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ABSTRACT

In this article we propose a structured IIR model for HRTF

filters that can be applied to multi-user binaural soundscape

rendering of virtual sound sources moving continuously in

3D space. A motivation for using low-order IIR models

in HRTF interpolation is to trade some reasonable amount

of soundscape fidelity for computational performance. Two

strategies for interpolation of these IIRmodels are discussed,

one using filter coefficients and the other using pole-zero

models. Numerical experiments show that low-order struc-

tured IIR models provide reasonably good fitting of the orig-

inal filters, allow for a larger number of simultaneous simu-

lations than FIR equivalents, and may be used in an interpo-

lation context without severely degrading the quality of the

soundscape approximations.

1. INTRODUCTION

The goal of this paper is to present a structured IIR (Infinite

Impulse Response) model for representing HRTF (Head-

Related Transfer Function) filters of a finite HRTF database

that is suitable for HRTF interpolation. This model presup-

poses an auralization context where virtual sound sources

are binaurally rendered to a user wearing headphones, and

the user or the virtual sound sources (or both) are moving

continuously in space. The interpolation of the static HRTF

filters aims at creating the perception of the spatial trajecto-

ries of the virtual sound sources, while ensuring that filter

parameters change continuously.

Most previous work on HRTF interpolation for simulat-

ing moving virtual sound sources focuses on linear interpo-

lation using FIR (Finite Impulse Response) models, which

can be performed in time domain (HRIR or Head-Related

Impulse Response interpolation) [10, 1, 13, 12] or frequency

domain (using IPTF or Inter-Positional Transfer Functions

[4, 9]), with similar results, due to linearity of the Fourier

and z transforms. Other related strategies are Magnitude

Frequency Response interpolation [5, 8] and SFRS or Spa-

tial Frequency Response Surface interpolation [3], which

are based on magnitude information only. Linear interpola-

tion of phase information is intrinsically complicated, as ar-

gued in [8], because of phase periodicity and implied uncer-
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tainty (a wrapped-around phase value ϕ in a transfer func-

tion might correspond to any value ϕ + k ·2π for integer k).

The idea behind representing HRTF filters as IIR filters

[7] is of course to reduce the computational effort required

for each simulation, which in turn opens up the possibility

of performing more simultaneous auralizations for differ-

ent users at the same time. Possible applications are sound

installations where users walk around wearing headphones

and position sensors, in such a way that each user receives

an individualized soundscape according to its position and

head orientation.

It would be correctly argued that low-order IIR models

(i.e. with few poles and zeros) are not able to capture all the

details of HRTFs (such as pinna cues), implying a loss of in-

dividualized audio fidelity. While this is certainly true, even

such simplified models are a large improvement on sim-

pler ITD+ILD (Interaural Time and Level Difference) mod-

els that would usually be employed in the aforementioned

multi-user application context. For instance, the simplified

HRTF models would allow the differentiation of sounds ar-

riving directly from the front, from the back or from above

the user [7], even though such directions usually share the

same values for ITD and ILD.

The interpolation of IIR models of the same order may

be accomplished by interpolating the coefficients of the fil-

ter equation. Although this procedure is a straightforward

generalization from linear interpolation of FIR filters, there

appear to be no previous discussions in the literature on the

errors produced by this interpolation method in the context

of IIR models for HRTF filters.

A completely different approach to HRTF interpolation

can be obtained by using a z plane pole-zero representa-

tion of IIR filters, and manipulating the set of poles and ze-

ros to change the filters from one configuration to the other

[11, 12]. In [11] the manipulations of pole-zero configu-

rations involve gradient searches where the target (interpo-

lated) HRTF is known; this is a context of limited practical

interest. The interpolation strategy defined in [12] depends

on a given association between poles and zeros of different

filters, and proceeds by interpolating the positions of asso-

ciated poles and zeros to obtain intermediate pole-zero con-

figurations.

