≤kj≤mj

Cjkj

(z − λj)kj
.

Thus we are allowed to conclude that

r(z) =
∑

Cjkj
pjkj

(z) and r(A) =
∑

Cjkj
pjkj

(A).

The proof is complete. �
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5 Examples.

Example 1 - Let us compute etA for

A =

(

1 2
4 3

)

.

Solution. The characteristic polynomial is

p(z) =

∣

∣

∣

∣

z − 1 −2
−4 z − 3

∣

∣

∣

∣

= (z − 1)(z − 3)− 8 = (z + 1)(z − 5).

Following Theorem 1, and its notation, we write

etz

(z + 1)(z − 5)
= q(z) +

r(z)

(z + 1)(z − 5)
= q(z) +

α

z + 1
+

β

z − 5
,

where q = q(z) is complex power series centered at the origin and α and β are
complex constants. These constants are given by

α = −
e−t

6
and β =

e5t

6
.

Thus, we arrive at

etA =
e5t

6
(A+ I)−

e−t

6
(A− 5I) =

e5t

6

(

2 2
4 4

)

−
e−t

6

(

−4 2
4 −2

)

.

Example 2 - Real matrices of order 3 × 3. Let us compute etA when A is
a real matrix of order 3× 3, with characteristic polynomial p(z).

Solution. Let us start with the case p(z) = (z − λ)2(z − µ) where λ 6= µ.
Following Theorem 1, and its notation, we may write

etz

(z − λ)2(z − µ)
= q(z) +

α

z − µ
+

β

z − λ
+

γ

(z − λ)2
,

where q = q(z) is a complex power series centered at the origin and α, β, and γ
are complex constants. These constants are given by

α =
eµt

(µ− λ)2
, γ =

eλt

λ− µ
,

and

β =
d

dz

{

etz

z − µ

}

∣

∣

∣

z=λ
=

tetz(z − µ)− etz

(z − µ)2

∣

∣

∣

z=λ
=

eλt[t(λ− µ)− 1]

(λ− µ)2
.

The exponential matrix searched for is

etA =
eµt

(µ− λ)2
(A−λI)2 +

eλt[t(λ− µ)− 1]

(λ− µ)2
(A−λI)(A−µI)+

eλt

λ− µ
(A−µI).

We leave the case when p(z) = (z − λ)(z − µ)(z − ν) has three distinct
roots to the reader. We also leave the case when p(z) = (z − λ)3 has a root of
multiplicity three to the reader.
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Example 3 - A Stability Result. Let A be a n × n real matrix and p(z)
be its characteristic polynomial. Let us suppose that all the characteristic roots
λ1, . . . , λm of p(z) have negative real part. Then, let us show that there exist a
constant α < 0 and a constant C > 0 such that the unique solution of the linear
system

{

x′(t) = Ax(t)
x(0) = x0,

satisfy
|x(t)| ≤ Ceαt|x0|, for all t ∈ R and all x0 ∈ R

n.

Proof. From the hypotheses it follows that there exists α < 0 satisfying

Re(λj) < α, for all j = 1, . . . ,m.

By employing Theorem and its notation we have

etA =
∑

Cjkj
pjkj

(A).

We notice that the matrix pjkj
(A) does not depend on the variable t. Hence,

there exists M > 0 such that we have

|pjkj
(A)| ≤ M, for all allowed j and kj .

Thus we have
|etA| ≤ M

∑

|Cjkj
|.

The coefficient Cjkj
depends on the variable t and it is given by

Cjkj
=

1

(mj − kj)!

d(mj−kj)

dzmj−kj

{

etz(z − λj)
mj

pA(z)

}

∣

∣

∣

z=λj

.

Thus, there exists a complex constant Djkj
such that we have

Cjkj
= Djkj

eλjt.

Evidently, there exists N > 0 such that we have

|Djkj
| ≤ N, for all allowed j and kj .

Hence, we arrive at

|etA| ≤ MN
∑

eRe(λj)t ≤ MN
∑

eαt ≤ Ceαt, for some C > 0.

Therefore, we conclude that the solution x(t) = etAx0 satisfy

|x(t)| ≤ Ceαt|x0|, for all t ∈ R and all x0 ∈ R
n.

�
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