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1. VECTOR PRODUCT (CROSS PRODUCT)

Let us consider the vector space R3 and the standard set of vectors �
��

i ,
��

j ,
��

k �.

Thus, the vectors
��

i ,
��

j and
��

k are orthogonal to each other and each one has

length 1. We say that �
��

i ,
��

j ,
��

k � is an orthonormal basis.

Next, we consider two vectors

¢

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¤

��a � �a1, a2, a3� � a1
��

i � a2
��

j � a3
��

k

and
��

b � �b1, b2, b3� � b1
��

i � b2
��

j � b3
��

k ,

where a1, a2, a3, b1, b2, and b3 are real numbers.

Let us search for a vector ��x � �x1, x2, x3� satisfying the conditions

¢

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¤

��x is orthogonal to ��a

and
��x is orthogonal to

��

b .

By using the scalar product [also called inner product or dot product and indicated

by the symbol “�”, a dot], we rewrite such conditions as

¢

¨

¨

�

¨

¨

¤

��x �

��a � 0
��x �

��

b � 0.

Thus, the triplet �x1, x2, x3� must satisfy the linear system

¢

¨

¨

�

¨

¨

¤

a1x1 � a2x2 � a3x3 � 0

b1x1 � b2x2 � b3x3 � 0

or, equivalently,
¢

¨

¨

�

¨

¨

¤

a1x1 � a2x2 � �a3x3

b1x1 � b2x2 � �b3x3.

By employing matrix notation we arrive at

�

�

a1 a2

b1 b2

�

�

�

�

x1

x2

�

�

�

�

�

�a3x3

�b3x3

�

�

.
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Now, let us freely develop some computations. To begin with, let us suppose

that the 2 � 2 matrix right above is invertible. Hence we find that

�

�

x1

x2

�

�

�

1

a1b2 � a2b1

�

�

b2 �a2

�b1 a1

�

�

�

�

�a3x3

�b3x3

�

�

.

This shows that
¢

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¤

x1 �
a2b3x3�a3b2x3

a1b2�a2b1
�

x3

a1b2�a2b1
�a2b3 � a3b2�

and

x2 �
a3b1x3�a1b3x3

a1b2�a2b1
�

x3

a1b2�a2b1
�a3b1 � a1b3�.

Choosing x3 � a1b2 � a2b1 (we may pick any value for x3) we find the vector

��x � �x1, x2, x3� � �a2b3 � a3b2�
��

i � �a1b3 � a3b1�
��

j � �a1b2 � a2b1�
��

k .

Such a vector ��x may be written as the 3 � 3 “informal determinant”

��x �

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

��

i
��

j
��

k

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

�

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

��

i �

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

��

j �

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

��

k .

Now, let us investigate the properties of this highlighted vector ��x .

Lemma 1. Let ��a � �a1, a2, a3� and
��

b � �b1, b2, b3� be two vectors in R3. Then,

��x �

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

��

i
��

j
��

k

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

�

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

��

i �

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

��

j �

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

��

k

is orthogonal to the vectors ��a and
��

b .

Proof.

l Let us show that ��x � �x1, x2, x3� is orthogonal to ��a . We have

��a �

��x � a1x1 � a2x2 � a3x3

� a1

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

� a2

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

� a3

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

�

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2 a3

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

.

The determinant of a matrix with two equal lines is 0. Thus, ��x �

��a � 0.
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l Analogouly it follows that ��x is orthogonal to
��

b ¥

Lemma 2. Let ��a ,
��

b , and ��x be as in Lemma 1. Let θ, with 0 B θ B π, be the

(smallest) angle between ��a and
��

b . Then, we have

Y

��x Y � Y

��a Y Y
��

b Y sin θ.

Proof.

