RIGHT-HAND RULE (a proof) AND VECTOR PRODUCT

Professor Oswaldo Rio Branco de Oliveira (IMEUSP)
http://www.ime.usp.br/~oliveira oliveira@ime.usp.br

1. Vetor Product (Cross Product)... 2
2. The Right-hand Rule... 12

References... 21

Figura 1: The practical right-hand rule.

1. VECTOR PRODUCT (CROSS PRODUCT)

Let us consider the vector space \mathbb{R}^{3} and the standard set of vectors $\{\vec{i}, \vec{j}, \vec{k}\}$. Thus, the vectors \vec{i}, \vec{j} and \vec{k} are orthogonal to each other and each one has length 1 . We say that $\{\vec{i}, \vec{j}, \vec{k}\}$ is an orthonormal basis.

Next, we consider two vectors

$$
\left\{\begin{array}{l}
\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)=a_{1} \vec{i}+a_{2} \vec{j}+a_{3} \vec{k} \\
\text { and } \\
\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)=b_{1} \vec{i}+b_{2} \vec{j}+b_{3} \vec{k}
\end{array}\right.
$$

where $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}$, and b_{3} are real numbers.
Let us search for a vector $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ satisfying the conditions

$$
\left\{\begin{array}{l}
\vec{x} \text { is orthogonal to } \vec{a} \\
\text { and } \\
\vec{x} \text { is orthogonal to } \vec{b}
\end{array}\right.
$$

By using the scalar product [also called inner product or dot product and indicated by the symbol ".", a dot], we rewrite such conditions as

$$
\left\{\begin{array}{l}
\vec{x} \cdot \vec{a}=0 \\
\vec{x} \cdot \vec{b}=0
\end{array}\right.
$$

Thus, the triplet (x_{1}, x_{2}, x_{3}) must satisfy the linear system

$$
\left\{\begin{array}{l}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0 \\
b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}=0
\end{array}\right.
$$

or, equivalently,

$$
\left\{\begin{array}{l}
a_{1} x_{1}+a_{2} x_{2}=-a_{3} x_{3} \\
b_{1} x_{1}+b_{2} x_{2}=-b_{3} x_{3} .
\end{array}\right.
$$

By employing matrix notation we arrive at

$$
\left(\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{-a_{3} x_{3}}{-b_{3} x_{3}} .
$$

Oswaldo Rio Branco de Oliveira

Now, let us freely develop some computations. To begin with, let us suppose that the 2×2 matrix right above is invertible. Hence we find that

$$
\binom{x_{1}}{x_{2}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}\left(\begin{array}{rr}
b_{2} & -a_{2} \\
-b_{1} & a_{1}
\end{array}\right)\binom{-a_{3} x_{3}}{-b_{3} x_{3}} .
$$

This shows that

$$
\left\{\begin{array}{l}
x_{1}=\frac{a_{2} b_{3} x_{3}-a_{3} b_{2} x_{3}}{a_{1} b_{2}-a_{2} b_{1}}=\frac{x_{3}}{a_{1} b_{2}-a_{2} b_{1}}\left(a_{2} b_{3}-a_{3} b_{2}\right) \\
\text { and } \\
x_{2}=\frac{a_{3} b_{1} x_{3}-a_{1} b_{3} x_{3}}{a_{1} b_{2}-a_{2} b_{1}}=\frac{x_{3}}{a_{1} b_{2}-a_{2} b_{1}}\left(a_{3} b_{1}-a_{1} b_{3}\right) .
\end{array}\right.
$$

Choosing $x_{3}=a_{1} b_{2}-a_{2} b_{1}$ (we may pick any value for x_{3}) we find the vector

$$
\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)=\left(a_{2} b_{3}-a_{3} b_{2}\right) \vec{i}-\left(a_{1} b_{3}-a_{3} b_{1}\right) \vec{j}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \vec{k}
$$

Such a vector \vec{x} may be written as the 3×3 "informal determinant"

$$
\vec{x}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k}
$$

Now, let us investigate the properties of this highlighted vector \vec{x}.
Lemma 1. Let $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$ be two vectors in \mathbb{R}^{3}. Then,

$$
\vec{x}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k}
$$

is orthogonal to the vectors \vec{a} and \vec{b}.

Proof.

