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1. Introduction

Let us denote by z the variable in the complex plane.

Let us consider two complex power series
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a�z� � a0 � a1z � a2z
2
� a3z

3
��

and

b�z� � b0 � b1z � b2z
2
� b3z

3
��,

where a0, a1, a2, a3, . . . and b0, b1, b2, b3, . . . are all complex coefficients, with the

power series b�z� satisfying the additional condition

b0 x 0.

Let us assume that both series converge on a small neighborhood of the origin.

It’s known that the reciprocal function (or multiplicative inverse function)

1

b�z�
�

1

b0 � b1z � b2z2 � b3z3 ��

may, on a possibly smaller neighborhood of the origin, be written as a convergent

power series with complex coefficients.

Since the multiplication of convergent power series is also a convergent power

series, the division of the power series a�z� for the power series b�z� is a power

series that converges on a small neighborhood of the origin. Hence, we may write

a�z�

b�z�
� c0 � c1z � c2z

2
� c3z

3
��, for all SzS small enough.

Thus, for all z on a small enough neighborhood of the origin we have

�ª

Q

n�0

anz
n
� �

�ª

Q

j�0

bjz
j
��

�ª

Q

k�0

ckz
k
� .

We recall that the multiplication of two power series satisfy the following rule

(basically, the “same” rule that applies to the multiplication of two polynomials)

�b0 � b1z � b2z2 � b3z3 � b4z4 ����c0 � c1z � c2z2 � c3z3 � c4z4 ���

� b0c0 � �b0c1 � b1c0�z � �b0c2 � b1c1 � b2c0�z
2
� �b0c3 � b1c2 � b2c1 � b3c0�z

3
��
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In short notation, we may write such infinite multiplication as

�

�ª

Q

j�0

bjz
j
��

�ª

Q

k�0

ckz
k
� �

�ª

Q

n�0

�

�

Q

j�k�n

bjck
�

�

zn.

These three last equations lead to the identity

�ª

Q

n�0

anz
n
�

�ª

Q

n�0

�

�

Q

j�k�n

bjck
�

�

zn.

This identity, plus the Uniqueness Theorem for the Coefficients of a Power Se-

ries (see Oliveira [6, p. 7; 5, p. 15], Beardon [2, pp. 112–113]), presents the

relations from where we can finally determine all the coefficients that we are loo-

king for: c0, c1, c2, c3, c4, . . . . In fact, we can recursively determine the coefficients

c0, c1, c2, c3, c4, c5, . . . (in this exact order) by the well known relations
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a0 � b0c0

a1 � b0c1 � b1c0

a2 � b0c2 � b1c1 � b2c0

a3 � b0c3 � b1c2 � b2c2 � b3c0

a4 � b0c4 � b1c3 � b2c3 � b3c1 � b4c0

a5 � b0c5 � b1c4 � b2c3 � b3c2 � b4c1 � b5c0

a6 � b0c6 � b1c5 � b2c4 � b3c3 � b4c2 � b5c1 � b6c0

a7 � b0c7 � b1c6 � b2c5 � b3c4 � b4c3 � b5c2 � b6c1 � b7c0

a8 � b0c8 � b1c7 � b2c6 � b3c5 � b4c4 � b5c3 � b6c2 � b7c1 � b8c0

a9 � b0c9 � b1c8 � b2c7 � b3c6 � b4c5 � b5c4 � b6c3 � b7c2 � b8c1 � b9c0

a10 � b0c10 � b1c9 � b2c8 � b3c7 � b4c6 � b5c5 � b6c4 � b7c3 � b8c2 � b9c1 � b10c0

�

.

Well, this really looks beautiful albeit quite cumbersome. Needless to say, the

computations can be too tedious!

In view of this seemingly unpleasant strategy, we proceed by searching for a

more suitable method for finding the much desired coefficients cn�s.

Remark. The very important “Euclidean division” employed for dividing an infi-

nite power series by a polynomial (that is the case if b�z� is, in fact, a polynomial)

can be seen at Oliveira [7].
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2. Notations

The notation that we are about to use for this so called long division process

is the same one that we use for the Euclidean division for polynomials. In fact,

this notation is the same one that we use since childhood for dividing natural

numbers.

That is, by considering two natural numbers N and D, with D x 0, we write

the Euclidean division as

N D

R Q
meaning
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¤

N �DQ �R

or
N
D
� Q �

R
D
,

where N stands for the numerator or dividend, D x 0 stands for the divisor,

the letter Q stands for the unique quotient, and the letter R stands for the

unique remainder.

Analogously, the Euclidean division for polynomials allow us to divide an

arbitrary polynomial P �z� by a non null polynomial Q�z�, with the sole condition

that the degree of P �z� is greater or equal to the degree of Q�z�.

Such Euclidean polynomial division gives us an unique quotient polynomial

D�z�, and an unique remainder polynomial R�z� whose degree is strictly smaller

than that of the divisor Q�z�, which is also called the denominator polynomial.

We then write

P �z� Q�z�

R�z� D�z�
meaning
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¤

P �z� � Q�z�D�z� �R�z�

or
P �z�

Q�z�
�D�z� �

R�z�

Q�z�
,

with degree�R� � degree�Q�.

We recall that, as a convention, the zero polynomial has degree �ª.
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3. The Algorithm (Long Division Algorithm)

In this section we show an algorithm that gives us the complex coefficients

c0, c1, c2, c3, c4, . . . related to the division

a0 � a1z � a2z
2
� a3z

3
��

b0 � b1z � b2z2 � b3z3 ��

� c0 � c1z � c2z
2
� c3z

3
��.

The division algorithm for power series, also called Long Division Algorithm,

that we will see has the following three characteristics

Y First. It depends solely on the coefficients of the involved power series,

and the order that these coefficients appear on the expressions of the re-

lated power series. Hence, in the algorithm, we don’t need to explicit the

monomials z, z2, z3, z4, . . . (but we may write them down, if it is convenient).

