TEORIA DE SOMAS X TEORIA DA MEDIDA

Oswaldo Rio Branco de Oliveira

http://www.ime.usp.br/~oliveira oliveira@ime.usp.br
Instituto de Matemática e Estatística - USP - São Paulo
Ano 2015

OBJETIVO

Nesta notas apresentamos o que segue.

- ♦ A Teoria de Somas (não ordenadas) e sua relação com a Teoria de Séries.
- Clássicos teoremas da Teoria da Medida (teorema de Tonelli, teorema de Fubini, lema de Fatou e os teoremas da convergência monótona e da convergência dominada) transpostos para a Teoria de Somas Não Ordenadas.
- ♦ (Apêndice.) A aritmética na reta estendida $[-\infty, +\infty]$ e os conceitos de limite inferior e limite superior de uma sequência na reta estendida.

Sumário

1	Séries e Somas (não ordenadas)		3
	1.1	Séries	3
	1.2	Somas Não Ordenadas em $\mathbb C$	5
	1.3	Somas x Séries	12
	1.4	Apêndice. Somas × Somabilidade Clássica	14
2	Son	nas x Teoria da Medida	15
	2.1	Tonelli e Fubini	15
	2.2	Fatou	16
	2.3	Convergências Monótona e Dominada	17
3	Apé	èndice. A Reta Estendida	19
	3.1	A Reta Estendida	19
	3.2	Sequências na Reta Estendida	20

Capítulo 1

Séries e Somas (não ordenadas)

1.1 Séries

Consideremos $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ e uma sequência (a_n) , real ou complexa.

A série de termo geral a_n [ou série gerada pela sequência (a_n)] é o par ordenado

$$((a_n),(s_n)),$$

 $com(s_n)$ a sequência das somas parciais de (a_n) e

$$s_n = a_0 + \dots + a_n$$

a soma parcial de ordem n da série. [Notemos que explicitamos como somar os termos de (a_n) . Agradeço ao prof. Jorge Aragona por tal esclarecimento.]

Tal série é dita convergente se (s_n) converge em \mathbb{K} e, neste caso, $s = \lim s_n$ é a soma da série indicada por

$$s = \sum_{n=0}^{+\infty} a_n.$$

A série é dita divergente se (s_n) é divergente.

Abusando da notação, denotamos uma série arbitrária $((a_n),(s_n))$ por

$$\sum_{n=0}^{+\infty} a_n.$$

Se a série $\sum_{n=0}^{+\infty} a_n$ converge, escrevemos

$$\sum_{n=0}^{+\infty} a_n < \infty.$$

Se a série é de números reais e $\lim s_n = \pm \infty$, escrevemos

$$\sum_{n=0}^{+\infty} a_n = \pm \infty.$$

Dado p em \mathbb{N} , definimos a série $\sum_{n=p}^{+\infty} a_n$ como

$$\sum_{n=p}^{+\infty} a_n = \sum_{n=0}^{+\infty} b_n, \text{ onde } b_n = 0, \text{ se } n < p, \text{ e } b_n = a_n \text{ se } n \ge p.$$

Para investigar a convergência de $\sum_{n=0}^{+\infty} a_n$ podemos ignorar qualquer quantidade finita de seus termos pois temos

$$s_n = s_p + \sum_{m=p+1}^n a_m$$
, para todo $n > p$,

e é claro que existe $\lim s_n$ se e só se existe

$$\lim_{n \to +\infty} \sum_{m=p+1}^{m=n} a_m.$$

Isto é, a série $\sum_{n=0}^{+\infty} a_n$ converge se e só se a série $\sum_{n=p+1}^{+\infty} a_n$ converge. Se uma destas converge, temos

$$\sum_{n=0}^{+\infty} a_n = s_p + \sum_{n=p+1}^{+\infty} a_n.$$

Uma série complexa $\sum_{n=0}^{+\infty} z_n$ converge se e somente se suas partes real e imaginária, dadas pelas séries reais

$$\sum_{n=0}^{+\infty} \operatorname{Re}(z_n) \text{ e } \sum_{n=0}^{+\infty} \operatorname{Im}(z_n),$$

convergem e então segue

$$\sum_{n=0}^{+\infty} z_n = \sum_{n=0}^{+\infty} \text{Re}(z_n) + i \sum_{n=0}^{+\infty} \text{Im}(z_n).$$

1.1 Proposição. Suponhamos $a_n \ge 0$, para todo $n \in \mathbb{N}$. A série $\sum_{n=0}^{+\infty} a_n$ converge se e somente se a sequência das somas parciais $s_n = a_0 + \dots + a_n$ é limitada.

Prova.

Trivial, devido à propriedade do supremo.

Definição. A série complexa $\sum_{n=0}^{+\infty} a_n$ é

- absolutamente convergente $se \sum_{n=0}^{+\infty} |a_n| < \infty$.
- o condicionalmente convergente se $\sum_{n=0}^{+\infty} a_n$ é convergente e $\sum_{n=0}^{+\infty} |a_n| = +\infty$.

No Teorema 1.12 veremos que as séries absolutamente convergentes são convergentes. Um exemplo clássico de série condicionalmente convergente é

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$$
 (série harmônica alternada).

1.2 Proposição (Critério da Comparação). Sejam $\sum_{n=0}^{+\infty} a_n \ e \sum_{n=0}^{+\infty} b_n \ séries$ complexas, tais que

 $|a_n| \leq c|b_n|, \ para \ algum \ c > 0 \ e \ para \ todo \ n > n_0 \ (para \ algum \ n_0 \ fixo),$

 $e \ tamb\'em \sum_{n=0}^{+\infty} |b_n| < \infty. \ Ent\~ao,$

$$\sum_{n=0}^{+\infty} |a_n| < \infty.$$

Prova. Trivial♣

1.2 Somas Não Ordenadas em $\mathbb C$

A Definição 1.5 de famílias somáveis [em \mathbb{K}] a seguir, equivale à usual. De fato, decorre da definição clássica de somabilidade que uma família $(v_j)_J$ em um espaço vetorial de dimensão finita normado e **completo** $(V, \|\cdot\|)$ [i.e., um espaço em que as sequências de Cauchy convergem] é uma família somável se e somente se ela é absolutamente somável [i.e., $\sum_J \|v_j\| < \infty$]. Com a definição aqui adotada, tal equivalência se mantém. Vide Seção 1.4 (Apêndice).