\diamond Let us show that $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ is orthogonal to \vec{a}. We have

$$
\begin{aligned}
\vec{a} \cdot \vec{x} & =a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3} \\
& =a_{1}\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-a_{2}\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+a_{3}\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \\
& =\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| .
\end{aligned}
$$

The determinant of a matrix with two equal lines is 0 . Thus, $\vec{x} \cdot \vec{a}=0$.
\diamond Analogouly it follows that \vec{x} is orthogonal to $\vec{b} \uparrow$
Lemma 2. Let \vec{a}, \vec{b}, and \vec{x} be as in Lemma 1. Let θ, with $0 \leq \theta \leq \pi$, be the (smallest) angle between \vec{a} and \vec{b}. Then, we have

$$
\|\vec{x}\|=\|\vec{a}\|\|\vec{b}\| \sin \theta
$$

Proof.

We have

$$
\begin{aligned}
&\|\vec{x}\|^{2}= x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \\
&=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|^{2} \\
&=\left(a_{2} b_{3}-a_{3} b_{2}\right)^{2}+\left(a_{1} b_{3}-a_{3} b_{1}\right)^{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right)^{2} \\
&= a_{2}^{2} b_{3}^{2}-2 a_{2} a_{3} b_{2} b_{3}+a_{3}^{2} b_{2}^{2}+a_{1}^{2} b_{3}^{2}-2 a_{1} a_{3} b_{1} b_{3}+a_{3}^{2} b_{1}^{2} \\
& \quad+a_{1}^{2} b_{2}^{2}-2 a_{1} a_{2} b_{1} b_{2}+a_{2}^{2} b_{1}^{2} \\
&= a_{1}^{2} b_{2}^{2}+a_{1}^{2} b_{3}^{2}+a_{2}^{2} b_{1}^{2}+a_{2}^{2} b_{3}^{2}+a_{3}^{2} b_{1}^{2}+a_{3}^{2} b_{2}^{2} \\
&-2 a_{1} a_{2} b_{1} b_{2}-2 a_{1} a_{3} b_{1} b_{3}-2 a_{2} a_{3} b_{2} b_{3} \\
&=\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-a_{1}^{2} b_{1}^{2}-a_{2}^{2} b_{2}^{2}-a_{3}^{2} b_{3}^{2} \\
&-2 a_{1} a_{2} b_{1} b_{2}-2 a_{1} a_{3} b_{1} b_{3}-2 a_{2} a_{3} b_{2} b_{3} \\
&=\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right) \\
&-\left(a_{1}^{2} b_{1}^{2}+a_{2}^{2} b_{2}^{2}+a_{3}^{2} b_{3}^{2}+2 a_{1} a_{2} b_{1} b_{2}+2 a_{1} a_{3} b_{1} b_{3}+2 a_{2} a_{3} b_{2} b_{3}\right) \\
&=\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)-\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2} \\
&=\|\vec{a}\|^{2}\|\vec{b}\|^{2}-(\vec{a} \cdot \vec{b})^{2} \\
&=\|\vec{a}\|^{2}\|\vec{b}\|^{2}-(\|\vec{a}\|\|\vec{b}\| \cos \theta)^{2} \\
&=\|\vec{a}\|^{2}\|\vec{b}\|^{2}-\|\vec{a}\|^{2}\|\vec{b}\|^{2} \cos ^{2} \theta^{2} \\
&=\|\vec{a}\|^{2}\|\vec{b}\|^{2}\left(1-\cos ^{2} \theta\right) \\
&=\|\vec{a}\|^{2}\|\vec{b}\|^{2} \sin { }^{2} \theta \\
&=(\|\vec{a}\|\|\vec{b}\| \sin \theta)^{2} . \\
&
\end{aligned}
$$

Since $\theta \in[0, \pi]$, and thus $\sin \theta \geq 0$, we are allowed to conclude that

$$
\|\vec{x}\|=\|\vec{a}\|\|\vec{b}\| \sin \theta \star
$$

Oswaldo Rio Branco de Oliveira

Lemma 3. Let \vec{a}, \vec{b} and \vec{x} be as in Lemma 1. Then we have

$$
\left|\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|^{2}
$$

Proof.

\diamond From the formulas

$$
\begin{aligned}
\vec{x} & =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k} \\
& =x_{1} \vec{i}+x_{2} \vec{j}+x_{3} \vec{k}
\end{aligned}
$$

we easily obtain the second claimed identity (the one that is not related to the 3×3 determinant).
\diamond Moreover, we have

$$
\begin{aligned}
\left|\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| & =x_{1}\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|-x_{2}\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|+x_{3}\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|^{2} \\
& =x_{1}^{2}+x_{2}^{2}+x_{3}^{2}
\end{aligned}
$$

In short, we have

$$
\left|\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\|\vec{x}\|^{2} \geq 0
$$

for any two vectors \vec{a} and \vec{b}, both in \mathbb{R}^{3}.

