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THE IMPLICIT FUNCTION THEOREM

WHEN THE MATRIX ∂F
∂y
(x, y) IS ONLY

CONTINUOUS AT THE BASE POINT

Abstract

This article presents an elementary proof of the Implicit Function The-
orem for differentiable maps F (x, y), defined on a finite-dimensional Eu-
clidean space, with ∂F

∂y
(x, y) only continuous at the base point. In the case

of a single scalar equation this continuity hypothesis is not required. The
Inverse Function Theorem is also shown. The proofs rely on the mean-
value and the intermediate-value theorems and Darboux’s property (the
intermediate-value property for derivatives). These proofs avoid compact-
ness arguments, fixed-point theorems, and integration theory.

Mathematics Subject Classification: 26B10, 26B12

Key words and phrases: Implicit Function Theorems, Jacobians, Transforma-
tions with Several Variables, Calculus of Vector Functions.

1 Introduction.

The aim of this article is to present a very elementary proof of a quite
well-known and generally easy to apply Implicit Function Theorem. We prove
this theorem for differentiable maps F (x, y) defined on a finite-dimensional Eu-
clidean space with the matrix ∂F

∂y
(x, y) only continuous at the base point (thus,

∂F/∂y may be discontinuous elsewhere and ∂F/∂x may be everywhere discon-
tinuous). In the case of a single scalar equation we show that this continuity
hypothesis is unnecessary. The Inverse Function Theorem is shown as a con-
sequence of the Implicit Function Theorem. Besides following Dini’s inductive
approach (see [3]), these proofs avoid compactness arguments, fixed-point the-
orems, and integration theory. Instead of such tools, the proofs that follow
employ the intermediate-value and the mean-value theorems, on the real line,
and the intermediate-value property for derivatives on R (Darboux’s property).

Henceforth, we shall freely assume that all the functions are defined on a
subset of a finite-dimensional Euclidean space.

Some comments are worthwhile concerning proofs of the implicit and inverse
function theorems. Most proofs of the classical versions (enunciated for maps
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of class C1 on an open set) start by showing the Inverse Function Theorem
and then derive the Implicit Function Theorem as a corollary. In general, these
proofs employ either a compactness argument or the contraction mapping prin-
ciple, see Krantz and Parks [10, pp. 41–52] and Dontchev and Rockafellar [4, pp.
9–20]. On the other hand, a proof of the classical Implicit Function Theorem
that does not use either of these two tools can be seen in de Oliveira [2].

Taking into account maps that are everywhere differentiable (their differen-
tials may be everywhere discontinuous), a proof of the Implicit Function The-
orem can be found in Hurwicz and Richter [5], whereas a proof of the Inverse
Function Theorem can be seen in Saint Raymond [11]. The first proof employs
Brouwer’s fixed-point theorem while the second relies on Lebesgue’s integration
theory. Instead of assuming the continuity of the first order partial derivatives,
these proofs assume an appropriate nondegeneracy condition at all points in-
side some open set containing the base point. It is worth noting that this quite
general condition can be difficult to verify.

Considering maps that are differentiable at the base point, but not neces-
sarily differentiable elsewhere, one can find proofs of the implicit and inverse
function theorems in Hurwicz and Richter [5] and Nijenhuis [9]. This last work
extends Leach [8] and employs the concept of strong differentiability (also called
strict differentiability) and Banach’s fixed-point theorem. It is worth noting
that giving a differentiable map F and a base point p, then the map F is strong
differentiable at p if and only if its differential is continuous at p.

Removing altogether the differentiability hypothesis, a proof of the Inverse
Function Theorem for a Lipschitzian map can be seen in Clarke [1]. Yet, proofs
of the Implicit Function Theorem for continuous maps can be found in Jittorn-
trum [6] and Kumagai [7].

In this article, the overall stategy of the proof of the Implicit Function Theo-
rem is as follows. First, we prove it for a differentiable real function. Then, given
a finite number of equations, we prove it supposing that the matrix ∂F

∂y
(x, y)

is continuous at the base point. In addition, we prove the Inverse Function
Theorem for a map whose Jacobian matrix is continuous at the base point.