Seja X um conjunto arbitrário e J um conjunto de índices arbitrário. Uma família em X, indexada em J, é uma função $x:J\to X$. Indicamos a família x por

$$(x_j)_{j\in J}$$
 ou $(x_j)_J$ ou, brevemente, (x_j) .

Dada uma família (p_j) contida em $[0, +\infty]$, definimos

$$\sum_{j \in J} p_j = \sup \left\{ \sum_{j \in F} p_j : F \text{ \'e subconjunto finito de } J \right\} \text{ em } [0, +\infty].$$

Tal sup é finito se e somente se existe um real $M \geq 0$ tal que

 $\sum_{j \in F} p_j \leq M$, para todo subconjunto finito F contido em J.

Também escrevemos $\sum_{J} p_{j}$ para $\sum_{j \in J} p_{j}$. Se J é subentendido, escrevemos

$$\sum p_j$$
.

1.3 Proposição. Sejam $(p_j)_J$ e $(q_j)_J$ duas famílias em $[0, +\infty]$. Então,

- (a) $\sum (p_i + q_i) = \sum p_i + \sum q_i$.
- (b) $\sum \lambda p_j = \lambda \sum p_j$, para todo λ em $[0, +\infty)$.
- (c) (Propriedade Comutativa) $Se \ \sigma : \mathcal{K} \rightarrow J \ \'e \ uma \ bijeç\~ao, \ ent\~ao$

$$\sum_{I} p_j = \sum_{K} p_{\sigma(k)}.$$

Prova.

- (a) e (b). Triviais
- (c) São iguais os conjuntos sobre os quais computamos $\sum_J p_j$ e $\sum_{\mathcal{K}} p_{\sigma(k)} \bullet$

Dada uma família $(p_j)_J$ em $[0, +\infty]$, se $\sum_J p_j$ é finito (um número real), dizemos que $(p_j)_J$ é uma família somável e que sua soma é o número

$$\sum_{I} p_{j}$$
.

Escrevemos $\sum_J p_j < \infty$, indicando que $(p_j)_J$ é (família) somável.

1.4 Teorema (Associatividade). Seja $(p_j)_J$ uma família em $[0, +\infty]$ e J uma reunião de conjuntos J_k , com k em K, dois a dois disjuntos. Então,

$$\sum_{J} p_j = \sum_{k \in \mathcal{K}} \sum_{j \in J_k} p_j.$$

Prova. Mostremos duas desigualdades.

♦ Dado F finito e contido em J, por hipótese existem índices distintos k_1, \ldots, k_l , todos em K, tal que $F \subset J_{k_1} \cup \ldots \cup J_{k_l}$. Donde segue

$$\sum_{F} p_j = \sum_{F \cap J_{k_1}} p_j + \dots + \sum_{F \cap J_{k_l}} p_j \leq \sum_{J_{k_1}} p_j + \dots + \sum_{J_{k_l}} p_j \leq \sum_{k \in \mathcal{K}} \sum_{j \in J_k} p_j$$

e então, pela definição de $\sum_{J} p_{j}$,

$$\sum_{J} p_j \leq \sum_{k \in \mathcal{K}} \sum_{j \in J_k} p_j.$$

♦ Dados índices distintos k_1, \ldots, k_l em \mathcal{K} e conjuntos finitos F_{k_r} , com $F_{k_r} \subset J_{k_r}$ se $1 \leq r \leq l$, os conjuntos J_{k_1}, \ldots, J_{k_l} são dois a dois disjuntos e portanto os conjuntos F_{k_1}, \ldots, F_{k_l} também. Sendo assim, temos

$$\sum_{F_{k_1}} p_j + \dots + \sum_{F_{k_l}} p_j \ \leq \ \sum_J p_j \ .$$

Então, fixando os conjuntos F_{k_2}, \ldots, F_{k_l} e computando o supremo sobre a família dos conjuntos finitos F_{k_1} contidos em J_{k_1} obtemos a desigualdade

$$\sum_{J_{k_1}} p_j + \sum_{F_{k_2}} p_j + \dots + \sum_{F_{k_l}} p_j \le \sum_{J} p_j.$$

Argumentando analogamente (l-1)-vezes obtemos

$$\sum_{J_{k_1}} p_j + \sum_{J_{k_2}} p_j + \dots + \sum_{J_{k_l}} p_j \leq \sum_{J} p_j.$$

Por fim, como $\{k_1, k_2, \dots, k_l\}$ é qualquer subconjunto finito de \mathcal{K} concluímos

$$\sum_{k \in \mathcal{K}} \sum_{j \in J_k} p_j \leq \sum_J p_j \, \clubsuit$$

Seja $x \in \mathbb{R}$. Suas partes positiva e negativa são, respectivamente,

$$p = \begin{cases} x, & \text{se } x \ge 0 \\ 0, & \text{se } x \le 0 \end{cases} \quad \text{e} \quad q = \begin{cases} 0, & \text{se } x \ge 0 \\ -x, & \text{se } x \le 0. \end{cases}$$

Temos,

$$\begin{cases} 0 \le p \le |x| \\ 0 \le q \le |x| \end{cases}, \qquad \begin{cases} x = p - q \\ |x| = p + q \end{cases} e \qquad \begin{cases} p = \frac{|x| + x}{2} \\ q = \frac{|x| - x}{2} \end{cases}.$$