The main difficulty in putting this idea into practice lies

in defining pole-zero associations between the given data-
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base filters. These associations tell the interpolation algo-

rithm which pole (or zero) from filter A corresponds to a

given pole (or zero) in filter B, thereby allowing the speci-

fication of intermediate configurations. Unfortunately there

is no foolproof rule to create this kind of associations, al-

though some ad hoc strategies [12] have been proposed.

We propose a new strategy for IIR interpolation, namely

the use of structured IIR filters. The specific structure im-

posed on the IIR representations is based on a division of

the frequency range in N frequency bands, and it requires

that each frequency band contains exactly one pole and one

zero. Each pole and each zero of a filter becomes thus imme-

diately associated with the corresponding pole and zero of

another filter via their common frequency bands. We show

that HRTF filters may be approximated by structured IIR

filters with errors that are comparable to those obtained by

Kalman filter models [7]. We further show that structured

IIR filters can be interpolated using filter coefficient inter-

polation and pole-zero interpolation with better results than

the corresponding interpolation of Kalman filters.

The structure of this paper is as follows. Section 2 pre-

sents two methods to construct alternative IIR representa-

tions for each HRTF in the database, the Kalman method

and the structured IIR method. Section 3 discusses two

IIR interpolation strategies, filter coefficient interpolation

and pole-zero interpolation, and section 4 presents and dis-

cusses numerical experiments regarding the fitness of the

IIR models and of the interpolation methods. Finally, sec-

tion 5 presents some conclusions and further work.

2. IIR MODELS FOR HRTFS

HRTF filters are usually obtained by direct measurements of

the corresponding HRIR using contact microphones inside

the ears of a person or a head doll [2]. Such a representation

in the form of an impulse response is equivalent to the list

of coefficients of a FIR filter. As the number of coefficients

in this representation increases (with a fixed sample rate),

the better the reproduction of subtleties that torso, head and

pinna imprints in the sound signal as it enters the auditory

canal.

While highly individualized HRTF filters may provide

wonderful results in terms of auralization, they are computa-

tionally expensive to run on a multi-user setting, not to men-

tion the difficulties in measuring a different HRTF database

for each individual user. A reasonable alternative is the use

of non-individualized HRTF datasets, from with users can

extract useful directional information [14]. But even when

adopting non-individualized HRTF databases such as CIPIC

[2], no less than 200 filter coefficients are needed for each

HRTF.

IIR (or recursive) filters are able to represent transfer

functions with high level of detail and fewer coefficients [7]

due to the feedback terms, which correspond to polynomial

terms in the denominator of the transfer function. In the

sequel two techniques for obtaining IIR approximations to

FIR filters are presented.

2.1. The Kalman Method

One method for obtaining an IIR filter approximation [6, 7]

is based on observing incoming values x0�x1�x2� . . . and out-
coming values y0�y1�y2� . . . of a filter and trying to fit these
observations to an IIR filter equation of the form

ŷ�n) =
N

∑
j=0

a jx�n− j)−
N

∑
j=1

b jy�n− j)�

where the error f �a�b) = �y− ŷ� is to be minimized over
a given range of index values. This is a convex quadratic

optimization problem with a unique minimizer, that can be

directly computed by solving the first order necessary opti-

mality condition (� f �a�b) = 0). Denoting by

w�k) = �xk� . . . �xk−N �yk−1� . . . �yk−N)�

the windowed joint input-output process, one obtains
�

a

−b

�

= R−1c�

where R= ∑k w�k)w�k)� and c= ∑k y�k)w�k).
By letting x represent a Dirac’s Delta function and y rep-

resent the HRIR of interest, the above method allows the

computation of an IIR model that is close to the original

HRTF in the sense that the errors between the original HRIR

and the predicted values given by the above filter equation

are minimized.