Y Second. In the last section we saw a way of finding the numerical coefficients

c0, c1, c2, c3, . . ., in this exact order. This exigence remains. That is, we will

first find the independent term c0, then the coefficient c1 (of the term c1z),

then the coefficient c2 (of the term c2z2), and so on.

Y Third. The algorithm is merely formal. This has two consequences.

X The fact that the algorithm gives to us the coefficients c0, c1, c2, . . .,

does not guarantee at all the convergence of the power series c�z� �

c0 � c1z � c2z2 � �. Furthermore, the algorithm does not guarantee,

by itself, the numerical identity a�z� � b�z�c�z� at a point z. What

guarantee this identity are the results mentioned in the introduction.

X The algorithm can be applied to two arbitrary power series, either

real or complex ones, either convergent or not. The computations

are merely formal. Thus, given two completely arbitrary power series

a�z� � a0�a1z�a2z
2
�� and b�z� � b0�b1z�b2z

2
��, with the sole con-

dition b0 x 0, the algorithm gives the unique coefficients c0, c1, c2, . . .

of a power series c�z� � c0 � c1z � c2z
2
�� that formally satisfy

a0 � a1z � a2z
2
�� � �b0 � b1z � b2z

2
����c0 � c1z � c2z

2
���.

In other words, we are merely saying that the coefficients c0, c1, c2, . . .

satisfy the relations a0 � b0c0, a1 � b0c1 � b1c0, a2 � b0c2 � b1c1 � b2c0, . . ..
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ALGORITHM DIVISION FOR
a0 � a1z � a2z

2

� a3z
3

��

b0 � b1z � b2z2 � b3z3 ��

� c0 � c1z � c2z
2

� c3z
3

��.

The algorithm is given by

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

a0 a1 a2 a3 a4 . . . S b0 b1 b2 b3 b4 . . .

S �� �� �� �� �� ��

0 a1 � c0b1 a2 � c0b2 a3 � c0b3 a4 � c0b4 . . . S c0 c1 c2 c3 c4 �

0 0 a2 � c0b2 � c1b1 a3 � c0b3 � c1b2 a4 � c0b4 � c1b3 . . . S

0 0 0 a3 � c0b3 � c1b2 � c2b1 a4 � c0b4 � c1b3 � c2b2 . . . S

0 0 0 0 a4 � c0b4 � c1b3 � c2b2 � c3b1 . . . S

0 0 0 0 0 . . . S

� � � � � . . . S

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

,

where the coefficients c0, c1, c2, c3, c4, . . . are given recursively by

¢
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
�
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¤

c0 �

a0
b0

c1 �

a1�c0b1
b0

c2 �

a2�c0b2�c1b1
b0

c3 �

a3�c0b3�c1b2�c2b1
b0

c4 �

a4�c0b4�c1b3�c2b2�c3b1
b0

�

or

¢
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
�
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¨
¤

0 � a0 � c0b0

0 � a1 � c0b1 � c1b0

0 � a2 � c0b2 � c1b1 � c2b0

0 � a3 � c0b3 � c1b2 � c2b1 � c3b0

0 � a4 � c0b4 � c1b3 � c2b2 � c3b1 � c4b0

�

.
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4. Kid Examples

Example 1. Write f�z� as a power series centered at the origin, where

f�z� �
1

1 � z
.

Solution. By employing the division algorithm for power series (long division

algorithm), we find

1 1 � z

�z 1 �z �z2 �z3 �z4 �z5 �

z2

�z3

z4

�z5

�

.

[As a mere remark, we notice that the left column below the horizontal line, the

column of the remainders, originates from the very short computations
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¨
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¨
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¨

¨

¨

¤

�z � 1 � �1��1 � z�

z2 � �z � ��z��1 � z�

�z3 � z2 � �z2��1 � z�

z4 � �z3 � ��z3��1 � z�

�z5 � z4 � �z4��1 � z�

�

,

where �1�, ��z�, �z2�, ��z3�, and �z4� indicate monomials appearing in the line of

the quotient, the second line on the right of the vertical line. The polynomial 1 is

in the position of the dividend while the polynomial 1 � z is the divisor.]

Hence, we have the development

1

1 � z
� 1 � z � z2 � z3 � z4 � z5 ��.

As is well known, this development is valid for all z such that SzS � 1¥
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Example 2. Write f�z� as a power series centered at the origin, where

f�z� �
1 � z2

1 � z
.

Solution. By employing the division algorithm for power series (long division

algorithm), we find

1 � z2 1 � z

�z � z2 1 �z �2z2 �2z3 �2z4 �2z5 �

2z2

�2z3

2z4

�2z5

�

.

[As a mere remark, we notice that the left column below the horizontal line, the

column of the remainders, originates from the short computations

¢
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¨

¨

¨

¨

¨

¨
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¤

�z � z2 � 1 � z2 � �1��1 � z�

2z2 � �z � z2 � ��z��1 � z�

�2z3 � 2z2 � �2z2��1 � z�

2z4 � �2z3 � ��2z3��1 � z�

�z5 � z4 � �2z4��1 � z�

�

,

where �1�, ��z�, �2z2�, ��2z3�, and �2z4� indicate monomials appearing in the line

of the quotient, the second line on the right of the vertical line. The polynomial

1 � z2 is the dividend while the polynomail 1 � z is the divisor.]

Hence, we have the development

1 � z2

1 � z
� 1 � z � 2z2 � 2z3 � 2z4 � 2z5 ��.

This development is valid for all z such that SzS � 1. Please, check ¥
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Example 3. Write f�z� as a power series centered at the origin, where

f�z� �
1 � z

1 � z2
.