2 Notations and Preliminaries.

Apart from the intermediate-value and the mean-value theorems, both on
the real line, we assume the intermediate-value theorem for derivatives on R

(Darboux’s property): Given a differentiable function f : [a, b] → R, the image

of the derivative function is an interval.

Let us consider n and m, both in N, and fix the canonical bases {e1, . . . , en}
and {f1, . . . , fm}, of R

n and R
m, respectively. Given x = (x1, . . . , xn) and

y = (y1, . . . , yn), both in R
n, we put 〈x, y〉 = x1y1 + · · · + xnyn and |x| =

√

〈x, x〉. Given r > 0, let us write B(x; r) = {y in R
n : |y − x| < r}. We

identify a linear map T : Rn → R
m with the m × n matrix M = (aij), where
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T (ej) = a1jf1 + · · ·+ amjfm for j = 1, . . . , n. We also write Tv for T (v).

In this section, Ω denotes a nonempty open subset of Rn, where n ≥ 1. Given
a map F : Ω → R

m and a point p in Ω, we write F (p) =
(

F1(p), . . . , Fm(p)
)

.
Let us suppose that F is differentiable at p. The Jacobian matrix of F at p is

JF (p) =

(

∂Fi

∂xj
(p)

)

1≤i≤m
1≤j≤n

=







∂F1

∂x1

(p) · · · ∂F1

∂xn
(p)

...
...

∂Fm

∂x1

(p) · · · ∂Fm

∂xn
(p)






.

If F is a real function, then we have JF (p) = ∇F (p), the gradient of F at p.

The following lemma (a particular case of the chain rule but sufficient for
our purposes) is a local result. For practical reasons we state it for Ω = R

n. We
omit the proof of the lemma.

Lemma 1 Let F : R
n → R

m be differentiable, T : R
k → R

n be the linear

function associated to a n × k real matrix M , and y be a fixed point in R
n.

Then, the function G(x) = F (y + Tx), where x is in R
k, is differentiable and

satisfies JG(x) = JF (y + Tx)M , for all x in R
k.

Given a and b, both in R
n, we put ab = {a + t(b − a) : 0 ≤ t ≤ 1}. The

following mean-value theorem (in several variables) is a trivial consequence of
the mean-value theorem on the real line and thus we omit the proof.

Lemma 2 Let us consider a differentiable real function F : Ω → R, with Ω
open in R

n. Let a and b be points in Ω such that the segment ab is within Ω.
Then, there exists c in ab , with c 6= a and c 6= b, that satisfies

F (b)− F (a) = 〈∇F (c), b− a〉 .

We denote the determinant of a real square matrix M by detM .

Lemma 3 Let us consider a differentiable map F : Ω → R
n, with Ω open within

R
n, and p a point in Ω satisfying detJF (p) 6= 0. Let us suppose that the real

function det
(

∂Fi

∂xj
(ξij)

)

in the n2 variables ξij , with 1 ≤ i, j ≤ n and ξij running

in Ω, is continuous at the point defined by ξij = p, for all 1 ≤ i, j ≤ n. Then,

the restriction of F to some non-degenerate open ball B(p; r) is injective.

Proof. Since det
(

∂Fi

∂xj
(p)

)

6= 0, the continuity hypothesis yields a r > 0 such

that det
(

∂Fi

∂xj
(ξij)

)

does not vanish, for all ξij in B(p; r) and 1 ≤ i, j ≤ n.

Now, let a and b be distinct in B(p; r). By employing the mean-value theorem
in several variables to each component Fi of F , we find ci in the segment ab,
within B(p; r), such that Fi(b)− Fi(a) = 〈∇Fi(ci), b − a〉. Hence,







F1(b)− F1(a)
...

Fn(b)− Fn(a)






=







∂F1

∂x1

(c1) · · · ∂F1

∂xn
(c1)

...
...