Definition (Parallelism).

- The null vector $(0,0,0)$ is parallel to every vector in the vector space \mathbb{R}^{3}.
- Two vectors $\overrightarrow{A B}$ and $\overrightarrow{C D}$, where A, B, C, and D are points in the Cartesian space \mathbb{R}^{3} such that $A \neq B$ and $C \neq D$, are parallel if the segments $\overline{A B}$ and $\overline{C D}$ are parallel.

Definition (Linear Combination). Given two vectors \vec{u} and \vec{v}, both in the vector space \mathbb{R}^{3}, and two real numbers α and β, the vector

$$
\vec{w}=\alpha \vec{u}+\beta \vec{v}
$$

is a linear combination of \vec{u} and \vec{v}, with coefficients α and β. We also say that \vec{w} is generated by \vec{u} and \vec{v}.

Definition (Linear Dependence or LD). Two vectors \vec{u} and \vec{v}, in the vector space \mathbb{R}^{3}, are LD if there exist two real numbers α and β, not both zero, satisfying

$$
\alpha \vec{u}+\beta \vec{v}=\overrightarrow{0} \quad(\text { with } \alpha \neq 0 \text { or } \beta \neq 0) .
$$

If \vec{u} and \vec{v} are LD, we also say that the set $\{\vec{u}, \vec{v}\}$ is LD.

Definition (Linear Independence or LI).

- Two vectors \vec{u} and \vec{v}, in the vector space \mathbb{R}^{3}, are LI if they are not LD. That is, \vec{u} and \vec{v} are LI if given two real numbers α and β such that

$$
\alpha \vec{u}+\beta \vec{v}=\overrightarrow{0},
$$

then we have $\alpha=0$ and $\beta=0$.
If \vec{u} and \vec{v} are LI, we also say that $\{\vec{u}, \vec{v}\}$ is LI.
Summing up, \vec{u} and \vec{v} are LI if the following implication is true,

$$
\alpha \vec{u}+\beta \vec{v}=\overrightarrow{0} \Longrightarrow\left\{\begin{array}{l}
\alpha=0 \\
\beta=0
\end{array}\right.
$$

The following remarks are trivial.

$$
\begin{aligned}
& \vec{u} \text { and } \vec{v} \text { are LD } \Longleftrightarrow \vec{u} \text { and } \vec{v} \text { are parallel. } \\
& \vec{u} \text { and } \vec{v} \text { are LI } \Longleftrightarrow \vec{u} \text { and } \vec{v} \text { are not parallel. }
\end{aligned}
$$

Oswaldo Rio Branco de Oliveira

Lemma 4. Let us consider $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$, two arbitrary vectors in the vector space \mathbb{R}^{3}, and the 2×3 real matrix

$$
\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right) .
$$

Then,

$$
\{\vec{a}, \vec{b}\} \text { is } L D \Longleftrightarrow\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|=\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|=0 .
$$

First Proof.

\diamond A quite easy proof follows from the formula (see Lemma 2)

$$
\|\vec{a} \times \vec{b}\|=\|\vec{a}\| \vec{b} \| \sin \theta
$$

and I leave this trivial task to the reader. However, it is also important (and instructive) to develop a proof that does not depend on Lemma 2.

Second Proof (independent of Lemma 2).

(\Rightarrow) Let us suppose that \vec{a} and \vec{b} are LD. Hence, we have either $\vec{a}=\lambda \vec{b}$ or $\vec{b}=\lambda \vec{a}$ (for some real λ). We may suppose without loss of generality that

$$
\vec{a}=\lambda \vec{b}
$$

Hence, we obtain the identity $\left(a_{1}, a_{2}, a_{3}\right)=\left(\lambda b_{1}, \lambda b_{2}, \lambda b_{3}\right)$ and thus

$$
\begin{aligned}
& \left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|=\left|\begin{array}{ll}
\lambda b_{1} & \lambda b_{2} \\
b_{1} & b_{2}
\end{array}\right|=\lambda b_{1} b_{2}-\lambda b_{1} b_{2}=0, \\
& \left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
\lambda b_{1} & \lambda b_{3} \\
b_{1} & b_{3}
\end{array}\right|=\lambda b_{1} b_{3}-\lambda b_{1} b_{3}=0
\end{aligned}
$$

and

$$
\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|=\left|\begin{array}{ll}
\lambda b_{2} & \lambda b_{3} \\
b_{2} & b_{3}
\end{array}\right|=\lambda b_{2} b_{3}-\lambda b_{2} b_{3}=0
$$

