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SOME COMMENTS

We show a Change of Variable for the Riemann Integral on the
Real Line that has the following attributes.

(1) It is not a particular case of the influential general
version of H. Kestelman.

(2) It does not require the integrability or the continuity of
the derivative of the substitution map.

(3) It expands the scope of the Change of Variable Theorem.
Including those usually found in textbooks.
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SOME VERSIONS OF THE CHANGE OF VARIABLE FORMULA

(Spivak, Calculus) If f and g ′ are continuous, then

∫ g(b)

g(a)
f (u) du =

∫ b

a

f (g(x))g ′(x) dx .

(Apostol, Análisis Matemático, translated) If g has continuous derivative

on [c , d ], and f is continuous on g
(
[c , d ]

)
, then

∫ g(d)

g(c)
f (x) dx =

∫ d

c

f [g(t)]g ′(t) dt .

3



(Lang, Undergraduate Analysis) Let J1, J2 be intervals each having more than

one point, and let f : J1 → J2 and g : J2 → R be continuous. Assume that f

is differentiable, and that f ′ is continuous. Then for any a, b ∈ J1 we have∫ b

a

g(f (x))f ′(x) dx =

∫ f (b)

f (a)
g(u) du .
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(Knapp, Basic Real Analysis) Let f be integrable on [a, b]. Let φ be a

continuous strictly increasing function from an interval [A,B] onto [a, b],

suppose that the inverse function φ−1 : [a, b] → [A,B] is continuous, and

suppose finally that φ is differentiable on (A,B) with φ′ uniformly continuous.

Then the product (f ◦ φ)φ′ is integrable on [A,B], and∫ b

a

f (x) dx =

∫ B

A

f [φ(y)]φ′(y) dy .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Remark 1. The hypotheses “φ : [A,B] → [a, b] is continuous, strictly

increasing, and onto” imply φ−1 continuous. Thus, φ is bicontinuous.

Remark 2. The hypothesis “φ′ uniformly continuous on (a, b)” implies

that the derivative φ′ is bounded and integrable over [a, b].

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

5



(Rudin, Principles of Mathematical Analysis) Suppose f is integrable on

[a, b]. Suppose φ is a strictly increasing continuous function that maps an

interval [A,B] onto [a, b]. Assume φ′ is integrable on [A,B]. Then∫ b

a

f (x) dx =

∫ B

A

f (φ(y))φ′(y) dy .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Remark 1. The hypotheses “φ : [A,B] → [a, b] is continuous, strictly

increasing, and onto” imply φ−1 continuous. Thus, φ is bicontinuous.

Remark 2. Rudin proves the Change of Variable Formula for the

Riemann-Stieltjes Integral. Then, he cites the correspondent formula for

the Riemann Integral as a particular case.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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(”General Version”) (H. Kestelman, 1961) Let h : [c , d ] → R be integrable.

Let us fix an arbitrary point a ∈ [c , d ]. Given x ∈ [c , d ], we write

g(x) =

∫ x

a

h(t) dt.

Let f : g
(
[c , d ]

)
→ R be integrable. Then, (f ◦ g)h is integrable on [c , d ] and

∫ g(d)

g(c)
f (x) dx =

∫ d

c

f [g(t)]h(t) dt.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Remark 1. Kestelman’s proof uses the concept measure zero.

Remark 2. Davies simplifies Kestelman’s and avoids measure zero.

Remark 3. Some articles on the theme are: Sarkhel and Výborný (RAEX,

1996− 97), Bagby (RAEX, 2001− 2002), and Torchinsky (RAEX, 2020).

Remark 4. Torchinsky’s new book A Modern View of the Riemann

Integral (2022) discuss much of the substitution formulas.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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A TABLE OF HYPOTHESIS FOR THE FORMULA

main function the change of variable function

−−−−−− −−−−−− −−−−−−−−−−−−−−−−−−−
Apostol continuous continuous derivative

Lang continuous continuous derivative

Spivak continuous continuous derivative

Knapp integrable

{
bicontinuous

uniformly cont. derivative on the interior

Rudin integrable

{
bicontinuous

integrable derivative

Kestelman integrable an integral function

.
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Notations and Definitions

We adopt the following type of partitions, for the Riemann integral,

X = {a = x0 ≤ · · · ≤ xn = b}.

The norm of X is written as |X |.
Given a bounded f : [a, b] → R, we indicate the inferior and the superior

Riemann sums of f with respect to the partition X by, respectively,

s(f ,X ) and S(f ,X ).

Given a real map φ : [α, β] → R, we say that φ is monotone if it is increasing

(not necessarily strictly), decreasing (not necessarily strictly), or constant.

We say that φ is piecewise monotone if there exists a finite sequence

{α = t0 < · · · < tN = β} such that φ is monotone in each open sub-interval

(tj , tj+1) for every j = 0, . . . ,N − 1.
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THE THEOREM

Theorem (A Generalized Change of Variable Theorem). Let us consider

f : [a, b] −→ R integrable and φ : [α, β] −→ [a, b]

surjective, increasing (not necessarily strictly increasing) and continuous.

Suppose φ differentiable on the open interval (α, β). The following are true.

• If φ′ is integrable on [α, β], then the map (f ◦φ)φ′ is integrable on [α, β].

• If the product (f ◦ φ)φ′ is integrable on [α, β], then we have the formula

∫ b

a

f (x)dx =

∫ β

α

f (φ(t))φ′(t)dt.
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Proof. We split the proof into eight small steps.