∂Fn

∂x1

(cn) · · · ∂Fn

∂xn
(cn)













b1 − a1
...

bn − an






.
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Thus, since det
(

∂Fi

∂xj
(ci)

)

6= 0 and b− a 6= 0, we conclude that F (b) 6= F (a). �

Given a real function F : Ω → R, a short computation shows that the follow-
ing definition of differentiability is equivalent to that which is most commonly
employed. We say that F is differentiable at p in Ω if there are a ball B(p; r)
within Ω, with r > 0, a v in R

n, and a vector-valued map E : B(0; r) → R
n

satisfying

{

F (p+ h) = F (p) + 〈v, h〉+ 〈E(h), h〉 , for all |h| < r,
where E(0) = 0 and E(h) → 0 as h→ 0.

3 The Implicit Function Theorem.

The first implicit function result we prove concerns one equation, several
variables and a differentiable real function whose partial derivatives need not be
continuous at any point. In its proof, we denote the variable in R

n+1 = R
n ×R

by (x, y), where x = (x1, . . . , xn) is in R
n and y is in R. Given a nonempty

subset X of Rn and a nonempty subset Y of R, it is well-known that the set
X × Y = {(x, y) : x ∈ X and y ∈ Y } is open in R

n × R if and only if X and Y
are open.

In the next theorem, Ω denotes a nonempty open set within R
n × R.

Theorem 1 Let F : Ω → R be differentiable, with ∂F
∂y

nowhere vanishing, and

(a, b) a point in Ω such that F (a, b) = 0. Then, there exists an open set X × Y ,

within Ω and containing the point (a, b), that satisfies the following.

• There exists a unique function g : X → Y that satisfies F
(

x, g(x)
)

= 0,
for all x in X.

• We have g(a) = b. The function g : X → Y is differentiable and satisfies

∂g

∂xj
(x) = −

∂F
∂xj

(x, g(x))

∂F
∂y

(x, g(x))
, for all x in X, where j = 1, . . . , n.

Moreover, if ∇F (x, y) is continuous at (a, b) then ∇g(x) is continuous at x = a.

Proof. By considering the function F (x+ a, y
c
+ b), with c = ∂F

∂y
(a, b), we may

assume that (a, b) = (0, 0) and ∂F
∂y

(0, 0) = 1. Next, we split the proof into three
parts: existence and uniqueness, continuity at the origin, and differentiability.

⋄ Existence and Uniqueness. Let us choose a non-degenerate (n+1)-dimensional
parallelepiped X × [−r, r], centered at (0, 0) and within Ω, whose edges
are parallel to the coordinate axes and X is open. Then, the function
ϕ(y) = F (0, y), where y runs over [−r, r], is differentiable with ϕ′ nowhere
vanishing and ϕ′(0) = 1. Thus, by Darboux’s property we have ϕ′ > 0
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everywhere and we conclude that ϕ is strictly increasing. Hence, by the
continuity of F and shrinking X (if necessary) we may assume that

F
∣

∣

∣

X×{−r}
< 0 and F

∣

∣

∣

X×{r}
> 0.

As a consequence, fixing an arbitrary x in X , the function

ψ(y) = F (x, y), where y ∈ [−r, r],

satisfies ψ(−r) < 0 < ψ(r). Hence, by the mean-value theorem there exists
a point η in the open interval Y = (−r, r) such that ψ′(η) = ∂F

∂y
(x, η) > 0.

Therefore, by Darboux’s property we have ψ′(y) > 0 at every y in Y .
Thus, ψ is strictly increasing and the intermediate-value theorem yields
the existence of a unique y, we write y = g(x), in the open interval Y such
that F (x, g(x)) = 0.

⋄ Continuity at the origin. Let δ satisfy 0 < δ < r. From above, there exists
an open set X , contained in X and containing 0, such that g(x) is in the
interval (−δ, δ), for all x in X . Thus, g is continuous at x = 0.

⋄ Differentiability. From the differentiability of the real function F at (0, 0),
and writing ∇F (0, 0) = (v, 1) ∈ R

n × R for the gradient of F at (0, 0), it
follows that there are functions E1 : Ω → R

n and E2 : Ω → R satisfying











F (h, k) = 〈v, h〉+ k + 〈E1(h, k), h〉+ E2(h, k)k,

where lim
(h,k)→(0,0)

Ej(h, k) = 0 = Ej(0, 0), for j = 1, 2.