(\Leftarrow) The claim is obvious if $\vec{a}=\vec{b}=\overrightarrow{0}$. Hence, we may suppose that $\vec{b} \neq \overrightarrow{0}$. Furthermore, we may suppose without loss of generality $b_{3} \neq 0$ (the cases $b_{1} \neq 0$ and $b_{2} \neq 0$ are analogous to the case $b_{3} \neq 0$).

From the hypotheses

$$
\left|\begin{array}{cc}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|=0 \text { and }\left|\begin{array}{cc}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|=0
$$

we see that $\left\{\left(a_{1}, a_{3}\right),\left(b_{1}, b_{3}\right)\right\}$ is LD and $\left\{\left(a_{2}, a_{3}\right),\left(b_{2}, b_{3}\right)\right\}$ is also LD. Thus, since $b_{3} \neq 0$, we see that there exist two real numbers α and β satisfying

$$
\left(a_{1}, a_{3}\right)=\alpha\left(b_{1}, b_{3}\right) \text { and }\left(a_{2}, a_{3}\right)=\beta\left(b_{2}, b_{3}\right)
$$

Hence, we arrive at

$$
a_{3}=\alpha b_{3}, \quad a_{3}=\beta b_{3} \text { and } b_{3} \neq 0
$$

Then, we obviously have $\alpha b_{3}=\beta b_{3}$, with $b_{3} \neq 0$, and thus $\alpha=\beta$. Hence,

$$
\left(a_{1}, a_{2}, a_{3}\right)=\alpha\left(b_{1}, b_{2}, b_{3}\right) \text { and thus }\{\vec{a}, \vec{b}\} \text { is } \mathrm{LD}
$$

Corollary 5. Let $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$ be as in Lemma 4. Then, the following equivalences are true.

$$
\begin{aligned}
\{\vec{a}, \vec{b}\} \text { is } L I & \Longleftrightarrow\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \neq 0 \text { or }\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \neq 0 \text { or }\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \neq 0 \\
& \Longleftrightarrow\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right|^{2}+\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right|^{2} \neq 0 .
\end{aligned}
$$

Proof. It is immediate from Lemma 4 *
Corollary 6. Let $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$ be as in Lemma 4. Then,

$$
\{\vec{a}, \vec{b}\} \text { is } L I \Longleftrightarrow\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \neq \overrightarrow{0} .
$$

Proof. It is immediate from Corollary $5 \uparrow$

Corollary 7. Let $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$ be as in Lemma 4. Then,

$$
\{\vec{a}, \vec{b}\} \text { is } L D \Longleftrightarrow\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\overrightarrow{0}
$$

Proof. It is immediate from Corollary $6 \boldsymbol{\downarrow}$
We already analized the direction of

$$
\vec{x}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

[On the one hand, the vector \vec{x} is null if the set $\{\vec{a}, \vec{b}\}$ is LD. On the other hand, the vector \vec{x} is orthogonal to \vec{a} and \vec{b} if the set $\{\vec{a}, \vec{b}\}$ is LI.] Moreover, we already established the norm of \vec{x} [we have seen that $\|\vec{x}\|=\|\vec{a}\|\|\vec{b}\| \sin \theta$].

Now we turn our attention to the orientation of the vector \vec{x}.
Lemma 8. Keeping the notation, let us consider the vectors \vec{a}, \vec{b} and \vec{x}. Let us suppose that $\{\vec{a}, \vec{b}\}$ is LI. Let us consider a vetor \vec{y} satisfying the conditions

$$
\left\{\begin{array}{l}
\vec{y} \text { is orthogonal to } \vec{a} \text { and } \vec{b}, \\
\|\vec{y}\|=\|\vec{x}\|
\end{array}\right.
$$

Then we have

$$
\vec{y}=\vec{x} \text { or } \vec{y}=-\vec{x} \text {. }
$$

Proof.

