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1. VECTOR PRODUCT (CROSS PRODUCT)

—
Let us consider the vector space R? and the standard set of vectors {7, 7, k}.

—
Thus, the vectors ?, 7 and k are orthogonal to each other and each one has

- = > :
length 1. We say that { i, j, k } is an orthonormal basis.
Next, we consider two vectors

N — — —
a =(a,az,a3) =a1 i +as ) +aszk
and

—

— — —
bz(bl,bg,bg)zbl’i +b2j+bgk’,
where aq,as,as,b1,bs, and bz are real numbers.

Let us search for a vector @ = (21,29, 3) satisfying the conditions

7 is orthogonal to @

and

—
7 is orthogonal to b .

By using the scalar product [also called inner product or dot product and indicated
by the symbol “”, a dot], we rewrite such conditions as

|

Thus, the triplet (z7,x9,x3) must satisfy the linear system

0
0.

=| sl

8| 8]

a1Ty + asxe + aszxrs =0
bll’l + bgﬂ?g + b3.§(33 =0

or, equivalently,

{ a1x1 + o9 = —A37T3

bll’l + bgﬂ?g = —bgl’g.
By employing matrix notation we arrive at

a1 Qo Ty | [ —as73
b by T2 —bsxs .
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Now, let us freely develop some computations. To begin with, let us suppose
that the 2 x 2 matrix right above is invertible. Hence we find that

()

T _ 1 bg —a9
To aiby —asby \ b, oy

This shows that

_ agbzrz—azbors _ x3 _
1= alba—asby aiba-azb: (a2b3 a3b2)
and

_ agbizz—aibzry _ T3 _
T2 = a1ba—asby ~ arba—asb; (a3b1 albg)'

Choosing 3 = a1by — asb; (we may pick any value for z3) we find the vector
— — —
?= (.I'l,ﬂfg,l’g) = (a2b3—a3b2) Z —(albg—agbl)j +(a1b2—a2b1)k.

Such a vector 7 may be written as the 3 x 3 “informal determinant”

- = >
gk
— az asg |— ap as |— ap Gz | =
T =|a a2 as (2 J * k
by b3 bi b3 by by
by by b3

Now, let us investigate the properties of this highlighted vector 7.

Lemma 1. Let @ = (aj,as,a3) and D= (b1,b2,b3) be two vectors in R3. Then,

- = -
gk
— Gz a3z | — a as |— ap as | =
xr = al a2 a3 = 17 — j + k
by b3 by b3 by by
by by b3

is orthogonal to the vectors @ and D.

Proof.

o Let us show that @ = (z1, 29, 23) is orthogonal to @. We have

—
- X

a1r1 + aoxo + a3x3

= a a9 asg ~ay a; das +a a1 Qag
by b3 by by bi by
a; ag as
= ap Gz as
by by bs

The determinant of a matrix with two equal lines is 0. Thus, 7 - @ = 0.



o Analogouly it follows that @ is orthogonal to T

Lemma 2. Let @, _b), and T be as in Lemma 1. Let 6, with 0 <6 <7, be the

(smallest) angle between @ and 7. Then, we have

—
IZN=1a]0]sine.
Proof.
We have
IZ)? = af+a3+a3

2 2 9

_ | @ ap as a; asp

62 b3 bl bg bl b2

= (agbs — asby)? + (a1bs — asby)* + (a1by — asby)?

= a3b3 - 2asa3bybs + b3 + albi — 2a1a3bbs + a3b?
+a2b3 — 2a,ab, by + a3b?

= a?bi+alb3 + alb? + a3b3 + aib? + alb’

—2a1a9b1by — 2a1a3b1b3 — 2a2a3b2053
= (af+a3+a3)(b? + b3 +b3) - aib — a3b3 - a3b3

—2a1a9b1by — 2a1a3b1b3 — 2a2a3b2053
= (a?+ad+a2)(b? +b3+b2)

—(a2b? + a3b3 + a3b? + 2a1a2b1by + 2a1a3b1b3 + 2a2a3bybs)
= (af+a3+a3)(b? + b3 +b3) — (arby + agby + asbs)?
= PN - (T-0)?
= [@PITI- (TN coss)?
= [ZPITI 1T )? cos® ¢
= @I NT (L - cos®6)
= @)Y sin® 6
= (JZNND ) sin6)>

Since 0 € [0, 7], and thus sinf > 0, we are allowed to conclude that

a .
IZH=1a )] b [sinos
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Lemma 3. Let @, Z) and 7T be as in Lemma 1. Then we have