Hence, substituting [we already proved that g(h)
h→0
−−−→ g(0) = 0]

{

k = g(h),
Ej

(

h, g(h)
)

= ǫj(h), with lim
h→0

ǫj(h) = ǫj(0) = 0 for j = 1, 2,

and noticing that we have F
(

h, g(h)
)

= 0, for all possible h, we obtain

〈v, h〉+ g(h) + 〈ǫ1(h), h〉+ ǫ2(h)g(h) = 0.

Thus,
[1 + ǫ2(h)]g(h) = −〈v, h〉 − 〈ǫ1(h), h〉 .

If |h| is small enough, then we have 1 + ǫ2(h) 6= 0 and we may write

g(h) = 〈−v, h〉+ 〈ǫ3(h), h〉 ,

where

ǫ3(h) =
ǫ2(h)

1 + ǫ2(h)
v −

ǫ1(h)

1 + ǫ2(h)
and lim

h→0
ǫ3(h) = 0.
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Therefore, g is differentiable at 0 and ∇g(0) = −v.

Now, given any a′ in X , we put b′ = g(a′). Then, g : X → Y solves the
problem F

(

x, h(x)
)

= 0, for all x in X , with the condition h(a′) = b′.
From what we have just done it follows that g is differentiable at a′. �

Next, we prove the implicit function theorem for a finite number of equations.
Some notations are appropriate. We denote the variable in R

n × R
m = R

n+m

by (x, y), where x = (x1, . . . , xn) is in R
n and y = (y1, . . . , ym) in R

m. Given
a nonempty subset X of Rn and a nonempty subset Y of Rm, it is well-known
that the set X×Y = {(x, y) : x ∈ X and y ∈ Y } is open in R

n×R
m if and only

if X and Y are open. Given Ω an open subset of Rn × R
m and a differentiable

map F : Ω → R
m we write F = (F1, . . . , Fm), with Fi the ith component of F

and i = 1, . . . ,m, and

∂F

∂y
=

(

∂Fi

∂yj

)

1≤i≤m
1≤j≤m

=







∂F1

∂y1

· · · ∂F1

∂ym

...
...

∂Fm

∂y1

· · · ∂Fm

∂ym






.

Analogously, we define the matrix ∂F
∂x

=
(

∂Fi

∂xk

)

, where 1 ≤ i ≤ m and 1 ≤ k ≤ n.

Theorem 2 (The Implicit Function Theorem). Let F : Ω → R
m be

differentiable, where Ω is an open set in R
n×R

m. Let us suppose that (a, b) is a
point in Ω such that F (a, b) = 0 and det ∂F

∂y
(a, b) 6= 0, with ∂F

∂y
(x, y) continuous

at (a, b). Then, there exists an open set X × Y , within Ω and containing (a, b),
satisfying the following conditions.

• There exists a unique function g : X → Y that satisfies F
(

x, g(x)
)

= 0,
for all x in X .

• We have g(a) = b. Moreover, the map g : X → Y is differentiable and

Jg(x) = −

[

∂F

∂y
(x, g(x))

]−1

m×m

[

∂F

∂x
(x, g(x))

]

m×n

, for all x in X.

In addition, if JF (x, y) is continuous at (a, b) then Jg(x) is continuous at x = a.

Proof. Let us consider the invertible matrix ∂F
∂y

(a, b) = M and the associated
bijective linear function M : Rm → R

m. By employing Lemma 1 we conclude
that the map G(x, z) = F [x, b+M−1(z − b)], defined on a small enough neigh-
borhood of (a, b), satisfy ∂G

∂z
(a, b) = MM−1 and the condition G(a, b) = 0.

Therefore, replacing F by G if necessary, we may suppose without loss of gen-
erality that M is the identity matrix of order m.

Next, we split the proof into four parts: finding Y , existence and differen-
tiability, differentiation formula, and uniqueness.

