ITERATED LIMITS FOR FUNCTIONS

Oswaldo Rio Branco de Oliveira

http://www.ime.usp.br/~oliveira oliveira@ime.usp.br
Year 2017 - Universidade de São Paulo, SP - Brasil

Definition. The limits of the type

$$
\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y) \text { and } \lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)
$$

are called iterated limits.
Let us see how to relate iterated limits with the usual limit

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)
$$

Example (The limit may exist but the iterated limit may not exist).
Let us consider the function $f: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=x\left(\sin \frac{1}{x}\right)\left(\sin \frac{1}{y}\right) .
$$

Then, we have

$$
|f(x, y)| \leq|x| \text { and } \lim _{(x, y) \rightarrow(0,0)} f(x, y)=0 .
$$

However, given $x \neq 0$ such that $\sin (1 / x) \neq 0$, we clearly see that the limit

$$
\lim _{y \rightarrow 0} x\left(\sin \frac{1}{x}\right)\left(\sin \frac{1}{y}\right)
$$

does not exist. Summing up, we have

$$
\left\{\begin{array}{l}
\lim _{(x, y) \rightarrow(0,0)} f(x, y) \text { exists } \\
\text { but } \\
\text { the iterated limit } \lim _{x \rightarrow 0} \lim _{y \rightarrow 0} x\left(\sin \frac{1}{x}\right)\left(\sin \frac{1}{y}\right) \text { does not exist. }
\end{array}\right.
$$

Fortunately, we have the following positive result relating limits and iterated limits.

Proposition (Limit X Iterated Limit). Let us consider $(a, b) \in \mathbb{R}^{2}$ and a function $f: \mathbb{R}^{2} \backslash\{(a, b)\} \rightarrow \mathbb{R}$. Let us suppose that the following limits exist,

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L \in \mathbb{R} \quad \text { and } \quad \lim _{x \rightarrow a} f(x, y)=F(y) \in \mathbb{R}
$$

for all y inside an open interval containing b. Then, we have

$$
\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)=\lim _{(x, y) \rightarrow(a, b)} f(x, y) .
$$

Proof.

\diamond Given $\epsilon>0$, there exists an open rectangle $I \times J$ centered at (a, b) such that

$$
f(x, y) \in(L-\epsilon, L+\epsilon) \text { for all }(x, y) \in I \times J \backslash\{(a, b)\} .
$$

We may suppose, without loss of generality, J small enough so that

$$
\lim _{x \rightarrow a} f(x, y)=F(y) \text { for all } y \in J .
$$

Figura 1: Ilustration to the lemma
\diamond Fixing an arbitrary $y \in J \backslash\{b\}$, we have

$$
f(x, y) \in(L-\epsilon, L+\epsilon) \text { for all } x \in I .
$$

Thus, for all $y \in J \backslash\{b\}$ we see that

$$
F(y)=\lim _{x \rightarrow a} f(x, y) \in[L-\epsilon, L+\epsilon] .
$$

This shows that

$$
\lim _{y \rightarrow b} F(y)=L
$$

