MEDIDA E INTEGRAÇÃO - MAT 5798 - IME 2016 Prof. Oswaldo Rio Branco de Oliveira

LISTA 5 DE EXERCÍCIOS

SECÃO 2.5, pp. 68-69

45. Sejam (X_j, \mathcal{M}_j) espaços mensuráveis, para j = 1, 2, 3. Então

$$\bigotimes_{j=1}^{3} \mathcal{M}_{j} = (\mathcal{M}_{1} \otimes \mathcal{M}_{2}) \otimes \mathcal{M}_{3}.$$

Ainda mais, se μ_j é medida σ -finita sobre (X_j, \mathcal{M}_j) então

$$\mu_1 \times \mu_2 \times \mu_3 = (\mu_1 \times \mu_2) \times \mu_3.$$

46. Sejam X = Y = [0,1], as σ -álgebras $\mathcal{M} = \mathcal{N} = \mathcal{B}_{[0,1]}$, a medida de Lebesgue μ e a medida de contagem ν . Seja

$$D = \{(x, x) : x \in [0, 1]\}, \text{ a diagonal de } X \times Y.$$

Então, são distintos os valores das integrais

$$\iint \chi_D d\mu d\nu, \iint \chi_D d\nu d\mu \text{ e } \int \chi_D d(\mu \times \nu).$$

Dica: para computar $\int_D \chi_D d(\nu \times \nu) = (\mu \times \nu)(D)$, veja a definição de $\mu \times \nu$.

- 49. Prove o Teorema 2.18 nas notas de aula (Theorem 2.39 in Folland p. 68) **Sugestão:** Use o Teorema 2.17 Fubini-Tonelli nas notas de aula (Theorem 2.37 in Folland p. 67), a Proposição 2.7 (Proposition 2.12 in Folland p. 48) e os seguintes lemas (e prove tais lemas):
 - (a) Se $E \in \mathcal{M} \otimes \mathcal{N}$ e $(\mu \times \nu)(E) = 0$, então $\nu(E_x) = 0 = \mu(E^y)$ para quase todo x e quase todo y.
 - (b) Se f é \mathcal{L} -mensurável e f = 0 λ -q.s., então f_x e f^y são integráveis para quase todo x e quase todo y, e

$$\int f_x d\nu = \int f^y d\mu = 0$$

para quase todo x e quase todo y. (Aqui, as completudes de μ e ν são necessárias.)

50. Sejam (X, \mathcal{M}, μ) um espaço de medida σ -finita e $f \in L^+(X)$. Defina

$$G_f = \{(x, y) \in X \times [0, \infty] : 0 \le y \le f(x)\}.$$

Então G_f é $\mathcal{M}\otimes\mathcal{B}_{\overline{\mathbb{R}}}$ -mensurável e

$$(\mu \times m)(G_f) = \int f d\mu.$$

O mesmo vale se na definição de G_f usarmos as designaldades $0 \le y < f(x)$. Sugestão: para mostrar que a região G_f é mensurável, note que a aplicação $(x,y) \mapsto f(x) - y$ é a composição da função $(x,y) \mapsto (f(x),y)$ com a função $(z,y) \mapsto z - y$. Este resultado mostra o teorema: A integral de uma função é a área da região abaixo do gráfico.

- 51. Sejam (X, \mathcal{M}, μ) e (Y, \mathcal{N}, ν) espaços de medida arbitrários (não necessariamente σ -finitos).
 - (a) Se $f: X \to \mathbb{C}$ e $g: Y \to \mathbb{C}$ são mensuráveis e a função $h: X \times Y \to \mathbb{C}$ é dada por h(x,y) = f(x)g(y), então h é $\mathcal{M} \otimes \mathcal{N}$ -mensurável.
 - (b) Se $f \in L^1(\mu)$ e $g \in L^1(\nu)$, então $h \in L^1(\mu \times \nu)$ e

$$\int hd(\mu \times \nu) = \left(\int fd\mu\right) \left(\int gd\nu\right).$$

VIDE VERSO

SEÇÃO 2.6, pp. 76-77

55. Seja $E = [0,1] \times [0,1]$. Investigue a existência e a igualdade das integrais

$$\int_{E} f dm^{2}$$
, $\int_{0}^{1} \int_{0}^{1} f(x,y) dx dy \in \int_{0}^{1} \int_{0}^{1} f(x,y) dy dx$,

para as seguintes funções f.

- (a) $f(x,y) = \frac{x^2 y^2}{(x^2 + y^2)^2}$.
- (b) $f(x,y) = \frac{1}{(1-xy)^a}$, onde a > 0.
- (c) $f(x,y) = \frac{1}{(x-\frac{1}{2})^3}$ se $0 < y < |x-\frac{1}{2}|$ e f(x,y) = 0 caso contrário.

56. Seja f Lebesgue-integrável em (0, a). Verifique as afirmações abaixo.

- (a) Está bem definida a função $g(x) = \int_x^a \frac{f(t)}{t} dt$, para $x \in (0, a)$
- (b) A função g é integrável em (0,a) e $\int_0^a g(x)dx = \int_0^a f(x)dx$.

59. Seja $f(x) = \frac{\sin x}{x}$. Verifique as afirmações abaixo.

- (a) $\int_0^\infty |f(x)| dx = \infty$.
- (b) $\lim_{b \to \infty} \int_0^b f(x) dx = \frac{\pi}{2}$.

Sugestão: Integre $e^{-xy} \sin x$ com respeito a x e a y; em vista do item anterior, deve-se tomar algum cuidado ao tomar o limite para $b \to \infty$.

60. Mostre que

$$\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} = \int_0^1 t^{x-1} (1-t)^{y-1} dt, \text{ para } x, y > 0.$$

Sugestão: Reveja a definição de Γ , escreva $\Gamma(x)\Gamma(y)$ como uma integral dupla e use o argumento da exponencial como nova variável de integração.

61. Se fé contínua em $[0,\infty),$ para a>0 e $x\geq 0,$ seja

$$I_{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) dt.$$

A função $I_{\alpha}f$ é chamada α -ésima integral fracionária de f. Verifique:

(a) $I_{\alpha+\beta}f = I_{\alpha}(I_{\beta}f)$, para todos $\alpha, \beta > 0$. (Use o Exercício 60).

3

(b) Se $n \in \mathbb{N}$, então $I_n f$ é uma primitiva de ordem n de f.