Solution. By employing the long division algorithm, we find

1 � z 1 � z2

z � z2 1 �z �z2 �z3 �z4 �z5 �z6 �z7 �z8 �z9 �z10 �

�z2 � z3

�z3 � z4

z4 � z5

z5 � z6

�z6 � z7

�z7 � z8

z8 � z9

z9 � z10

�z10 � z11

�

.

[The column of the remainders originates from
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z � z2 � 1 � z � �1��1 � z2�

�z2 � z3 � z � z2 � �z��1 � z2�

�z3 � z4 � �z2 � z3 � ��z2��1 � z2�

z4 � z5 � �z3 � z4 � ��z3��1 � z2�

z5 � z6 � z4 � z5 � �z4��1 � z2�

�z6 � z7 � z5 � z6 � �z5��1 � z2�

�z7 � z8 � �z6 � z7 � ��z6��1 � z2�

z8 � z9 � �z7 � z8 � ��z7��1 � z2�

z9 � z10 � z8 � z9 � �z8��1 � z2�

�z10 � z11 � z9 � z10 � �z9��1 � z2�

�

,

where �1�, �z�, ��z2�, ��z3�, �z4�, �z5�, ��z6�, ��z7�, �z8�, �z9� and ��z10� indicate

monomials in the quotient. Yet, 1 � z2 is the dividend and 1 � z is the divisor.]

Hence, we have the development (a convergent one, for all SzS � 1).

1 � z

1 � z2
� 1 � z � z2 � z3 � z4 � z5 � z6 � z7 � z8 � z9 � z10 �� ¥
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5. Examples

Example 4. Write down the first five non null terms of the power series, centered

at the origin, of the tangent function

tan�z� �
sin z

cos z
.

Solution. By employing the division algorithm for power series (the long division

algorithm), we find

z �

z3

3!
�

z5

5!
�

z7

7!
�

z9

9!
� 1 � z2

2!
�

z4

4!
�

z6

6!
�

z8

8!
��

�

z �

z3

2!
�

z5

4!
�

z7

6!
�

z9

8!
� z � 2

3!
z3 � 16

5!
z5 � 272

7!
z7 � 7936

9!
z9 ��

0 �

2z3

3!
�

4z5

5!
�

6z7

7!
�

8z9

9!
�

�

�

2z3

3!
�

20z5

5!
�

70z7

7!
�

168z9

9!
�

0 �

16z5

5!
�

64z7

7!
�

160z9

9!
�

�

�

16z5

5!
�

336z7

7!
�

2016z9

9!
�

0 �

272z7

7!
�

1856z9

9!
�

�

�

272z7

7!
�

9792z9

9!
�

0 �

7936z9

9!
�

.

Or the following short presentation, simply built by omitting all the subtrac-

tions indicated in the remainders column that is right above,

z �

z3

3!
�

z5

5!
�

z7

7!
�

z9

9!
� 1 � z2

2!
�

z4

4!
�

z6

6!
�

z8

8!
��

0 �

2z3

3!
�

4z5

5!
�

6z7

7!
�

8z9

9!
� z � 2

3!
z3 � 16

5!
z5 � 272

7!
z7 � 7936

9!
z9 ��

0 �

16z5

5!
�

64z7

7!
�

160z9

9!
�

0 �

272z7

7!
�

1856z9

9!
�

0 �

7936z9

9!
�

.

We may also write

tan�z� � z �
1

3
z3 �

2

15
z5 �

17

315
z7 �

62

2835
z9 ��¥
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Example 5. Write down the sixth non null term of the power series, centered

at the origin, of the tangent function

tan�z� �
sin z

cos z
.

Solution. Following Example 4 and taking advantage that sin z is an odd func-

tion we may conveniently highlight the monomials z, z3, z5, z7, . . . in its expansion.

Hence, one may also write the division table for tan�z� in the following way.

z z3 z5 z7 z9 z11 �

1 �

1

3!
�

1

5!
�

1

7!
�

1

9!
�

1

11!
� 1 � z2

2!
�

z4

4!
�

z6

6!
�

z8

8!
�

z10

10!
��

�

1 �

1

2!
�

1

4!
�

1

6!
�

1

8!
�

1

10!
� z � 2z3

3!
�

16z5

5!
�

272z7

7!
�

7936z9

9!
�

353792z11

11!
��

0 �

2

3!
�

4

5!
�

6

7!
�

8

9!
�

10

11!
�

�

�

2

3!
�

20

5!
�

70

7!
�

168

9!
�

330

11!
�

0 �

16

5!
�

64

7!
�

160

9!
�

320

11!
�

�

�

16

5!
�

336

7!
�

2016

9!
�

7392

11!
�

0 �

272

7!
�

1856

9!
�

7072

11!
�

�

�

272

7!
�

9792

9!
�

89760

11!
�

0 �

7936

9!
�

82688

11!
�

�

�

7936

9!
�

436480

11!
�

0 �

353792

11!
�

.

We may also write

tan�z� � z �
1

3
z3 �

2

15
z5 �

17

315
z7 �

62

2835
z9 �

1382

155925
z11 �� .

Thus, the sixth non null term of the power series expansion of tan�z� is

353792

11!
z11 �

1382

155925
z11 ¥
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Example 6. Write down the first four non null terms of the power series, centered

at the origin, of the function

f�z� �
z

sin z
�

z

z � z3

3!
�

z5

5!
�

z7

7!
��

.

[The very important synchronic function is defined by �sin z�~z.]

Solution. We remark that in order to employ the long division algorithm we

may divide, or we may not divide, the numerator and the denominator by z1.

Let us choose not to divide.

Computing factorials, we write

sin z � z �
z3

6
�

z5

120
�

z7

5040
�� .

By employing the division algorithm for power series we find

z z � z3

6
�

z5

120
�

z7

5040
��

�

z �

z3

6
�

z5

120
�

z7

5040
� 1 � z2

6
�

7z4

360
�

31z6

15120
��

0 �

z3

6
�

z5

120
�

z7

5040
�

�

�

z3

6
�

z5

36
�

z7

720
�

0 �

7z5

360
�

6z7

5040
�

�

�

7z5

360
�

7z7

2160
�

0 �

31z7

15120
�

.