To obtain best results all HRTFs are time-aligned [10,

1, 12] so that all HRIRs start at time 0 (this is undone later

in the interpolation phase). This time-alignment guarantees

a minimum-phase property of all systems, thus avoiding a

large row of zero coefficients to compensate for the initial

time delay (for the arrival of the direct sound).

It should be noted that there is a catch in the above ob-

jective function: the measured errors relate the correct out-

put values and the predicted output values, obtained from

past input and from correct past output values. When this

filter equation is applied to a new signal these latter values

are not available, and the feedback terms in the equation

are fed with predicted past output values. The consequence

is that the minimal error obtained by this method does not

correspond to the error between the original HRIR and the

impulse response of the IIR filter, or to the error between

the original HRTF and the transfer function of the IIR filter

(these two errors are interrelated via Parseval’s theorem).

2.2. Structured IIR Filters

The IIR model proposed here addresses both the error is-

sue raised in the previous section as well as the difficulty
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of making associations between poles and zeros of different

filters raised in [12]. As mentioned in the introduction, this

model requires that each frequency band in the z plane con-

tains exactly one pole and one zero, in such a way that the

error between the original HRTF and the corresponding IIR

transfer function is minimized.

Consider the division of the upper half of the complex

plane into N radial frequency bands with endpoints ω0 =
0�ω1� . . . �ωN = 2π . The optimization problem has 2N com-

plex variables π1� . . . �πN and ζ1� . . . �ζN corresponding to the
poles and zeros in the upper half of the plane, so that π j
and ζ j belong to the band defined by the interval [ω j−1�ω j].
Each pole and zero has a corresponding conjugate depen-

dent counterpart, so that the IIR filter actually has 2N poles

and 2N zeros. In order to ensure compactness of the feasible

region and to guarantee the existence of solution, each pole

and zero is constrained to lie within the unit circle (it should

be noted that poles lying on the unit circle would lead to

unstable filters, but these are ruled out by the minimization

procedure since the original FIR filters are always stable).

Let arg�·) denote the argument or angle of a complex
number, ∗ denote complex conjugation, and let H be the

original HRTF. The complete optimization problem is thus

formulated as






min �H− K̂�H�π�ζ )Ĥ�π�ζ )�2

s.t. ω j−1 ≤ arg�π j) ≤ ω j

ω j−1 ≤ arg�ζ j) ≤ ω j� i= 1� . . . �N
|π j| ≤ 1� |ζ j| ≤ 1

where Ĥ�π�ζ ) is the transfer function given by

Ĥ�π�ζ ) =
∏
N
j=1�1−ζ jz

−1)�1−ζ ∗
j z

−1)

∏
N
j=1�1−π jz−1)�1−π∗

j z
−1)

.

and the overall amplitude factor K̂�H�π�ζ ) is set to

K̂�H�π�ζ ) =

�
H� Ĥ�π�ζ )

�

�Ĥ�π�ζ )�2

in order to minimize �H − K̂Ĥ�π�ζ )�2, which is a convex
quadratic expression on K̂ for fixed H, π and ζ .

The radial division may be chosen according to the ap-

plication context, for instance equal division (ω j = j · π
N
) or

octave division (ω0 = 0� ω j = π
2N− j

� j = 1� . . . �N). Other
error measurements, such as the distance between magni-

tude transfer functions, which avoids the phase uncertainty

problem referred to by [8], can also be used at discretion.

This optimization problem has a nonlinear and noncon-

vex objective function, and requires global optimization

strategies such as multistart or branch-and-bound, combined

with local descent strategies (Cauchy or Newton-like meth-

ods). In the experiments of section 4, Kalman solutions

were modified to obtain feasible starting points, from which

a multi-resolution first-order descent method was applied to

obtain stationary points.

Although the computational cost of solving these prob-

lems for a whole HRTF database is high, this procedure has

to be done only once at a setup stage, and so this cost has

no impact whatsoever on the computational cost of auraliza-

tion, which is always linear on N.