Ty Ty T3 2
2 9 9 az as ap as ap Qs
ap Qg a3 |=T7+T3+T3=
by b3 by bs b1 by
by by bs
Proof.
¢ From the formulas
— az a3z | — ay asz |— ay G |—>
T = v - J+ k
b2 bg bl b?, bl b2
— — —
= 1t +x9) +a3k

we easily obtain the second claimed identity (the one that is not related to

the 3 x 3 determinant).

o Moreover, we have

Ty T9 X3
Gz as a; as ay Qg
ap Qs as = I ) + I3
by b3 b b3 by be
by by b3
2 2 2
Gz as ay as ay Qg
= + +
by b3 by b3 by by
_ .2 2 2
= xi+try+aze
In short, we have
Ty T2 T3
_ =72
ar ay az |=[7)°20
by by b3

—
for any two vectors @ and b, both in R3.



Definition (Parallelism).

o The null vector (0,0,0) is parallel to every vector in the vector space R3.

o Two vectors AB and CT)), where A, B,C, and D are points in the Cartesian
space R3 such that A # B and C # D, are parallel if the segments AB and
CD are parallel.

Definition (Linear Combination). Given two vectors u and ¥, both in the

vector space R3, and two real numbers o and 3, the vector
W=au+ BT
is a linear combination of @ and @, with coefficients o and 3. We also say that

W is generated by @ and v.

Definition (Linear Dependence or LD). Two vectors @ and ¥, in the vector

space R3, are LD if there exist two real numbers o and 3, not both zero, satisfying
— - = .
au+pfv =0 (with a#0 or g #0).
If @ and ¥ are LD, we also say that the set {w, v} is LD.

Definition (Linear Independence or LI).

o Two vectors @ and o, in the vector space R3, are LI if they are not LD.

That is, @ and ¥ are LI if given two real numbers a and 8 such that
AW +BT =0,
then we have =0 and [ = 0.

If @ and ¥ are LI, we also say that {u, 7} is LL

Summing up, @ and ¥ are LI if the following implication is true,

B3 =0.

N =0
amm:o:{o‘

The following remarks are trivial.

% and U are LD <= % and U are parallel.

W and v are LI <= U and ¥ are not parallel.
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—
Lemma 4. Let us consider @ = (ay,as,a3) and b = (by,by,b3), two arbitrary

vectors in the vector space R3, and the 2 x 3 real matrix
ap az as
b by bs |

a1 as
by b3

Then,
a; G

by bo

Gz as
by b3

(@, D} is LD < - - - 0.

First Proof.
o A quite easy proof follows from the formula (see Lemma 2)
I x B =1a [ sine.

and I leave this trivial task to the reader. However, it is also important

(and instructive) to develop a proof that does not depend on Lemma 2.
Second Proof (independent of Lemma 2).

(=) Let us suppose that @ and D are LD. Hence, we have either @ = AD or

D =27 (for some real \). We may suppose without loss of generality that
T=)\D.

Hence, we obtain the identity (a1, as,az) = (Aby, Abg, Ab3) and thus

Aby b
G A A2 by — Ay = 0,
boby | | b b

Ab Ab
G LA A by = Abybg = 0
b bs | | b by

and

Aby Ab
@G A2 AT by — Abobs = 0.
by by | | by by




— —
(<) The claim is obvious if @ = b = 0. Hence, we may suppose that b # 0.
Furthermore, we may suppose without loss of generality b3 # 0 (the cases

by # 0 and by # 0 are analogous to the case bz # 0).

From the hypotheses

ay as a2 as

by b3

=0 and

by bs

we see that {(a1,as), (b1,b3)} is LD and {(az,as), (b2,b3)} is also LD. Thus,

since bs # 0, we see that there exist two real numbers a and g satisfying
(a1,a3) = a(by,bs) and (ag,as) = 5(ba, b3).
Hence, we arrive at
az = abs, az = Pbs and bs # 0.
Then, we obviously have abs = 8bs, with b3 # 0, and thus a = 5. Hence,

(a1, as,a3) = a(br, bs, by) and thus {@, b} is LD 4

Corollary 5. Let @ = (ay,as,a3) and E) = (b1,b9,b3) be as in Lemma 4. Then,

the following equivalences are true.

