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1 The Expressive Power of Temporal ConnetivesThe expressivity of a language is always measured with respet to someother language. That is, when talking about expressivity, we are alwaysomparing two or more languages. When measuring the expressivity of alarge number of languages, it is usually more onvenient to have a singlelanguage with respet to whih all other languages an be ompared, if suha language is known to exist.In the ase of propositional one-dimensional temporal languages de�nedby the presene of a �xed number of temporal onnetives (also alled tem-poral modalities), the expressivity of those languages an be all measuredagainst a fragment of �rst-order logi, namely the monadi �rst-order lan-guage. This is the fragment that ontains a binary < (to represent theunderlying temporal order), = (whih we assume is always in the language)and a set of unary prediates Q1(x); Q2(x); : : : (whih aount for the in-terpretation of the propositional letters, that are interpreted as a subset ofthe temporal domain T ). Indeed, any one-dimensional temporal onnetivean be de�ned as a well-formed formula in suh a fragment, known as theonnetive's truth table; one-dimensionality fores suh truth tables to havea single free variable.In the ase of omparing the expressivity of temporal onnetives, an-other parameter must be taken into aount, namely the underlying ow oftime. Two temporal languages may have the same expressivity over one owof time (say, the integers) but may di�er in expressivity over another (e.g.the rationals); see the disussion on the expressivity of the US onnetivesbelow.Let us exemplify what we mean by those terms. Consider the onnetivessine(S), until(U), future(F ), and past(P ). Given a ow of time (T;<; h),the truth value of eah of the above onnetives at a point t 2 T is deter-mined as follows:(T;<; h); t j= Fp i� (9s > t)(T;<; h); s j= p;(T;<; h); t j= Pp i� (9s < t)(T;<; h); s j= p;(T;<; h); t j= U(p; q) i� (9s > t)((T;<; h); s j= p^8y(t < y < s! (T;<; h); y j= q));(T;<; h); t j= S(p; q) i� (9s < t)((T;<; h); s j= p^8y(s < y < t! (T;<; h); y j= q))If we assume that h(p) represents a �rst-order unary prediate that isinterpreted as h(p) � T , then these truth values above an be expressed as�rst-order formulas. Thus: 2



(a) (T;<; h); t j= Fq i� �F (t; h(q)) holds in (T;<),(b) (T;<; h); t j= Pq i� �P (t; h(q)) holds in (T;<),() (T;<; h); t j= U(q1; q2) i� �U (t; h(q1); h(q2)) holds in (T;<), and(d) (T;<; h); t j= S(q1; q2) i� �S(t; h(q1); h(q2)) holds in (T;<).where(a) �F (t;Q) = (9s > t)Q(s);(b) �P (t;Q) = (9s < t)Q(s);() �U(t;Q1; Q2) = (9s > t)(Q1(s) ^ 8y(t < y < s! Q2(y)));(d) �S(t;Q1; Q2) = (9s < t)(Q1(s) ^ 8y(s < y < t! Q2(y))):�#(t;Q1; : : : ; Qn) is alled the truth table for the onnetive #. Thenumber n of parameters in the truth table will be the number of plaesin the onnetive, e.g. F and P are one plae onnetive, and their truthtables have a single parameter; S and U are two-plae onnetives, withtruth tables having two parameters.It is lear that in suh a way, we start de�ning any number of onnetives.For example onsider �(t;Q) = 9xy(t < x < y ^ 8s(x < s < y ! Q(s)));then �(t;Q) means `There is an interval in the future of t inside whih P istrue.' This is a table for a onnetive Fint: (T;<; h); t j= Fint(p) i� �(t; h(p))holds in (T;<):We are in ondition of presenting a general de�nition of what a temporalonnetive is:De�nition 1.11. Any formula �(t;Q1; :::; Qm) with one free variable t, in the monadi�rst-order language with prediate variable symbols Qi, is alled anm-plae truth table (in one dimension).2. Given a syntati symbol # for an m-plae onnetive, we say it hasa truth table �(t;Q1; :::; Qm) i� for any T; h and t, (�) holds:(�) : (T;<; h); t j= #(q1; :::; qm) i� (T;<) j= �(t; h(q1); :::; h(qm)):
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This way we an de�ne as many onnetives as we want. Usually, someonnetives are de�nable using other onnetives. For example, it is wellknown that F is de�nable using U as Fp � U(p;>). As another example,onsider a onnetive that states the existene of a \next" time point: Æ �U(>;?).The onnetive Æ is a nie example on how the de�nability of a onne-tive by others depends on the lass of ows of time being onsidered. Forexample, in a dense ow of time, Æ an be de�ned in terms of F and P |atually, sine there are no \next" time points anywhere, Æ � ?. Similarly,in an integer-like ow of time, Æ is equivalent to >.On the other hand, onsider the ow (T;<) of time with a single pointwithout a \next time": T = f::: � 2;�1; 0; 1; 2; :::g [ f(1=n) j n = 1; 2; 3:::g,with < being the usual order; then Æ is not de�nable using P and F . To seethat, suppose for ontradition that Æ is equivalent to A where A is writtenwith P and F and, maybe, atoms. Replae all appearanes of atoms by ?to obtain A0. Sine Æ $ A holds in the struture (T;<; h0) with all atomsalways false, in this struture Æ $ A0 holds. As neither Æ nor A0 ontainatoms, Æ $ A0 holds in all other (T;<; h) as well. Now A0 ontains onlyP and F , >, and ? and the lassial onnetives. Sine F> � P> � >and F? � P? � ?, at every point, A0 must be equivalent (in (T;<)) toeither > or ? and so annot equal Æ whih is true at 1 and false at 0. As aonsequene, Æ is not de�nable using P and F over linear time.In general, given a family of onnetives, e.g. fF; Pg or fU; Sg, we anbuild new onnetives using the given ones. That these new onnetives areonnetives in the sense of De�nition 1 follows from the following.Lemma 1.2 Let #1(q1; :::; qm1); :::;#n(q1; :::; qmn ) be n temporal onne-tives with tables �1; :::; �n. Let A be any formula built up from atomsq1; :::; qm, the lassial onnetives, and these onnetives. Then there existsa monadi  A(t;Q1; :::; Qm) suh that for all T and h,(T;<; h); t j= A i� (T;<) j=  A(t; h(q1); :::; h(qm)):Proof. We onstrut  A by indution on A. The simple ases are:  qj =Qj(t),  :A = : A and  A^B =  A ^  B .For the temporal onnetive ase, we onstrut the formula  #i(A1;:::;Ami)= �i(t;  A1 ; :::;  Ami ); the right-hand side is a notation for the formula ob-tained by substituting  Aj (x) in �i wherever Qj(x) appears, with the ap-propriate renaming of bound variables to avoid lashes. The indution hy-pothesis is applied over  A1 ; :::;  Ami and the result is simply obtained bytruth table of the onnetive #i. �4



The formula  A built above is alled the �rst-order translation of a tem-poral formula A. An m-pale onnetive # with truth table �(t;Q1; :::; Qm)is said to be de�nable from onnetives #1; : : : ;#n in a ow of time (T;<)if there exists a temporal formula A built from those onnetives whose �rstorder translation is  A suh that(T;<) j=  A $ �:The expressive power of a family of onnetives over a ow of time ismeasured by how many onnetives it an express over the ow of time. If itan express any oneivable onnetive (given by a monadi formula), thenthat family of onnetives is expressively omplete.De�nition 1.3 A temporal language with one-dimensional onnetives issaid to be expressively omplete or, equivalently, funtionally omplete, inone dimension over a lass T of partial orders i� for any monadi formula (t;Q1; :::; Qm), there exists an A of the language suh that for any (T;<)in T , for any interpretation h for q1; :::; qm,(T;<) j= 8t( $  A)(t; h(q1); :::; h(qm)):In the ases where T = f(T;<)g we talk of expressive ompletenessover (T;<). For example, the language of Sine and Until is expressivelyomplete over integer time and real number ow of time, as we are goingto see in Setion 1.2; but they are not expressively omplete over rationalnumbers time [GPSS80℄.De�nition 1.4 A ow of time (T;<) is said to be expressively omplete(or funtionally omplete) (in one dimension) i� there exists a �nite set of(one-dimensional) onnetives whih is expressively omplete over (T;<), inone dimension.The quali�ation of one-dimensionality in the de�nitions above will beexplained when we introdue the notion of H-dimension below.These notions parallel the de�nability and expressive ompleteness oflassial logi. We know that in lassial logi f:;!g is suÆient to de�neall other onnetives. Furthermore, for any n-plae truth table  : 2n ! 2there exists an A(q1; :::; qn) of lassial logi suh that for any h,h(A) =  (h(q1); :::; h(qn)):This is the expressive ompleteness of f:;!g in lassial logi.5