We have

Y

��x Y

2
� x2

1
� x2

2
� x2

3

�

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

2

�

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

2

�

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

2

� �a2b3 � a3b2�
2
� �a1b3 � a3b1�

2
� �a1b2 � a2b1�

2

� a2
2
b2
3
� 2a2a3b2b3 � a2

3
b2
2
� a2

1
b2
3
� 2a1a3b1b3 � a2

3
b2
1

�a2
1
b2
2
� 2a1a2b1b2 � a2

2
b2
1

� a2
1
b2
2
� a2

1
b2
3
� a2

2
b2
1
� a2

2
b2
3
� a2

3
b2
1
� a2

3
b2
2

�2a1a2b1b2 � 2a1a3b1b3 � 2a2a3b2b3

� �a2
1
� a2

2
� a2

3
��b2

1
� b2

2
� b2

3
� � a2

1
b2
1
� a2

2
b2
2
� a2

3
b2
3

�2a1a2b1b2 � 2a1a3b1b3 � 2a2a3b2b3

� �a2
1
� a2

2
� a2

3
��b2

1
� b2

2
� b2

3
�

��a2
1
b2
1
� a2

2
b2
2
� a2

3
b2
3
� 2a1a2b1b2 � 2a1a3b1b3 � 2a2a3b2b3�

� �a2
1
� a2

2
� a2

3
��b2

1
� b2

2
� b2

3
� � �a1b1 � a2b2 � a3b3�

2

� Y

��a Y2 Y
��

b Y2 � �

��a �

��

b �2

� Y

��a Y2 Y
��

b Y2 � �Y

��a Y Y
��

b Y cos θ�2

� Y

��a Y2 Y
��

b Y2 � Y

��a Y2Y
��

b Y2 cos2 θ2

� Y

��a Y2 Y
��

b Y2�1 � cos2 θ�

� Y

��a Y2 Y
��

b Y2 sin2 θ

� �Y

��a Y Y
��

b Y sin θ�2.

Since θ > �0, π�, and thus sin θ C 0, we are allowed to conclude that

Y

��x Y � Y

��a Y Y
��

b Y sin θ¥
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Lemma 3. Let ��a ,
��

b and ��x be as in Lemma 1. Then we have

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

x1 x2 x3

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

� x2

1
� x2

2
� x2

3
�

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

2

�

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

2

�

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

2

Proof.

l From the formulas

��x �

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

��

i �

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

��

j �

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

��

k

� x1

��

i � x2

��

j � x3

��

k

we easily obtain the second claimed identity (the one that is not related to

the 3 � 3 determinant).

l Moreover, we have

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

x1 x2 x3

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

� x1

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

� x2

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

� x3

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

�

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

2

�

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

2

�

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

2

� x2

1
� x2

2
� x2

3
¥

In short, we have
R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

x1 x2 x3

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

� Y

��x Y

2
C 0

for any two vectors ��a and
��

b , both in R3.
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Definition (Parallelism).

X The null vector �0,0,0� is parallel to every vector in the vector space R3.

X Two vectors
��

AB and
���

CD, where A,B,C, and D are points in the Cartesian

space R3 such that A x B and C x D, are parallel if the segments AB and

CD are parallel.

Definition (Linear Combination). Given two vectors ��u and ��v , both in the

vector space R3, and two real numbers α and β, the vector

��w � α��u � β��v

is a linear combination of ��u and ��v , with coefficients α and β. We also say that
��w is generated by ��u and ��v .

Definition (Linear Dependence or LD). Two vectors ��u and ��v , in the vector

space R3, are LD if there exist two real numbers α and β, not both zero, satisfying

α��u � β��v �

��

0 �with α x 0 or β x 0�.

If ��u and ��v are LD, we also say that the set ���u ,��v � is LD.

Definition (Linear Independence or LI).

X Two vectors ��u and ��v , in the vector space R3, are LI if they are not LD.

That is, ��u and ��v are LI if given two real numbers α and β such that

α��u � β��v �

��

0 ,

then we have α � 0 and β � 0.

If ��u and ��v are LI, we also say that ���u ,��v � is LI.

Summing up, ��u and ��v are LI if the following implication is true,

α��u � β��v �

��

0 Ô�

¢

¨

¨

�

¨

¨

¤

α � 0

β � 0.

The following remarks are trivial.

��u and ��v are LD 
�

��u and ��v are parallel.