(T 0YVisLI — | ™ ®{z0o0r “lioor | B0
bi by by b3 by b3
2 2 2
ay a2 ayp as Gz as
— + # 0.
bi by by b3 by b3

Proof. It is immediate from Lemma 4 #

Corollary 6. Let @ = (ay,as,a3) and D = (b1,b2,b3) be as in Lemma 4. Then,

> ?

_ i 7k
(@, b}isLI<|a, ay as | 0.
by by bs

Proof. It is immediate from Corollary 5 #

8
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Corollary 7. Let @ = (ay,as,a3) and D = (b1,b2,b3) be as in Lemma 4. Then,

- - -

T gk
(@, bYisLD<= | a; ay a3 |=0
by by by

Proof. It is immediate from Corollary 6 #

We already analized the direction of

- - —
gk

—
T =|a az as
by by b3

[On the one hand, the vector 7 is null if the set {E’,?} is LD. On the other
hand, the vector 7 is orthogonal to @ and D if the set {a, —b>} is LI.]| Moreover,
we already established the norm of 7 [we have seen that | 7| = ||| ||_b>|| sin 4].

Now we turn our attention to the orientation of the vector 7.

—
Lemma 8. Keeping the notation, let us consider the vectors @, b and Z. Let

—
us suppose that {@, b } is LI. Let us consider a vetor % satisfying the conditions

{ %/ is orthogonal to @ and Z),
et

Then we have

Proof.

o Putting @ = (ay,as,as), D = (b1,b,b3), @ = (21,79, 23) and § = (y1,¥2,93),
we consider the system in the real variables «, § and v given by
ma+bif+x1y =y
Sty aga+ by + w0y =1
asa + b3 + w37y = 3.
By determinants properties, Lemma 3, and Corollary 6, the determinant of

this system is

a b ap az as Ty T2 I3

_ =2
ag by xo |=| b1 by by |=|ar ax a3z |=]2|" #0.
az bs w3 X1 T2 I3 by by b3



Therefore, by properties of linear systems, there exists a unique solution

a =g, =0y and v =7, of the linear system S under consideration.
In order to avoid heavy notation, let us write (g, 5o,70) briefly by («, 5,7).
From the system S we see that these three numbers «, § and v satisfy

—
ad+pb+yT =7.

Thus, we arrive at

—>
Y -yT=aa+0b.
[
Now, since 7 is orthogonal to @ and b, it follows that ¥ is orthogonal to

—
the sum a@ + 8 b.

— . — -
By the same reason, the vector 2 is also orthogonal to the sum ava + 5 b .

Now, the same argument also shows that the vector a’a@ + ﬁ_b) is orthogonal

to the difference 3 — 77 .

Since we have the identity ¥ — Y7 = ad + B?, we may conclude that
the vector 3/ — v is orthogonal to itself. Hence, we arrive at the identity
(¥ -77)- (¥ -v7) =0 and thus

|7 -7 )? =0.

This reveals that § -7 = 0 and

N
Z.

—>
Yy =7

Therefore, by taking norms we obtain

171 =

However, by hypothesis we also have || %/|| = | |. Moreover, we already saw
that | 27| # 0. Thus, we find that

120 = I, with |77 #0.

Hence, it follows that

|v| =1 and ~ = +1.
Therefore, there are only two possibilities. We have

- — — —
Yy =2 or y=—2%

10



Oswaldo Rio Branco de Oliveira

The following theorem is a trivial consequence of the previous lemmas.

Theorem. Let @ = (ai,ay,a3) and T = (b1,b2,b3) be two any vectors in R3.

Then, the vector

i gk

[
T =|a a2 as
by by b3

has the following properties.
o If T and b are LD, then 7 = 0.

— - — . — . .
e If'a and b are LI, then ¥ is the only vector y = (y1,ye,ys3) satisfying the

following three conditions

%/ is orthogonal to @ and orthogonal to E),

the norm of y is the area of the parallelogram determined by @ and Z),

) Yr Y2 Y3
the determinant | a; ay as | is (strictly) positive.
by by b3

Proof. It follows from the previous lemmas #

Definition (vector product, or cross product). Given @ = (ay,as,a3) and
— —
b = (b1, by, b3), two arbitrary vectors in R3, the vector product of @ by b, in this

—
order, is the vector denoted by @ x b and given by (an informal determinant)

- - -
gk
—
axb=la a as
by by bs

11



2. THE RIGHT-HAND RULE

A positive number is a real number x such that x > 0 (i.e, x is bigger than 0).
We indicate the determinant of a square real matrix M by det M.