- 1.5 Definição. Seja J um conjunto de índices.
 - o Uma família (x_j) de números reais é somável se as famílias (p_j) e (q_j) das partes positivas e negativas de x_j , com j em J, respectivamente, são somáveis. Se (x_j) é somável, sua soma (não ordenada) é

$$\sum x_j = \sum p_j - \sum q_j.$$

o Uma família (z_j) de números complexos é somável se as famílias $(Re(z_j))_J$ e $(Im(z_j))_J$, das partes reais e imaginárias de z_j , com j em J, respectivamente, são somáveis. Se (z_j) é somável, sua soma (não ordenada) é

$$\sum z_j = \sum Re(z_j) + i \sum Im(z_j).$$

o Uma família (z_j) , de números reais ou complexos, é uma família absolutamente somável se a família $(|z_j|)_J$ é somável. Isto é, se

$$\sum |z_j| < \infty \ .$$

- **1.6 Teorema.** Seja (z_j) uma família de números complexos. São equivalentes:
 - (a) (z_i) é somável.
 - (b) (z_j) é absolutamente somável.

Prova.

Consideremos as famílias de números reais $(\text{Re}(z_j))_J$ e $(\text{Im}(z_j))_J$ e as famílias de suas partes positivas, denotadas (p_j) e (P_j) , respectivamente, e de suas partes negativas, denotadas (q_j) e (Q_j) , também respectivamente.

Para todo j em J temos

(1.6.1)
$$0 \le \min\{p_j, q_j, P_j, Q_j\} \le \max\{p_j, q_j, P_j, Q_j\} \le |z_j| \le p_j + q_j + P_j + Q_j$$
. Logo,

$$\sum |z_j|$$
 é finita se e somente se $\sum p_j, \sum q_j, \sum P_j$ e $\sum Q_j$ são finitas.

Donde concluímos que a família $(|z_j|)$ é somável se e somente se a família (z_j) é somável

1.7 Corolário. Seja $(z_i)_J$ somável e $K \subset J$. Então, a família

$$(z_k)_{k\in\mathcal{K}}$$

é somável.

Prova.

Pelo teorema (1.6) temos $\sum_{J} |z_{j}| < \infty$. É fácil ver que

$$\sum_{\mathcal{K}} |z_k| \le \sum_{J} |z_j|.$$

Utilizando novamente o teorema 1.6, concluímos que $(z_k)_{\mathcal{K}}$ é somável•

1.8 Proposição. Sejam $(z_j)_J$ e $(w_j)_J$ famílias somáveis em \mathbb{C} e $\lambda \in \mathbb{C}$. Então, as famílias $(z_j + w_j)_J$ e $(\lambda z_j)_J$ são somáveis e valem as propriedades:

(a)
$$\sum (z_j + w_j) = \sum z_j + \sum w_j$$
.

(b)
$$\sum \lambda z_i = \lambda \sum z_i$$
.

Prova. Exercício.

1.9 Teorema (Propriedade Comutativa). Seja $(z_j)_J$ uma família somável arbitrária de números complexos e $\sigma: \mathcal{K} \to J$ uma bijeção. Então,

$$\sum_{J} z_j = \sum_{k \in \mathcal{K}} z_{\sigma(k)}.$$

Prova. Exercício.

1.10 Teorema (Lei Associativa para Somas Não Ordenadas). Seja $(z_j)_J$ uma família somável em \mathbb{C} . Suponha J uma união de conjuntos J_k , com k em \mathcal{K} , dois a dois disjuntos. Então, a família $(z_j)_{j\in J_k}$ é somável, para todo k em \mathcal{K} , e

$$\sum_{J} z_j = \sum_{k \in \mathcal{K}} \sum_{J_k} z_j.$$

Prova.

Devido à definição de somável para famílias complexas e à linearidade da soma, podemos supor (z_j) somável e

$$(z_j)_J \subset [0,\infty).$$

Pela associatividade para somas de números positivos (Teorema 1.4), concluímos a prova deste teorema.

1.11 Proposição. Sejam $(z_j)_J$ e $(w_k)_K$ famílias somáveis em \mathbb{C} . As famílias

$$(\overline{z_j})$$
 e $(z_j w_k)_{J \times K}$

são então somáveis e valem as propriedades abaixo.

(a)
$$\overline{\sum z_j} = \sum \overline{z_j}$$
.

(b)
$$\sum_{I \times K} z_j w_k = \left(\sum z_j\right) \left(\sum w_k\right).$$

(c)
$$\left|\sum z_j\right| \le \sum |z_j|$$
.

Prova.

(a) Pela definição da soma da família (z_j) e por linearidade, segue

$$\overline{\sum z_j} = \sum \operatorname{Re}(z_j) - i \sum \operatorname{Im}(z_j) = \sum \left[\operatorname{Re}(z_j) - i \operatorname{Im}(z_j)\right] = \sum \overline{z_j}.$$

(b) Temos $\sum_{J\times K} |z_j| |w_k| \le (\sum |z_j|) (\sum |w_k|)$. Logo, a família $(z_j w_k)_{J\times K}$ é somável. Pela propriedade associativa (1.10) segue

$$\sum_{J \times K} z_j w_k = \sum_{j \in J} \sum_K z_j w_k = \sum_{j \in J} \left(z_j \sum_K w_k \right) = \left(\sum_K w_k \right) \left(\sum_J z_j \right).$$

(c) Temos

$$\left|\sum z_j\right|^2 = \left(\sum_{j \in J} z_j\right) \left(\overline{\sum_{k \in J} z_k}\right) = \left(\sum z_j\right) \left(\sum \overline{z_k}\right)$$
$$= \sum_{J \times J} z_j \overline{z_k}.$$

Logo, $\sum_{J\times J}(z_j\overline{z_k})$ é um número real e a parte imaginária desta soma é nula. Logo, $\sum_{J\times J}\operatorname{Im}(z_j\overline{z_k})=0$. Donde segue

$$\left|\sum z_j\right|^2 = \sum_{J \times J} \operatorname{Re}[z_j \overline{z_k}] \le \sum_{J \times J} \left|\operatorname{Re}[z_j \overline{z_k}]\right|$$

$$\leq \sum_{J \times J} |z_j| |z_k| = \left(\sum |z_j|\right) \left(\sum |z_k|\right) = \left(\sum |z_j|\right)^2 \blacktriangleleft$$

1.3 Somas x Séries.

- **1.12 Teorema.** Seja $\sum_{n=1}^{+\infty} z_n$ uma série complexa. São equivalentes,
 - (a) $\sum_{n=1}^{+\infty} z_n$ é absolutamente convergente.
 - (b) A família $(z_n)_{n\in\mathbb{N}}$ é somável.