3. IIR HRTF INTERPOLATION

HRTF databases are built by measuring the incoming HRIR

signal at each ear (of a head doll or a human) for a large

number of possible incoming directions. The minimum an-

gle between adjacent measured directions can be found by

spatial sampling analysis [1] to be about 4.9◦ for a 44.1kHz
sampling rate and 18cm distance between ears. The CIPIC

database [2], for instance, uses 25 azimuth and 50 elevation

angles, for a total of 1250 HRTF filters for each ear. Al-

though this number of measurements is reasonably large, if

a soundscape rendering of a moving sound source is needed,

the need for an interpolation procedure becomes evident.

A moving sound source is defined by an output audio

signal x�n) and a spatial trajectory τ�n) that can be repre-
sented as polar coordinates (absolute value, azimuth and el-

evation). The absolute value in HRTF auralization is used

for controlling the overall gain (using a distance-based rule

such as inverse-distance gains or other psychoacoustical es-

timates), while the azimuth and elevation angles define the

closest HRTF filters in the database that will be combined in

the interpolation.

One of the simplest interpolation approaches is to al-

ways choose the filter corresponding to the closest measured

direction, and to crossfade transitions to avoid discontinu-

ities [12]. Unfortunately this is not good enough to ensure

auralization smoothness if sound sources move slightly fast:

with the CIPIC database a 1 second circular round-trip of a

sound source would involve 50 crossfades/second, a transi-

tion rate which would produce audible artifacts due to phase

shifts from one filter to the next.

The way to avoid this is to use adaptive filters whose

coefficients are recomputed every sample or every block of

B samples (comprising a few milliseconds). For instance,

linear and bilinear interpolations [4, 12] are exactly adap-

tive crossfades between 3 (or 4) measured HRTFs that are

closest to the direction of τ�n) at any given time, where the
crossfade weights are linearly (or bilinearly) related to the

relative position of the sound source within the triangle (or

rectangle) defined by the original HRTF directions. By re-

computing the filter coefficients at sample rate, the adaptive

filtering will not introduce audible discontinuities in the sig-

nal, even with IIR models, provided that the spatial trajec-

tory function τ�n) is smooth and slowly-varying.
Obtaining the weights in the triangular or rectangular

case is a very simple geometrical problem. In triangular
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interpolation, if the closest HRTFs have directions d1, d2

and d3 relative to the user, and the virtual sound source has a

normalized direction d̂ (so that d̂ lies in the triangle defined

by d1, d2 and d3), the weights w that satisfy d̂ = w1d
1 +

w2d
2+w3d

3 are given by

w=

�

 d1 d2 d3





−1

d̂.

In rectangular (or bilinear) interpolation [4], if the azimuth

and elevation angles of the closest HRTFs are �� j�βk), for
j = 1�2 and k = 1�2, and the azimuth and elevation an-

gles of the virtual sound source is ��̂� β̂ ), the corresponding
weights will be

wjk =
|�2− j− �̂|

��2−�1)

|β2−k− β̂ |

�β2−β1)

corresponding to the HRTF �� j�βk), for j = 1�2 and k =
1�2. These weights are used in a variety of interpolation

contexts in the remaining of this section, and will be referred

to as the appropriate weights with respect to the interpola-

tion method (triangular or rectangular).

The choice between triangular or rectangular interpola-

tion may be based on computational performance (triangular

being roughly 25� faster because it combines 3 instead of

4 HRTFs) or on minimizing the number of transitions be-

tween different sets of HRTFs (rectangular subdivision of

the database creates half the number of regions as does tri-

angular subdivision).

Three adaptive interpolation approaches based on the

IIR filter model are presented in the sequel. The first one

uses the above weights to combine filter coefficients in the

filter equation, and the remaining two use the weights to po-

sition poles and zeros in the z plane representation of the IIR

filters obtained by the Kalman method or by the structured

IIR approach.