Let M;sx3(R) be the set of the 3 x 3 real matrices.

We denote by I the 3 x 3 identity matrix.

In this text, the symbol D+ denotes the set of the 3 x 3 real matrices with a

positive determinant. That is,
D* = {M € M3,3(R) : det(M) > 0}.

Let us consider a 3 x 3 real matrix M with a positive determinant (that is,
det M > 0). Let us write

a b c
M=|d e f
g h 1

Objective. Our objective is to prove that we can continuously deform the matrix
M into the identity matrix I by using only matrices with a positive determinant

along the deformation process.
Thus, we want to prove the following theorem.

Theorem. Given a 3 x 3 real matrix

b ¢
f |, with det M >0,

?

> o

a
M=|d
Y

there exists a continuous curve inside D* connecting M to the identity matrix I.

Proof. We split the proof into six (6) numbered steps.

12
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(1) We may suppose that a # 0. Let us show this claim. In what follows, we
describe a sequence of short steps. These are taken so that the determinants

of all the appearing matrices do not change and are equal to det M.
The first column of M is not null (otherwise, we have det M = 0f).

The case a =0 and d £ 0. Then

O+td b+te c+tf
d e f , where ¢ runs over [0,1],

g h i

continuously connects (from the instant ¢ = 0 up to the instant ¢ = 1)

0 b c d b+e c+f
M=1d e f| to |d e f
g h i g h i

This case is proven (since d # 0).

The case a =d =0 and g # 0. In this case, we employ to the first and the

third rows (horizontal lines) of

0 b ¢
M=10 e f
g h 1

the same argument that we employed to the first and second rows of M.

Thus, we see that we may continuously connect

0 b c g b+h c+1i
M=10e f| to 0 e f
g h 1 g h 7

This case is proven (since g # 0). The proof of step (1) is complete.

13



2) We may suppose d = g = 0 [thanks to (1), we are already supposing a # 0].
Yy
Let us verify this claim. Once more, all the arguments are taken so that

the determinants of all the appearing matrices are equal to det M.

Clearly,
a b c
d-ta e—-tb f-tc
g h i

continuously connects (with the variable ¢ running from ¢ =0 to ¢ = d/a)

a b c a b c
d e flto] O e—% f—%d
g h i g h 1
Analogously,
a b c
0 e-M f_d

a a

g-—ta h-tb i-tc

continuously connects (with the variable ¢ running from ¢t =0 to ¢ = g/a)

a b c a b c
0 e jost|w|o ¥ g
g h i 0 h-% -9

The proof of step (2) is complete.

14
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(3) Up to here, we have shown that we may suppose that

a b c
M=10 e f |, witha#0.
0 h 1

As before, all the arguments in this step are made so that the determinants

of all the appearing matrices are equal to det M.

We claim that we may suppose e # 0. In fact, if e = 0 then it follows that
h #0 (otherwise, we obtain det M = 0£) and thus

a b c
0 O0-th f-ti
0 h )

continuously connects (with ¢ running from ¢t =0 to ¢ = 1)

a b ¢ a b c
00 flto]l O -h f-i ], with —h=#0.
0 h 1 0 h 7

Hence, as we claimed, we may suppose that e # 0.
The proof of step (3) is complete.

(4) We may suppose that b = h = 0. [We already saw that we may suppose
a#0,d=g=0,and e+0.]

All the arguments in this step are made so that the determinants of all the

appearing matrices are equal to det M.

Clearly,
a b-te c-tf
0 e f
0 h )

continuously connects (with ¢ running from ¢ =0 to ¢ = b/e)

0 c-Y

e

e f
hooi

S

M =

o O 2

c a
f to 0
' 0

7

> o

15



It is also clear that

0 e f
0 h-te 1-tf

continuously connects (with ¢ running from ¢t =0 to ¢ = h/e)
a 0 c- % a 0 c- %
0 e f to 0 e f
0 h i 0 0 i-£

The proof of step (4) is complete.

From the four previous steps it follows that we may suppose that

a 0 c
M=10 e f |, witha#0,e+0,and det M >0.
0 0 1

Now, let us show that we can suppose c= f =0.

It is clear that i # 0 (otherwise, we have det M = 0f). Clearly,

a 0 c-t
0 e f
00 =2
continuously connects
a 0 c a 0 0
M=10 e f to 0
0 0 ¢ 0 0 ¢
It is also clear that
a 0 0
0 e f-ti
00 =
continuously connects
a 0 0 a 0 0
f to 0 e O
) 0 0 ¢

The proof of step (5) is complete.

