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Combining Temporal Logic Systems

MARCELO FINGER and DOV GABBAY

Abstract This paper investigates modular combinations of temporal logic
systems. Four combination methods are described and studied with respect to
the transfer of logical properties from the component one-dimensional tempo-
ral logics to the resulting combined two-dimensional temporal logic. Three ba-
sic logical properties are analyzed, namely soundness, completeness, and de-
cidability. Each combination method comprises three submethods that com-
bine the languages, the inference systems, and the semantics of two one-
dimensional temporal logic systems, generating families of two-dimensional
temporal languages with varying expressivity and varying degrees of transfer
of logical properties. Thetemporalization methodand theindependent com-
bination methodare shown to transfer all three basic logical properties. The
method offull join of logic systems generates a considerably more expressive
language but fails to transfer completeness and decidability in several cases. So
a weaker method ofrestricted joinis proposed and shown to transfer all three
basic logical properties.

1 Introduction Weare interested in describing systems in which two distinct tem-
poral “points of view” coexist. Descriptions of temporal systems under a single point
of view, i.e., one-dimensional temporal systems, abound in the literature. These one-
dimensional temporal logics differ from each other in several ways. They differ on
the approach, whether proof-theoretic, model-theoretic, or algebraic. They differ on
the ontology of time adopted, whether time is represented as a set of points, intervals,
or events. They can also differ on the properties assigned to flows of time, whether
linear or branching time, discrete or dense, continuous or allowing for gaps. In this
paper we contemplate both proof- and model-theoretic presentations of temporal log-
ics on a point-based ontology. Most of the results presented assume that the flow of
time is linear.

The motivation for the present work came from the study of applications of two-
dimensional temporal logics by Finger [7]. We were aware of Venema’s [22] negative
results concerning the unaxiomatizability of two-dimensional temporal logics over
the upper semi-plane ofN × N, Z × Z, andR × R (see also Proposition 6.3 below).
However, for our purposes then, the full expressivity of Venema’s two-dimensional
language was not required, and a weaker language provided the appropriated expres-
sivity.
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It then became clear that this weaker two-dimensional language could be gener-
alized and a family of languages resulting from adding a (second) temporal dimen-
sionexternallyto a temporal logic system was thus obtained. This process was for-
malized by Finger and Gabbay [6], where it was calledtemporalization, and several
results were obtained concerning the transfer of logical properties from the compo-
nent logical system to the combined one. As a result, a family of temporalized logic
systems was obtained, the properties of which can be derived from the properties of
the component logic systems via the transfer results.

The next step, which we present in this work, comes from the observation that
there may be several distinct ways in which two temporal logic systems can be com-
bined, generating thus several families of combined two-dimensional temporal sys-
tems. Different combination methods may be presented by the distinct interactions
between related parts of the two logic systems involved, leading to two-dimensional
systems based on distinct languages with distinct semantical structure, expressive
power, and other properties (that may be transferred or not from the component sys-
tems).

Several cases in which two distinct temporal dimensions (or temporal “points
of view”) can co-exist are described next, motivating several different methods for
combining two temporal logics. We will also attempt to relate these methods to re-
cent, mostly unpublished work on combining two generic (not necessarily temporal)
logics systems, e.g., Gabbay [12],[11].

1.1 First case: external time One temporal point of view can beexternalto the
other. The external point of view is seen as describing the temporal evolution of a
systemS, when systemS is itself a temporal description. SupposeS is described us-
ing a temporal logicT, and suppose that the external point of view is given in a pos-
sibly distinct logicT . For example, consider an agentA, whose temporal beliefs are
expressed in logicT , that we want to allow to reason about the temporal beliefs of
an agentB, which are expressed in a possibly distinct logicT. This is illustrated in
Figure 1.

� ��

BA

observes

Figure 1: One agent externally observing the other

Agent A’s beliefs are external to agentsB’s beliefs, so thatT is externally de-
scribing the evolution ofT. The external temporal point of viewT is then applied to
the internal systemT, in aprocess calledtemporalizationor adding a temporal di-
mension to a logic system, defined in [6]. The resulting combined logic systemT(T)
is illustrated in Figure 2.

The temporalization associates every time point inT with a temporal description
in T, where thoseT-descriptions need not be all identical. Given the logical properties
of T andT , what can be said about the logical properties ofT(T)?