3.1. Interpolation of Filter Coefficients

A first approach to interpolate IIR models of HRTF filters is

to look at the IIR filter equation

y�n) =
N

∑
j=0

a jx�n− j)−
N

∑
j=1

b jy�n− j)

and to consider the coefficients a j and b j as functions of

n, defined as linear combinations of the coefficients of the

closest IIR models of measured HRTFs, using the appropri-

ate weights as discussed above.

This idea is almost a direct translation of the usual linear

interpolation of HRTF FIR filters, with the notable excep-

tion that in the FIR case the interpolation of the coefficients

is the same as the interpolation of the impulse responses, and

also of the transfer functions (due to linearity of the z trans-

form), whereas in the IIR case the interpolation affects si-

multaneously the numerator and denominator polynomials

of the transfer function

H�z) =
a0+a1z

−1+ · · ·+aNz
−N

1+b1z−1+ · · ·+bNz−N

that corresponds to the given IIR filter equation. Since the

interpolation of filter coefficients affects the position of the

poles and zeros in highly nonlinear ways, there is no a pri-

ori guarantee that interpolated filters will always be stable.

Unstable configurations were not observed in the numerical

experiments (section 4), and they should not be the cause of

troubles in the context of moving sound sources, where an

unstable configuration would probably be soon replaced by

a stable one.

3.2. Pole-Zero Interpolation �PZI)

The pole-zero interpolation takes the positions of the poles

and zeros (zeros of the numerator and of the denominator

of the transfer functions, respectively) of the IIR models of

3 or 4 HRTFs that are closest to the direction of the virtual

source, and combines them linearly using the appropriate

weights. Each pole (or zero) of the interpolated filter is ob-

tained by a linear combination of exactly one pole (zero)

from each of the 3 or 4 filters, where this set of matching

poles (zeros) has been defined beforehand (this problem will

be discussed in the sequel).

Consider the set of filters �Fj} for 1≤ j ≤ 3 (triangular

case) or 1≤ j ≤ 4 (rectangular case), defined by their pole-

zero structure

Fj ↔�π jk� ζ jk� k = 1� . . . �N}.

and overall gain factor Kj, that are supposed to be combined

with appropriate weights wj to create a new interpolated fil-

ter. By assuming that the poles and zeros are ordered ac-

cording to their association, in such a way that π1k�π2k�π3k
are corresponding poles and ζ1k�ζ2k�ζ3k are corresponding
zeros, the structure of the interpolated filter will be given by

F̂ ↔

�
π̂k = ∑ j w jπ jk�

ζ̂k = ∑ j w jζ jk� k = 1� . . . �N

�

.

The interpolation of the overall gain factor could sim-

ply be computed as K̂ = ∑ j w jKj, but in many contexts this

leads to poor interpolation results, because this expression

assumes that the overall gain of the interpolated filter is

similar to those of the closest filters used in the interpola-

tion. This assumption often fails to hold, for instance with

Kalman filters, which lack any kind of constraints on the po-

sition of poles and zeros. We propose to recompute the over-

all gain factor from the original HRTF data, as in section 2.2.

In the case of interpolation, where the original HRTF is un-

known, this means finding the best overall gain with respect
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to the closest measured HRTFs. Specifically, if �Hj} are the
transfer functions used in the interpolation, we define

K̂ j =

�
Hj� Ĥ�π̂� ζ̂ )

�

�Ĥ�π̂� ζ̂ )�2
�

and the interpolated overall gain factor as K̂ = ∑ j w jK̂ j.

In order to create associations of poles and zeros for dif-

ferent IIR filters one has to define exactly what it is that

must be achieved with the association. In the case of inter-

polation one wants to define intermediate IIR filters, and so

the structure of the interpolated poles and zeros must sat-

isfy the requirement that for each complex pole (or zero) its

complex conjugate is also a pole (zero) of the same filter.

This is the same as saying that the filter coefficients (and the

output filtered signal) have to be real-valued.