16
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(6) From the previous steps it follows that we may suppose that

e}

0
M = 0 |, with det M =aez > 0.

e
0 4

o O 2

Then we have two possibilities about the entries a, e, and 1.

The entries a, e, and i are positive (> 0)
or

one of them is positive and the other two are negative (< 0).

In this step, the determinants of all the appearing matrices are positive.

The case where a, €, and ¢ are positive. Then

ta 0 0O
0 e 0
0 0 ¢

continuously connects (with ¢ positive and running from ¢ = 1 to 1/a)

a 0 0 100
0 e O to 0 e O
0 0 ¢ 0 0 ¢
Next,
10 0
0 te O
0 0 =1

continuously connects (with ¢ positive and running from ¢ =1 to ¢t = 1/e)

10 0 1 00
0 te O to 010
00 1 0 0 ¢
Finally,
100
010
0 0 &



continuously connects (with ¢ positive and running from ¢ =1 to ¢t = 1/)
0
0

to

oS O =
S = O
o O =
S = O
_ O O

1
The proof of this case is complete.
The case where one element of {a,e,i} is positive and the others are negative.
The subcase a > 0 (and thus e <0 and i < 0).

Then, as we already saw, we may continuously connect

a 0 0 100
M=10 e 0 to 0 e O
0 0 4 0 0 i
Now, we notice that
10 0
0 te O
0 0 =

continuously connects, with ¢ positive and running from ¢ =1tot=-1/e >0

(the positive sign of the determinant is kept along the deformation),

100 1 00
0O e O] to ]0O -10
0 0 ¢ 0 0 ¢
Similarly,
1 0 0
0 -1 0
0 0 &

continuously connects (with ¢ positive and running from ¢ = 1 to ¢t = -1/ > 0)

1 0 0 1 0
0 -1 0 to 0 -1
0 0 ¢ 0 0 -1

18
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Now, we notice that
1 0 0

0 cosf -—sinf
0 sinf cosd
continuously connects, with 6 running from 6 = 7w to 6 = 27 (the positive

sign of the determinant is kept along the described deformation),

0 1 00
-1 0 to 010
0 0 -1 0 01

The proof of the subcase a > 0 is complete.

The subcase e > 0 (and thus a <0 and i < 0).

Analogously to the subcase above we may continuously connect

a 0 0 -1 0 O
M=10 ¢ 0 to 1 0
0 0 1 0 0 -1

Now, we notice that
cos# 0 -sinf

0 1 0
sinf 0 cosf
continuously connects, with ¢ running from 6 = 7 to 6 = 27 (again, the

positive sign of the determinant is kept along the deformation),

-1 0 O 10
to 01
00

_ o O

-1

The proof of the subcase e > 0 is complete.

19



The subcase i >0 (and thus a <0 and e < 0).

Analogously to the two subcases above, we may continuously connect

a 0 0 -1 0 0
0 e 0] to 0 -1 0
0 0 ¢ 0 01

Now, we notice that
cosf) —sinf 0

sinf cosf 0
0 0 1

continuously connects, with 6 running from 6 = 7 to 6 = 27 (once more, the

positive sign of the determinant is kept along the deformation),

-1 0 0 1 00
0 -1 0 to 010
0 0 1 0 01

The proof of the subcase i > 0 is complete.
Thus, the proof of step (6) is complete.

The proof of the theorem is complete #

Corollary. Given a 3 x 3 real matrix N with det N < 0, then there exists a

continuous curve connecting N to the 3 x 3 matrix

1 0 O
0 1 0],
0 0 -1

with all the 3 x 3 real matrices along the deformation process having negative
determinant.
Proof.

o From the above theorem we conclude that there exists a continuous curve
connecting —N to the identity matrix I, with all the 3 x 3 matrices along

the deformation process having positive determinant.

20
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Thus, it is trivial to see that we also have a continuous curve connecting
the given matrix /N to the matrix —I, with all the matrices along the defor-

mation process having negative determinant.
To complete this proof, we notice that
cosf -sinf 0

sin 6 cosf 0
0 0 -1

continuously connects, with 6 running from 7 to 27 (we remark that the

determinant of all the matrices along this last deformation are equal to —1),

-1 0 10
-1 = 0 -1 0 to 01 0|+
0 0 -1 0 0 -1
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