SCHWARZ THEOREM (mixed partial derivatives)

Oswaldo Rio Branco de Oliveira http://www.ime.usp.br/~oliveira oliveira@ime.usp.br Year 2017 - Universidade de São Paulo, SP - Brasil

Let us write $\mathbb{R}^{2}=\{(x, y): x \in \mathbb{R}$ e $y \in \mathbb{R}\}$.
In this note we employ the following lemma.
Lemma (Limit X Iterated Limit). Let us consider $(a, b) \in \mathbb{R}^{2}$ and a function $g: \mathbb{R}^{2} \backslash\{(a, b)\} \rightarrow \mathbb{R}$. Let us suppose that the following limits exist,

$$
\left\{\begin{array}{l}
\lim _{(x, y) \rightarrow(a, b)} g(x, y)=L \in \mathbb{R} \\
\text { and } \\
\lim _{x \rightarrow a} g(x, y)=G(y) \in \mathbb{R}, \text { for all } y \text { in an open neighborhood of } b .
\end{array}\right.
$$

Then, the following iterated limit exists and satisfies

$$
\lim _{y \rightarrow b} \lim _{x \rightarrow a} g(x, y)=L
$$

Proof. See https://www.ime.usp.br/~oliveira/ELE-IteratedLimits.pdfa
Given a real function $F=F(x, y)$, we also write

$$
F_{x}=\frac{\partial F}{\partial x}, \quad F_{y}=\frac{\partial F}{\partial y}, \quad F_{x y}=\frac{\partial^{2} F}{\partial y \partial x} \text { and } F_{y x}=\frac{\partial^{2} F}{\partial x \partial y} .
$$

Theorem (Schwarz). Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that F_{x}, F_{y} and $F_{x y}$ exist on a neighborhood of $(0,0)$, with $F_{x y}$ continuous at $(0,0)$. Then, $F_{y x}(0,0)$ exists and

$$
F_{y x}(0,0)=F_{x y}(0,0) .
$$

Proof.

\diamond Let us consider $h \in \mathbb{R} \backslash\{0\}$ and $k \in \mathbb{R} \backslash\{0\}$, both small enough. We have

$$
F_{x y}(0,0) \approx \frac{F_{x}(0, k)-F_{x}(0,0)}{k} \approx \frac{\frac{F(h, k)-F(0, k)}{h}-\frac{F(h, 0)-F(0,0)}{h}}{k} .
$$

Without logical rigor, this points out to

$$
F_{x y}(0,0) \approx \frac{F(h, k)-F(0, k)-F(h, 0)+F(0,0)}{h k} .
$$

\diamond From now on, let us be precise. We may write
$F(h, k)-F(0, k)-F(h, 0)+F(0,0)=[F(h, k)-F(h, 0)]-[F(0, k)-F(0,0)]$.
The function $x \mapsto F(x, k)-F(x, 0)$ is differentiable near $x=0$. The meanvalue theorem gives a point \bar{h}, between 0 and h, such that

$$
[F(h, k)-F(h, 0)]-[F(0, k)-F(0,0)]=\left[F_{x}(\bar{h}, k)-F_{x}(\bar{h}, 0)\right] h .
$$

The function $y \mapsto F_{x}(\bar{h}, y)$ is differentiable near $y=0$. The mean-value theorem gives a point \bar{k}, between 0 and k, such that

$$
F_{x}(\bar{h}, k)-F_{x}(\bar{h}, 0)=F_{x y}(\bar{h}, \bar{k}) k .
$$

\diamond The last two highlighted identities show that

$$
F_{x y}(\bar{h}, \bar{k})=\frac{1}{h}\left[\frac{F(h, k)-F(h, 0)}{k}-\frac{F(0, k)-F(0,0)}{k}\right] .
$$

\diamond By the continuity of $F_{x y}$ at the origin we know that

$$
\lim _{(h, k) \rightarrow(0,0)} F_{x y}(\bar{h}, \bar{k})=F_{x y}(0,0) .
$$

However, fixing h, it also exists the limit

$$
\lim _{k \rightarrow 0} \frac{1}{h}\left[\frac{F(h, k)-F(h, 0)}{k}-\frac{F(0, k)-F(0,0)}{k}\right]=\frac{F_{y}(h, 0)-F_{y}(0,0)}{h} .
$$

By the lemma we conclude that

$$
\begin{aligned}
F_{x y}(0,0) & =\lim _{h \rightarrow 0} \lim _{k \rightarrow 0} \frac{1}{h}\left[\frac{F(h, k)-F(h, 0)}{k}-\frac{F(0, k)-F(0,0)}{k}\right] \\
& =\lim _{h \rightarrow 0} \frac{F_{y}(h, 0)-F_{y}(0,0)}{h} \\
& =F_{y x}(0,0)
\end{aligned}
$$

REFERENCE

1. Hairer, E. and Wanner, G., Analysis by Its History, Springer, 1996, pp. 317-318