��u and ��v are LI 
�

��u and ��v are not parallel.
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Lemma 4. Let us consider ��a � �a1, a2, a3� and
��

b � �b1, b2, b3�, two arbitrary

vectors in the vector space R3, and the 2 � 3 real matrix

�

�

a1 a2 a3

b1 b2 b3

�

�

.

Then,

�

��a ,
��

b � is LD 
�

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

�

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

�

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

� 0.

First Proof.

l A quite easy proof follows from the formula (see Lemma 2)

Y

��a �

��

b Y � Y

��a Y

��

b Y sin θ,

and I leave this trivial task to the reader. However, it is also important

(and instructive) to develop a proof that does not depend on Lemma 2.

Second Proof (independent of Lemma 2).

(�) Let us suppose that ��a and
��

b are LD. Hence, we have either ��a � λ
��

b or
��

b � λ��a (for some real λ). We may suppose without loss of generality that

��a � λ
��

b .

Hence, we obtain the identity �a1, a2, a3� � �λb1, λb2, λb3� and thus

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

�

R

R

R

R

R

R

R

R

R

R

R

R

λb1 λb2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

� λb1b2 � λb1b2 � 0,

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

�

R

R

R

R

R

R

R

R

R

R

R

R

λb1 λb3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

� λb1b3 � λb1b3 � 0

and
R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

�

R

R

R

R

R

R

R

R

R

R

R

R

λb2 λb3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

� λb2b3 � λb2b3 � 0.
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(
) The claim is obvious if ��a �

��

b �

��

0 . Hence, we may suppose that
��

b x

��

0 .

Furthermore, we may suppose without loss of generality b3 x 0 (the cases

b1 x 0 and b2 x 0 are analogous to the case b3 x 0).

From the hypotheses

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

� 0 and

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

� 0

we see that ��a1, a3�, �b1, b3�� is LD and ��a2, a3�, �b2, b3�� is also LD. Thus,

since b3 x 0, we see that there exist two real numbers α and β satisfying

�a1, a3� � α�b1, b3� and �a2, a3� � β�b2, b3�.

Hence, we arrive at

a3 � αb3, a3 � βb3 and b3 x 0.

Then, we obviously have αb3 � βb3, with b3 x 0, and thus α � β. Hence,

�a1, a2, a3� � α�b1, b2, b3� and thus ���a ,
��

b � is LD¥

Corollary 5. Let ��a � �a1, a2, a3� and
��

b � �b1, b2, b3� be as in Lemma 4. Then,

the following equivalences are true.

�

��a ,
��

b � is LI 
�

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

x 0 or

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

x 0 or

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

x 0


�

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2

b1 b2

R

R

R

R

R

R

R

R

R

R

R

R

2

�

R

R

R

R

R

R

R

R

R

R

R

R

a1 a3

b1 b3

R

R

R

R

R

R

R

R

R

R

R

R

2

�

R

R

R

R

R

R

R

R

R

R

R

R

a2 a3

b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

2

x 0.

Proof. It is immediate from Lemma 4¥

Corollary 6. Let ��a � �a1, a2, a3� and
��

b � �b1, b2, b3� be as in Lemma 4. Then,

�

��a ,
��

b � is LI
�

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

��

i
��

j
��

k

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

x

��

0 .

Proof. It is immediate from Corollary 5¥
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Corollary 7. Let ��a � �a1, a2, a3� and
��

b � �b1, b2, b3� be as in Lemma 4. Then,

�

��a ,
��

b � is LD
�

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

��

i
��

j
��

k

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

�

��

0 .

Proof. It is immediate from Corollary 6¥

We already analized the direction of

��x �

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

��

i
��

j
��

k

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

.

[On the one hand, the vector ��x is null if the set �

��a ,
��

b � is LD. On the other

hand, the vector ��x is orthogonal to ��a and
��

b if the set ���a ,
��

b � is LI.] Moreover,

we already established the norm of ��x [we have seen that Y��x Y � Y

��a Y Y
��

b Y sin θ].

Now we turn our attention to the orientation of the vector ��x .

