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Abstract We present a short elementary proof of the Lagrange multiplier theorem
for equality-constrained optimization. Most proofs in the literature rely on advanced
analysis concepts such as the implicit function theorem, whereas elementary proofs
tend to be long and involved. By contrast, our proof uses only basic facts from linear
algebra, the definition of differentiability, the critical-point condition for unconstrained
minima, and the fact that a continuous function attains its minimum over a closed ball.

Keywords Nonlinear programming · Lagrange multiplier theorem ·
First-order necessary conditions

In a recent paper [4], we offered a brief, elementary proof of the Karush–Kuhn–Tucker
(KKT) conditions for an optimization problem constrained by nonlinear inequalities
and linear equalities. In the present article, we complement that work with a short
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elementary proof of the classical first-order necessary conditions for local optimality
in a nonlinear equality-constrained optimization problem. Specifically, we prove the
following.

Lagrange multiplier theorem. Suppose x̄ is a local minimizer for

min
x

{ f (x) | g(x) = 0}, (1)

where f : Rn → R and g : Rn → Rm are continuously differentiable at x̄ . If the
m × n Jacobian matrix g′(x̄) has full row rank, then there exists a (unique) λ̄ ∈ Rm

satisfying

f ′(x̄) = λ̄T g′(x̄). (2)

The traditional proof (e.g., [8]) of this important theorem uses the implicit function
theorem, which is not generally considered elementary. Other short proofs make use of
deep or advanced results such as the Brouwer fixed-point theorem [7] or the Ekeland
variational principle [5], which also allow one to relax the continuous differentiabil-
ity hypothesis. In an article focusing on inequality constraints, Pourciau [10] proves
the multiplier rule for equality-constrained problems by invoking the convex interior
mapping theorem, which is again based on the Brouwer fixed-point theorem. A truly
elementary proof is given by McShane [9], who relies instead on a penalty reformula-
tion, repeated application of the Bolzano–Weierstrass theorem, and the (Weierstrass)
theorem that a continuous function on a closed ball in Euclidean space attains its min-
imum. Such proofs have since become common (e.g., [2,3,11]), and a penalty-based
proof by Beltrami [1] replaces the full-rank assumption by a constant-rank assumption.
Moreover, the proofs presented in most of the works cited above also allow for the
consideration of inequality constraints, as needed for the more general KKT theorem.
Our approach can likewise be embedded in a simple proof of the KKT theorem, as we
indicate below.

In contrast to the proofs cited above, our short proof of the Lagrange theorem
uses only: (a) the definition of (Fréchet) differentiability; (b) the Fermat theorem that
an unconstrained optimum occurs at a critical point; (c) a single application of the
Weierstrass theorem; and (d) some basic facts from linear algebra. The proof also
requires a straightforward verification of some inequalities, which can be left as a rou-
tine exercise. This makes our proof particularly suitable for use in a first undergraduate
course in optimization or analysis, and also for courses not aimed specifically at opti-
mization theory, such as mathematical modeling, mathematical methods for science
or engineering, problems seminars, or any other circumstance where a quick treatment
is required.

Before giving the proof, we explain the underlying ideas. The proof constructs
elements x ≈ x̄ such that g(x) = 0 and f (x) < f (x̄), thereby contradicting the
minimality of x̄ . While the idea of utilizing a path through x̄ is essentially classical
(e.g., see the discussion of linear solvability in [6]), our proof of the existence of such a
path is new and emphasizes important optimization concepts. Specifically, we choose
x = x̄ + th +Gη(t) for all sufficiently small t , where h is in the kernel of g′(x̄) =: GT
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and η(t) is an absolute minimizer of ψ(t, η) := ‖g(x̄ + th + Gη)‖2 for each fixed t .
The key idea is that the function ψ(t, η) grows quadratically with respect to η ≈ 0,
so that ψ(t, η) > ψ(t, 0). Hence, η(t) must be an interior point of some ball cen-
tered at 0 and is therefore a critical point. Such use of quadratic growth is a common
feature of penalty and regularization methods, and also plays an important role in the
study of optimal control problems. The novelty of its use in the current proof is that
it provides for direct treatment of the equality constraint: the critical-point condition
ψ ′
η(t, η(t)) = 0 implies g(x̄ +th+Gη(t)) = 0 under the assumption that the Jacobian

matrix g′(x̄) has full row rank.