The notion of expressive ompleteness leads us to formulate two ques-tions:(a) Given a �nite set of onnetives and a lass of ows of time, are theseonnetives expressively omplete?(b) In ase the answer to (a) is no, we would like to ask: given a lass ofows, does there exist a �nite set of one-dimensional onnetives thatis expressively omplete?These questions oupy us to the rest of this setion. We show thatthe notion of expressive ompleteness is intimately related to the separationproperty , whih we investigate in Setion.The answer to question (b) is related to the notion of H-dimension,disussed in Setion 1.3.1.1 Separation and Expressive CompletenessThe notion of separation involves partitioning a ow of time in disjointparts (typially: present, past and future). A formula is separable if it isequivalent to another formula whose temporal onnetives refer only to oneof the partitions.If every formula in a language is separable, that means that we have atleast one onnetive that has enough expressivity over eah of the partitions.So we might expet that that set of onnetives is expressively omplete overa lass of ows that admits suh partitioning, provided the partitioning isalso expressible by the onnetives.The notion of separation was initially analysed in terms of linear ows,where the notion of present, past and future most naturally applies. Sowe start our disussion with separation over linear time. We later extendseparation to generi ows.1.1.1 Separation over linear timeConsider a linear ow of time (T;<). Let h; h0 be two assignments andt 2 T . We say that h; h0 agree on the past of t, h =<t h0, i� for any atom qand any s < t, s 2 h(q) i� s 2 h0(q):We de�ne h0 ==t h for agreement of the present , i� for any atom qt 2 h(q) i� t 2 h0(q):6



and h0 =>t h, for agreement on the future, i� for any atom q and any s > t,s 2 h(q) i� s 2 h0(q):Let T be a lass of linear ows of time and A be a formula in a temporallanguage over (T;<). We say that A is a pure past formula over T , i� forall (T;<) in T , for all t 2 T ,8h; h0; (h =<t h0) implies that (T;<; h); t j= A i� (T;<; h0); t j= A:Similarly, we de�ne pure future and pure present formulas.Suh a de�nition of purity is a semanti one. In a temporal languageontaining only S and U there is also have a notion of syntati purity asfollows. A formula is a boolean ombination of �1, . . . , �n if it is built from�1, . . . , �n using only boolean onnetives. A syntatially pure presentformula is a boolean ombination of atoms only. A syntatially pure pastformula is a boolean ombination of formulas of the form S(A;B) where Aand B are either pure present or pure past. Similarly, a syntatially purefuture formula is a boolean ombination of formulas of the form U(A;B)where A and B are either pure present or pure future.It is lear that if A is a syntatially pure past formula, then A is apure past formula; similarly for pure present and pure future formulas. Theonverse, however, is not true. For example, from the semantial de�nition,all temporal temporally valid formulas are pure future (and pure past, andpure present), inluding those involving S.We are now in a position to de�ne the separation property.De�nition 1.5 Let T be a lass of linear ows of time and A be a formulain a temporal language L. We say A is separable in L over T i� there existsa formula in L whih is a boolean ombination of pure past, pure future,and atomi formulas and is equivalent to A everywhere in any (T;<) fromT . A set of temporal onnetives is said to have the separation propertyover T i� every formula in the temporal language of these onnetives isseparable in the language (over T ).We now show that separation implies expressive ompleteness.Theorem 1.6 Let L be a temporal language built from any number (�niteor in�nite) of onnetives in whih P and F are de�nable over a lass Tof linear ows of time. If L has the separation property over T then L isexpressively omplete over T . 7



Proof. If T is empty, L is trivially expressively omplete, so suppose not.We have to show that for any '(t;Q) in the monadi theory of linear orderwith prediate variable symbols Q = (Q1; :::; Qn), there exists a formulaA = A(q1; :::; qn) in the temporal language suh that for all ows of time(T;<) from T , for all h; t, (T;<; h); t j= A i� (T;<) j= '(t; h(q1); :::; h(qn)).We denote this formula by A['℄ and proeed by indution on the depthm of nested quanti�ers in '. For m = 0, '(t) is quanti�er free. Just replaeeah appearane of t = t by >, t < t by ?, and eah Qj(t) by qj to obtainA['℄.For m > 0, we an assume ' = 9x (t; x;Q) where  has quanti�er depth� m (the 8 quanti�er is treated as derived).Assuming that we do not use t as a bound variable symbol in  andthat we have replaed all appearanes of t = t by > and t < t by ? thenthe atomi formulas in  whih involve t have one of the following forms:Qi(t), t < y, t = y, or y < t, where y ould be x or any other variable letterourring in  .If we regard t as �xed, the relations t < y; t = y; t > y beome unaryand an rewritten, respetively, as R<(y), R=(y) and R>(y), where R<, R=and R> are new unary prediate symbols.Then  an be rewritten equivalently as t0(x;Q;R=; R>; R<);in whih t appears only in the form Qi(t). Sine t is free in  , we an gofurther and prove (by indution on the quanti�er depth of  ) that  t0 anbe equivalently rewritten as t =_j [�j(t) ^  tj(x;Q;R=; R>; R<)℄;where� �j(t) is quanti�er free,� Qi(t) appear only in �j(t) and not at all in  tj ,� and eah  tj has quanti�er depth � m.By the indution hypothesis, there is a formula Aj = Aj(q; r=; r>; r<) inthe temporal language suh that, for any h; x,(T;<; h); x j= Aj i� (T;<) j=  tj(x; h(q1); :::; h(qn); h(r=); h(r>); h(r<)):8



Now let 3q be an abbreviation for a temporal formula equivalent (overT ) to Pq _ q _ Fq whose existene in L is guaranteed by hypothesis. Thenlet B(q; r=; r>; r<) = Wj(A[�j ℄ ^ 3Aj). A[�j ℄ an be obtained from thequanti�er free ase.In any struture (T;<) from T for any h interpreting the atoms q, r=; r>and r<, the following are straightforward equivalenes(T;<; h); t j= B(T;<; h); t j= Wj(A[�j ℄ ^3Aj)Wj((T;<; h); t j= A[�j ℄ ^ (T;<; h); t j= 3Aj)Wj(�j(t) ^ 9x((T;<; h); x j= Aj))Wj(�j(t) ^ 9x tj(x; h(q1); :::; h(qn); h(r=); h(r>); h(r<)))9xWj(�j(t) ^  tj(x; h(q1); :::; h(qn); h(r=); h(r>); h(r<)))9x t0(x; h(q1); :::; h(qn); h(r=); h(r>); h(r<)):Now provided we interpret the r atoms as the appropriate R prediates,i.e.:� h�(r=) = ftg,� h�(r<) = fs j t < sg, and� h�(r>) = fs j s < tg,we obtain(T;<; h�); t j= B i� 9x (t; x; h�(q1); :::; h�(qn)) i� '(t; h�(q1); :::; h�(qn)):B is almost the A['℄ we need exept for one problem. B ontains,besides the qi, also three other atoms, r=; r>, and r<, and equation (�)from De�nition 9.1.1 above is valid for any h� whih is arbitrary on theqi but very speial on r=; r>; r<. We are now ready to use the separationproperty (whih we haven't used so far in the proof). We use separationto eliminate r=; r>; r< from B. Sine we have separation B is equivalentto a boolean ombination of atoms, pure past formulas, and pure futureformulas.So there is a boolean ombination � = �(p+; p�; p0) suh thatB $ �(B+; B�; B0);where B0(q; r>; r=; r<) is a ombination of atoms, B+(q; r>; r=; r<) are purefuture, and B�(q; r>; r=; r<) are pure past formulas.Finally, B� = �(B�+; B��; B�0) where9