In terms of a generic combination of logics, the temporalization method can be
matched with a process called“fuzzling” or layering, which is characterized by the
fact that the formulas of systemT can be substituted for the atoms of systemT . In
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Figure 2: The combined flow of time resulting from temporalization

(Kripke-) semantical terms, this means that every possible world ofT is associated
to a whole model ofT; see[11].

1.2 Second case: independent agents Suppose now that agentA has the ability
of referring to agentB’s temporal beliefs and vice versa. The agents are therefore
observing each other, as illustrated in Figure 3.
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Figure 3: Independent interaction of agents

The agents’ beliefs are then capable of interacting with each other through sev-
eral levels of cross-reference, as in the sentence “A believes thatB believes thatA
believes that....” A new combination method forT andT is needed in order to rep-
resent such a sentence as a formula; which is called theindependent combination,
T ⊕ T. Since a formula ofT ⊕ T has a finite nature, it can be unravelled in a finite
number of alternating temporalizations, as illustrated in Figure 4.

�� �� �� �.............�............. �� · · ·

Figure 4: Unravelling the independent combination

Figure 4 suggests a way of analyzing the properties of the independent combi-
nation method using the temporalization method as an intermediary step. It will turn
out that the independent combination method is the (infinite) union of all finite alter-
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nated temporalizations. An illustration of a possible independently combined flow of
time is presented in Figure 5.
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Figure 5: Independently combined flow of time

In terms of a generic combination of two logics, this process can be matched to
thedovetailingprocess of [11], whereby atoms ofT can be substituted by formulas of
T and vice-versa. The semantical counterpart is obtained by providing each possible
world with two distinct accessibility relations,< and < , so that from every possible
world it is possible to reach another possible world either via< or via < .

1.3 Third case: two-dimensional plane Yet another distinct situation can be found
where we have the coexistence of two distinct temporal “points of view.” This time
a single agent with temporal reasoning capabilites is considered, and we want to be
able to describe the evolution of his own beliefs. This is perhaps better illustrated
by considering the agent as a temporal database where each piece of information
is associated to a validity time (or interval). For example, consider the traditional
database relationemployee(Name, Salary, Manager). Suppose the following is in
the database at March 94.

Name Salary Dept Start End
Peter 1000 R&D Apr 93 Mar 94

Where the attributes start and end represents the end points of the validity interval
associated with the information. We assume that Peter’s salary has not changed since
Apr 93. Suppose in Apr 94 Peter receives a retroactive promotion dating back to the
beginning of the year, increasing his salary to 2000. The whole database evolution
is illustrated in Figure 6, where only the value of Peter’s salary is indicated at each
point.

If T represents valid-time andT represents transaction-time, we have guaran-
teed a two-dimensional planeT × T in order to represent the database evolution.

Another application of the two-dimensional plane (or its NW-semi-plane) is in
the representation of intervals on a line, as presented in [22]. In Figure 7 we can see
a line considered the diagonal of a two-dimensional plane and that an interval [t1, t2]
on that line is represented by the point(t1, t2) on the NW-semi-plane.

The combination of two temporal systems that generates a combined flow of
time that is isomorphic to a two-dimensional plane is called thejoin of two logical
systems. We have adopted the termjoin of logicshere (instead of the previously used
interlacing of logicsin Finger [8]) to be in accordance to the concept as defined in
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Figure 6: Two-dimensional temporal database evolution
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Figure 7: Two-dimensional representation of intervals

the larger context of generic combination of logics [11]. Although the language gen-
erated in this process is the same as that of independent combination (for the case
of two temporal logics), the semantic interaction betweenT and T is a lot stronger;
this is due to the fact that the temporal operators of the two logics are commutative
in the join. As it will be seen in Section 7, it is necessary to restrict this interaction to
obtain the transfer of logical properties. The restiction will be applied to the type of
operators allowed in one of the logics involved in the restricted join.

1.4 Aims of this paper In this paper we study three situations of coexistence of
“two temporal points of view” that result from a combination of two linear, one-
dimensional temporal logics. In this sense this paper is a continuation on the work
started in [6] on the combination of temporal logics. There, a process for adding a
temporal dimension to a logic system was described, in which a temporal logicT is
externallyapplied to a generic logic systemL, generating a combined logicT(L). We
now explore several methods for systematically combining two temporal logics,T
and T , thus generating for each method a new family oftwo-dimensional temporal
logics.