6



⋄ Finding Y . Defining Φ(x, y) =
(

x, F (x, y)), where (x, y) is in Ω, we have

JΦ(x, y) =

(

I 0
∂F
∂x

∂F
∂y

)

and det JΦ(x, y) = det
∂F

∂y
(x, y),

with I the identity matrix of order n and 0 the n × m zero matrix.
Thus, detJΦ(a, b) 6= 0. By hypothesis the matrix ∂F

∂y
(x, y) is continu-

ous at (a, b). Next, in order to apply Lemma 3 we introduce the vari-
ables ξlk in Ω, where l and k run in {1, . . . ,m + n}, and the notation
(z1, . . . , zn, zn+1, . . . , zn+m) = (x1, . . . , xn, y1, . . . , ym). Then, the real
function det

(

∂Φl

∂zk
(ξlk)

)

= det
(

∂Fi

∂yj
(ξi+n,j+n)

)

is continuous at the point

defined by ξlk = (a, b), for all l, k = 1, . . . ,m+ n. Therefore, by Lemma 3
and shrinking Ω if necessary, we may assume that Φ is an injective map.
We may also assume that Ω is an open non-degenerate parallelepiped
X1 × Y centered at (a, b) whose edges are parallel to the coordinate axes.
Hence, X1 and Y are open (parallelepipeds).

⋄ Existence and differentiability. We claim that the system



















F1(x, y1, . . . , ym) = 0,
F2(x, y1, . . . , ym) = 0,

...
Fm(x, y1, . . . , ym) = 0,

with the conditions



















y1(a) = b1
y2(a) = b2

...
ym(a) = bm,

has a differentiable solution g(x) =
(

g1(x), . . . , gm(x)
)

on some open set

X containing a [i.e., we have F
(

x, g(x)
)

= 0 for all x in X and g(a) = b].

Let us prove it by induction onm. The casem = 1 follows from Theorem 1
since ∂F

∂y
(a, b) = 1 and, by continuity, we can assume ∂F

∂y
6= 0 everywhere.

Assuming that the claim holds form−1, let us examine the casem. Then,
given a pair (x, y) = (x, y1, . . . , ym) we introduce the helpful notations
y′ = (y2, . . . , ym), y = (y1, y

′), and (x, y) = (x, y1, y
′).

Next, let us consider the equation F1(x, y1, y
′) = 0, where x and y′ are

independent variables and y1 is the dependent variable, with the condition
y1(a, b

′) = b1. Since ∂F1

∂y1

(a, b1, b
′) = 1, by continuity we may assume that

the function ∂F1

∂y1

(x, y1, y
′) does not vanish. Hence, by Theorem 1 there

exists a differentiable function ϕ(x, y′) on some open set [let us say, X2×Y ′]
containing (a, b′) that satisfies

F1[x, ϕ(x, y
′), y′] = 0 (on X2 × Y ′) and the condition ϕ(a, b′) = b1.

As a consequence, ϕ(x, y′) also satisfies the m− 1 equations

∂F1

∂y1
[x, ϕ(x, y′), y′]

∂ϕ

∂yj
(x, y′) +

∂F1

∂yj
[x, ϕ(x, y′), y′] = 0, for j = 2, . . . ,m.

7



Thus, since ∂F1

∂y
=

(

∂F1

∂y1

, . . . , ∂F1

∂ym

)

is continuous at (a, b1, b
′), with ∂F1

∂y1

nowhere vanishing, and ϕ is continuous, with ϕ(a, b′) = b1, we conclude
that ∂ϕ

∂y′
=

(

∂ϕ
∂y2

, . . . , ∂ϕ
∂ym

)

is continuous at (a, b′).

Now, we look at solving the system with m− 1 equations











F2[x, ϕ(x, y
′), y′] = 0

...
Fm[x, ϕ(x, y′), y′] = 0

, with the condition y′(a) = b′.