Thus, we arrive at the expression

z

sin z
� 1 �

z2

6
�

7z4

360
�

31z6

15120
��¥

12
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Example 7. Write down the first four non null terms of the series expansion, in

powers of z and centered at the origin, of the hyperbolic cosecant function

f�z� � cosech�z� �
1

sinh�z�
.

Solution. First, we notice that

sinh�z� �
ez � e�z

2
� z �

z3

3!
�

z5

5!
�

z7

7!
�

z9

9!
�� .

Thus,
1

sinh�z�
�

1

z
�

1

1 � z2

3!
�

z4

5!
�

z6

7!
�

z8

9!
��

� .

Moreover, we have sinh�0� � 0, which implies that we won’t find a power series

expansion. Instead, we will need the power z�1, a negative power of z.

Putting z into evidence in the denominator and by employing the division

algorithm for power series (the long division algorithm), we find

1 1 � z2

6
�

z4

120
�

z6

5040
��

�

1 �

z2

6
�

z4

120
�

z6

5040
� 1 � z2

6
�

7z4

360
�

31z6

15120
��

0 �

z2

6
�

z4

120
�

z6

5040
�

�

�

z2

6
�

z4

36
�

z6

720
�

0 �

7z4

360
�

z6

840
�

�

�

7z4

360
�

7z6

2160
�

0 �

31z6

15120
�

�

�

31z6

15120
�

0 �

.

Finally, we obtain the expansion (also called a Laurent series, since it contains

negative powers of z)

cosech�z� �
1

z
�

z

6
�

7z3

360
�

31z5

15120
�� .

The domain of convergence. We notice that we have sinh�z� � 0 if and only if

ez � e�z � e�z�e2z � 1� � 0. Writing z � x � iy, with x and y real numbers, we have

sinh�z� � 0� e2x�2yi � 1 � e0�2πi� e2xe2yi � 1e2πi.

Thus, z � x � iy satisfies sinh�z� � 0 if and only if x � 0 and y � nπ, for some

n > Z. Hence, the expansion that we found converges on the punctured disk

�z > C � 0 � SzS � π�.

13



6. Polynomial Division: Euclidean X Long

Let us compare, giving two polynomials, their two possible divisions. We

compare the one provided by the division algorithm for power series vis à vis the

very usual polynomial division (the Euclidean division algorithm for polynomials).

Considering two polynomials P �z� and Q�z�, we comment and give examples

for the following three characteristics regarding these two divisions of P by Q.

Y The case degree�P � �degree�Q�. Then, the Euclidean division of P �z� by

the polynomial Q�z� is impossible. However, the long division is applicable.

See Example 1 and Example 3.

Y The case degree�P � Cdegree�Q�. Then, the Euclidean division of P �z� by

Q�z� is possible and we may write

¢

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¤

P �z� � Q�z�D�z� �R�z�

or
P �z�

Q�z�
� D�z� �

R�z�

Q�z�
,

with degree�R� � degree�Q�.

We then have two possibilities.

(1) If R x 0, then the long division algorithm of P by Q gives an infinite

power series that is not a polynomial. That is, it gives an infinite

power series with an infinite number of non zero coefficients.

(2) If R � 0 (that is, R is the zero polynomial), then the long division

of P by Q gives an infinite power series that is in fact a polynomial.

Furthermore, the Euclidean division and the long division agree.

We already saw some examples (Examples 1, 2, and 3) where we applied

the algorithm for dividing two infinite power series to the task of dividing two

polynomials. Now, let us go over some other three examples, also related to the

polynomial division.

14
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Example 8. (Compare with the long division method applied in Example 2.)

Find the Euclidean division for

f�z� �
1 � z2

1 � z
.

Solution. We have
z2 � 1 z � 1

�

z2 � z z � 1

�z � 1
�

� z � 1

2

.

That is, we have

z2 � 1 � �z � 1��z � 1� � 2,

or
z2 � 1

z � 1
� z � 1 �

2

z � 1
.

The quotient is Q�z� � z � 1 and the remainder is R�z� � 2¥

Example 9. Find the long division for

f�z� �
z6 � 7z5 � 7z4 � 35z3 � 55z2 � 35z � 60

z2 � 7z � 12
.

Solution. We have

60 �35z �55z2 �35z3 �7z4 �7z5 �z6 12 �7z �z2

�

60 �35z �5z2 5 �5z2 �z4

0 0 �60z2 �35z3 �7z4 �7z5 �z6

�

�60z2 �35z3 �5z4

0 0 �12z4 �7z5 �z6

�

�12z4 �7z5 �z6

0 0 0

.

That is, we have

z6 � 7z5 � 7z4 � 35z3 � 55z2 � 35z � 60 � �z4 � 5z2 � 5��z2 � 7z � 12�.

I invite the reader to do this division by the Euclidean algorithm¥

15



The following example highlights the difference between the long division and

the Euclidean division.

Example 10. (Comparing divisions.) Let us divide in two different ways the

polynomial P �z� by the polynomial Q�z�, where P �z� � z4 � z3 � z2 � z �1, which

we also write P �z� � 1 � z � z2 � z3 � z4, and Q�z� � z � 1, which we also write

Q�z� � 1� z. By applying the Euclidean division algorithm and the long division

algorithm, in this order, show that we have the following formulas

¢

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¤

z4�z3�z2�z�1
z�1

� �z3 � z� � 1

z�1
or P �z� � �z3 � z�Q�z� � 1,

and

1�z�z2�z3�z4

1�z
� �1 � z2 � z4� � z5

1�z
or P �z� � �1 � z2 � z4�Q�z� � z5.