� B�0 = B0(q;?;>;?);� B�+ = B+(q;>;?;?);� B�� = B�(q;?;?;>).Then we obtain for any h�,(T;<; h�); t j= B i�(T;<; h�); t j= �(B+; B�; B0)i�(T;<; h�); t j= �(B�+; B��; B�0)i�(T;<; h�); t j= B�:Hene (T;<; h�); t j= B� i� (T;<) j= '(t; h�(q)):This equation holds for any h� arbitrary on q, but restrited on r<; r>; r=.But r<; r>; r= do not appear in it at all and hene we obtain that for anyh, (T;<; h); t j= B� i� (T;<) j= '(t; h�(q)). So make A['℄ = B� and we aredone. �The onverse is also true: expressive ompleteness implies separationover linear time. The proof involves using the �rst-order theory of lin-ear time to �rst separate a �rst-order formula over linear time; a temporalformula is translated into the �rst-order language, where it is separated; ex-pressive ompleteness is needed then to translate eah separated �rst-ordersubformula into a temporal formula. Details are omitted, but an be foundin [GHR94℄.1.1.2 Generalized SeparationThe separation property is not restrited to linear ows of time. In thissetion we generalize the separation property over any lass of ows of timeand see that Theorem 1.6 has a generalised version.The basi idea is to have some relations that will partition every ow oftime in T , playing the role of <, > and = in the linear ase.De�nition 1.7 Let 'i(x; y); i = 1; :::; n be n given formulas in the monadilanguage with < and let T be a lass of ows of time. Suppose 'i(x; y)partition T , that is, for every t in eah (T;<) in T the sets T (i; t) = fs 2T j 'i(s; t)g for i = 1; :::; n are mutually exlusive and Si T (i; t) = T .In analogy to the way that F and P represented < and >, we assumethat for eah i there is a formula �i(t; x) suh that 'i(t; x) and �i(t; x) areequivalent over T and �i is a boolean ombination of some 'j(x; t). Also10



assume that < and = an be expressed (over T ) as boolean ombinationsof the 'i:Then we have the following series of de�nitions:� For any t from any (T;<) in T , for any i = 1; :::; n, we say that truthfuntions h and h0 agree on T (i; t) if and only if h(q)(s) = h0(q)(s) forall s in T (i; t) and all atoms q.� We say that a formula A is pure 'i over T if for any (T;<) in T , anyt 2 T and any two truth funtions h and h0 whih agree on T (i; t), wehave (T;<; h); t j= A i� (T;<; h0); t j= A:� The logi L has the generalized separation property over T i� everyformula A of L is equivalent over T to a boolean ombination of pureformula.Theorem 1.8 (generalized separation theorem) Suppose the languageL an express over T the 1-plae onnetives #i, i = 1; :::; n, de�ned by:(T;<; h); t j= #i(p) i� 9s 'i(s; t) holds in (T;<)and (T;<; h); s j= p:If has the generalized separation property over a lass T of ows of timethen L is expressively omplete over T .A proof of this result appears in [Ami85℄. See also [GHR94℄.The onverse does not always hold in the general ase, for it depends onthe theory of the underlying lass T .A simple appliation of the generalised separation theorem is the follow-ing. Suppose we have a �rst order language with the binary order prediates<, >, = with their usual interpretation, and suppose it also ontains a par-allel operator j de�ned by:xjy =def :[(x = y) _ (x < y) _ (y < x)℄:Suppose we have a new temporal onnetive D, de�ned by(T;<; h); t j= Dq i� 9xjtsuhthat(T;<; h); x j= q:Finally, A is said to be pure parallel over a lass T of ows of time i� for allt from any (T;<) from T , for all h =jt h0,(T;<; h); t j= Ai�(T;<; h0); t j= A;11



where h =jt h0 i� 8xjt8q(x 2 h(q)$ x 2 h0(q)):It is lear what separation means in the ontext of pure present, past,future, and parallel. It is simple to hek that the <;>;=; j satisfy thegeneral separation property and other preonditions for using the generalizedseparation theorem. Thus that theorem gives immediately the following.Corollary 1.9 Let L be a language with F; P;D over any lass of ows oftime. If L has a separation then L is expressively omplete.1.2 Expressive Completeness of Sine and Until over IntegerTimeAs an example of the appliations of separation to the expressive omplete-ness of temporal language, we are going to sketh the proof of separationof the Sine and Until-temporal logi ontaining over linear time. The fullproof an be found in [Gab89, GHR94℄. With separation and Theorem 1.6we immediately obtain that the onnetives S and U are expressively om-plete over the integers; the original proof of the expressive ompleteness ofS and U over the integers is due to Kamp [Kam68℄.The basi idea of the separation proess is to start with a formula inwhih S and U may be nested inside eah other and through several trans-formation steps we are going to systematially remove U from inside S andvie-versa. This gives us a syntatial separation whih, obviously, impliesseparation.As we shall see there are eight ases of nested ourrenes of U withinan S to worry about. It should be noted that all the results in the rest ofthis setion have dual results for the mirror images of the formulas. Themirror image of a formula is the formula obtained by interhanging U andS; for example, the mirror image of U(p ^ S(q; r); u) is S(p ^ U(q; r); u).We start dealing with boolean onnetives inside the sope of temporaloperators, with some equivalenes over integer ows of time. We say thata formula A is valid over a ow of time (T;<) if it is true at all t 2 T ;notation: (T;<) j= ALemma 1.10 The following formulas (and their mirror images) are validover integer time:� U(A _B;C)$ U(A;C) _ U(B;C);� U(A;B ^ C)$ U(A;B) ^ U(A;C);� :U(A;B)$ G(:A) _ U(:A ^ :B;:A);12



� :U(A;B)$ G(:A) _ U(:A ^ :B;B ^ :A).Proof. Simply apply the semantial de�nitions. �We now show the eight separation ases involving simple nesting andatomi formulas only.Lemma 1.11 Let p; q; A, and B be atoms. Then eah of the formulas belowis equivalent, over integer time, to another formula in whih the only appear-anes of the until onnetive are as the formula U(A;B) and no appearaneof that formula is in the sope of an S:1. S(p ^ U(A;B); q),2. S(p ^ :U(A;B); q),3. S(p; q _ U(A;B)),4. S(p; q _ :U(A;B)),5. S(p ^ U(A;B); q _ U(A;B)),6. S(p ^ :U(A;B); q _ U(A;B)),7. S(p ^ U(A;B); q _ :U(A;B)), and8. S(p ^ :U(A;B); q _ :U(A;B)):Proof. We prove the �rst ase only; omitting the others. Note that S(p ^U(A;B); q) is equivalent toS(p; q) ^ S(p;B) ^B ^ U(A;B)_ [A ^ S(p;B) ^ S(p; q)℄_ S(A ^ q ^ S(p;B) ^ S(p; q); q):Indeed, the original formula holds at t i� there is s < t and u > s suhthat p holds at s, A at u, B everywhere between s and u, and q everywherebetween s and t. The three disjunts orrespond to the ases u > t,u = t,and u < t respetively. Note that we make essential use of the linearity oftime. �We now know the basi steps in our proof of separation. We simply keeppulling out Us from under the sopes of Ss and vie versa until there areno more. Given a formula A, this proess will eventually leave us with a13



