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A Complex Primitive Nth Root Of Unity: A

Very Elementary Approach

Oswaldo Rio Branco de Oliveira

Abstract

This paper presents a primitive nth root of unity in C. The approach

is very elementary and avoids the following: the complex exponential

function, trigonometry, and group theory. It also avoids differentiation,

integration, and series. The presentation of the primitive is indirect.
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1 Introduction.

This article presents a primitive nth root of unity in the complex plane, for
each n in N, through a very elementary approach that does not depend on the
complex exponential function, angles, group theory, differentiation, integration,
or series. The presentation of the primitive is indirect. This approach only
employs the fundamental theorem of algebra (see the elementary proofs given
by de Oliveira [4, 5] and Körner [6]) and the four basic operations.

A good reason to avoid the complex exponential function is justified by
the fact that the theory related to it is more profound than that of the com-
plex roots of unity (a polynomial result), see Burckel [2]. In particular, it is
interesting to notice that the usual proof of the well-known Euler’s Formula,
eiθ = cos θ + i sin θ, for θ in R, requires series, differentiation, and the (tran-
scendental) numbers e and π (see Rudin [10, pp. 167–169]). On the other
hand, besides using the fundamental theorem of algebra, the usual group the-
ory proofs of the existence of a primitive nth root of unity introduce concepts
that are unnecessary to reach our objective. In addition, such existence proofs
do not point out a primitive nth root of unity (see Artin [1, pp. 49–51] and
Lang [7, pp. 177–178, 277–278]).

The study of the complex roots of unity goes back to the eighteenth century,
when De Moivre (1667-1754) proved the formula (cos θ + i sin θ)n = cosnθ +
i sinnθ, for θ in R and n in N. A classical presentation of these roots, that
employs Euler’s Formula, can be seen in Cauchy [3, pp. 196–217]. In [8,
p.197], Pringsheim (1850-1941) points out how to take nth roots of unity, when
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n = 2j for some j in N. For more historical informations, we refer the reader
to Remmert [9, pp. 94–96]. Nowadays, roots of unity is an important part of
mathematics, especially in number theory and discrete Fourier transform.

2 Notations and Preliminaries

Given z in C such that z = x+ iy, with x in R and y in R, and i2 = −1, we
write Re(z) = x and Im(z) = y. The complex conjugate of z is z = x− iy. The
fundamental theorem of algebra implies the existence of the square root function
on [0,+∞). Thus, we define the absolute value of z as |z| =

√
zz =

√

x2 + y2.

Let us fix n in N = {1, 2, . . .}. By the Fundamental Theorem of Algebra the
equation zn = 1, with z in C, has n solutions. Each one of these solutions is
called a nth root of unity. Let us denote by w an arbitrary nth root of unity.

Given w, we have zn−1 = zn−wn = (z−w)Q(z), withQ(z) =
∑n−1

j=0
zn−1−jwj

a polynomial and Q(w) = nwn−1 6= 0, which implies that w is a simple zero of
the polynomial zn − 1, z in C. Hence, there are n distinct nth roots of unity.

Given k arbitrary in N, a short computation reveals that w = w−1 and wk

are nth roots of unity. In addition, |wk+1 − wk| = |wk(w − 1)| = |w − 1|.
If w is either real or pure imaginary, then w is equal to either 1, −1, i or −i.
We only assume, without proof, the fundamental theorem of algebra.

3 A Primitive nth Root of Unity

Let us consider n in N and w, a nth root of unity. We say that w is a
primitive nth root of unity if w,w2, . . . , wn = 1 are all the n nth roots of unity.

In order to prove the existence of a primitive nth root of unity we may
assume that n is even. This is true because if w is a primitive 2nth root of
unity, then w2, . . . , w2n are all the n distinct solutions of zn = 1. Even better,
since the cases n = 2 and n = 4 are trivial, we may also assume n ≥ 6.

Given an even n ≥ 6, the equation zn = 1 has a solution w = x + iy, with
x 6= 0 and y 6= 0. Clearly ±w and ±w are solutions of zn = 1 too. Therefore,
there exists a nth root of unity with (strictly) positive real and imaginary parts.

As a consequence, there exists a nth root of unity:

{

ζ = ζ(n) = a+ ib, with 0 < a < 1 and 0 < b < 1,
satisfying 0 < |ζ − 1| = r, with r = min{|w − 1| : wn = 1 and Im(w) > 0}.

Let us notice that not only ζ satisfies r2 = |ζ − 1|2 = (a− 1)2 + b2 = 2− 2a but
ζ is also the unique nth root of unity satisfying |ζ − 1| = r and Im(ζ) > 0.

From now on, we consider an even n ≥ 6 and keep the notation above.
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Lemma 1 Given an arbitrary x in [−1, 1], we put z = zx = x+ i
√
1− x2.

(A) ϕ : [−a, 1] → [−1, a], with ϕ(x) = Re(ζz) = ax − b
√
1− x2 for each x in

[−a, 1], is bijective and strictly increasing. Its inverse ψ : [−1, a] → [−a, 1]
is given by ψ(y) = Re(ζ−1zy) = ay + b

√

1− y2, for each y in [−1, a].