Solution. It is obvious that

P �z� � z4 � z3 � z2 � z � 1 � �z � 1��z3 � z� � 1 � �z3 � z�Q�z� � 1,

and thus we very easily have the Euclidean division searched for.

Now, let us apply the long division algorithm. We have

1 �z �z2 �z3 �z4 1 �z
�

1 �z 1 �z2 �z4

0 0 z2 �z3 �z4

�

z2 �z3

0 0 �z4

�

�z4 �z5

0 �z5

.

This truncated long division algorithm shows that

1 � z � z2 � z3 � z4

1 � z
� 1 � z2 � z4 �

z5

1 � z

or, writing in another way,

P �z� � 1 � z � z2 � z3 � z4 � �1 � z2 � z4�Q�z� � z5 ¥

16
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7. Avoiding The Long Division (The Geometric Series Trick)

A very practical and general way of avoiding the long division algorithm is

to employ the geometric series and some very nice properties of the absolutely

convergent series (in particular, those of the convergent power series).

To start with, let us consider a convergent power series

f�z� � 1 � a1z � a2z
2
� a3z

3
��,

in some open ball centered at the origin. We are allowed to write

1

f�z�
�

1

1 � �a1z � a2z2 � a3z3 � a4z4 ���

� 1 �
�ª

Q

N�1

�a1z � a2z
2
� a3z

3
� a4z

4
���

N .

By the multiplication rule for convergent power series it immediately follows

that �a1z � a2z2 � a3z3 � a4z4 ���

N , for each N C 1, is a convergent power series

in which the smallest power of z showing off is zN . Thus, we may write

�a1z � a2z
2
� a3z

3
� a4z

4
���

N
�

�ª

Q

k�N

b
�k,N�

zk,

where each b
�k,N�

is a complex coefficient. It is not hard to see that the coefficient

b
�k,N�

is given by a homogeneous polynomial in several variables, with natural

numbers as coefficients (hence, positive coefficients), of order N , and evaluated

at the point �a1, a2, . . . , a
�k�N��1� [thus, such polynomial is in �k�N��1 variables].

Hence, we have
1

f�z�
� 1 �

�ª

Q

N�1

�ª

Q

k�N

b
�k,N�

zk.

Next, we argue that it is allowed to change this order of summation.

We first remark that the power series F �z� � �1 � Sa1Sz � Sa2Sz
2
� Sa3Sz

3
� ��

converges absolutely and in the same region as f�z� � �1� a1z � a2z2 � a3z3 ���.

Therefore, analogously to what we have done right above, we may write 1~F �z� �

1�
P

�ª

N�1P
�ª

k�N B
�k,N�

zk, converging absolutely in some small neighborhood of the

origin and each B
�k,N�

C 0. It is obvious the inequality Sb
�k,N�

S B B
�k,N�

. Such ine-

quality implies the absolutely convergence of the double series
P

�ª

N�1P
�ª

k�N bk,Nzk.

From this it follows that we may change the order of summation in this double

summation (see Oliveira [5], Apostol [1], Gamelin [3], Lang [4]).
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Thus, we have

Q

NC1

Q

kCN

b
�k,N�

zk �
Q

kC1

�

Q

1BNBk

b
�k,N�

	 zk.

Hence, by defining the coefficients

ck � Q

1BNBk

b
�k,N�

,

we have proven that

1

f�z�
�

1

1 � a1z � a2z2 � a3z3 ��

� 1 �
�ª

Q

N�1

�a1z � a2z
2
� a3z

3
���

N

� 1 �
�ª

Q

N�1

�ª

Q

k�N

b
�k,N�

zk

� 1 �
Q

NC1

Q

kCN

b
�k,N�

zk

� 1 �
Q

kC1

�

Q

1BNBk

b
�k,N�

	 zk

� 1 �
�ª

Q

k�1

�

k

Q

N�1

b
�k,N�

	 zk

� 1 �
�ª

Q

k�1

ckz
k
¥

Remark. It is good to point out that this geometric series method is a “hands

on” job. In other words, while such method is good to provide the first non null

terms of such division, it has the unpleasant disadvantage of not providing a too

nice table for the coefficients we are searching for. As a matter of fact, we have

�ª

Q

N�1

�a1z�a2z
2
�a3z

3
�a4z

4
���

N
� �a1z�a2z

2
�a3z

3
�a4z

4
�����a1z�a2z

2
�a3z

3
�a4z

4
���

2

��a1z � a2z
2
� a3z

3
� a4z

4
���

3
� �a1z � a2z

2
� a3z

3
� a4z

4
���

4
��

� a1z � �a2 �a
2

1�z
2
� �a3 �2a1a2 �a

3

1�z
3
� �a4 � �2a1a3 �a

2

2��3a
2

1a2 �a
4

1�z
4
�� .
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8. Examples (Using The Geometric Series Trick)

Example 11. (Compare with Example 2.) By using a geometric series, write

f�z� as a power series centered at the origin, where

f�z� �
1 � z2

1 � z
.

Solution. By the well known geometric formula for �1 � z��1 it follows that

1 � z2

1 � z
� �1 � z2��1 � z � z2 � z3 � z4 � z5 � z6 � z7 ���

� �1 � z � z2 � z3 � z4 � z5 ��� � z2�1 � z � z2 � z3 � z4 � z5 ���

� �1 � z � z2 � z3 � z4 � z5 ��� � �z2 � z3 � z4 � z5 � z6 � z7 ���

� �1 � z � z2 � z3 � z4 � z5 ��� � �0 � 0 � z2 � z3 � z4 � z5 � z6 � z7 ���

� 1 � z � 2z2 � 2z3 � 2z4 � 2z5 � 2z6 � 2z7 � 2z8 � 2z9 �� .

This development is valid for all SzS � 1 ¥

Example 12. (Compare with Example 3.) By using a geometric series, write

f�z� as a power series centered at the origin, where

f�z� �
1 � z

1 � z2
.