syntatially separated formula, i.e. a formula B whih is a boolean ombi-nation of atoms, formulas U(E;F ) with E and F built without using S andformulas S(E;F ) with E and F built without using U . Clearly, suh a B isseparated.We start dealing with more than one U inside an S. In this ontext, weall a formula in whih U and S do not appear pure.Lemma 1.12 Suppose that A and B are pure formulas and that C and Dare suh that any appearane of U is as U(A;B) and is not nested underany Ss. Then S(C;D) is equivalent to a syntatially separated formula inwhih U only appears as the formula U(A;B).Proof. If U(A;B) does not appear then we are done. Otherwise, by rear-rangement of C and D into disjuntive and onjuntive normal form, respe-tively, and repeated use of Lemma 1.10 we an rewrite S(C;D) equivalentlyas a boolean ombination of formulas S(C1;D1) with no U appearing. Thenthe preeding lemma shows that eah suh boolean onstituent is equivalentto a boolean ombination of separated formulas. Thus we have a separatedequivalent. �Next let us begin the indutive proess of removing Us from more thanone S. We present the separation in a resendo. Eah step introdues extraomplexity in the formula being separated and uses the previous ase as astarting point.Lemma 1.13 Suppose that A;B, possibly subsripted, are pure formulas.Suppose C;D, possibly subsripted, ontain no S. Then E has a syntatiallyseparated equivalent if:� the only appearane of U in E is as U(A;B);� the only appearanes of U in E are as U(Ai; Bi);� the only appearanes of U in E are as U(Ci;Di);� E is any U; S formula.We omit the proof, referring to [GHR94, Chapter 10℄ for a detailed a-ount. But note that sine eah ase above uses the previous one as anindution basis, this proess of separation tends to be highly exponential.Indeed, the separated version of a formula an be many times larger thanthe initial one. We �nally have the main results.14



Theorem 1.14 (separation theorem) Over the integer ow of time, anyformula in the fU; Sg-language is equivalent to a separated formula.Proof. This follows diretly from the preeding lemma beause, as we havealready noted, syntati separation implies separation. �Theorem 1.15 The language fU; Sg is expressively omplete over integertime.Proof. This follows from the separation theorem and Theorem 1.6. �Other known separation and expressive ompleteness results over lineartime are [GHR94℄:� The language fU; Sg is separable over real time. Indeed, it is separableover any Dedekind omplete linear ow of time. As a onsequene, itis also expressively omplete over suh ows.� The language fU; Sg is not separable over the rationals; as a result, it isnot separable over the lass of linear ows of time, nor is it expressivelyomplete over suh ows.The problem of fU; Sg over generi linear ows of time is that theymay ontain gaps. It is possible to de�ne a �rst order formula that makes aproposition true up until a gap and false afterwards. Suh formula, however,annot be expressed in terms of fU; Sg. So is there an extra set of onnetivesthat is expressively omplete over the rationals? The answer in this ase isyes, and they are alled the Stavi onnetives. These are onnetives whosetruth value depends on the existene of gaps in the ow of time, and thereforeare always false over integers or reals. For a detailed disussion on separationin the presene of gaps, please refer to [GHR94, Chapters 11 and 12℄.We remain with the following generi question: given a ow of time, anwe �nd a set of onnetives that is expressively omplete over it? This isthe question that we investigate next.1.3 H-dimensionThe notion of Henkin- or H-dimension involves limiting the number of boundvariables employed in �rst-order formulas. We will see that a neessaryondition for there to exist a �nite set of onnetives whih is expressivelyomplete over a ow of time is that suh ow of time have a �nite H-dimension. 15



As for a suÆient ondition for a �nite expressively omplete set ofonnetives, we will see that if many-dimensional onnetives are allowed,than �nite H-dimension implies the existene of suh �nite set of onnetives.However, when we onsider one-dimensional onnetives suh as Sine andUntil, �nite H-dimension is no longer a suÆient ondition.In fat our approah in this disussion will be based on a weak many-dimensional logi. It is many dimensional beause the truth value of aformula is evaluates at more than one time-point. It is weak beause atomiformulas are evaluated only at a single time point (alled the evaluationpoint), while all the other points are the referene points). Suh weak manydimensionality allows us to de�ne the truth table of many dimensional sys-tems as formulas in the monadi �rst-order language, as opposed to a fullm-dimensional system (in whih atoms are evaluated at m time points)whih would require an m-adi language.Anm-dimensional table for an n-plae onnetive is a formula of the form�(x1; : : : ; xm;R1; : : : ; Rn), where � is a formula of the �rst-order prediatelanguage, written with symbols from f<g[ fR1; : : : ; Rng, where R1; : : : ; Rnare speial m-plae relation symbols. Without loss of expressivity, we willfurther assume that eah term yj ourring in Ri(y1; : : : ; ym) is a always avariable.Fix a temporal system T whose language ontains atoms q1; q2; : : : ; thelassial onnetives, and the speial symbols #1; : : : ;#j, standing for n1-,: : : ; nj-plae onnetives respetively. Let �1; : : : ; �j be theirm-dimensionaln1-,: : : ; nj-plae tables respetively.Remark 1.16 Sine there are �nitely many �i to onsider, we an furtherassume that there is b � m suh that eah �i is written with variablesx1; : : : ; xb only.The semantis of m-dimensional formulas is given by:De�nition 1.17 Let (T;<) be a ow of time. Let h be an assignment intoT , i.e. for any atom q, h(q) � T . We de�ne the truth value of eah formulaA of the language of T at m indies a1; : : : ; am�1; t 2 T under h, as follows:1. (T;<; h); a1; : : : ; am�1; t j= q i� t 2 h(q), q atomi.2. (T;<; h); a1; : : : ; am�1; t j= A ^B i� (T;<; h); a1; : : : ; am�1; t j= A and(T;<; h); a1; : : : ; am�1; t j= B.3. (T;<; h); a1; : : : ; am�1; t j= :A i� (T;<; h); a1; : : : ; am�1; t 6 j= A.4. For eah i (1 � i � j), (T;<; h); a1; : : : ; am�1; t j= #i(A1; : : : ; Ani) i�16



T j= �i(a1; : : : ; am�1; t; h(A1); : : : ; h(Ani)), whereh(Ak) =def: f(t1; : : : ; tm) 2 Tm j (T;<; h); t1; : : : ; tm j= Akg:Let LM denote the monadi language with <, �rst-order quanti�ers overelements, and an arbitrary number of monadi prediate symbols Qi forsubsets of T . We will regard the Qi as prediate (subset) variables, impliitlyassoiated with the atoms qi. We de�ne the translation of an m-dimensionaltemporal formula A into a monadi formula ÆA:1. If A is an atom qi, we set ÆA = (x1 = x1) ^ : : : ^ (xm�1 = xm�1) ^Qi(xm).2. Æ(A ^B) = ÆA ^ ÆB, and Æ(:A) = :ÆA.3. Let A = #i(A1; : : : ; Ani), where �i(x1; : : : ; xm;R1; : : : ; Rni) is the ta-ble of #i. Sine we an always rewrite � suh that all ourrenes ofRk(y1; : : : ; ym) in � are suh that the terms yi are variables, after asuitable variable replaement we an write ÆA using only the variablesx1; : : : ; xb as: ÆA = �i(x1; : : : ; xm; ÆA1; : : : ; ÆAni):Clearly, a simple indution gives us that:(T;<; h); a1; :::; am j= B i� T j= ÆB(a1; :::; am; h(q1); : : : ; h(qk)):suh that ÆB(a1; :::; am; h(q1); : : : ; h(qk)) uses only the variables x1; : : : ; xb.Suppose that K is a lass of ows of time, �x = x1; : : : ; xm are variables,and �Q = Q1; : : : ; Qr are monadi prediates. If �(�x; �Q), �(�x; �Q) are formulasin LM with free variables �x and free monadi prediates �Q, we say that �and � are K-equivalent if for all T 2 K and all subsets S1; : : : ; Sr � T ,T j= 8�x��(�x; S1; : : : Sr)$ �(�x; S1; : : : ; Sr)�:We say the temporal system T is expressively omplete over K in ndimensions (1 � n � m) if for any �(x1; : : : ; xn; �Q) of LM with free variablesx1; : : : ; xn, there exists a temporal formula B(�q) of T built up from theatoms �q = q1; : : : ; qr, suh that � ^Vn<i�m xi = xi and ÆB are equivalentin K. In this ase, K is said to be m-funtionally omplete in n dimensions(symbolially, FCmn ); K is funtionally omplete if it is FCm1 for some m.Finally, we de�ne the Henkin or H-dimension d of a lass K of ows asthe smallest d suh that: 17