1. The hypothesis that φ is continuous is superfluous.

The proof is a Calculus 101 exercise.

2. The function φ is uniformly continuous.

It is trivial.

3. We have φ′ ≥ 0 on the open interval (α, β).

It is true, since φ is increasing.

4. To integrate φ′, we may define φ′(α) and φ′(β) arbitrarily.

No comment!
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5. Given T = {α = t0 ≤ · · · ≤ tn = β} a partition of [α, β], it follows that

φ(T ) = X = {a = x0 ≤ · · · ≤ xn = b} is a partition of [a, b].

That is, we have xi = φ(ti ) for each i = 0, . . . , n.

The mean-value theorem yields a point ti ∈ [ti−1, ti ] satisfying

∆xi = φ(ti )− φ(ti−1) = φ′(ti )∆ti .

a1 a2 ak1 ak bdots dotsa

o1a1=o2a2

6. If |T | → 0, then |X | → 0.

It follows from the uniform continuity of φ.
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7. If φ′ is integrable, then (f ◦ φ)φ′ is integrable.

Let τi be arbitrary in [ti−1, ti ]. Since φ is increasing, φ(τi ) ∈ [xi−1, xi ].

In what follows, for simplicity, we omit the summation index.

Let us investigate the Riemann sum
[
remember ∆xi = φ′(t̄i )∆ti

]
∑

f (φ(τi ))φ
′(τi )∆ti =

∑
f (φ(τi ))∆xi+

∑
f (φ(τi ))

[
φ′(τi ))−φ′(ti )

]
∆ti .

If |T | → 0, then |X | → 0 and the first sum on the right goes to
∫ b

a
fdx .

Let M be a constant such that |f | ≤ M (obviously, f is bounded). Then,∣∣∣∑ f (φ(τi ))
[
φ′(τi ))− φ′(ti )

]
∆ti

∣∣∣ ≤ M
[
S(φ′, T )−s(φ′, T )

] |T |→0
−−−−−−→ 0.

Thus, (f ◦ φ)φ′ is integrable.

The value of its integral equals the one of f .
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8. If (f ◦ φ)φ′ is integrable, the value of its integral equals the one of f .

With the above notation, we choose τi = ti and write xi = φ(ti ).

a1 a2 ak1 ak bdots dotsa

o1a1=o2a2

Hence, we have ∑
f (φ(ti ))φ

′(ti )∆ti =
∑

f (xi )∆xi .

If |T | → 0, the left hand side goes to the integral of (f ◦ φ)φ′.

If |T | → 0, then |X | → 0 and the right side goes to the integral of f .

The proof of the theorem is complete
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A COROLLARY

Corollary. Keeping all the other hypotheses of the theorem, suppose that the

continuous and onto φ : [α, β] → [a, b] satisfies one of the following conditions.

(a) φ is monotone.

(b) φ is piecewise monotone.

(c) φ is piecewise monotone in [α+ ϵ, β], for each 0 < ϵ < β − α.

(d) φ′ has a finite number of zeros.

(e) φ′ has a finite number of zeros in [α+ ϵ, β), for each 0 < ϵ < β − α.

Then, the following two claims are true.

• If φ′ is integrable, then (f ◦ φ)φ′ also does.

• If (f ◦ φ)φ′ is integrable, then

∫ φ(β)

φ(α)
f (x)dx =

∫ β

α

f
(
φ(t)

)
φ′(t)dt.
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TWO EXAMPLES

Example 1. Consider

f (x) = x where x ∈ [0, 1], and φ(t) =
√
t where t ∈ [0, 1].

Evidently, f is integrable. Moreover, φ : [0, 1] → [0, 1] is surjective, increasing,

and continuous. The derivative φ′ is defined on the open interval (0, 1) and

φ′(t) =
1

2
√
t
.

So, φ′ is not bounded and thus not integrable on (0, 1). However,

f (φ(t))φ′(t) =

√
t

2
√
t
=

1

2

is integrable. From the above theorem we find∫ 1

0
x dx =

∫ 1

0

1

2
dt.

Since φ′ is not integrable, Kestelman’s version does not apply to Example 1.
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Example 2 [an example for the Corollary, items (c) and (e)]. Consider

f (x) = x3, if x ∈
[
0,

2

π

]
, and φ(t) =


0, if t = 0,

t sin 1
t
, if t ∈

(
0, 2

π

]
.

Figure 1: The graph of φ.
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Clearly, f is integrable while φ is continuous and oscillates near zero. We have

φ′(t) = sin
1

t
− 1

t
cos

1

t
.

Hence, φ′ is unbounded and not integrable on [0, 2/π].

Now, take ϵ > 0. Thus, φ′ has infinite zeros on [0, ϵ]. Conversely, φ′ has a

finite number of zeros on [ϵ, 2/π], and φ is piecewise monotone on [ϵ, 2/π].

Near zero (thus, on [0, 2/π]), we have the integrability of

(f ◦ φ)(t)φ′(t) = t3
(
sin3

1

t

)(
sin

1

t
− 1

t
cos

1

t

)
.
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By the Corollary, either item (c) or item (e), we find

∫ π
2

0
x3 dx =

∫ 2
π

0
[φ(t)]3φ′(t) dt.

From which follows ∫ π
2

0
x3 dx =

φ4(t)
4

∣∣∣ 2
π

0
=

π4

64
.

Since φ′ is not integrable, Kestelman’s version does not apply to Example 2.
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7. S. Lang, Undergraduate Analysis, 2nd ed., Springer, New York, 1997.

8. W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill,
1976.
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