Lemma 8. Keeping the notation, let us consider the vectors ��a ,
��

b and ��x . Let

us suppose that ���a ,
��

b � is LI. Let us consider a vetor ��y satisfying the conditions

¢

¨

¨

�

¨

¨

¤

��y is orthogonal to ��a and
��

b ,

Y

��y Y � Y

��x Y.

Then we have
��y �

��x or ��y � �

��x .

Proof.

l Putting��a � �a1, a2, a3�,
��

b � �b1, b2, b3�,
��x � �x1, x2, x3� and

��y � �y1, y2, y3�,

we consider the system in the real variables α, β and γ given by

S �

¢

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¤

a1α � b1β � x1γ � y1

a2α � b2β � x2γ � y2

a3α � b3β � x3γ � y3.

By determinants properties, Lemma 3, and Corollary 6, the determinant of

this system is

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

a1 b1 x1

a2 b2 x2

a3 b3 x3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

�

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

a1 a2 a3

b1 b2 b3

x1 x2 x3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

�

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

x1 x2 x3

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

� Y

��x Y

2
x 0.
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Therefore, by properties of linear systems, there exists a unique solution

α � α0, β � β0 and γ � γ0 of the linear system S under consideration.

In order to avoid heavy notation, let us write �α0, β0, γ0� briefly by �α,β, γ�.

From the system S we see that these three numbers α, β and γ satisfy

α��a � β
��

b � γ��x �

��y .

Thus, we arrive at
��y � γ��x � α��a � β

��

b .

Now, since ��y is orthogonal to ��a and
��

b , it follows that ��y is orthogonal to

the sum α��a � β
��

b .

By the same reason, the vector ��x is also orthogonal to the sum α��a � β
��

b .

Now, the same argument also shows that the vector α��a �β
��

b is orthogonal

to the difference ��y � γ��x .

Since we have the identity ��y � γ��x � α��a � β
��

b , we may conclude that

the vector ��y � γ��x is orthogonal to itself. Hence, we arrive at the identity

�

��y � γ��x � � �

��y � γ��x � � 0 and thus

Y

��y � γ��x Y

2
� 0.

This reveals that ��y � γ��x �

��

0 and

��y � γ��x .

Therefore, by taking norms we obtain

Y

��y Y � SγS Y��x Y.

However, by hypothesis we also have Y��y Y � Y

��x Y. Moreover, we already saw

that Y��x Y x 0. Thus, we find that

Y

��x Y � SγS Y��x Y, with Y

��x Y x 0.

Hence, it follows that

SγS � 1 and γ � �1.

Therefore, there are only two possibilities. We have

��y �

��x or ��y � �

��x ¥

10
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The following theorem is a trivial consequence of the previous lemmas.

Theorem. Let ��a � �a1, a2, a3� and
��

b � �b1, b2, b3� be two any vectors in R3.

Then, the vector

��x �

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

��

i
��

j
��

k

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

has the following properties.

Y If ��a and
��

b are LD, then ��x �

��

0 .

Y If ��a and
��

b are LI, then ��x is the only vector ��y � �y1, y2, y3� satisfying the

following three conditions

¢

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¤

��y is orthogonal to ��a and orthogonal to
��

b ,

the norm of ��y is the area of the parallelogram determined by ��a and
��

b ,

the determinant

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

y1 y2 y3

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

is (strictly) positive.

Proof. It follows from the previous lemmas¥

Definition (vector product, or cross product). Given ��a � �a1, a2, a3� and
��

b � �b1, b2, b3�, two arbitrary vectors in R3, the vector product of ��a by
��

b , in this

order, is the vector denoted by ��a �

��

b and given by (an informal determinant)

��a �

��

b �

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

��

i
��

j
��

k

a1 a2 a3

b1 b2 b3

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

.
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2. THE RIGHT-HAND RULE

A positive number is a real number x such that x A 0 (i.e, x is bigger than 0).

We indicate the determinant of a square real matrix M by detM .

Let M3�3�R� be the set of the 3 � 3 real matrices.

We denote by I the 3 � 3 identity matrix.

In this text, the symbol D� denotes the set of the 3 � 3 real matrices with a

positive determinant. That is,

D

�

� �M >M3�3�R� � det�M� A 0�.