� For any monadi formula �(x1; : : : ; xn; Q1; : : : ; Qr) in LM with freevariables among x1; : : : ; xn and monadi prediates Q1; : : : ; Qr (withn; r arbitrary), there exists an LM -formula �0(x1; : : :, xn, Q1; : : : ; Qr)that is K-equivalent to � and uses no more than d di�erent boundvariable letters.We now show that for any lass of ows, �nite Henkin dimension isequivalent to funtional ompleteness (FCm1 for some m).Theorem 1.18 For any lass K of ows of time, if K is funtionally om-plete then K has �nite H-dimension.Proof. Let �( �Q) be any sentene of LM . By funtional ompleteness, thereexists a B(�q) of T suh that the formulas x1 = x1 ^ ::: ^ xm = xm ^ �( �Q)and ÆB(x1; : : : ; xm; �Q) are K-equivalent. We know that ÆB is written usingvariables x1; : : : ; xb only. Hene the sentene �� = 9x1:::9xmÆB(x1; : : : ;xm; �Q) has at most b variables, and is learly K-equivalent to �. So everysentene of LM is K-equivalent to one with at most b variables. This meansthat K has H-dimension at most b, so it is �nite. �We now show the onverse. That is, we assume that the lass K ofows of time has �nite H-dimension m. Then we are going to onstrut atemporal logi that is expressively omplete over K and that is weaklym+1-dimensional (and that is why suh proof does not work for 1-dimensionalsystems: it always onstruts a logi of dimension at least 2).Let us all this logi system d. Besides atomi propositions q1; q2; : : :and the usual boolean operators, this system has a set of onstants (0-plaeoperators) C<i;j and C=i;j and unary temporal onnetives �i and �i, for0 � i; j � m. If h is an assignment suh that (h(q) � T for atomi q, thesemantis of d-formulas is given by:1. (T;<; h); x0; :::; xm j= q i� x0 2 h(q) for q atomi.2. The tables for :;^ are the usual ones.3. (T;<; h); x0; : : : ; xm j= C<i;j i� xi < xj . Similarly we de�ne the seman-tis of C=i;j. C=i;j are thus alled diagonal onstants.4. (T;<; h); x0; :::; xm j= �iA i� (T;<; h); xi; : : : ; xi j= A. So �i \projets"the truth value on the i-th dimension.5. (T;<; h); x0; :::; xm j= �iA i� (T;<; h); x0; : : : ; xi�1; y; xi+1; : : : ; xm j=A for all y 2 T . So �i is an \always" operator for the i-th dimension.18



Lemma 1.19 Let � be a formula of LM written only using the variableletters u0; : : : ; um, and having ui1 ; ::; uik free for arbitrary k � m. Thenthere exists a temporal formula A of d suh that for all h; t0; : : : ; tm 2 T ,(T;<; h); t0; :::; tm j= A i� K; h j= �(ti1 ; : : : ; tik):Proof. By indution on �. Assume �rst that � is atomi. If � is ui < ujlet A = C<i;j if i 6= j, and ? otherwise. Similarly for ui = uj. If � is Q(ui),let A be �i(q).The lassial onnetives present no diÆulties. We turn to the asewhere � is 8ui�(ui1 ; ::; uik ). By indution hypothesis, let A be the formulaorresponding �; then �iA is the formula suitable for �. �We are now in a position to prove the onverse of Theorem 1.18.Theorem 1.20 For any lass K of ows of time, if K has �nite H-dimen-sion then K is funtionally omplete.Proof. Let �(u0) be any formula of LM with one free variable u0. As K hasH-dimension m, we an suppose that � is written with variables u0; :::; um.By Lemma 1.19 there exists an A of T suh that for any T 2 K, t 2 T , andassignment h into T; (T;<; h); t; :::; t j= A i� K; h j= �(t). �As an appliation of the results above, we show that the lass of partialorders is not funtionally omplete. For onsider the formula orrespondingto the statement there are at least n elements in the order :�n = 9x1; : : : ; xn î 6=j[(xi 6= xj) ^ :(xi < xj)℄:It an be shown that suh formula annot be written with less then n vari-ables (e.g. [GHR94℄). Sine we are able to say that there are at least nelements in the order for any �nite n, the lass partial orders have in�niteH-dimension and by Theorem 1.18 it is not funtionally omplete.On the other hand, the reals and the integers must have �nite H-dimen-sion, for the fU; Sg temporal logi is expressively omplete over both. In-deed, [GHR94℄ shows that it has H-dimension at most 3, and so does thetheory of linear order.
19



2 Combining Temporal LogisThere is a profusion of logis proposed in the literature for the modellingof a variety of phenomena, and many more will surely be proposed in thefuture. A great part of those logis deal only with \stati" aspets, and thetemporal evolution is left out. But eventually, the need to deal with thetemporal evolution of a model appears. What we want to avoid is the soalled reinvention of the wheel, that is, reworking from srath the wholelogi, its language, inferene system and models, and reproving all its basiproperties, when the temporal dimension is added.We therefore show here several methods for ombining logi systemsand we study if the properties of the omponent systems are transferred totheir ombination. We understand a logi system LL as omposed of threeelements:(a) a language LL , normally given by a set of formation rules generatingwell formed formulas over a signature and a set of logial onnetives.(b) An inferene system, i.e. a relation, `L, between sets of formulas, rep-resented by � `L A. As usual, `L A indiates that ? `L A.() The semantis of formulas over a lass K of model strutures. The fatthat a formulas A is true of or holds at a model M 2 K is indiatedby M j= A.Eah method for ombining logi systems proposes a way of generat-ing the language, inferene system and model strutures from those of theomponent system.The �rst method presented here adds a temporal dimension T to a logisystem L, alled the temporalisation of a logi system T(L), with an auto-mati way of onstruting:� the language of T(L);� the inferene system of T(L); and� the lass of temporal models of T(L).We do that in a way that the basi properties of soundness, ompletenessand deidability are transfered from the omponent logis T and L to theombined system T(L).If the temporalised logi is itself a temporal logi, we have a two dimen-sional temporal logi T(T0). Suh a logi is too weak, however, beause, byonstrution, the temporal logi T0 annot refer to the the logi system T.20



We therefore present the independent ombination T� T0 in whih two tem-poral logis are symmetrially ombined. As before, the language, inferenesystems and models of T� T0, and show that the properties of soundness,ompleteness and deidability are transferred form T and T0 to T� T0.The independent ombination is not the strongest way to ombine logis;in partiular, the independent ombination of two linear temporal logi doesnot neessarily produe a two-dimensional grid model. So we show howto produe the full join of two linear temporal logis T� T0, suh thatall models will be two-dimensional grids. However, in this ase we annotguarantee that the basi properties of T and T0 are transferred to T� T0.In this sense, the independent ombination T� T0 is a minimal symmetrialombination of logis that automatially transfers the basi properties. Anyfurther interation between the logis has to be separately investigated.As a �nal way of ombining logis, we present methods of ombinationthat are motivated by the study of Labelled Dedutive Systems (LDS) [Gab96℄.All temporal logis onsidered for ombination here are assumed to belinear.2.1 Temporalising a LogiThe �rst of the ombination methods, known as \adding a temporal dimen-sion to a logi system" or simply \temporalising a logi system", has beeninitially presented in [FG92℄.Temporalisation is a methodology whereby an arbitrary logi system Lan be enrihed with temporal features from a linear temporal logi T toreate a new, temporalised system T(L).We assume that the language of temporal system T is the US languageand its inferene system is an extensions of that of US=Klin, with its orre-sponding lass of temporal linear models K � Klin.With respet to the logi L we assume it is an extension of lassial logi,that is, all propositional tautologies are valid in it. The set LL is partitionedin two sets, BCL and MLL. A formula A 2 LL belongs to the set of booleanombinations, BCL, i� it is built up from other formulas by the use of oneof the boolean onnetives : or ^ or any other onnetive de�ned only interms of those; it belongs to the set of monolithi formula MLL otherwise.If L is not an extension of lassial logi, we an simply \enapsulate" itin L0 with a one-plae symbol # not ourring in either L or T, suh that foreah formula A 2 LL, #A 2 LL0 , `L Ai� `L0 #A and the model struturesof #A are those of A. Note that MLL0 = LL0 , BCL0 = ?.The alphabet of the temporalised language uses the alphabet of L plus21