Even this minimal requirement already turns the associ-

ation problem into an intrinsically difficult problem. Real

poles (or zeros) may be readily associated with other real

poles (zeros). When it comes to complex poles or zeros one

is free to associate any members of different filters without

violating this requirement, as long as the exact same asso-

ciations are made with the corresponding complex conju-

gates. But there is no way of matching a filter with 2 zeros

at z = −1 and z = 1, for instance, with another filter with

2 zeros at z = −i and z = i. Any linear combination will

produce a complex filter as a result of interpolation. Only

under very special circumstances may a real pole (or zero)

be associated with a complex pole (zero), namely when the

multiplicity of the real pole or zero is even, and an associa-

tion of a pair of overlapping real poles (or zeros) with a pair

of complex poles (zeros) is made possible.

In the sequel this association problem will be addressed

in the specific contexts of IIR filters produced by the Kalman

method, and of structured IIR filters obtained by optimiza-

tion as seen in section 2.2.

3.3. PZI Using Kalman IIR Filters

Since the Kalman method has no way of regulating the pres-

ence or multiplicity of real poles or real zeros, some prepro-

cessing of the original filters is necessary in order to use the

produced IIR database in an interpolation context. Specifi-

cally, since overlapping poles or zeros are usually not pro-

duced by this method, the number of real poles in any filter

should be made equal, as well as the number of real zeros.

Two possible strategies for this preprocessing are: (1) allow

only complex poles and zeros in the filters; or (2) choose

the most frequent number of real poles (and of real zeros)

and force every non-conforming filter to adapt to the cho-

sen number of real poles (and of real zeros). In both cases

a search among modified versions of the filter is needed to

enforce the chosen structure of poles and zeros.

Once a conforming IIR database is produced, the asso-

ciation of poles and zeros may proceed by considering sepa-

rately the problem of associating real poles of one filter with

real poles of another filter, and so on for real zeros, complex

poles and complex zeros.

One association strategy was previously proposed in [12]

using a minimum distance criterion. Consider for instance a

set of complex poles π1�π2� . . . �πM that must be associated

with another set of complex poles ρ1�ρ2� . . . �ρM . The pro-
posed scheme is as follows: out of all possible permutations

p of the indices 1�2� . . . �M, choose the one that minimizes
the overall distance ∑ j |π j − ρp� j)|. This association is re-

flexive (that is, p−1 minimizes ∑ j |ρ j−πp−1� j)|), but it lacks
transitivity, meaning that the best association between filters

A and C may be incompatible with the best associations be-

tween filters A and B and between filters B and C. This is

a huge problem when trying to create associations between

poles and zeros of 3 or 4 HRTF filters at a time (as required

for interpolation).

We propose another association, based on frequency or-

dering. For every IIR model in a preprocessed database,

sort all complex poles and zeros according to their angles,

and use this ordering as the association for complex poles

and zeros of different filters, matching the j-th complex pole

(zero) of any filter with the j-th complex pole (zero) of any

other filter. Correspondingly, sort all real poles and zeros ac-

cording to their values, and use this ordering for association

as above. This association satisfies reflexivity and transi-

tivity, being a feasible substitute for the minimum distance

approach.

3.4. PZI Using Structured IIR Filters

Structured IIR filters were proposed with the PZI strategy

in mind, so the association of poles and zeros is already es-

tablished through the association of each frequency band to

exactly one pole and one zero. This is closely related to

the frequency-based association just proposed for IIR filters

obtained by the Kalman method.