Let us define Fi(x, y
′) = Fi[x, ϕ(x, y

′), y′], with i = 2, . . . ,m, and write
F = (F2, . . . ,Fm). Then, since the entries of the matrices ∂ϕ

∂y′
(x, y′) and

∂F
∂y

(x, y) are continuous at (a, b′) and (a, b), respectively, with ϕ(a, b′) = b1,

we conclude that the entries of ∂F
∂y′

(x, y′) are continuous at (a, b′). Yet, by

hypothesis ∂F
∂y

(a, b) is the identity matrix of order m and thus we find

∂Fi

∂yj
(a, b′) =

∂Fi

∂y1
(a, b)

∂ϕ

∂yj
(a, b′)+

∂Fi

∂yj
(a, b) = 0+

∂Fi

∂yj
(a, b), for 2 ≤ i, j ≤ m.

This shows that the matrix ∂F
∂y′

(a, b′) is the identity one, of order m − 1.
Therefore, by induction hypothesis there exists a differentiable function ψ
on an open set X containing a [with ψ(X) contained in Y ′] that satisfies

{

Fi[x, ϕ
(

x, ψ(x)
)

, ψ(x)
]

= 0, for all x in X, for all i = 2, . . . ,m,
and the condition ψ(a) = b′.

Clearly, we also have F1

[

x, ϕ
(

x, ψ(x)
)

, ψ(x)
]

= 0, for all x in X . Defining

g(x) =
(

ϕ(x, ψ(x)), ψ(x)
)

, with x in X , we obtain F [x, g(x)] = 0, for all

x in X , and g(a) =
(

ϕ(a, b′), b′
)

= (b1, b
′) = b, with g differentiable on X .

⋄ Differentiation formula. Differentiating F [x, g(x)] = 0 we find

∂Fi

∂xk
+

m
∑

j=1

∂Fi

∂yj

∂gj
∂xk

= 0, with 1 ≤ i ≤ m and 1 ≤ k ≤ n.

In matricial form, we write ∂F
∂x

(

x, g(x)
)

+ ∂F
∂y

(

x, g(x)
)

Jg(x) = 0.

⋄ Uniqueness. If h : X → Y and x in X satisfy F (x, h(x)) = 0, we find
Φ(x, h(x)) = (x, 0) = Φ(x, g(x)). In the first part of this proof (the “find-
ing Y ” part) we established that Φ is injective. Thus, h(x) = g(x).

�
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4 The Inverse Function Theorem.

Theorem 3 (The Inverse Function Theorem). Let F : Ω → R
n be dif-

ferentiable, where Ω is an open set in R
n. Let us suppose that x0 is a point

in Ω such that JF (x0) is invertible, with JF (x) continuous at x0. Then, there

exist an open set X containing x0, an open set Y containing y0 = F (x0), and
a differentiable function G : Y → X that satisfies F

(

G(y)
)

= y, for all y in Y ,

and G
(

F (x)
)

= x, for all x in X. In addition,

JG(y) = JF
(

G(y)
)−1

, for all y in Y,

and JG(y) is continuous at y = y0.

Proof. By Lemma 3 we may assume that F is injective. The map Φ(y, x) =
F (x) − y, where (y, x) runs over R

n × Ω, is differentiable and Φ(y0, x0) = 0.
Yet, ∂Φ

∂x

(

y0, x0
)

= JF (x0) is invertible and JΦ(y, x) is continuous at (y0, x0).
The Implicit Function Theorem guarantees an open set Y containing y0 and a
differentiable map G : Y → Ω, with JG(y) continuous at y = y0, satisfying

F
(

G(y)
)

= y, for all y in Y.

Thus, G is bijective from Y to X = G(Y ) and F is bijective from X to Y .
We also have X = F−1(Y ). Since F is continuous, X is open (and contains x0).

Putting F (x) =
(

F1(x), . . . , Fn(x)
)

and G(y) =
(

G1(y), . . . , Gn(y)
)

and

differentiating
(

F1(G(y)), . . . , Fn(G(y))
)

we find

n
∑

k=1

∂Fi

∂xk

∂Gk

∂yj
=
∂yi
∂yj

=

{

1, if i = j,
0, if i 6= j.

�
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