the two-plae operators S and U , if they are not part of the alphabet of L;otherwise, we use S and U or any other proper renaming.De�nition 2.1 Temporalised formulas The set LT(L) of formulas of thelogi system L is the smallest set suh that:1. If A 2MLL, then A 2 LT(L);2. If A;B 2 LT(L) then :A 2 LT(L) and (A ^B) 2 LT(L);3. If A;B 2 LT(L) then S(A;B) 2 LT(L) and U(A;B) 2 LT(L).Note that, for instane, if 2 is an operator of the alphabet of L and Aand B are two formulas in LL, the formula 2U(A;B) is not in LT(L). Thelanguage of T(L) is independent of the underlying ow of time, but not itssemantis and inferene system, so we must �x a lass K of ows of timeover whih the temporalisation is de�ned; if ML is a model in the lass ofmodels of L, KL, for every formula A 2 LL we must have either ML j= Aor ML j= :A. In the ase that L is a temporal logi we must onsider a\urrent time" o as part of its model to ahieve that ondition.De�nition 2.2 Semantis of the temporalised logi. 1 Let (T;<) 2 K bea ow of time and let g : T ! KL be a funtion mapping every time pointin T to a model in the lass of models of L. A model of T(L) is a tripleMT(L) = (T;<; g) and the fat that A is true in MT(L) at time t is writtenas MT(L); t j= A and de�ned as:MT(L); t j= A, A 2MLL i� g(t) =ML and ML j= A.MT(L); t j= :A i� it is not the ase that MT(L); t j= A.MT(L); t j= (A ^B) i� MT(L); t j= A and MT(L); t j= B.MT(L); t j= S(A;B) i� there exists s 2 T suh that s < t andMT(L); s j= A and for every u 2 T , ifs < u < t then MT(L); u j= B.MT(L); t j= U(A;B) i� there exists s 2 T suh that t < s andMT(L); s j= A and for every u 2 T , ift < u < s then MT(L); u j= B.The inferene system of T(L)=K is given by the following:De�nition 2.3 Axiomatisation for T(L) An axiomatisation for the tem-poralised logi T(L) is omposed of:1We assume that the a model of T is given by (T;<; h) where h maps time points intosets of propositions (instead of the more ommon, but equivalent, mapping of propositionsinto sets of time points); suh notation highlights that in the temporalised model eah timepoint is assoiated to a model of L. 22



� The axioms of T=K;� The inferene rules of T=K;� For every formula A in LL, if `L A then `T(L) A, i.e. all theorems of Lare theorems of T(L). This inferene rule is alled Persist.Example 2.4 Consider lassial propositional logi PL = hLPL;`PL; j=PLi. Its temporalisation generates the logi system T(PL) = hLT(PL);`T(PL); j=T(PL)i. It is not diÆult to see that the temporalised version of PL overany K is atually the temporal logi T = US=K.If we temporalise over K the one-dimensional logi system US=K weobtain the two-dimensional logi system T(US) = hLT(US);`T(US); j=T(US)i= T2(PL)=K. In this ase we have to rename the two-plae operators S andU of the temporalised alphabet to, say, S and U . Note, however, how weakthis logi is, for S and U annot our within the sope of U and S.In order to obtain a model for T(US), we must �x a \urrent time",o1, in MUS = (T1; <1; g1) , so that we an onstrut the model MT(US) =(T2; <2; g2) as previously desribed. Note that, in this ase, the ows of time(T1; <1) and (T2; <2) need not to be the same. (T2; <2) is the ow of time ofthe upper-level temporal system whereas (T1; <1) is the ow of time of theunderlying logi whih, in this ase, happens to be a temporal logi. Thesatis�ability of a formula in a model of T(US) needs two evaluation points,o1 and o2; therefore it is a two-dimensional temporal logi.The logi system we obtain by temporalising US-temporal logi is thetwo-dimensional temporal logi desribed in [Fin92℄.This temporalisation proess an be repeated n times, generating an ndimensional temporal logi with onnetives Ui; Si, 1 � i � n, suh that fori < j Uj; Sj annot our within the sope of Ui; Si.We analyse now the transfer of soundness, ompleteness and deidabilityfrom T and L to T(L); that is, we are asuming the logis T and L have sound,omplete and deidable axiomatisations with respet to their semantis, andwe will analyse how suh properties transfer to the ombined system T(L). Itis a routine task to analyse that if the inferene systems of T and L are sound,so is T(L). So we onentrate on the proof of transferene of ompleteness.CompletenessWe prove the ompleteness of T(L)=K indiretly by transforming a onsistentformula A of T(L) into "(A) and then mapping it into a onsistent formula23



of T. Completeness of T=K is used to �nd a T-model for A� that is used toonstrut a model for the original T(L) formula A.We �rst de�ne the transformation and mapping. Given a formula A 2LT(L), onsider the following sets:Lit(A) = Mon(A) [ f:B j B 2Mon(A)gIn(A) = f^� j � � Lit(A) and � `L ?gwhere Mon(A) is the set of maximal monolithi subformulae of A. Lit(A)is the set of literals ourring in A and In(A) is the set of inonsistentformulas that an be built with those. We transform A into A as: "(A):"(A) = A ^VB2In(A)(:B ^ G:B ^ H:B)The big onjuntion in"(A) is a theorem of T(L), so we have the followinglemma.Lemma 2.5 `T(L) "(A)$ AIf K is a sublass of linear ows of time, we also have the followingproperty (this is where linearity is used in the proof).Lemma 2.6 Let MT be a temporal model over K � Klin suh that for someo 2 T , MT; o j= �(�A). Then, for every t 2 T , MT; t j= �(�A).Therefore, if some subset of Lit(A) is inonsistent, the transformed for-mula "(A) puts that fat in evidene so that, when it id mapped into T,inonsistent subformulae will be mapped into falsity.Now we want to map a T(L)-formula into a T-formula. For that, onsideran enumeration p1, p2, : : :, of elements of P and onsider an enumeration A1,A2, : : :, of formulae in MLL. The orrespondene mapping � : LT(L) ! LTis given by: �(Ai) = pi for every Ai 2MLL; i = 1; 2 : : :�(:A) = :�(A)�(A ^B) = �(A) ^ �(B)�(S(A;B)) = S(�(A); �(B))�(U(A;B)) = U(�(A); �(B))The following is the orrespondene lemma.Lemma 2.7 The orrespondene mapping is a bijetion. Furthermore if Ais T(L)-onsistent then �(A) is T-onsistent.24