It should be noted that real poles and zeros may occur in

structured IIR filters, either on the extreme frequency bands

(the first starting on 0 and the last ending on π) or in any
other band (if the magnitude of the pole or zero is zero after

optimization). When that happens, the corresponding filter

has actually two coinciding poles (or zeros) produced by the

same complex variable of the optimization model. During

interpolation, if the spatial trajectory of the virtual sound

source departs from a filter with a real pole in frequency

band j and reaches another filter where the matching pole

in the same frequency band is complex, the interpolation

scheme will produce mirrored, complex-conjugate pole tra-

jectories in frequency bands j and 2N− j+1 (on the lower

half of the unit circle), ensuring that the intermediate filters

will be real-valued, as they should be.
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Even though all poles and zeros used in the interpolation

are constrained within the unit circle, we still obtained best

results by using the interpolation of the recomputed over-

all gain factors K̂ j, as defined in section 3.2, instead of the

interpolation of the original gains Kj.

4. NUMERICAL EXPERIMENTS

The methodology for building IIR databases and for using

HRTF interpolation in binaural rendering presented in the

previous sections may be applied to any HRTF database, re-

gardless of being a tailored, individualized HRTF database

or a generic, non-individualized HRTF database. To provide

an objective evaluation of the methodology and of the inter-

polation procedure, we chose the CIPIC database [2] as an

illustration.

The goal of this section is to objectively quantify the

errors involved in the whole process. At first two sources

of errors must be identified: the errors introduced by going

from the original, measured HRTF filters to the simplified

IIR models obtained by the Kalman method or the struc-

tured IIR approach, and then the errors that the interpolation

procedure adds on top of the first errors.

While it is true that all errors are undesired regardless of

their source, it should be noted that the first source of errors

(of building a replacement IIR database) is part of a trade-

off between audio fidelity and computational performance

or, in other words, they are a price we are willing to pay for

having more simultaneous users. The errors arising from the

interpolation procedure are useful for comparing different

approaches.

4.1. Impact on Performance

The first question we would like to answer regards the com-

putational costs of using IIR models of various numbers of

poles and zeros compared to the cost of using the original

FIR filters. In this comparison we assumed that all filter

parameters are recomputed at a sample-by-sample basis, so

that all filters are computed according to their filter equa-

tions (in a context of static sound sources, the correspond-

ing FIR filters might be computed using FFT convolution,

but this is not the case here).

Figure 1 shows the the percentage of time required to

compute each output sample of the IIR models of the HRTF

filters for several N values, relative to the time required to

compute the corresponding output sample of the FIR filter.

This comprises the time spent in interpolating the filter co-

efficients to obtain the interpolated filter equation, as well

as the time required to apply the filter equation to past in-

put/output values. The second curve in the figure is the re-

ciprocal of the first curve, representing the (relative) num-

ber of simultaneous users with IIR filters requiring the same

computer power as a single user with a FIR filter. It can
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Figure 1. Relative times for computing IIR output for sev-

eral N values, and corresponding increase factor for the

number of users.

be seen that for N = 20 there is a ten-fold gain in computer

time and number of simultaneous users allowed, and this

only improves as smaller values of N are considered (with

an implied increase in approximation errors, as will be seen

in the sequel).

4.2. Fitness of the IIR Models

The second addressed question is exactly how many poles

and zeros in the IIR models are necessary or desired in order

to build the alternative database of filters. To help answer

this question, figure 2 shows graphs of the relative errors of

the filters obtained by the Kalman method and the structured

approach, measured using magnitude transfer functions of

the IIR and FIR versions, as functions of the number of poles

and zeros used. Each graph shows the average relative error

over all 1250 directions in the CIPIC database, as well as

the minimum and maximum error values for each N.

It can be seen that both models have their quality im-

proved as the filter orders increase, as should be expected,

and that the structured approach manages to produce filters

that are better than Kalman filters, on the average, up to 12

poles and 12 zeros, and not much worse after that (up to 20

poles and 20 zeros). Reasonably good fits start appearing

for N = 4 with structured IIR models (minimum curve), and

the error of the worst-case fits (maximum curves) also drop

with N for both methods.

For any given value of N, the relative errors of the mod-

els as functions of azimuth and elevation angles are not uni-

formly distributed, but instead they are concentrated in cer-

tain extreme directions, such as lower-front-left and lower-

back-right, as can be seen in the example of figure 3.