Proof of the Lagrange multiplier theorem. Assume that g′(x̄) has full row rank and
that no λ̄ satisfies (2). Because (2) fails for all λ̄, the matrix

[
f ′(x̄)
g′(x̄)

]

has linearly independent rows; it therefore defines a surjective mapping of Rn onto
R1+m . In particular, there exists a vector h ∈ Rn for which f ′(x̄)h = −1 and g′(x̄)
h = 0.

Without loss of generality, we assume ‖h‖ = 1 = ‖g′(x̄)‖. Let G = [g′(x̄)]T and
let B(y, β) denote the closed ball of radius β about y. By the full-rank assumption
and ‖G‖ = 1, there exists γ ∈ (0, 1] so that

γ ‖η‖ ≤
∥∥∥GT Gη

∥∥∥ ≤ ‖η‖, ∀ η ∈ Rm . (3)

Next, for z ∈ Rn let ω(z) = g(x̄ + z) − [g(x̄) + g′(x̄)z] = g(x̄ + z) − GT z
denote the remainder in the definition of differentiability of g at x̄ . In other words,
there exist ε ∈ (0, 1) and a strictly increasing function ρ : [0, ε] → [0,∞) with
limτ→0+ ρ(τ)/τ = 0 = ρ(0), so that

‖ω(z)‖ ≤ ρ(‖z‖), ∀ z ∈ B(0, ε). (4)

In particular, we have ρ(τ) = o(τ ). Moreover, since g is continuously differen-
tiable at x̄ , it is differentiable on B(x̄, ε), with g′(x)G invertible for all x ∈ B(x̄, ε).
Now choose δ ∈ (0, ε/2) so that

γ ≥ 2
√
ρ(2τ)/τ , ∀ τ ∈ (0, δ). (5)

Next we define ψ : (−δ, δ)× Rm → R by

ψ(t, η) = ‖g(x̄ + th + Gη)‖2 =
∥∥∥GT Gη + ω(th + Gη)

∥∥∥2
, (6)

where we use the assumptions that g(x̄) = g′(x̄)h = 0.
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Using (3)–(6) one readily verifies that each η with ‖η‖ = √|t |ρ(2|t |) > 0 satisfies

√
ψ(t, η) ≥ γ ‖η‖ − ρ (‖th + Gη‖) ≥ γ ‖η‖ − ρ (|t | + ‖η‖)

≥ √|t |ρ(2|t |)
(
γ − √

ρ(2|t |)/|t |
)

≥ ρ(2|t |) > ρ(|t |) ≥ √
ψ(t, 0).

Consequently, an absolute minimizer η(t) ofψ(t, η) over all η ∈ B
(
0,

√|t |ρ(2|t |))
is necessarily an interior point of that ball with ‖η(t)‖ = o(t). Therefore, η(t) must
be a critical point of ψ(t, η) for a fixed nonzero t , and hence

0 = ψ ′
η(t, η(t)) = 2g(x̄ + th + Gη(t))T g′(x̄ + th + Gη(t))G.

By the invertibility of g′(x)G in a neighborhood of x̄ , this implies that g(x̄ + th +
Gη(t)) = 0.

By the assumed differentiability of f at x̄ , there exists a function u : R → R such
that

f (x̄ + th + Gη(t)) = f (x̄)+ t f ′(x̄)h + f ′(x̄)Gη(t)+ u(t)

and limt→0 |u(t)|/t = 0. Since ‖η(t)‖ = o(t) and f ′(x̄)h = −1, we have

f (x̄ + th + Gη(t)) < f (x̄)

and g(x̄ +th+Gη(t)) = 0 for all nonzero t ∈ (−δ, δ). This contradicts the minimality
of x̄ , thereby proving the theorem. �

One can also handle inequality constraints by extending the above argument in the
manner presented by Brezhneva et al. [4]. In this way, one obtains a very simple proof
of the KKT theorem under the linear independence constraint qualification. Moreover,
if one is willing to invoke linear programming duality or a theorem of the alternative,
then a standard argument ([8]) allows one to extend such a proof to cover the more
general Mangasarian–Fromovitz constraint qualification. Such an argument is quite
a bit simpler and, we believe, more intuitive than the elementary proof of the KKT
theorem recently given by Birbil et al. [3].
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