Let us consider a 3 � 3 real matrix M with a positive determinant (that is,

detM A 0). Let us write

M �

�

�

�

�

�

a b c

d e f

g h i

�

�

�

�

�

.

Objective. Our objective is to prove that we can continuously deform the matrix

M into the identity matrix I by using only matrices with a positive determinant

along the deformation process.

Thus, we want to prove the following theorem.

Theorem. Given a 3 � 3 real matrix

M �

�

�

�

�

�

a b c

d e f

g h i

�

�

�

�

�

, with detM A 0,

there exists a continuous curve inside D� connecting M to the identity matrix I.

Proof. We split the proof into six (6) numbered steps.

12
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(1) We may suppose that a x 0. Let us show this claim. In what follows, we

describe a sequence of short steps. These are taken so that the determinants

of all the appearing matrices do not change and are equal to detM .

The first column of M is not null (otherwise, we have detM � 0¡).

The case a � 0 and d x 0. Then

�

�

�

�

�

0 � td b � te c � tf

d e f

g h i

�

�

�

�

�

, where t runs over �0,1�,

continuously connects (from the instant t � 0 up to the instant t � 1)

M �

�

�

�

�

�

0 b c

d e f

g h i

�

�

�

�

�

to

�

�

�

�

�

d b � e c � f

d e f

g h i

�

�

�

�

�

.

This case is proven (since d x 0).

The case a � d � 0 and g x 0. In this case, we employ to the first and the

third rows (horizontal lines) of

M �

�

�

�

�

�

0 b c

0 e f

g h i

�

�

�

�

�

the same argument that we employed to the first and second rows of M .

Thus, we see that we may continuously connect

M �

�

�

�

�

�

0 b c

0 e f

g h i

�

�

�

�

�

to

�

�

�

�

�

g b � h c � i

0 e f

g h i

�

�

�

�

�

.

This case is proven (since g x 0). The proof of step (1) is complete.
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(2) We may suppose d � g � 0 [thanks to (1), we are already supposing a x 0].

Let us verify this claim. Once more, all the arguments are taken so that

the determinants of all the appearing matrices are equal to detM .

Clearly,

�

�

�

�

�

a b c

d � ta e � tb f � tc

g h i

�

�

�

�

�

continuously connects (with the variable t running from t � 0 to t � d~a)

�

�

�

�

�

a b c

d e f

g h i

�

�

�

�

�

to

�

�

�

�

�

a b c

0 e � bd
a

f �

cd
a

g h i

�

�

�

�

�

.

Analogously,

�

�

�

�

�

a b c

0 e � bd
a

f �

cd
a

g � ta h � tb i � tc

�

�

�

�

�

continuously connects (with the variable t running from t � 0 to t � g~a)

�

�

�

�

�

a b c

0 e � bd
a

f �

cd
a

g h i

�

�

�

�

�

to

�

�

�

�

�

a b c

0 e � bd
a

f �

cd
a

0 h �

bg

a
i � cg

a

�

�

�

�

�

.

The proof of step (2) is complete.
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(3) Up to here, we have shown that we may suppose that

M �

�

�

�

�

�

a b c

0 e f

0 h i

�

�

�

�

�

, with a x 0.

As before, all the arguments in this step are made so that the determinants

of all the appearing matrices are equal to detM .

We claim that we may suppose e x 0. In fact, if e � 0 then it follows that

h x 0 (otherwise, we obtain detM � 0¡) and thus

�

�

�

�

�

a b c

0 0 � th f � ti

0 h i

�

�

�

�

�

continuously connects (with t running from t � 0 to t � 1)

�

�

�

�

�

a b c

0 0 f

0 h i

�

�

�

�

�

to

�

�

�

�

�

a b c

0 �h f � i

0 h i

�

�

�

�

�

, with � h x 0.

Hence, as we claimed, we may suppose that e x 0.

The proof of step (3) is complete.

(4) We may suppose that b � h � 0. [We already saw that we may suppose

a x 0, d � g � 0, and e x 0.]