A great number of (one-dimensional) temporal logics exist in the literature to
deal with the great variety of properties one may wish to express about flows of time.
When building two-dimensional temporal logics, the combination of two classes of
flows of time generates an even greater number of possible systems to be studied. Fur-
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thermore, as we will see, there are several distinct classes of temporal logics that may
be considered two-dimensional, each generated by a distinct combination method. It
is, therefore, desirable to study whether it is possible totransfer the propertiesof long
known and studied (one-dimensional) temporal logic systems to the two-dimensional
case.

So the main goal of this paper is to study, for each combination method, the
transfer of logical properties from component one-dimensional temporal systems to a
combined two-dimensional one. We concentrate on the transfer of three basic proper-
ties of logic systems, namely soundness, completeness, and decidability. This by no
means implies that those are the only properties whose transfer deserve to be stud-
ied, but, as has already been noted in [6] for the temporal case, and in Kracht and
Wolter [16] and an unpublished paper by Fine and Schurtz, for the monomodal case,
the transfer of completeness serves as a basis for the transfer of several other proper-
ties of logical systems.

Weconsider the following methods for combining two temporal logics.

1. The temporalization method, i.e., the external application of a temporal logic
to another temporal system, also known as adding a temporal dimension to a
logic system;

2. the independent combination of two temporal systems;

3. the full join of two temporal systems, where flows of time are considered over
a two-dimensional plane;

4. the restricted join of two temporal system, a combination method that restricts
the previous one but generates nice transfer results.

We proceed as follows. Section 2 presents the basic notions of one- and two-
dimensional temporal logics. Section 3 discusses combinations of logics in general
terms, so that in the rest of the paper we can present special cases of combination
methods. Section 4 briefly examines the transfer results obtained for the temporaliza-
tion method in [6]. Section 5 studies the independent combination method. Section 6
deals with the full join method and Section 7 with its restricted version. Section 8 an-
alyzes the properties of a two-dimensional diagonal on the model generated by the
full and restricted join methods. In Section 9 we discuss the results of this work.

2 Preliminaries For the purposes of this paper, a logic system is composed of three
elements:

1. a language, normally given by a set of formation rules generating well formed
formulas over a signature and a set of logical connectives.

2. An inference system, i.e., a relation� between sets of formulas, normally rep-
resented by upper case Greek letters�,�,�,�,� and a single formula, nor-
mally represented by upper case lettersA, B, C, . . .; the fact thatA is inferred
from a set� is indicated by� � A. When� is a singleton,� = {B}, the no-
tation is abused and we writeB � A.

3. The semantics of formulas over a classK of model structures. The fact that a
formula A is true of or holds at a modelM ∈ K is indicated byM |= A.
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In providing a method for combining two logics into a third one, it will be necessary
to provide three sub-methods that combine the languages, inference systems, and se-
mantics of the component logic systems. The component systems considered in this
paper will be one-dimensional linearUS-temporal logics. Their language is built
from a countable signature of propositional lettersP = {p1, p2, . . .}, the Boolean
connectives∧ (conjunction) and¬ (negation), the two-place temporal operationU
(until) andS (since), possibly renamed, and the following formation rules:

• every propositional letter is a formulas
• if A andB are formulas, so are¬A andA∧ B
• if A and B are formulas, so areU(A, B) (reads “untilA is true in the future,

B will be true”) andS(A, B) (reads “sinceA was true in the past,B has been
true”).

• nothing else is a formula.

Themirror imageof a formula is another temporal formula obtained by swapping all
occurrences ofU andS, e.g., the mirror image ofU(A, S(B, C)) is S(A,U(B, C)).

The other Boolean connectives∨ (disjunction),→ (material implication),↔
(material bi-implication) and the constants⊥ (false) and	 (true) can be derived in
the standard way. Similarly, the one-place temporal operatorsF (“sometime in the
future”), P (“sometime in the past”),G (“always in the future”), andH (“always in
the past”) can be defined in terms ofU andS.

To provide the semantics of temporal formulas we have to consider a (one-
dimensional)flow of time, F = (T,<), whereT is a set of time points and< is an
order overT. A temporal valuationh : T → 2P associates every time point with a
set of propositional letters, i.e.,h(t) is the set of propositions that are true at timet.
(Equivalently, and perhaps more usually, a valuation could be defined as a function
h : P → 2T, associating every propositional letter to a set of time points in which it
holds true; see Burgess [5], Gabbay [13].) A model structureM = (T,<, h) consists
of a flow of time(T,<) and a temporal assignmenth, and for the purposes of combi-
nation of logics we consider a “current world”t ∈ T as part of the model.M , t |= A
reads “A is true att over modelM .” Classes of models are normally defined by re-
strictions over the order relation< of the flow of time.