\diamond Putting $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right), \vec{b}=\left(b_{1}, b_{2}, b_{3}\right), \vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$, we consider the system in the real variables α, β and γ given by

$$
S:\left\{\begin{array}{l}
a_{1} \alpha+b_{1} \beta+x_{1} \gamma=y_{1} \\
a_{2} \alpha+b_{2} \beta+x_{2} \gamma=y_{2} \\
a_{3} \alpha+b_{3} \beta+x_{3} \gamma=y_{3} .
\end{array}\right.
$$

By determinants properties, Lemma 3, and Corollary 6, the determinant of this system is

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & x_{1} \\
a_{2} & b_{2} & x_{2} \\
a_{3} & b_{3} & x_{3}
\end{array}\right|=\left|\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
x_{1} & x_{2} & x_{3}
\end{array}\right|=\left|\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=\|\vec{x}\|^{2} \neq 0
$$

Therefore, by properties of linear systems, there exists a unique solution $\alpha=\alpha_{0}, \beta=\beta_{0}$ and $\gamma=\gamma_{0}$ of the linear system S under consideration.

In order to avoid heavy notation, let us write $\left(\alpha_{0}, \beta_{0}, \gamma_{0}\right)$ briefly by (α, β, γ).
From the system S we see that these three numbers α, β and γ satisfy

$$
\alpha \vec{a}+\beta \vec{b}+\gamma \vec{x}=\vec{y}
$$

Thus, we arrive at

$$
\vec{y}-\gamma \vec{x}=\alpha \vec{a}+\beta \vec{b} .
$$

Now, since \vec{y} is orthogonal to \vec{a} and \vec{b}, it follows that \vec{y} is orthogonal to the sum $\alpha \vec{a}+\beta \vec{b}$.
By the same reason, the vector \vec{x} is also orthogonal to the sum $\alpha \vec{a}+\beta \vec{b}$.
Now, the same argument also shows that the vector $\alpha \vec{a}+\beta \vec{b}$ is orthogonal to the difference $\vec{y}-\gamma \vec{x}$.
Since we have the identity $\vec{y}-\gamma \vec{x}=\alpha \vec{a}+\beta \vec{b}$, we may conclude that the vector $\vec{y}-\gamma \vec{x}$ is orthogonal to itself. Hence, we arrive at the identity $(\vec{y}-\gamma \vec{x}) \cdot(\vec{y}-\gamma \vec{x})=0$ and thus

$$
\|\vec{y}-\gamma \vec{x}\|^{2}=0 .
$$

This reveals that $\vec{y}-\gamma \vec{x}=\overrightarrow{0}$ and

$$
\vec{y}=\gamma \vec{x}
$$

Therefore, by taking norms we obtain

$$
\|\vec{y}\|=|\gamma|\|\vec{x}\| .
$$

However, by hypothesis we also have $\|\vec{y}\|=\|\vec{x}\|$. Moreover, we already saw that $\|\vec{x}\| \neq 0$. Thus, we find that

$$
\|\vec{x}\|=|\gamma|\|\vec{x}\|, \text { with }\|\vec{x}\| \neq 0
$$

Hence, it follows that

$$
|\gamma|=1 \text { and } \gamma= \pm 1
$$

Therefore, there are only two possibilities. We have

$$
\vec{y}=\vec{x} \text { or } \vec{y}=-\vec{x}
$$

Oswaldo Rio Branco de Oliveira

The following theorem is a trivial consequence of the previous lemmas.
Theorem. Let $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$ be two any vectors in \mathbb{R}^{3}.
Then, the vector

$$
\vec{x}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

has the following properties.

- If \vec{a} and \vec{b} are $L D$, then $\vec{x}=\overrightarrow{0}$.
- If \vec{a} and \vec{b} are LI, then \vec{x} is the only vector $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$ satisfying the following three conditions
$\left\{\begin{array}{l}\vec{y} \text { is orthogonal to } \vec{a} \text { and orthogonal to } \vec{b}, \\ \text { the norm of } \vec{y} \text { is the area of the parallelogram determined by } \vec{a} \text { and } \vec{b}, \\ \text { the determinant }\left|\begin{array}{lll}y_{1} & y_{2} & y_{3} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right| \text { is (strictly) positive. }\end{array}\right.$