Ocorrendo (a) ou (b), segue que a série dada é convergente e

$$\sum_{n=1}^{+\infty} z_n = \sum z_n.$$

Prova.

Decompondo z_n em suas partes real e imaginária e estas em suas partes positiva e negativa concluímos que, graças às desigualdades (1.6.1), à definição de família somável complexa (e de sua soma) e às propriedades de linearidade das séries (absolutamente) convergentes, podemos supor $z_n = p_n$ em $[0, +\infty)$.

Seja (s_n) a sequência das somas parciais de $\sum_{n=0}^{+\infty} p_n$. Fixemos n em \mathbb{N} e um subconjunto finito $F \subset \mathbb{N}$, ambos quaisquer. Seja $\max(F)$ o máximo de F. Temos,

$$s_n = \sum_{\{1,...,n\}} p_j \le \sum_{\mathbb{N}} p_n \text{ e } \sum_{F} p_j \le s_{\max F} \le \sum_{n=1}^{+\infty} p_n.$$

Donde segue

$$\sum_{j=1}^{+\infty} p_n \le \sum p_n \le \sum_{n=1}^{+\infty} p_n \clubsuit$$

Definição. Uma série complexa $\sum_{n=1}^{+\infty} z_n$ é comutativamente convergente se para toda permutação (ou, bijeção) $\sigma: \mathbb{N} \to \mathbb{N}$ a série

$$\sum_{n=1}^{+\infty} z_{\sigma(n)}$$

é convergente. Esta última série é um rearranjo da série $\sum_{n=1}^{+\infty} z_n$.

- **1.13 Teorema.** Seja $\sum_{n=0}^{+\infty} x_n$ uma série real. São equivalentes:
 - (a) A série dada é absolutamente convergente.
 - (b) A série é comutativamente convergente [e a soma independe do rearranjo].

Prova.

- (a) \Rightarrow (b) Segue do Teorema 1.12 e da propriedade comutativa para a família então somável (x_n) .
- (b) ⇒(a). Por contradição.

Suponhamos que $\sum_{n=0}^{+\infty} x_n$ converge comutativamente e $\sum_{n=0}^{+\infty} |x_n| = +\infty$. Sejam p_n e q_n as partes positiva e negativa de x_n , para todo n. Então,

$$\sum_{n=0}^{+\infty} (p_n - q_n) \text{ \'e finita e } \sum_{n=0}^{+\infty} (p_n + q_n) = +\infty.$$

Segue então (trivialmente) que ambas, $\sum_{n=0}^{+\infty} p_n$ e $\sum_{n=0}^{+\infty} q_n$, divergem.

A seguir, reordenamos a série $\sum_{n=0}^{+\infty} x_n$ da seguinte forma.

- ♦ Na etapa 0, coletamos os primeiros termos $x_n \ge 0$, com soma > 1.
- Na etapa 1, coletamos os primeiros termos estritamente negativos cuja soma com os já coletados é < 0.
- \diamond Na etapa 2, subtraídos de \mathbb{N} os índices já selecionados, coletamos os próximos termos $x_n \geq 0$ cuja soma com os já coletados é > 1.
- \diamond Iterando, o rearranjo obtido é tal que a sequência (S_n) de suas somas parciais satisfaz

$$S_{2n} > 1$$
 e $S_{2n+1} < 0$, para todo n.

Logo, (S_n) diverge

1.4 Apêndice. Somas × Somabilidade Clássica.

1.14 Teorema. Seja $(z_j)_J$ uma família complexa. Então, (z_j) é somável se e somente se existe um número complexo z tal que para todo $\epsilon > 0$, existe um subconjunto finito $F_{\epsilon} \subset J$ satisfazendo a condição

$$\left|\sum_{j\in F} z_j - z\right| < \epsilon, \ para \ todo \ F \ finito \ e \ tal \ que \ F_\epsilon \subset F \subset J.$$

Prova. Como usual, escrevamos $z_j = x_j + iy_j$ e z = x + iy.

Notemos que valem hipóteses análogas para a família (x_j) e o número x e para a família (y_j) e o número y. Ainda, (z_j) é somável se e só se (x_j) e (y_j) são somáveis. Logo, basta analisarmos a família (x_j) .

(⇒) Neste caso a família (x_j) e as famílias (p_j) e (q_j) , das partes positivas e negativas de x_j , são todas somáveis. Então, pela desigualdade triangular vemos que podemos supor $x_j \ge 0$ para todo j. Assim, por hipótese temos

$$\sum_{J} x_j = x \in [0, +\infty).$$

Dado $\epsilon > 0$, a definição de $\sum x_i$ garante um conjunto finito $F_{\epsilon} \subset J$ tal que

$$x - \epsilon < \sum_{F_{\epsilon}} x_j \le x.$$

Donde então segue $x-\epsilon < \sum_F x_j \le x$, para todo F finito tal que $F_\epsilon \subset F \subset J$.