The semantics of temporal formulas is given by:

M , t |= p iff p ∈ P such thatp ∈ h(t).
M , t |= ¬A iff it is not the case thatM , t |= A.
M , t |= A∧ B iff M , t |= A andM , t |= B.
M , t |= S(A, B) iff there exists ans∈ T with s< t andM , s |= A and for

everyu ∈ T, if s < u < t thenM , u |= B.
M , t |= U(A, B) iff there exists ans∈ T with t < sandM , s |= A and for

everyu ∈ T, if t < u < s thenM , u |= B.

The following restriction will be applied throughout this presentation. Flows of
time will always be considered to have the properties:

1. irreflexivity: ∀t¬(t < t)
2. transitivity:∀t, s, u(t < s∧ s < u → t < u)

3. totality: ∀t, s(t = s∨ t < s∨ s < t)
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The class of all flows respecting the restrictions above is the classK lin of linear flows
of time. We also represent the class of all models based on linear flows asK lin . Fur-
ther restrictions can be applied to the nature of flows of time so that several other
linear subclasses can be formed, e.g., the classes of dense (K dense), discrete (K dis),
Z-like, Q-like, andR-like flows of time. The linearity property allows for the defini-
tion of the “at all times” temporal connective�.

�A = A∧ GA∧ H A

In case of discrete flows of time, the operator “next time,”�, and “previous time,”
�, are also defined.

�A = U(A,⊥)

�A = S(A,⊥)

The inference systems will be considered to be finite axiomatizations, i.e., a pair
(�,I ) where� is a finite set of formulas calledaxiomsandI is a set of inference
rules. Consider the Burgess-Xu [4], Xu [23] axiomatization forK lin consisting of
the following axioms:

A0 all classical tautologies
A1a G(p → q) → (U(p, r ) → U(q, r ))
A2a G(p → q) → (U(r, p) → U(r, q))

A3a (p∧ U(q, r )) → U(q∧ S(p, r ), r )
A4a U(p, q) → U(p, q∧ U(p, q))

A5a U(q∧ U(p, q), q) → U(p, q)

A6a (U(p, q) ∧ U(r, s)) →
(U(p∧ r, q∧ s) ∨ U(p∧ s, q∧ s) ∨ U(q∧ r, q∧ s))

plus their mirror images (b axioms). The inference rules are:

Subst Uniform Substitution, i.e., letA(q) be an axiom containing the proposi-
tional letterq and letB be any formula, then from� A(q) infer � A(q\B) by
substituting all appearances ofq in A by B.

MP Modus Ponens: from� A and� A → B infer � B.
TG Temporal Generalization: from� A infer � H A and� GA.

A formula A is deducible from the set of formulas�,� � A, if there exists a
finite sequence of formulasB1, . . . , Bn = A such that everyBi is either

(a) a formula in�; or
(b) an axiom; or
(c) obtained from previous formulas in the sequence through the use of an infer-

ence rule.

Wewrite � A for ∅ � A, i.e., only items (b) and (c) above are used in the deduction
of A, in which caseA is said to be atheorem. A set of formulas� is inconsistentif
� � ⊥, otherwise it isconsistent. A formula A is consistent if{A} is consistent.

On the semantical side, a set of formulas� is satisfiableover a class of models
K if there exists a modelM ∈ K with a t ∈ T such that, for everyB ∈ �, M , t |= B.
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A formula A is valid overK , K |= A, if for every modelM = (T,<, h) ∈ K and
everyt ∈ T, M , t |= A. The expression� |= A represents that every model satisfying
� also satisfiesA.

An inference system issoundwith respect to a class of modelsK iff every the-
orem is a valid formula, i.e.,� A impliesK |= A. An inference system is(weakly)
complete overK if every theorem� A is valid,K |= A, or equivalently if every con-
sistent formula is satisfied overK . Strong completeness states that whenever� |= A
then� � A, for a possibly infinite�. Let L = 〈L,�, |=〉 be a logic system with lan-
guageL , inference system�, and semantics|=. We say thatL is decidableif there
exists an algorithm (decision procedure) that determines, for everyA ∈ L , whetherA
is a theorem or not. Thevalidity problemfor L is to determine whether someA ∈ L
is a valid formula or not.