Proof. It follows from the previous lemmas *
Definition (vector product, or cross product). Given $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right)$, two arbitrary vectors in \mathbb{R}^{3}, the vector product of \vec{a} by \vec{b}, in this order, is the vector denoted by $\vec{a} \times \vec{b}$ and given by (an informal determinant)

$$
\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

2. THE RIGHT-HAND RULE

A positive number is a real number x such that $x>0$ (i.e, x is bigger than 0).
We indicate the determinant of a square real matrix M by $\operatorname{det} M$.
Let $M_{3 \times 3}(\mathbb{R})$ be the set of the 3×3 real matrices.
We denote by I the 3×3 identity matrix.
In this text, the symbol \mathcal{D}^{+}denotes the set of the 3×3 real matrices with a positive determinant. That is,

$$
\mathcal{D}^{+}=\left\{M \in M_{3 \times 3}(\mathbb{R}): \operatorname{det}(M)>0\right\} .
$$

Let us consider a 3×3 real matrix M with a positive determinant (that is, $\operatorname{det} M>0$). Let us write

$$
M=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

Objective. Our objective is to prove that we can continuously deform the matrix M into the identity matrix I by using only matrices with a positive determinant along the deformation process.

Thus, we want to prove the following theorem.
Theorem. Given a 3×3 real matrix

$$
M=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right), \text { with } \operatorname{det} M>0
$$

there exists a continuous curve inside \mathcal{D}^{+}connecting M to the identity matrix I.
Proof. We split the proof into six (6) numbered steps.
(1) We may suppose that $a \neq 0$. Let us show this claim. In what follows, we describe a sequence of short steps. These are taken so that the determinants of all the appearing matrices do not change and are equal to $\operatorname{det} M$.

The first column of M is not null (otherwise, we have $\operatorname{det} M=0 \not \approx$).
The case $a=0$ and $d \neq 0$. Then

$$
\left(\begin{array}{lll}
0+t d & b+t e & c+t f \\
d & e & f \\
g & h & i
\end{array}\right), \text { where } t \text { runs over }[0,1]
$$

continuously connects (from the instant $t=0$ up to the instant $t=1$)

$$
M=\left(\begin{array}{lll}
0 & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \text { to }\left(\begin{array}{lll}
d & b+e & c+f \\
d & e & f \\
g & h & i
\end{array}\right)
$$

This case is proven (since $d \neq 0$).
The case $a=d=0$ and $g \neq 0$. In this case, we employ to the first and the third rows (horizontal lines) of

$$
M=\left(\begin{array}{lll}
0 & b & c \\
0 & e & f \\
g & h & i
\end{array}\right)
$$

the same argument that we employed to the first and second rows of M. Thus, we see that we may continuously connect

$$
M=\left(\begin{array}{ccc}
0 & b & c \\
0 & e & f \\
g & h & i
\end{array}\right) \text { to }\left(\begin{array}{ccc}
g & b+h & c+i \\
0 & e & f \\
g & h & i
\end{array}\right) .
$$

This case is proven (since $g \neq 0$). The proof of step (1) is complete.
(2) We may suppose $d=g=0$ [thanks to (1), we are already supposing $a \neq 0$]. Let us verify this claim. Once more, all the arguments are taken so that the determinants of all the appearing matrices are equal to $\operatorname{det} M$.

Clearly,

$$
\left(\begin{array}{lcc}
a & b & c \\
d-t a & e-t b & f-t c \\
g & h & i
\end{array}\right)
$$

continuously connects (with the variable t running from $t=0$ to $t=d / a$)

$$
\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \text { to }\left(\begin{array}{ccc}
a & b & c \\
0 & e-\frac{b d}{a} & f-\frac{c d}{a} \\
g & h & i
\end{array}\right) .
$$

Analogously,

$$
\left(\begin{array}{lcc}
a & b & c \\
0 & e-\frac{b d}{a} & f-\frac{c d}{a} \\
g-t a & h-t b & i-t c
\end{array}\right)
$$

continuously connects (with the variable t running from $t=0$ to $t=g / a$)

$$
\left(\begin{array}{ccc}
a & b & c \\
0 & e-\frac{b d}{a} & f-\frac{c d}{a} \\
g & h & i
\end{array}\right) \text { to }\left(\begin{array}{ccc}
a & b & c \\
0 & e-\frac{b d}{a} & f-\frac{c d}{a} \\
0 & h-\frac{b g}{a} & i-\frac{c g}{a}
\end{array}\right) .
$$

The proof of step (2) is complete.
(3) Up to here, we have shown that we may suppose that

$$
M=\left(\begin{array}{ccc}
a & b & c \\
0 & e & f \\
0 & h & i
\end{array}\right) \text {, with } a \neq 0
$$

As before, all the arguments in this step are made so that the determinants of all the appearing matrices are equal to $\operatorname{det} M$.