All the arguments in this step are made so that the determinants of all the

appearing matrices are equal to detM .

Clearly,

�

�

�

�

�

a b � te c � tf

0 e f

0 h i

�

�

�

�

�

continuously connects (with t running from t � 0 to t � b~e)

M �

�

�

�

�

�

a b c

0 e f

0 h i

�

�

�

�

�

to

�

�

�

�

�

a 0 c � bf

e

0 e f

0 h i

�

�

�

�

�

.
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It is also clear that
�

�

�

�

�

a 0 c � bf

e

0 e f

0 h � te i � tf

�

�

�

�

�

continuously connects (with t running from t � 0 to t � h~e)

�

�

�

�

�

a 0 c � bf

e

0 e f

0 h i

�

�

�

�

�

to

�

�

�

�

�

a 0 c � bf

e

0 e f

0 0 i � fh

e

�

�

�

�

�

.

The proof of step (4) is complete.

(5) From the four previous steps it follows that we may suppose that

M �

�

�

�

�

�

a 0 c

0 e f

0 0 i

�

�

�

�

�

, with a x 0, e x 0,and detM A 0.

Now, let us show that we can suppose c � f � 0.

It is clear that i x 0 (otherwise, we have detM � 0¡). Clearly,

�

�

�

�

�

a 0 c � ti

0 e f

0 0 i

�

�

�

�

�

continuously connects

M �

�

�

�

�

�

a 0 c

0 e f

0 0 i

�

�

�

�

�

to

�

�

�

�

�

a 0 0

0 e f

0 0 i

�

�

�

�

�

.

It is also clear that
�

�

�

�

�

a 0 0

0 e f � ti

0 0 i

�

�

�

�

�

continuously connects

�

�

�

�

�

a 0 0

0 e f

0 0 i

�

�

�

�

�

to

�

�

�

�

�

a 0 0

0 e 0

0 0 i

�

�

�

�

�

.

The proof of step (5) is complete.
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(6) From the previous steps it follows that we may suppose that

M �

�

�

�

�

�

a 0 0

0 e 0

0 0 i

�

�

�

�

�

, with detM � aei A 0.

Then we have two possibilities about the entries a, e, and i.

¢

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¤

The entries a, e, and i are positive (A 0)

or

one of them is positive and the other two are negative (� 0).

In this step, the determinants of all the appearing matrices are positive.

The case where a, e, and i are positive. Then

�

�

�

�

�

ta 0 0

0 e 0

0 0 i

�

�

�

�

�

continuously connects (with t positive and running from t � 1 to 1~a)

�

�

�

�

�

a 0 0

0 e 0

0 0 i

�

�

�

�

�

to

�

�

�

�

�

1 0 0

0 e 0

0 0 i

�

�

�

�

�

.

Next,

�

�

�

�

�

1 0 0

0 te 0

0 0 i

�

�

�

�

�

continuously connects (with t positive and running from t � 1 to t � 1~e)

�

�

�

�

�

1 0 0

0 te 0

0 0 i

�

�

�

�

�

to

�

�

�

�

�

1 0 0

0 1 0

0 0 i

�

�

�

�

�

.

Finally,

�

�

�

�

�

1 0 0

0 1 0

0 0 ti

�

�

�

�

�
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continuously connects (with t positive and running from t � 1 to t � 1~i)

�

�

�

�

�

1 0 0

0 1 0

0 0 i

�

�

�

�

�

to

�

�

�

�

�

1 0 0

0 1 0

0 0 1

�

�

�

�

�

.

The proof of this case is complete.

The case where one element of �a, e, i� is positive and the others are negative.

The subcase a A 0 (and thus e � 0 and i � 0).

Then, as we already saw, we may continuously connect

M �

�

�

�

�

�

a 0 0

0 e 0

0 0 i

�

�

�

�

�

to

�

�

�

�

�

1 0 0

0 e 0

0 0 i

�

�

�

�

�

.