 (\Leftarrow) Por hipótese, (dado ϵ = 1) existe um subconjunto finito $G \subset J$ tal que

(1.14.1)
$$\left|\sum_{F} x_{j} - x\right| < 1, \text{ para todo } F \text{ finito tal que } G \subset F \subset J.$$

Seja F um arbitrário subconjunto finito de J, com F disjunto de G e tal que $x_j = p_j \ge 0$ para todo $j \in F$. Devido a (1.14.1) temos

$$\sum_{F \cup G} x_j < 1 + x \quad \text{e então} \quad \sum_F p_j < \left(1 + x - \sum_G x_j\right).$$

A arbitrariedade de F garante [na segunda desigualdade use $p_i = 0$ se $x_i < 0$]

$$\sum_{\{j: x_j \geq 0\} \smallsetminus G} p_j < \left(1 + x - \sum_G x_j\right) \ \text{ e então } \ \sum_{J \smallsetminus G} p_j \leq \left(1 + x - \sum_G x_j\right).$$

É então claro que $\sum_J p_j$ é finita. Investiguemos $\sum q_j$. Trocando (x_j) por $(-x_j)$ segue que $\sum_J q_j$ também é finita. Logo, (x_j) é somável \blacksquare

Capítulo 2

Somas x Teoria da Medida

Enfoquemos alguns teoremas da Teoria da Medida na teoria de somas.

2.1 Tonelli e Fubini

2.1 Teorema (Tonelli, para somas não ordenadas). Sejam J e K conjuntos de índices. Seja $(p_{jk})_{J\times K}$ uma família arbitrária em $[0,+\infty]$. Então,

$$\sum_{J \times K} p_{jk} = \sum_{J} \sum_{K} p_{jk} = \sum_{K} \sum_{J} p_{jk}.$$

Prova.

Segue da propriedade associativa para somas não ordenadas de valores não negativos e das partições

$$J\times K=\bigcup_{j\in J}\left\{ j\right\} \times K=\bigcup_{k\in K}\,J\times\left\{ k\right\} \clubsuit$$

2.2 Teorema (Fubini, para somas não ordenadas). Sejam J e K conjuntos de índices. Seja $(z_{jk})_{J\times K}$ uma família somável e complexa. Então,

$$\sum_{J \times K} z_{jk} = \sum_{j \in J} \sum_{k \in K} z_{jk} = \sum_{k \in K} \sum_{j \in J} z_{jk}.$$

Prova.

Segue da propriedade associativa para famílias somáveis de números complexos e das partições

$$J \times K = \bigcup_{j \in J} \{j\} \times K = \bigcup_{k \in K} J \times \{k\} \, \spadesuit$$

2.2 Fatou

Por definição, o limite inferior de uma sequência real é o menor valor de aderência da sequência. Isto é, o limite inferior de tal sequência é o menor valor $L \in [-\infty, +\infty]$ que é limite de alguma subsequência da sequência considerada. De forma análoga, o limite superior de uma sequência real é o maior valor de aderência desta sequência. Portanto, uma sequência real é convergente a um valor na reta estendida se e somente se o seu limite inferior coincide com o seu limite superior. Vide Apêndice - Capítulo 3 - A reta Estendida.

Dada uma sequência real $(x_n)_{\mathbb{N}}$ utilizamos as notações abaixo para o limite inferior e para o limite superior, conforme a conveniência,

$$\liminf x_n = \underline{\lim} x_n$$
 e $\limsup x_n = \overline{\lim} x_n$.

Dadas duas sequências reais (x_n) e (y_n) tais que a soma de seus limites inferiores está bem definida na reta estendida $[-\infty, +\infty]$, é conhecida a desigualdade

(2.3.1)
$$\liminf x_n + \liminf y_n \le \liminf (x_n + y_n).$$

2.3 Lema de Fatou, para somas não ordenadas. Seja J um conjunto de índices qualquer. Seja $(p_{nj})_{\mathbb{N}\times J}$ uma familia de números reais em $[0,+\infty)$. Então,

$$\sum_{I} \underline{\lim} \, p_{nj} \le \underline{\lim} \sum_{I} p_{nj}.$$

Prova.

Pela desigualdade (2.3.1), dado um subconjunto finito $F \subset J$ temos

$$\sum_{j \in F} \underline{\lim} \, p_{nj} \le \underline{\lim} \, \sum_{j \in F} p_{nj} \le \underline{\lim} \, \sum_{J} p_{nj}.$$

Variando F obtemos

$$\sum_{I} \underline{\lim} \, p_{nj} \le \underline{\lim} \sum_{I} p_{nj} \, \spadesuit$$

2.3 Convergências Monótona e Dominada

2.4 Teorema da Convergência Monótona, para somas não ordenadas.

Seja $(p_{nj})_{\mathbb{N}\times J}$ uma familia de números reais maiores ou iguais a zero, com J um conjunto de índices qualquer. Suponhamos que

$$p_{nj} \nearrow b_j \text{ se } n \to \infty.$$

Então,

$$\sum_{J} b_{j} = \lim_{n \to +\infty} \sum_{J} p_{nj}.$$

Prova.

Pelo Lema de Fatou (para somas não ordenadas), e observando que temos $\underline{\lim} p_{nj} = b_j$ para todo j em J, segue diretamente a desigualdade

$$\sum_{J} b_{j} \leq \underline{\lim} \sum_{J} p_{nj}.$$

Vejamos a desigualdade contrária. É trivial que

$$\sum_{I} p_{nj} \leq \sum_{I} b_{j}, \text{ para todo } n \in \mathbb{N}.$$

Logo,

$$\overline{\lim} \sum_{J} p_{nj} \le \sum_{J} b_{j}.$$

Assim, tais limites inferior e superior coincidem. Concluímos então

$$\lim_{n\to+\infty}\sum_J p_{nj}=\sum_J b_j \, \spadesuit$$

2.5 Teorema da Convergência Dominada, para somas não ordenadas.

Seja $(x_{nj})_{\mathbb{N}\times J}$ uma família real, com J um conjunto de índices qualquer. Suponhamos que

$$\lim_{n \to +\infty} x_{nj} = x_j \ para \ todo \ j \in J.$$

Suponhamos também que para quaisquer n e j temos

$$|x_{nj}| \le r_j$$
, $com \sum_{J} r_j < \infty$.