We claim that we may suppose $e \neq 0$. In fact, if $e=0$ then it follows that $h \neq 0$ (otherwise, we obtain $\operatorname{det} M=0$) and thus

$$
\left(\begin{array}{ccc}
a & b & c \\
0 & 0-t h & f-t i \\
0 & h & i
\end{array}\right)
$$

continuously connects (with t running from $t=0$ to $t=1$)

$$
\left(\begin{array}{ccc}
a & b & c \\
0 & 0 & f \\
0 & h & i
\end{array}\right) \text { to }\left(\begin{array}{ccc}
a & b & c \\
0 & -h & f-i \\
0 & h & i
\end{array}\right) \text {, with }-h \neq 0 .
$$

Hence, as we claimed, we may suppose that $e \neq 0$.
The proof of step (3) is complete.
(4) We may suppose that $b=h=0$. [We already saw that we may suppose $a \neq 0, d=g=0$, and $e \neq 0$.]

All the arguments in this step are made so that the determinants of all the appearing matrices are equal to $\operatorname{det} M$.

Clearly,

$$
\left(\begin{array}{ccc}
a & b-t e & c-t f \\
0 & e & f \\
0 & h & i
\end{array}\right)
$$

continuously connects (with t running from $t=0$ to $t=b / e$)

$$
M=\left(\begin{array}{ccc}
a & b & c \\
0 & e & f \\
0 & h & i
\end{array}\right) \text { to }\left(\begin{array}{ccc}
a & 0 & c-\frac{b f}{e} \\
0 & e & f \\
0 & h & i
\end{array}\right)
$$

It is also clear that

$$
\left(\begin{array}{ccc}
a & 0 & c-\frac{b f}{e} \\
0 & e & f \\
0 & h-t e & i-t f
\end{array}\right)
$$

continuously connects (with t running from $t=0$ to $t=h / e$)

$$
\left(\begin{array}{ccc}
a & 0 & c-\frac{b f}{e} \\
0 & e & f \\
0 & h & i
\end{array}\right) \text { to }\left(\begin{array}{ccc}
a & 0 & c-\frac{b f}{e} \\
0 & e & f \\
0 & 0 & i-\frac{f h}{e}
\end{array}\right)
$$

The proof of step (4) is complete.
(5) From the four previous steps it follows that we may suppose that

$$
M=\left(\begin{array}{lll}
a & 0 & c \\
0 & e & f \\
0 & 0 & i
\end{array}\right) \text {, with } a \neq 0, \mathrm{e} \neq 0 \text {, and } \operatorname{det} M>0
$$

Now, let us show that we can suppose $c=f=0$.
It is clear that $i \neq 0$ (otherwise, we have $\operatorname{det} M=0 \boldsymbol{z}$). Clearly,

$$
\left(\begin{array}{ccc}
a & 0 & c-t i \\
0 & e & f \\
0 & 0 & i
\end{array}\right)
$$

continuously connects

$$
M=\left(\begin{array}{lll}
a & 0 & c \\
0 & e & f \\
0 & 0 & i
\end{array}\right) \text { to }\left(\begin{array}{lll}
a & 0 & 0 \\
0 & e & f \\
0 & 0 & i
\end{array}\right)
$$

It is also clear that

$$
\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & e & f-t i \\
0 & 0 & i
\end{array}\right)
$$

continuously connects

$$
\left(\begin{array}{lll}
a & 0 & 0 \\
0 & e & f \\
0 & 0 & i
\end{array}\right) \text { to }\left(\begin{array}{lll}
a & 0 & 0 \\
0 & e & 0 \\
0 & 0 & i
\end{array}\right) .
$$

The proof of step (5) is complete.
(6) From the previous steps it follows that we may suppose that

$$
M=\left(\begin{array}{ccc}
a & 0 & 0 \\
0 & e & 0 \\
0 & 0 & i
\end{array}\right) \text {, with } \operatorname{det} M=a e i>0
$$

Then we have two possibilities about the entries a, e, and i.

$$
\left\{\begin{array}{l}
\text { The entries } a, e, \text { and } i \text { are positive }(>0) \\
\text { or } \\
\text { one of them is positive and the other two are negative }(<0) .
\end{array}\right.
$$