Lemma 2.8 If A is T(L)-onsistent, then for every t 2 T , GA(t) = fB 2Lit(A) j MT; t j= �(B)g is �nite and L-onsistent.Proof. Sine Lit(A) is �nite, GA(t) is �nite for every t. Suppose GA(t)is inonsistent for some t, then there exist fB1; : : : ; Bng � GA(t) suh that`L VBi ! ?. So VBi 2 In(A) and �:(VBi) is one of the onjunts of"(A). Applying Lemma 2.6 toMT; o j= �("(A)) we get that for every t 2 T ,MT; t j= :(V�(Bi)) but by, the de�nition of GA, MT; t j= V�(Bi), whihis a ontradition. �We are �nally ready to prove the ompleteness of T(L)=K.Theorem 2.9 (Completeness transfer for T(L)) If the logial system Lis omplete and T is omplete over a sublass of linear ows of time K �Klin, then the logial system T(L) is omplete over K.Proof. Assume that A is T(L)-onsistent. By Lemma 2.8, we have (T;<) 2K and assoiated to every time point in T we have a �nite and L-onsistentset GA(t). By (weak) ompleteness of L, every GA(t) has a model, so wede�ne the temporalised valuation funtion g:g(t) = fMtL j MtL is a model of GA(t)gConsider the model MT(L) = (T;<; g) over K. By strutural indutionover B, we show that for every B that is a subformula of A and for everytime point t, MT; t j= �(B) i� MT(L); t j= BWe show only the basi ase, B 2 Mon(A). Suppose MT; t j= �(B); thenB 2 GA(t) and MtL j= B, and hene MT(L); t j= B. Suppose MT(L); t j= Band assume MT; t j= :�(B); then :B 2 GA(t) and MtL j= :B, whihontradits MT(L); t j= B; hene MT; t j= �(B). The indutive ases arestraightforward and omitted.So, MT(L) is a model for A over K and the proof is �nished. �Theorem 2.9 gives us sound and omplete axiomatisations for T(L) overmany interesting lasses of ows of time, suh as the lass of all linear owsof time, Klin, the integers, Z, and the reals, R. These lasses are, in their Tversions, deidable and the orresponding deidability of T(L) is dealt next.Note that the onstrution above is �nitisti, and therefore does not itselfguarantee that ompatness is transferred. However, an important orollaryof the onstrution above is that the temporalised system is a onservative25



extension of both original systems, that is, no new theorem in the languageof an original system is provable in the ombined system. Formally, L1 is aonservative extension of L2 if it is an extension of L2 suh that if A 2 LL2 ,then `L1 A only if `L2 A.Corollary 2.10 Let L be a sound and omplete logi system and T be soundand omplete over K � Klin. The logi system T(L) is a onservative ex-tension of both L and T.Proof. Let A 2 LL suh that `T(L) A. Suppose by ontradition that 6`logiLA, so by ompleteness of L, there exists a model ML suh that ML j=:A. We onstrut a temporalised model MT(L) = (T;<; g) by makingg(t) = ML for all t 2 T . MT(L) learly ontradits the soundness of T(L)and therefore that of T, so `L A. This shows that T(L) is a onservativeextension of L; the proof of extension of T is similar. �DeidabilityThe transfer of deidability is also done using the orrespondene mapping� and the transformation �. Suh a transformation is atually omputable,as the following two lemmas state.Lemma 2.11 For any A 2 LT(L), if the logi system L is deidable thenthere exists an algorithm for onstruting "(A).Lemma 2.12 Over a linear ow of time, for every A 2 LT(L),`T(L) A i� `T �("(A)):Deidability is a diret onsequene of these two lemmas.Theorem 2.13 If L is a deidable logi system, and T is deidable overK � Klin, then the logi system T(L) is also deidable over K.Proof. Consider A 2 LT(L). Sine L is deidable, by Lemma 2.11 there is analgorithmi proedure to build "(A). Sine � is a reursive funtion, we havean algorithm to onstrut �("(A)), and due to the deidability of T over K,we have an e�etive proedure to deide if it is a theorem or not. Sine Kis linear, by Lemma 2.12 this is also a proedure for deiding whether A isa theorem or not. �26



2.2 Independent CombinationWe now deal with the ombination of two temporal logi systems. One ofthe will be alled the horizontal temporal logi US, while the other willbe the vertial temporal logi �U�S. If we temporalise the horizontal logiwith the vertial logi, we obtain a very weakly expressive system; if US isthe internal (horizontal) temporal logi in the temporalisation proess (F isderived in US), and �U�S is the external (vertial) one (F is de�ned in �U�S),we annot express that vertial and horizontal future operators ommute,FF A$ F FA:In fat, the subformula FF A is not even in the temporalised language of�U�S(US), nor is the whole formula. In other words, the interplay betweenthe two-dimensions is not expressible in the language of the temporalised�U�S(US).The idea is then to de�ne a method for ombining temporal logis thatis symmetrial. As usual, we ombine the languages, inferene systems andlasses of models.De�nition 2.14 Let Op(L) be the set of non-boolean operators of a generilogi L. Let T and T be logi systems suh that Op(T) \Op(T) = ?. Thefully ombined language of logi systems T and T over the set of atomipropositions P, is obtained by the union of the respetive set of onnetivesand the union of the formation rules of the languages of both logi systems.Let the operators U and S be in the language of US and U and S be inthat of �U�S. Their fully ombined language over a set of atomi propositionsP is given by� every atomi proposition is in it;� if A;B are in it, so are :A and A ^B;� if A;B are in it, so are U(A;B) and S(A;B).� if A;B are in it, so are U(A;B) and S (A;B).Not only are the two languages taken to be independent of eah other,but the set of axioms of the two systems are supposed to be disjoint; so weall the following ombination method the independent ombination of twotemporal logis. 27



De�nition 2.15 Let US and �U�S be two US-temporal logi systems de-�ned over the same set P of propositional atoms suh that their languagesare independent. The independent ombination US � �U�S is given by thefollowing:� The fully ombined language of US and �U�S.� If (�;I) is an axiomatisation for US and (�; I) is an axiomatisationfor �U�S, then (� [ �;I [ I) is an axiomatisation for US � �U�S. Notethat, apart from the lassial tautologies, the set of axioms � and �are supposed to be disjoint, but not the inferene rules.� The lass of independently ombined ows of time isK�K omposed ofbiordered ows of the form ( ~T ;<; < ) where the onneted omponentsof ( ~T ;<) are in K and the onneted omponents of ( ~T ; < ) are in K,and ~T is the (not neessarily disjoint) union of the sets of time pointsT and T that onstitute eah onneted omponent.A model struture for US � �U�S over K � K is a 4-tuple ( ~T ;<;<; g),where ( ~T ;<; < ) 2 K�K and g is an assignment funtion g : ~T ! 2{.The semantis of a formula A in a model M = ( ~T ;<; < ; g) is de�nedas the union of the rules de�ning the semantis of US=K and �U�S=K.The expression M; t j= A reads that the formula A is true in the(ombined) model M at the point t 2 ~T . The semantis of formulasis given by indution in the standard way:M; t j= p i� p 2 g(t) and p 2 P:M; t j= :A i� it is not the ase that M; t j= A.M; t j= A ^B i� M; t j= A and M; t j= B.M; t j= S(A;B) i� there exists an s 2 ~T with s < t and M; s j= Aand for every u 2 ~T , if s < u < t thenM; u j= B.M; t j= U(A;B) i� there exists an s 2 ~T with t < s and M; s j= Aand for every u 2 ~T , if t < u < s thenM; u j= B.M; t j= S (A;B) i� there exists an s 2 ~T with s< t and M; s j= Aand for every u 2 ~T , if s<u< t thenM; u j= B.M; t j= U (A;B) i� there exists an s 2 ~T with t< s and M; s j= Aand for every u 2 ~T , if t<u<s thenM; u j= B.The also independent ombination of two logis appears in the literatureunder the names of fusion or join. 28