(B) If x ∈ [−1,−a] ∪ [a, 1], then we have zn = 1 if and only if x ∈ {±1,±a}.
Proof. Clearly, −1 ≤ Re(ζzx) and ax − b

√
1− x2 ≤ a, for all x in [−a, 1]. We

also have Re(ζ−1zy) ≤ 1 and −a ≤ ay + b
√

1− y2, for all y in [−1, a].

(A) If y is in [−1, a], then Im(ζ−1zy) = a
√

1− y2−by is nonnegative on [−1, 0]
and on [0, a] (decreasing from a to 0 along [0, a]). Thus, x = ψ(y) =
Re(ζ−1zy) satisfies zx = ζ−1zy and then ϕ(x) = Re(ζzx) = y.

If x is in [−a, 1], then Im(ζzx) = a
√
1− x2 + bx is nonnegative on [−a, 0]

(increasing from 0 to a) and on [0, 1]. Thus, y = ϕ(x) = Re(ζzx) satisfies
zy = ζzx. Hence, ψ(y) = Re(ζ−1zy) = x.

Evidently, ϕ restricted to [0, 1] and ψ restricted to [−1, 0] are increasing,
with ψ([−1, 0]) = [−a, b]. Thus, ϕ = ψ−1 restricted to [−a, b] is increasing.
So, the bijection ϕ is strictly increasing on [−a, 1].

(B) If x is in (a, 1), then we have |z− 1|2 = 2− 2x < 2− 2a = r2 and thus, by
the definition of r, we get zn 6= 1. If x ∈ {a, 1}, it is obvious that zn = 1.

Because n is even, given x in [−1,−a] and z = x+ i
√
1 + x2, it is enough

to apply the last paragraph to −x and −x+ i
√
1− x2 = −z. �

Theorem 1 The number ζ is a primitive nth root of unity.

Proof. Let us define xk = ϕ(xk−1), with x0 = 1 and k ≥ 1 such that xk−1

is in [−a, 1], the domain of ϕ. By the lemma, ϕ is strictly increasing and thus
x2 = ϕ(x1) < x1 = ϕ(x0) = a < x0. We also have x0 = Re(ζ0), x1 = Re(ζ),
and x2 = ϕ(a) = Re(ζ2). Hence, by induction, we obtain xk = Re(ζk) < xk−1.

Since there are n nth roots of unity, there exists the biggest p in N satisfying

−1 ≤ xp < xp−1 < · · · < x2 < x1 < x0 = 1.

Given k = 2, . . . , p, the function ϕ is a bijection from [xk−1, xk−2] onto [xk, xk−1].
Hence, by induction on k and by Lemma 1(B), there are only two values of x
in [xk, xk−1] such that (x+ i

√
1− x2)n = 1. Namely, x = xk and x = xk−1.

Let us show that xp = −1. If xp is in the domain of ϕ, then by defining
xp+1 = ϕ(xp) we get xp+1 = ϕ(xp) < ϕ(xp−1) = xp, against the definition of p.
Hence, xp is in [−1,−a). From Lemma 1(B), we obtain xp = −1 (and ζp = −1).

The subintervals [xk, xk−1), with k = 1, . . . , p, form a partition of [−1, 1)
and to each subinterval corresponds only one nth root of unity, in the upper
hemisphere {z ∈ C : |z| = 1 and Im(z) ≥ 0}. Hence, ζ0, ζ, . . . , ζp are all the
distinct nth roots of unity in the upper hemisphere and ζ0, . . . , , ζp, ζ, . . . , ζp−1

are the n nth roots of unity. Thus, n = 2p. Finally, we have the identities
ζp+kζp−k = ζ2p = 1 and ζp+k = (ζ−1)p−k = ζp−k, for all k = 1, . . . , p− 1. �
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4 Remarks.

Remark 1 Lemma 1(a) can be proven in a shorter, but less revealing, way
through differentiation. In fact, we start by noticing that ϕ : [−a, 1] → [−1, a]
is continuous, satisfies ϕ(−a) = −1 and ϕ(1) = a, and

ϕ′(x) = a+
bx√
1− x2

=
a
√
1− x2 + bx√
1− x2

, for all x in (−a, 1).

Thus, given x in [0, 1), we obtain ϕ′(x) ≥ a > 0. If −a < x < 0, then we have√
1− x2 >

√
1− a2 = b and a

√
1− x2 + bx > ab− ab = 0. Hence, ϕ is strictly

increasing and, by the intermediate-value theorem, its image is [−1, a].

Remark 2 If n is prime and w is a nth root of unity, with w 6= 1, then a short
computation reveals that w is a primitive nth root of unity.

Remark 3 Given m in N and ζ, a primitive nth root of unity, then it is not
hard to see that ζm is a primitive nth root of unity if and only if gcd(m,n) = 1.

Remark 4 Let us consider n in N and ζ, a primitive nth root of unity. Then,
given c in C, with c 6= 0, and z, an arbitrary nth root of c, it is straightforward
to see that ζ0z, ζ1z, . . . , ζn−1z are all the n distinct nth roots of c.

Remark 5 Using the complex exponential function, it is clear that ei
2π

n is a
primitive nth root of unity. A short computation shows that ei

2π

n = ζ.
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Departamento de Matemática, Universidade de São Paulo
Rua do Matão 1010 - CEP 05508-090
São Paulo, SP - Brasil
oliveira@ime.usp.br

5


	1 Introduction.
	2 Notations and Preliminaries
	3 A Primitive nth Root of Unity
	4 Remarks.