Nestas condições, a família $(x_j)_J$ é somável e

$$\sum_{J} x_j = \lim_{n \to +\infty} \sum_{J} x_{nj}.$$

Prova.

- ♦ A família (x_j) é somável. Pois, como é claro, temos $|x_j| \le r_j$ para todo j. Analogamente, a família $(x_{nj})_J$ é somável para cada n fixado.
- \diamond Fixado j temos

$$r_j - x_{nj} \ge 0$$
 e $r_j + x_{nj} \ge 0$ e ainda $\lim_{j \to \infty} (r_j - x_{nj}) = r_j - x_j$ e $\lim_{j \to \infty} (r_j + x_{nj}) = r_j + x_j$.

Pelo lema de Fatou segue

$$\sum_{J} (r_j - x_j) \le \underline{\lim} \sum_{J} (r_j - x_{nj}) \quad e \quad \sum_{J} (r_j + x_j) \le \underline{\lim} \sum_{J} (r_j + x_{nj}).$$

Propriedades para somas e para limites inferiores garantem

$$\sum_{J} r_j - \sum_{J} x_j \le \sum_{J} r_j + \underline{\lim} \sum_{J} (-x_{nj}) \quad e \quad \sum_{J} r_j + \sum_{J} x_j \le \sum_{J} r_j + \underline{\lim} \sum_{J} x_{nj}.$$

Podemos cancelar $\sum r_j$ (cheque). Propriedades de liminf e limin

$$-\sum_{J} x_{j} \le -\overline{\lim} \sum_{J} x_{nj}$$
 e $\sum_{J} x_{j} \le \underline{\lim} \sum_{J} x_{nj}$.

Donde segue

$$\sum_{J} x_{j} \leq \underline{\lim} \sum_{J} x_{nj} \leq \overline{\lim} \sum_{J} x_{nj} \leq \sum_{J} x_{j} \triangleq$$

Capítulo 3

Apêndice. A Reta Estendida

3.1 A Reta Estendida

Definimos a reta estendida por

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$$

[a reta acrescida dos valores $+\infty$ e $-\infty$]. Também indicamos $\overline{\mathbb{R}}$ por $[-\infty, +\infty]$. Dados $a, b \in \overline{\mathbb{R}}$ definimos

$$a < b \text{ se}: a, b \in \mathbb{R} \text{ e } a < b, \text{ ou } a = -\infty \text{ e } b \neq -\infty, \text{ ou } a \neq +\infty \text{ e } b = +\infty.$$

A relação de ordem acima definida sobre \mathbb{R} é total [isto é, dados a e b, ambos na reta estendida, temos a < b ou b < a ou a = b] e completa [isto é, todo subconjunto não vazio A da reta estendida admite um único supremo, sup A, e um único ínfimo, inf A]. Notemos também que $+\infty$ [respectivamente, $-\infty$] é um majorante [respectivamente, minorante] de qualquer subconjunto da reta estendida.

Estão bem definidas, de maneira óbvia, a adição

$$+:\overline{\mathbb{R}} imes\overline{\mathbb{R}} imes\{(\pm\infty,\mp\infty)\}\longrightarrow\overline{\mathbb{R}}$$

e a multiplicação $\cdot : \overline{\mathbb{R}} \times \overline{\mathbb{R}} \setminus \{(0, \pm \infty), (\pm \infty, 0)\} \longrightarrow \overline{\mathbb{R}}$. Por conveniência definimos

$$0. \pm \infty = 0 \ e \ \pm \infty.0 = 0.$$

3.2 Sequências na Reta Estendida.

Consideremos X um conjunto não vazio. Uma sequência em X é uma função $x: \mathbb{N} \to X$. Indicamos a sequência x por $(x_n)_{n \in \mathbb{N}}$, onde $x_n = x(n)$, para todo $n \in \mathbb{N}$. Também denotamos x por $(x_n)_{\mathbb{N}}$ ou, brevemente, (x_n) .

Seja (x_n) uma sequência em $\overline{\mathbb{R}} = [-\infty, +\infty]$. Temos as seguintes definições.

o (x_n) converge a $L \in \mathbb{R}$ se, para todo $\epsilon > 0$ existe $N \in \mathbb{N}$ tal que temos

$$|x_n - L| < \epsilon$$
, para todo $n \ge N$.

- o (x_n) converge [na reta estendida $\overline{\mathbb{R}}$] a $+\infty$ se, para todo real M > 0 existe $N \in \mathbb{N}$ tal que temos $x_n > M$, para todo $n \ge N$.
- \circ (x_n) converge $[\operatorname{em} \overline{\mathbb{R}}]$ a $-\infty$ se a sequência $(-x_n)$ converge a $+\infty$.
- o (x_n) diverge [na reta estendida] se (x_n) não converge a nenhum valor em $\overline{\mathbb{R}}$ [números também são valores].

Se (x_n) converge a algum valor $L \in \overline{\mathbb{R}}$, pomos $\lim x_n = L$ ou

$$\lim_{n \to +\infty} x_n = L$$

ou, brevemente, $x_n \to L$.

Suponhamos que a sequência (x_n) é real. Temos as seguintes definições.

- o Se $\lim x_n = \pm \infty$, dizemos também que (x_n) diverge [em \mathbb{R}] a $\pm \infty$.
- o Se (x_n) não converge a um número real, dizemos que (x_n) diverge [em \mathbb{R}].