Solution. By the geometric formula for �1 � z2��1 it follows that

1 � z

1 � z2
� �1 � z��1 � z2 � z4 � z6 � z8 � z10 ���

� �1 � z2 � z4 � z6 � z8 � z10 ��� � �z � z3 � z5 � z7 � z9 � z11 ���

� �1 � 0 � z2 � 0 � z4 � 0 � z6 � 0 � z8 � 0 � z10 ���

� �0 � z � 0 � z3 � 0 � z5 � 0 � z7 � 0 � z9 � 0 � z11 � 0 ���

� 1 � z � z2 � z3 � z4 � z5 � z6 � z7 � z8 � z9 � z10 � z11 �� .

This development is valid for all SzS � 1 ¥
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9. Examples, using the Big-oh Notation O���

Let us consider two complex functions, f�z� and g�z�, defined on a neigh-

borhood of a point z0, but not necessarily at z � z0. In other words, this means

that the maps f and g are defined at every point of an open ball centered at z0,

with the possible exception of its center.

Definition and Notation. We say that f�z� is big-oh of g�z� as z �� z0, if

there exists a constant C A 0 such that we have

Sf�z�S B C Sg�z�S as z �� z0

or, equivalently,

Sf�z�S B C Sg�z�S for all z near z0, but z x z0.

We then write
¢

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¤

f�z� � O�g�z�� as z �� z0,

or

f�z� � O�g�z��.

Example 13 (A Guide Example). Let us consider

A�z� � a0 � a1z � a2z
2
� a3z

3
��,

an arbitrary complex power series convergent on a neighborhood of the origin,

and an arbitrary integer N C 1. It is not hard to see that the so called “tail”

T �z� � aNz
N
� aN�1z

N�1
��

is big-oh of zN as z �� 0. In fact, by writing

ST �z�S � SzSN SaN � aN�1z
1
� aN�2z

2
� aN�3z

3
��S,

we see that there is a constant C A 0 (e.g., C � SaN S � 1) such that we have

ST �z�S B C SzSN , for all z near 0.

This means that

T �z� � O�zN� as z �� 0.

With some abuse of notation, we may write

A�z� � a0 � a1z �� � aN�1zN�1 �O�zN � ¥
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Example 14. Calculate the terms through order seven of the power series ex-

pansion about z � 0 of the secant function

sec�z� �
1

cos z
.

Solution. It is well known that near the origin we have (see Example 13)

cos z � 1 �
z2

2!
�

z4

4!
�

z6

6!
�O�z8�.

Hence,

1

cos z
�

1

1 � �

z2

2!
�

z4

4!
�

z6

6!
�O�z8��

� 1 � �

z2

2!
�

z4

4!
�

z6

6!
�O�z8�� � �

z2

2!
�

z4

4!
�

z6

6!
�O�z8��

2

��

z2

2!
�

z4

4!
�

z6

6!
�O�z8��

3

�O�z8�

� 1 �
z2

2!
� ��

z4

4!
�

z4

2!2!
� � �

z6

6!
�

2z6

2!4!
�

z6

2!2!2!
� �O�z8�

� 1 �
z2

2
�

5z4

24
� �

z6

720
�

z6

24
�

z6

8
� �O�z8�

� 1 �
z2

2
�

5z4

24
�

�1 � 30 � 90�z6

720
�O�z8�.

Thus, we find
1

cos z
� 1 �

1

2
z2 �

5

24
z4 �

61

720
z6 �O�z8�¥

Remark. As can be easily verified, the function cos z vanishes at z � π~2 but does

not vanish for SzS � π~2. Hence, it follows that the radius of convergence of the

power series for sec z � 1~ cos z is r � π~2 (see Oliveira [6, p.18]).
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Example 15. (Compare with Example 4 and Example 5.) Find the coefficients

of zn, for n B 7, in the power series expansion of

tan z �
sin z

cos z

near the origin.

Solution. By Example 14, and the notation in Example 13, we have

sin z

cos z
� �z �

z3

3!
�

z5

5!
�

z7

7!
�O�z9�� �1 �

1

2
z2 �

5

24
z4 �

61

720
z6 �O�z8��

� z � �

1

2
�

1

6
� z3 � �

5

24
�

1

12
�

1

120
� z5

��

61

720
�

5

144
�

1

240
�

1

5040
� z7 �O�z9�

� z � �

3 � 1

6
� z3 � �

25 � 10 � 1

120
� z5

��

427 � 175 � 21 � 1

5040
� z7 �O�z9�

� z �
1

3
z3 �

16

120
z5 �

272

5040
z7 �O�z9�

� z �
1

3
z3 �

2

15
z5 �

17

315
z7 �O�z9�.

Thus, we have

sin z

cos z
� z �

1

3
z3 �

2

15
z5 �

17

315
z7 �O�z9�¥

Remark. Regarding the radius of convergence for the power series for the function

tan z, see Remark to Example 14.
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Example 16. (Compare with Example 6.) Calculate the terms through order

seven of the power series expansion about z � 0 of the function

f�z� �
z

sin z
.

Solution. We have, on a neighborhood of the origin, excepting the origin itself,

z

sin z
�

z

z � z3

3!
�

z5

5!
�

z7

7!
�O�z9�

�

1

1 � �

z2

3!
�

z4

5!
�

z6

7!
�O�z8��

� 1 � �

z2

3!
�

z4

5!
�

z6

7!
�O�z8�� � �

z2

3!
�

z4

5!
�

z6

7!
�O�z8��

2

��

z2

3!
�

z4

5!
�

z6

7!
�O�z8��

3

�O�z8�.