4.3. Fitness of the Interpolation Scheme

The next experiment aims at objectively evaluating the qual-

ity of the interpolation schemes presented in section 3. Since
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Figure 2. Relative errors of the Kalman filters (top) and

Structured IIR filters (bottom) as functions of the number of

poles and zeros.

it would be difficult to objectively assert anything about in-

terpolated directions whose original HRTFs are not known,

this experiment tries to recreate HRTFs for directions that

do exist in the database, but interpolating from other close

directions.

Figure 4 presents error graphs similar to those of fig-

ure 2, but referring to the relative errors of the filter coeffi-

cient interpolation. Unlike the modeling errors of the pre-

vious section, interpolation errors exhibit a nearly Gaussian

distribution, and for this reason we present average and stan-

dard deviation values for each method.

The comparison of PZI applied to Kalman filters and

structured IIR filters is shown in figure 5. As explained in

section 3.3, PZI is only applicable to Kalman filters if the

database is preprocessed, so that all filters have the same

configuration of real poles and zeros. Here we forced all

poles and zeros to become complex, by substituting every

pair �A�B) of real poles (or real zeros) for two overlapping
poles (zeros) at �A+B)/2, and performing a gradient search
over the set of complex conjugate pole (zero) pairs in order

to minimize the relative error with respect to the original

HRTF. For Kalman PZI the errors represent the error contri-

bution of both preprocessing and interpolation.
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Figure 3. Error of structured IIR model for left ear and

N=16 as a function of azimuth and elevation angles.
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Figure 4. Relative errors for the filter coefficient interpola-

tion applied to Kalman filters and structured IIR filters, as

functions of the number of poles and zeros.

It can be seen that the relative errors of the structured

IIR approach with filter coefficient interpolation for N = 18

is 14� of the norm of the corresponding HRTF filters, and

for PZI it is 19� with N = 16, whereas the best values ob-

tained by Kalman filters are 20� (with filter coefficient in-

terpolation for N = 16�18�20) and 40� (with PZI for N =
4� . . . �12).

To provide a more musical measure of what these rela-

tive errors mean, we also computed the differences between

interpolated and measured filters on a decibel scale, as a

function of frequency. The average error values (over all

directions in the database) for structured IIR models with

N=18 and filter coefficient interpolation are 0.93dB for fre-

quencies up to 5kHz, 1.35dB between 5kHz and 10kHz,

1.87dB between 10kHz and 15kHz, and 3dB above 15kHz.

This increase in errors as a function of frequency had al-

ready been observed by [1] when interpolating FIR HRTF

filters, and its growth rate can be related to the angular sam-

pling of the HRTF database.
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Kalman filters and structured IIR filters, as functions of the
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5. CONCLUSION

We presented in this paper a new class of IIR filters that

are suitable for HRTF interpolation. We showed that these

filters can be used in the context of filter coefficient interpo-

lation and pole-zero interpolation for increasing the number

of simultaneous users allowed by a factor of 10, with relative

errors about 14� (or 19� for PZI) of the original HRTFs.

One of the possible directions of further research is to

make the interpolation scheme more flexible by allowing

different values of N in the same IIR database. The moti-

vation for this lies in figure 2, where even for very small

values of N it is possible to obtain good structured IIR mod-

els for some directions in the HRTF database. This flexibil-

ity might be accomplished by resorting to overlapping poles

and zeros: whenever a pole lies on top of a zero, their con-

tributions to the transfer function cancel out and the filter is

equivalent to a filter with fewer poles and zeros.

The present experimental evaluation of the interpolation

procedures was based on objectively quantifiable compari-

sons. These should be compared in the future to psychoa-

coustical experiments, which are of utmost importance in

a context such as auralization where the last word comes

from the user, namely whether he or she perceives the spa-

tial trajectory of the virtual sound source as intended by the

composer or sound designer.
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