Now, we notice that

�

�

�

�

�

1 0 0

0 te 0

0 0 i

�

�

�

�

�

continuously connects, with t positive and running from t � 1 to t � �1~e A 0

(the positive sign of the determinant is kept along the deformation),

�

�

�

�

�

1 0 0

0 e 0

0 0 i

�

�

�

�

�

to

�

�

�

�

�

1 0 0

0 �1 0

0 0 i

�

�

�

�

�

.

Similarly,

�

�

�

�

�

1 0 0

0 �1 0

0 0 ti

�

�

�

�

�

continuously connects (with t positive and running from t � 1 to t � �1~i A 0)

�

�

�

�

�

1 0 0

0 �1 0

0 0 i

�

�

�

�

�

to

�

�

�

�

�

1 0 0

0 �1 0

0 0 �1

�

�

�

�

�

.
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Now, we notice that

�

�

�

�

�

1 0 0

0 cos θ � sin θ

0 sin θ cos θ

�

�

�

�

�

continuously connects, with θ running from θ � π to θ � 2π (the positive

sign of the determinant is kept along the described deformation),

�

�

�

�

�

1 0 0

0 �1 0

0 0 �1

�

�

�

�

�

to

�

�

�

�

�

1 0 0

0 1 0

0 0 1

�

�

�

�

�

.

The proof of the subcase a A 0 is complete.

The subcase e A 0 (and thus a � 0 and i � 0).

Analogously to the subcase above we may continuously connect

M �

�

�

�

�

�

a 0 0

0 e 0

0 0 i

�

�

�

�

�

to

�

�

�

�

�

�1 0 0

0 1 0

0 0 �1

�

�

�

�

�

.

Now, we notice that

�

�

�

�

�

cos θ 0 � sin θ

0 1 0

sin θ 0 cos θ

�

�

�

�

�

continuously connects, with θ running from θ � π to θ � 2π (again, the

positive sign of the determinant is kept along the deformation),

�

�

�

�

�

�1 0 0

0 1 0

0 0 �1

�

�

�

�

�

to

�

�

�

�

�

1 0 0

0 1 0

0 0 1

�

�

�

�

�

.

The proof of the subcase e A 0 is complete.
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The subcase i A 0 (and thus a � 0 and e � 0).

Analogously to the two subcases above, we may continuously connect

�

�

�

�

�

a 0 0

0 e 0

0 0 i

�

�

�

�

�

to

�

�

�

�

�

�1 0 0

0 �1 0

0 0 1

�

�

�

�

�

.

Now, we notice that

�

�

�

�

�

cos θ � sin θ 0

sin θ cos θ 0

0 0 1

�

�

�

�

�

continuously connects, with θ running from θ � π to θ � 2π (once more, the

positive sign of the determinant is kept along the deformation),

�

�

�

�

�

�1 0 0

0 �1 0

0 0 1

�

�

�

�

�

to

�

�

�

�

�

1 0 0

0 1 0

0 0 1

�

�

�

�

�

.

The proof of the subcase i A 0 is complete.

Thus, the proof of step (6) is complete.

The proof of the theorem is complete¥

Corollary. Given a 3 � 3 real matrix N with detN � 0, then there exists a

continuous curve connecting N to the 3 � 3 matrix

�

�

�

�

�

1 0 0

0 1 0

0 0 �1

�

�

�

�

�

,

with all the 3 � 3 real matrices along the deformation process having negative

determinant.

Proof.

l From the above theorem we conclude that there exists a continuous curve

connecting �N to the identity matrix I, with all the 3 � 3 matrices along

the deformation process having positive determinant.
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Thus, it is trivial to see that we also have a continuous curve connecting

the given matrix N to the matrix �I, with all the matrices along the defor-

mation process having negative determinant.

To complete this proof, we notice that

�

�

�

�

�

cos θ � sin θ 0

sin θ cos θ 0

0 0 �1

�

�

�

�

�

continuously connects, with θ running from π to 2π (we remark that the

determinant of all the matrices along this last deformation are equal to �1),

�I �

�

�

�

�

�

�1 0 0

0 �1 0

0 0 �1

�

�

�

�

�

to

�

�

�

�

�

1 0 0

0 1 0

0 0 �1

�

�

�

�

�

¥
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