As usual, we will assume that K;K � Klin, so < and < are transitive,irreexive and total orders; similarly, we assume that the axiomatisationsare extensions of US/Klin.The temporalisation proess will be used as an indutive step to provethe transferene of soundness, ompleteness and deidability for US � �U�Sover K�K. We de�ne the degree alternation of a (US � �U�S)-formula A forUS, dg(A):dg(p) = 0dg(:A) = dg(A)dg(A ^B) = dg(S(A;B)) = dg(U (A;B)) = maxfdg(A); dg(B)gdg(U (A;B)) = dg(S (A;B)) = 1 +maxf dg(A); dg(B)gand similarly de�ne dg(A) for �U�S.Any formula of the fully ombined language an be seen as a formula ofsome �nite number of alternating temporalisations of the form US(�U�S(US(: : :)));more preisely, A an be seen as a formula of US(Ln), where dg(A) = n,US(L0) = US, �U�S(L0) = �U�S, and Ln�2i = �U�S(Ln�2i�1), Ln�2i�1 = US(Ln�2i�2),for i = 0; 1; : : : ; dn2 e � 1.Indeed, not only the language of US � �U�S is deomposable in a �nitenumber of temporalisation, but also its inferenes, as the following importantlemma indiates.Lemma 2.16 Let US and �U�S be two omplete logi systems. Then, A is atheorem of US � �U�S i� it is a theorem of US(Ln), where dg(A) = n.Proof. If A is a theorem of US(Ln), all the inferenes in its dedution anbe repeated in US � �U�S, so it is a theorem of US � �U�S.Suppose A is a theorem of US� �U�S; let B1; : : : ; Bm = A be a dedutionof A in US � �U�S and let n0 = maxfdg(Bi)g, n0 � n. We laim that eahBi is a theorem of US(Ln0). In fat, by indution on m, if Bi is obtainedin the dedution by substituting into an axiom, the same substitution anbe done in US(Ln0); if Bi is obtained by Temporal Generalisation from Bj ,j < i, then by the indution hypothesis, Bj is a theorem of US(Ln0) and sois Bi; if Bi is obtained by Modus Ponens from Bj and Bk, j; k < i, then bythe indution hypothesis, Bj and Bk are theorems of US(Ln0) and so is Bi.So A is a theorem of US(Ln0) and, sine US and �U�S are two ompletelogi systems, by Theorem 2.9, eah of the alternating temporalisations inUS(Ln0) is a onservative extension of the underlying logi; it follows that Ais a theorem of US(Ln), as desired. �29



Note that the proof above gives onservativeness as a orollary. Thetransferene of soundness, ompleteness and deidability also follows diretlyfrom this result.Theorem 2.17 (Independent Combination) Let US and �U�S be two soundand omplete logi systems over the lasses K and K, respetively. Thentheir independent ombination US � �U�S is sound and omplete over thelass K�K. If US and �U�S are omplete and deidable, so is US � �U�S.Proof. Soundness follows immediately from the validity of axioms andinferene rules.We only sketh the proof of ompletess here. Given a US� �U�S-onsistentformula A, Lemma 2.16 is used to see that it is also onsistent in US(Ln),so a temporalised US(Ln)-model is built for it. Then, by indution on thedegree of alternation of A, this US(Ln) is used to onstrut a US� �U�S-model;eah step of suh onstrution preserves the satisfatibility of formulas of alimited degree of alternation, so in the �nal model, A, is satis�able; andompleteness is proved. For details, see [FG96℄.For deidability, suppose we want to deide whether a formula A 2US��U�S is a theorem. By Lemma 2.16, this is equivalent to deiding whetherA 2 US(Ln) is a theorem, where n = dg(A). Sine US/K and �U�S/K are bothomplete and deidable, by suessive appliations of Theorems 2.9 and 2.13,it follows that the following logis are deidable: US(�U�S), �U�S(US(�U�S)) =�U�S(L2), : : :, �U�S(Ln�1)= Ln; so a the last appliation of Theorems 2.9 and 2.13yields that US(Ln) is deidable. �2.2.1 The minimality of the independent ombinationThe logi US � �U�S is the minimal logi that onservatively extends bothUS and �U�S. This result was �rst shown for the independent ombination ofmonomodal logis independently by [KW91℄ and [FS91℄.Indeed, suppose there is another logi T1 that onservatively extendsboth US and �U�S but some theorem A of US � �U�S is not a theorem of T1.But A an be obtained by a �nite number of inferenes A1; : : : ; An = Ausing only the axioms of US and �U�S. But any onservative extension ofUS and �U�S must be able to derive Ai, 1 � i � n, from A1; : : : ; Ai�1, andtherefore it must be able to derive A; ontradition.One we have this minimal ombination between two logi systems, anyother interation between the logis must be onsidered on its own. Asan example, onsider the following formulas expressing the ommutativity30



of future and past operators between the two dimensions are not generallyvalid over a model ofUS � �U�S:I1 FF A$F FAI2 FPA$ PFAI3 PF A$ F PAI4 PPA$ PPANow onsider the produt of two linear temporal models, given as follows.De�nition 2.18 Let (T;<) 2 K and (T ;<) 2 K be two linear ows oftime. The produt of those ows of time is (T � T ;<;<). A produt modelover K � K is a 4-tuple M = (T � T ;<;<; g), where g : T � T ! 2{ is atwo-dimensional assignment. The semantis of the horizontal and vertialoperators are independent of eah other:M; t; x j= S(A;B) i� there exists s < t suh that M; s; x j= A andfor all u, s < u < t, M; u; x j= B.M; t; x j= S (A;B) i� there exists y<x suh that M; t; y j= A andfor all z, y<z<x, M; t; z j= B.Similarly for U and U , the semantis of atoms and boolean onnetivesremaining the standard one. A formula A is valid over K�K if for all modelsM = (T;<; T ;<; g), for all t 2 T and x 2 T we have M; t; x j= A.It is easy to verify that the formulas I1{I4 are valid over produt mod-els. We wonder if suh produt of logis transfers the properties we haveinvestigated for the previous logis. The answer is: it depends. We have thefollowing results.Proposition 2.19 (a) There is a sound and omplete axiomatisation forUS � �U�S over the lasses of produt models Klin � Klin, Kdis � Kdis,Q � Q , Klin �Kdis, Klin � Q and Q �Kdis [Fin94℄.(b) There are no �nite axiomatisations for the valid two-dimensional for-mulas over the lasses Z� Z, N � N and R � R [Ven90℄.Note that the all the omponent one-dimensional mentioned above logisystems are omplete and deidable, but their produt sometimes is om-plete, sometimes not. Also, the logis in (a) are all deidable and those in(b) are undeidable.This is to illustrate the following idea: given an independent ombinationof two temporal logis, the addition of extra axioms, inferene rules or an31



extra ondition on its models has to be studied on its own, just as adding anew axiom to a modal logi or imposing a new property on its aessibilityrelation has to be analysed on its own.Combinations of logis in the literatureThe work on ombining temporal logis presented here has �rst appeared inthe literature in [FG92, FG96℄.General ombinations of logis have been addressed in the literaturein various forms. Combinations of tense and modality were disussed in[Tho84℄, without expliitly providing a general methodology for doing so. Amethodology for onstruting logis of belief based on existing dedutive sys-tems is the dedutive model of Konolige [Kon86℄; in this ase, the languageof the original system was the base for the onstrution of a new modal lan-guage, and the modal logi system thus generated had its semantis de�nedin terms of the inferenes of the original system. This is a methodologyquite di�erent from the one adopted here, in whih we separately ombinelanguage, inferene systems and lass of models.Combination of two monomodal logis and the transferene of propertieshave been studied by Kraht andWolter [KW91℄ and Fine and Shurz [FS91℄;the latter even onsiders the transferene of properties through the ombi-nation of n-monomodal logis. These works di�er from the ombination oftemporal logis in several ways: their modalities have no interation what-soever (unlike S and U , whih atually interat with eah other); they onlyonsider one-plae modalities (�); and their onstrutions are not a reur-sive appliation of the temporalisation (or any similar external appliationof one logi to another).A stronger ombination of logis have been investigated by Gabbay andShehtman [GS98℄, where the starting point is the produt of two Kripkeframes, generating the produt of the two monomodal logis. It shows thatthe transferene of ompleteness and deidability an either sueed or failfor the produt, depending on the properties of the omponent logis. Thefailure of transferene of deidability for temporal produts in FP=Klin �FP=Klin has been shown in [MR99℄, and fresh results on the produts oflogis an be foun din [RZar℄.The transferene of soundness, ompleteness and deidability are by nomeans the only properties to study. Kraht and Wolter [KW91℄ study thetransferene of interpolation between two monomodal logis. The om-plexity of the ombination of two monomodal logis is studied in [Spa93℄;the omplexity of produts are studied in [Marar℄. Gabbay and Sheht-32



man [GS98℄ report the failure of transferene of the �nite model propertyfor their produt of modal logis. With respet to spei� temporal proper-ties, the transferene of the separation property is studied in [FG92℄.2.3 FiberingDov to write
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