Collecting even powers of z we arrive at

z

sin z
� 1 �

z2

3!
� ��

1

5!
�

1

3!3!
� z4 � �

1

7!
�

2

3!5!
�

1

3!3!3!
� z6 �O�z8�

� 1 �
z2

6
� ��

1

120
�

1

36
� z4 � �

1

7!
�

84

3!7!
�

840

3!3!7!
� z6 �O�z8�

� 1 �
z2

6
�

�3 � 10

360
z4 � �

1

7!
�

14

7!
�

140

3!7!
� z6 �O�z8�

� 1 �
z2

6
�

7

360
z4 �

1

7!
�1 � 14 �

70

3
� z6 �O�z8�

� 1 �
z2

6
�

7

360
z4 �

1

7!
�

31

3
� z6 �O�z8�.

Thus, we have

z

sin z
� 1 �

z2

6
�

7

360
z4 �

31

15120
z6 �O�z8�¥
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Example 17. Show that

ez

1 � z
� 1 �

1

2
z2 �

1

3
z3 �

3

8
z4 �

11

30
z5 �� � anz

n
��,

where

an � ��1�n �
1

2!
�

1

3!
�� �

��1�n

n!
� , for all n C 2.

Solution. We have, for all SzS � 1,

ez

1 � z
� �1 � z �

z2

2!
�

z3

3!
��

zk

k!
���

�1 � z � z2 �� � ��1�jzj ��
� .

Hence, by the multiplication rule for power series, and noticing that the resulting

coefficient of z1 is zero, we arrive at

ez

1 � z
� 1 �

�ª

Q

N�2

�

�

Q

j�k�N

��1�j

k!

�

�

zN .

Next, we notice that for each N C 2 we may write

Q

j�k�N

��1�j

k!
�

Q

0BkBN

��1�N�k

k!

�

��1�N

0!
�

��1�N�1

1!
�

��1�N�2

2!
�� �

��1�N�N

N !

� ��1�N �

��1��2

2!
�

��1��3

3!
�� �

��1��N

N !
	

� ��1�N �

1

2!
�

1

3!
�� �

��1�N

N !
	¥
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10. Examples (Miscellaneous Methods)

Example 19. (Compare with Example 1.) Use the formula for the sum of a

finite geometric sequence and write f�z� as a power series centered at the origin,

where

f�z� �
1

1 � z
.

Solution. Let us apply the well known formula

1 � r � r2 �� � rn �
1 � rn�1

1 � r
, if r x 1.

Thus, for each SzS � 1 we have

1 � z � z2 � z3 �� � lim
n��ª

�1 � z �� � zn�

� lim
n��ª

1 � zn�1

1 � z

�

1

1 � z
.

Hence, we have the following power series expansion

1

1 � z
� 1 � z � z2 � z3 � z4 � z5 ��, for all SzS � 1¥

Example 20. (Compare with Example 2 and Example 16.) Use a polynomial

identity to write f�z� as a power series centered at the origin, where

f�z� �
1

1 � z
.

Solution. Let us apply the following polynomial identity

xn
� 1 � �x � 1��xn�1

� xn�2
�� � x2

� x � 1�.

Thus, for each SzS � 1 we have

1 � z � z2 � z3 �� � lim
n��ª

�1 � z �� � zn�

� lim
n��ª

zn�1 � 1

z � 1

�

1

1 � z
.

Hence, we have the following power series expansion

1

1 � z
� 1 � z � z2 � z3 � z4 � z5 ��, for all SzS � 1¥
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Example 21. (Compare with Example 2 and Example 11.) By way of rewriting

a polynomial, write f�z� as a power series centered at the origin, where

f�z� �
1 � z2

1 � z
.

Solution. Let us write

1 � z2 � �1 � z�2 � 2z.

Hence,

1 � z2

1 � z
�

�1 � z�2 � 2z

1 � z

� 1 � z �
2z

1 � z

� 1 � z �
2�1 � z� � 2

1 � z

� 1 � z � 2 �
2

1 � z

� �1 � z � 2�
1

1 � z
� .

By a well known geometric formula it follows that

1 � z2

1 � z
� �1 � z � 2�1 � z � z2 � z3 � z4 ���

� 1 � z � 2�z2 � z3 � z4 � z5 ���.

This development is valid for all z in the unit ball centered at the origin¥
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11. Bernoulli Numbers

In this section we show two examples highlighting how advantageous can be

the algorithm (the division table) presented in this text.

Example 22 (Bernoulli Numbers). Define the Bernoulli numbers by

z

2
cot�

z

2
� � 1 �B1

z2

2!
�B2

z4

4!
�B3

z6

6!
�B4

z8

8!
��.

Answer the following questions.

(a) Why there are no odd terms in this series?

(b) What is the radius of convergence of the series?

(c) Find the first five Bernoulli numbers, by using the “geometric series trick”.

Solution.

(a) The function z is odd and so is the function cot z. Thus, z cot�z� is even.

(b) It is the same as the radius of convergence of the function g�z� � z~ sin z,

with g�0� � 1. We have g�z� x 0, if SzS � π, and sinπ � 0. Hence, the radius

of convergence is r � π. (See Oliveira [6, p. 18].)

(c) We have

z cot z � z
cos z

sin z

� z

<

�

�

�

�

>

cos z

z � z3

3!
�

z5

5!
�

z7

7!
�

z9

9!
�

z11

�11�!
�O�z13�

=

A

A

A

A

?

�

1 � z2

2!
�

z4

4!
�

z6

6!
�

z8

8!
�

z10

�10�!
�O�z12�

1 � z2

3!
�

z4

5!
�

z6

7!
�

z8

9!
�

z10

�11�!
�O�z12�

Hence, we compute

z cot z � �1 �
z2

2!
�

z4

4!
�

z6

6!
�

z8

8!
�

z10

�10�!
�O�z12��

�

<

�

�

�

�

>

1 �
5

Q

N�1

�

z2

3!
�

z4

5!
�

z6

7!
�

z8

9!
�

z10

�11�!
�O�z12��

N

�O�z12�

=

A

A

A

A

?
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Simplifying a little, we may write

z cot z � �1 �
z2

2!
�

z4

4!
�

z6

6!
�

z8

8!
�

z10

�10�!
�

�

<

�

�

�

�

>

1 �
5

Q

N�1

�

z2

3!
�

z4

5!
�

z6

7!
�

z8

9!
�

z10

�11�!
�

N=
A

A

A

A

?