O conjunto das sequências reais e convergentes em \mathbb{R} , munido das operações

$$(x_n) + (y_n) = (x_n + y_n)$$
 e $\lambda(x_n) = (\lambda x_n)$, onde $\lambda \in \mathbb{R}$,

é um espaço vetorial real e temos

$$\lim(x_n + y_n) = \lim x_n + \lim y_n \in \lim \lambda x_n = \lambda \lim x_n.$$

Quanto à multiplicação e ao quociente, de sequências reais e convergentes, temos as propriedades

$$\lim(x_n y_n) = (\lim x_n)(\lim y_n)$$
 e $\lim \frac{x_n}{y_n} = \frac{\lim x_n}{\lim y_n}$, se $y_n \neq 0$, $\forall n \in \mathbb{N}$, e $y \neq 0$.

Seja X um conjunto e (x_n) uma sequência em X. Dado um subconjunto infinito de índices $\{n_1 < n_2 < n_3 < \cdots\}$ em \mathbb{N} , dizemos que a sequência $(x_{n_k})_{k \in \mathbb{N}}$ é uma subsequência de (x_n) . Brevemente, escrevemos (x_{n_k}) .

Observação 1. Seja (x_n) uma sequência em $[-\infty, +\infty]$. São equivalentes as afirmações abaixo.

- $x_n \to L$.
- Toda subsequência (x_{n_i}) converge a L.
- Toda subsequência $(x_{n_j}) = (y_j)$ admite uma subsequência $y_{j_k} \xrightarrow{k \to +\infty} L$.

Valor de Aderência. Dizemos que $L \in [-\infty, +\infty]$ é um valor de aderência de (x_n) se existe uma subsequência (x_{n_k}) tal que $x_{n_k} \to L$, se $k \to +\infty$.

Uma sequência $(x_n) \subset \overline{\mathbb{R}}$ é crescente [decrescente] se temos

$$x_{n+1} \ge x_n$$
, para todo $n \in \mathbb{N}$ $[x_{n+1} \le x_n, \text{ para todo } n \in \mathbb{N}].$

Ainda, (x_n) é estritamente crescente [estritamente decrescente] se

$$x_{n+1} > x_n$$
, para todo $n \in \mathbb{N}$ $[x_{n+1} < x_n, \text{ para todo } n \in \mathbb{N}].$

Dizemos que (x_n) é monótona se (x_n) é crescente ou decrescente.

Suponhamos que (x_n) é uma sequência em \mathbb{R} tal que $x_n \to p^+$. Notemos que existe uma bijeção $\sigma : \mathbb{N} \to \mathbb{N}$ tal que $(y_j) = (x_{\sigma(j)})$ é descrescente e $y_j \to p^+$. Alerta: a sequência $(x_{\sigma(j)})$ pode não ser uma subsequência de (x_n) .

Para melhor explorarmos as propriedades relativas aos valores de aderência de uma sequência, é útil o teorema que segue.

3.1 Teorema. Toda sequência $(x_n) \subset \mathbb{R}$ admite uma subsequência monótona.

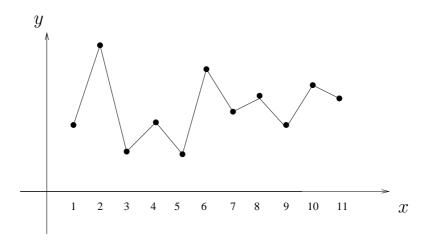


Figura 3.1: Função poligonal conectando os pontos $(n, x_n) \in \mathbb{R}^2$

Prova. (Vide figura 3.1.)

Seja $M = \{n \in \mathbb{N} : x_n > x_m, \text{ para todo } m > n\}.$

Se M é infinito, temos $M = \{n_1 < n_2 < \cdots\}$ e (x_{n_k}) decresce. Se M é finito, seja $n_1 = 1 + \max M$. Então, $n_1 \notin M$ e existe $n_2 > n_1$ tal que $x_{n_1} \le x_{n_2}$ e, analogamente, existe $n_3 > n_2$ tal que $x_{n_2} \le x_{n_3}$. Por recursão, construímos uma subsequência (x_{n_k}) crescente \bullet

Toda sequência (x_n) em $\overline{\mathbb{R}}$ tem um valor de aderência em $\overline{\mathbb{R}}$. De fato, consideremos o conjunto

$$J = \{n : x_n = +\infty \text{ ou } x_n = -\infty\}.$$

Se J é infinito, então ou $-\infty$ ou $+\infty$ [ou ambos] é valor de aderência de (x_n) . Se J é finito, então existe $N \in \mathbb{N}$ tal que a subsequência $(x_n)_{n\geq N}$ é real. Assim, se $(x_n)_{n\geq N}$ é ilimitada superiormente, ou inferiormente, em \mathbb{R} , então $+\infty$, ou $-\infty$, é valor de aderência de $(x_n)_{n\geq N}$ e, portanto, de (x_n) também. Se $(x_n)_{n\geq N}$ é limitada em \mathbb{R} , pelo Teorema 3.1 segue que $(x_n)_{n\geq N}$ tem uma subsequência monótona e limitada em \mathbb{R} e portanto convergente em \mathbb{R} . Logo, $(x_n)_{n\geq N}$ tem um valor de aderência em \mathbb{R} e, portanto, a sequência (x_n) também tem.

A seguir, dada $(x_n)_{\mathbb{N}}$ em $\overline{\mathbb{R}} = [-\infty, +\infty]$, consideremos o conjunto (não vazio) $\mathcal{L} = \{ L \in [-\infty, +\infty] : L \text{ \'e valor de aderência de } (x_n) \}.$

Definimos

 $\liminf x_n = \inf \mathcal{L} \in \limsup x_n = \sup \mathcal{L}, \text{ ambos em } [-\infty, +\infty].$

Observação 2. Para todo $N \in \mathbb{N}$, as sequências $(x_n)_{\mathbb{N}}$ e $(x_n)_{n>N}$ tem os mesmos valores de aderência e, portanto, os mesmos liminf e lim sup.