Wehave the following results.

Theorem 2.1 ([4],[23]) The Burgess-Xu axiomatization presented above is sound
and complete over the classK lin .

Theorem 2.2 (Rabin [17]) The logicUS=〈LUS,�US, |=US〉 is decidable overK lin .

3 Combining logics As we have mentioned earlier, the combination of two one-
dimensional temporal logics will generate a two-dimensional temporal logic.
Throughout this presentation, we refer to one of the temporal dimensions as thehor-
izontal dimensionand the other one as thevertical dimension; the symbols related
to the vertical dimension are normally obtained by putting a bar on top of the corre-
sponding horizontal ones, e.g.,T andT , FandF , < and<.

There are two distinct criteria for defining a modal/temporal logic system as two-
dimensional:

1. If the alphabet of the language contains two nonempty, disjoint sets of corre-
sponding modal or temporal operators,� and�, each set associated with a
distinct flow of time,(T,<) and(T, < ), then the system is two-dimensional.

2. If the truth value of a formula is evaluated with respect to two time points, then
the system is two-dimensional. In this case, we even have the distinction be-
tween strong and weak interpretations of formulas that, as a consequence, gen-
erates different notions of valid formulas (a formula is valid if it holds in all
models for all pairs of time points). Under thestrong interpretation, the truth
value of atoms depends on both dimensions, giving rise to the notion ofstrongly
valid formulaswhen the evaluation of formulas is inductively extended to all
connectives. In theweak interpretation, the truth value of atoms depends only
on the one dimension, e.g., the horizontal dimension, giving rise to the notion
of weakly valid formulas. Usually for this notion of two-dimensionality, both
time points refer to the same flow of time, so we may also have the notion
of (weak/strong)diagonally validformulas by restricting validity to the case
where both dimensions refer to the same point, i.e.,A is diagonally valid iff
M , t, t |= A for all M andt; see [13] for more details.

Criterion 1 will be called thesyntactic criterionfor two-dimensionality, although it
is not completely syntactic, i.e., it depends on the semantic notion of flows of time;
criterion 2 will be called thesemantic criterionfor two-dimensionality.
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Note that both cases can yield, as an extreme case, one-dimensional temporal
logic. In 1, this can be done by makingT = T and< = (<)−1 = (>), i.e., by taking
two flows with the same set of time points such that one order is the inverse of the
other; the future operators� = {F, G,U} are associated with(T,<) and the past
operators� = {P, H, S} are associated with(T,>). In 2, this can be done by fixing
one dimension to a single time point so that it becomes redundant.

These two distinct approaches to the two-dimensionality of a system are inde-
pendent. In fact, we will see in Section 5 a system that contains two distinct sets of
operators over two classes of flows of time, but its formulas are evaluated at a single
point. On the other hand, there are several temporal logics in the literature satisfy-
ing 2 but not 1, containing a single set of temporal operators in which formulas are
evaluated according to two or more time points in the same flow, e.g., [13], Aqvist [1],
Kamp [15].

A logic system that respects both the syntactic and the semantic criteria for two-
dimensionality is calledbroadly two-dimensional, and this will be the kind of sys-
tem we will be aiming to achieve through combination methods; we consider in this
work only strong evaluation and validity; the weak interpretation generates systems
with the expressivity of only monadic first-order language [13], but for broadly two-
dimensional systems we are interested in the expressivity of dyadic first-order lan-
guage, although it is known that no set of temporal operators can be expressively
complete over dyadic first-order language [22]. (A modal/temporal language isex-
pressively completeover a class of first-order formulas if, for any first-order formula
A in that class, there exists a modal/temporal formulaB such thatA is first-order
equivalent toB∗, whereB∗ is the standard first-order translation ofB; see [13].) Ven-
ema’s [22] two-dimensional temporal logic, Segerberg’s [19] two-dimensional modal
logic, and the temporalization of a temporal logic are all broadly two-dimensional; so
are the combined logics in Sections 6 and 7.