�O�z12�.

At this point, we relate the coefficients of the power series for �z~2� cot�z~2�

with the ones of the power series for z cot�z�. In doing so, it follows that the

coefficients of z2, z4, z6, z8, and z10 of these power series satisfy the identities

¢

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¤

�22B1

2!
�

1

3!
�

1

2!
� �

2

6
� �

1

3

� �

2
2

2!
�

1

6
�

�24B2

4!
�

�
�

1

5!
�

1

3!3!
�
�

1

2!3!
�

1

4!
�

�3�10�30�15

360
�

�8

360
� �

8

�15�4!

� �

2
4

4!
�

1

30
�

�26B3

6!
�

�

1

7!
�

2

3!5!
�

1

3!3!3!
�
�
�

1

2!5!
�

1

2!3!3!
�
�

1

4!3!
�

1

6!

�

1

6!
�

1

7
� 2 � 10

3
�
�

1

6!
�3 � 10� � 5

6!
�

1

6!

�

1

6!
�

1

7
� 2 � 10

3
� 3 � 10 � 5 � 1�

�

1

6!
�

3�70

21
� 5� � 1

6!
�

73�105

21
�
� �

1

6!

32

21

� �

2
6

6!
�

1

42
�

�28B4

8!
�

�
�

1

9!
�

2

3!7!
�

1

5!5!
�

3

3!3!5!
�

1

3!3!3!3!
�
�
�
�

1

2!7!
�

2

2!3!5!
�

1

2!3!3!3!
�

�
�
�

1

4!5!
�

1

4!3!3!
�
�

1

6!3!
�

1

8!

�

1

8!
�
�

1

9
�

16

3!
�

8�7�6

5!
�

3�8�7�6

3!3!
�

8�7�5

9
�

�

1

8!
�
�

8

2!
�

2�8�7

2!
�

8�7�5

3
�
�

1

8!
�
�

8�7�6

4!
�

8�7�5

3!
�
�

56

8!3!
�

1

8!

�

1

8!
�
�

1

9
�

8

3
�

14

5
� 28 � 280

9
�
�

1

8!
�
�4 � 56 � 280

3
�

�

1

8!
�
�14 � 140

3
�
�

28

8!3
�

1

8!

�

1

8!
�
�

1

9
�

8

3
�

14

5
� 28 � 280

9
� 4 � 56 � 280

3
� 14 � 140

3
�

28

3
� 1�

�

1

8!
�

�1�24�280�840�420�84

9
�

14

5
� 11�

�

1

8!
�
�

201

9
�

14

5
� 11� � 1

8!
�
�

293

15
� 11�

�

1

8!
�
�

128

15
�

� �

2
8

8!
�

1

30
�

�210 B5

�10�!
� . . . .

Thus, the first four Bernoulli numbers are

B1 �

1

6
, B2 �

1

30
, B3 �

1

42
, and B4 �

1

30
.

I leave to the courageous reader to show that B5 � 5~66¥
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Example 23 (Bernoulli Numbers, compare with Example 22). Define

the Bernoulli numbers by

z

2
cot�

z

2
� � 1 �B1

z2

2!
�B2

z4

4!
�B3

z6

6!
�B4

z8

8!
��.

Find the first five Bernoulli numbers by employing the division algorithm.

Solution. First, let us write the power series expansion for the division

z cot z �
cos z
sinz
z

�

1 � z2

2!
�

z4

4!
�

z6

6!
�

z8

8!
�

z10

�10�!
��

1 � z2

3!
�

z4

5!
�

z6

7!
�

z8

9!
�

z10

�11�!
��

.

We have

z0 z2 z4 z6 z8 z10 �

1 �

1

2!
�

1

4!
�

1

6!
�

1

8!
�

1

�10�!
� 1 � z2

3!
�

z4

5!
�

z6

7!
�

z8

9!
�

z10

�11�!
��

�

1 �

1

3!
�

1

5!
�

1

7!
�

1

9!
�

1

�11�!
� 1 � z2

3
�

8z4

4!15
�

32z6

6!21
�

128z8

8!15
�

2
9
5z10

�10�!33
��

0 �

1

3
�

4

5!
�

6

7!
�

8

9!
�

10

�11�!
�

�

�

1

3
�

1

3!3
�

1

5!3
�

1

7!3
�

1

9!3
�

0 �

8

4!15
�

8

6!7
�

16

8!9
�

80

�10�!33
�

�

�

8

4!15
�

8

3!4!15
�

8

5!4!15
�

8

7!4!15
�

0 �

32

6!21
�

256

8!45
�

448

�10�!33
�

�

�

32

6!21
�

32

3!6!21
�

32

5!6!21
�

0 �

128

8!15
�

128�13

�10�!33
�

�

�

128

8!15
�

128

3!8!15
�

0 �

512�5

�10�!33
�

�

�

512�5

�10�!33
�

0 � .

.

By relating the coefficients for the power series for the function �z~2� cot�z~2�

with the ones for the function z cot z, we find

¢

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¤

�22B1

2!
� �

1

3

�24B2

4!
� �

2
3

4!15

�26B3

6!
� �

2
5

6!21

�28B4

8!
� �

2
7

8!15

�210 B5

�10�!
� �

2
9
5

�10�!33

Ô�

¢

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

�

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¨

¤

B1 �
1

6

B2 �
1

30

B3 �
1

42

B4 �
1

30

B5 �
5

66
¥
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