- **3.2 Teorema.** Seja (x_n) um sequência na reta estendida.
 - (a) $\alpha = \liminf x_n \ \acute{e} \ (o \ menor) \ valor \ de \ aderência \ de \ (x_n)$.
 - (b) $\beta = \limsup x_n \ \acute{e} \ (o \ maior) \ valor \ de \ aderência \ de \ (x_n).$
 - (c) $\lim x_n = L$ se e somente se $\lim \inf x_n = \lim \sup x_n = L$.
 - (d) Se (x_n) é limitada em \mathbb{R} , então $\liminf x_n$ e $\limsup x_n$ são reais.

Prova.

- (a) \diamond Caso $\alpha = -\infty$. É claro que existe $n_1 \in \mathbb{N}$ com $x_{n_1} < -1$. Pela Observação 2, a sequência $(x_n)_{n>n_1}$ tem os mesmos valores de aderência que (x_n) e então existe $n_2 > n_1$ tal que $x_{n_2} < -2$. Iterando, obtemos $x_{n_j} \to -\infty$.
 - ♦ Caso α real. Por definição de ínfimo, existe um valor de aderência de $(x_n)_{\mathbb{N}}$ em $[\alpha, \alpha + 1)$. Logo, existe n_1 tal que $x_{n_1} \in (\alpha 1, \alpha + 1)$. Como o liminf da subsequência $(x_n)_{n>n_1}$ é também α , por um raciocínio análogo ao anterior concluímos que existe um índice $n_2 > n_1$ tal que $x_{n_2} \in (\alpha 1/2, \alpha + 1/2)$. Iterando tal processo obtemos uma subsequência $(x_{n_k})_{k \in \mathbb{N}}$ convergente a α .
 - ♦ Caso $\alpha = +\infty$. Então, $\mathcal{L} = \{+\infty\}$. Pela Observação 1, $x_n \to +\infty$.
- (b) Basta trocar (x_n) por $(-x_n)$.
- (c) São equivalentes: $\alpha = \beta = L$, o único valor de aderência é L, e $x_n \to L$.
- (d) Trivial♣

Se (x_n) é uma sequência real ilimitada superiormente na reta [respectivamente, ilimitada inferiormente na reta], temos $\limsup x_n = +\infty$ [respectivamente, $\liminf x_n = -\infty$].

Dada uma sequência (x_n) na reta estendida, utilizamos as notações

$$\overline{\lim} x_n = \lim \sup(x_n) = \lim \sup x_n = \underline{\lim} x_n = \lim \inf(x_n) = \lim \inf x_n.$$

Observação 3. Uma sequência (x_n) tem uma subsequência convergente a L em \mathbb{R} se e só se, dados quaisquer $\epsilon > 0$ e N em \mathbb{N} , existe n > N tal que

$$|x_n - L| < \epsilon$$
.

Verifique, é trivial.

3.3 Teorema. Seja (x_n) uma sequência em $\overline{\mathbb{R}}$. Valem as identidades

$$\liminf x_n = \sup_{n \geq 1} \inf_{j \geq n} x_j = \lim_{n \to +\infty} \inf_{j \geq n} x_j \quad e \quad \limsup x_n = \inf_{n \geq 1} \sup_{j \geq n} x_j = \lim_{n \to +\infty} \sup_{j \geq n} x_j.$$

Prova.

Trocando (x_n) por $(-x_n)$, vemos que basta analisar liminf x_n . Pela Observação 2, para todo n temos

$$\inf_{j\geq n} x_j \leq \liminf (x_j)_{j\geq n} = \liminf x_n.$$

Logo,

$$a = \sup_{n \ge 1} \inf_{j \ge n} x_j \le \liminf x_n.$$

Só resta vermos que a é valor de aderência de (x_n) .

♦ Caso $a = -\infty$. É claro que

$$\inf_{j>n} x_j = -\infty, \text{ para todo } n.$$

Logo, existe $j_1 > 1$ tal que $x_{j_1} < -1$. Então, temos

$$\inf_{i>j_1} x_j = -\infty$$

e existe $j_2 > j_1$ tal que $x_{j_2} < -2$. Iterando, obtemos $x_{j_k} \to -\infty$ e portanto $-\infty$ é valor de aderência de (x_n) .

⋄ Caso a real. Sejam $\epsilon > 0$ e $N \in \mathbb{N}$. Como $(\inf_{j>n} x_j) \nearrow a$, segue que existe m > N tal que

$$a - \epsilon < \inf_{j > m} x_j \le a.$$

Por definição de ínfimo, existe n > m > N tal que

$$a - \epsilon < \inf_{j > m} x_j \le x_n < a + \epsilon.$$

Pela Observação 3, o número real a é valor de aderência de (x_n) .

 \diamond Caso $a = +\infty$. Temos

$$x_n \ge \inf_{j \ge n} x_j \quad \text{e} \quad \inf_{j \ge n} x_j \xrightarrow{n \to \infty} +\infty.$$

Donde segue $x_n \to +\infty$

Sejam (x_n) e (y_n) duas sequências reais. Se a soma de limites inferiores está bem definida, temos (cheque)

$$\lim\inf x_n + \lim\inf y_n \le \lim\inf (x_n + y_n).$$

Agradecimentos. Agradeço a Leandro Cândido por me chamar a atenção para o "Teorema da Covergência Dominada para séries numéricas".

Referências.

- de Oliveira, Oswaldo R. B., Some simplifications in the presentations of complex power series and unordered sums, arXiv (2012). Available at http://arxiv.org/abs/1207.1472v2.
- 2. Tao, T., An Introduction to Measure Theory, GSM Vol. 126, AMS, 2011.

Departamento de Matemática - Universidade de São Paulo São Paulo, SP - Brasil

http://www.ime.usp.br/~oliveira oliveira@ime.usp.br