In this step, the determinants of all the appearing matrices are positive.
The case where a, e, and i are positive. Then

$$
\left(\begin{array}{ccc}
t a & 0 & 0 \\
0 & e & 0 \\
0 & 0 & i
\end{array}\right)
$$

continuously connects (with t positive and running from $t=1$ to $1 / a$)

$$
\left(\begin{array}{lll}
a & 0 & 0 \\
0 & e & 0 \\
0 & 0 & i
\end{array}\right) \text { to }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & e & 0 \\
0 & 0 & i
\end{array}\right) .
$$

Next,

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & t e & 0 \\
0 & 0 & i
\end{array}\right)
$$

continuously connects (with t positive and running from $t=1$ to $t=1 / e$)

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & t e & 0 \\
0 & 0 & i
\end{array}\right) \text { to }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & i
\end{array}\right)
$$

Finally,

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & t i
\end{array}\right)
$$

continuously connects (with t positive and running from $t=1$ to $t=1 / i$)

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & i
\end{array}\right) \text { to }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The proof of this case is complete.
The case where one element of $\{a, e, i\}$ is positive and the others are negative.
The subcase $a>0$ (and thus $e<0$ and $i<0$).
Then, as we already saw, we may continuously connect

$$
M=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & e & 0 \\
0 & 0 & i
\end{array}\right) \text { to }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & e & 0 \\
0 & 0 & i
\end{array}\right)
$$

Now, we notice that

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & t e & 0 \\
0 & 0 & i
\end{array}\right)
$$

continuously connects, with t positive and running from $t=1$ to $t=-1 / e>0$ (the positive sign of the determinant is kept along the deformation),

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & e & 0 \\
0 & 0 & i
\end{array}\right) \text { to }\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & i
\end{array}\right)
$$

Similarly,

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & t i
\end{array}\right)
$$

continuously connects (with t positive and running from $t=1$ to $t=-1 / i>0$)

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & i
\end{array}\right) \text { to }\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Now, we notice that

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

continuously connects, with θ running from $\theta=\pi$ to $\theta=2 \pi$ (the positive sign of the determinant is kept along the described deformation),

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \text { to }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The proof of the subcase $a>0$ is complete.
The subcase $e>0$ (and thus $a<0$ and $i<0$).
Analogously to the subcase above we may continuously connect

$$
M=\left(\begin{array}{lll}
a & 0 & 0 \\
0 & e & 0 \\
0 & 0 & i
\end{array}\right) \text { to }\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Now, we notice that

$$
\left(\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right)
$$

continuously connects, with θ running from $\theta=\pi$ to $\theta=2 \pi$ (again, the positive sign of the determinant is kept along the deformation),

$$
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \text { to }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The proof of the subcase $e>0$ is complete.

The subcase $i>0$ (and thus $a<0$ and $e<0$).
Analogously to the two subcases above, we may continuously connect

$$
\left(\begin{array}{lll}
a & 0 & 0 \\
0 & e & 0 \\
0 & 0 & i
\end{array}\right) \text { to }\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Now, we notice that

$$
\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

continuously connects, with θ running from $\theta=\pi$ to $\theta=2 \pi$ (once more, the positive sign of the determinant is kept along the deformation),

$$
\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { to }\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

The proof of the subcase $i>0$ is complete.
Thus, the proof of step (6) is complete.
The proof of the theorem is complete *

Corollary. Given a 3×3 real matrix N with $\operatorname{det} N<0$, then there exists a continuous curve connecting N to the 3×3 matrix

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

with all the 3×3 real matrices along the deformation process having negative determinant.

Proof.
\diamond From the above theorem we conclude that there exists a continuous curve connecting $-N$ to the identity matrix I, with all the 3×3 matrices along the deformation process having positive determinant.

Oswaldo Rio Branco de Oliveira

Thus, it is trivial to see that we also have a continuous curve connecting the given matrix N to the matrix $-I$, with all the matrices along the deformation process having negative determinant.

To complete this proof, we notice that

$$
\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & -1
\end{array}\right)
$$

continuously connects, with θ running from π to 2π (we remark that the determinant of all the matrices along this last deformation are equal to -1),

$$
-I=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \text { to }\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

ACKNOWLEDGMENTS

I am very thankful to the students of Cálculo II - 2018, Economia e Administração, for the questions that led to this text.

REFERENCES

1. Menon, M. J. Sobre as origens das definições dos produtos escalar e vetorial, Revista Brasileira de Ensino de Física, v. 31, n. 2, 2305 (2009)

Departamento de Matemática
Universidade de São Paulo
oliveira@ime.usp.br
http://www.ime.usp.br/~oliveira