In the study of one-dimensional temporal logics (1DTLs) several classes of
flows of time are taken into account. When we move to 2DTLs, the number of such
classes increases considerably, and every pair of one-dimensional classes can be seen
as generating a different two-dimensional class. The study of 2DTLs would benefit
much if the properties known to hold for 1DTLs could be systematically transferred
to 2DTLs, avoiding the repetition of much of the work that has been published in the
literature. This is a strong motivation to consider methods of combination of 1DTLs
into 2DTLs and studying the transfer of logical properties through each method. Also
in favor of such an approach is the fact that the results concerning 2DTLs are then
presented in a general, compact, and elegant form.

In providing a method to combine two 1DTLsT andT we have to pay attention
to the following points:

(a) A method for combining logicsT andT is composed of three sub-methods,
namely a method for combining the languages ofT and T, a method for
combining their inference systems, and a method for combining their seman-
tics.

(b) We study the combined logic system with respect to the way certain logical
properties ofT andT are transferred to the two-dimensional combination. We
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focus here on the properties of soundness, completeness, and decidability of
the combined system given those of the component ones.

(c) The combined language should be able to express some properties of the inter-
action between the two-dimensions; otherwise the combination is just a partial
one, and the two systems are not fully combined. For example, it is desirable
to express formulas likeFF A ↔ F FA andPF A ↔ F PA that are not in the
temporalized language ofT(T).

(d) If we want to strengthen the interaction between the two systems, some proper-
ties of the interaction between the two-dimensions are expected to be theorems
of the combined system, e.g., the commutativity of horizontal and vertical fu-
ture operators such asFF A ↔ F FA andPF A ↔ F PA. Those are called the
interaction axiomsin [11].

(e) We want the combination method to be as independent as possible from the
underlying flows of time.

All methods of combination must comply with item (a). The method for combin-
ing the languages ofT andT includes the choice of which sublanguage ofT andT
is going to be part of the combined two-dimensional language, as well as the way in
which this combination is done; in this presentation we will work, in the most general
case, with the standard languages ofSandU, S andU, but we also consider some
sublanguages, e.g., the sublanguage generated by a set of derived operators, such as
the vertical “previous” (�) and “next” ( �) in Section 7. In combining the inference
systems ofT andT, wewill assume that they are both an extension of classical logic
and that they are presented in the form of a regular, normal axiomatic system(�,I ),
where� is a set of axioms andI is a set of inference rules. One important require-
ment is that the combined system be aconservative extensionof the two components.
The conservativeness property states that ifA is a formula in the language ofL andL∗

is a logic system extendingL (i.e., the language ofL is a sublanguage of the language
of L∗), thenA will be a theorem ofL∗ only if it is a theorem ofL already; conserva-
tiveness guarantees that no new information about the original systemL is present in
the extended oneL∗.

The combined semantics has to deal with the structure of the combined model,
the evaluation of two-dimensional formulas over those structures and also with the
combinations of classes of flows of time.

Items (b), (c), (d) and (e) may conflict with each other. In fact, the rest of this
paper shows that this is the case, as we try to compromise between expressivity, in-
dependence of the underlying flow of time and the transfer of logical properties.

4 Temporalizing a logic The first of the combination methods, known as “adding
a temporal dimension to a logic system” or simply “temporalizing a logic system,”
has been extensively discussed in [6].

Temporalization is a methodology whereby an arbitrary logic systemL can be
enriched with temporal features to create a new systemT(L). The new system is con-
structed by combiningL with a pure propositional temporal logicT (such as linear
temporal logic with “Since” and “Until”) in a special way.

Although we are interested here only in temporalizing an already temporal sys-
tem, so as to generate a 2DTL, the original method is more general and is applicable
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to a generic logicL; L is constrained to be an extension of classical logic, i.e., all
propositional tautologies must be valid in it, but such a constraint does not affect us,
for we are assuming that both temporal systemsT andL are extensions ofUS/K lin .
The language of a temporalized system is based on theUS language and on a sub-
set of the language ofL, LL. The setLL is partitioned in two sets,BCL and MLL.
A formulaA ∈ LL belongs to the set ofboolean combinations, BCL, iff it is built up
from other formulas by the use of one of the boolean connectives¬ or ∧ or any other
connective defined only in terms of those; it belongs to the set ofmonolithic formula
MLL otherwise.

The result of temporalizing overK the logic systemL is the logic system
T(L)/K . The alphabet of the temporalized language uses the alphabet ofL plus the
two-place operatorsSandU, if they are not part of the alphabet ofL; otherwise, we
useS andU or any other proper renaming.

Definition 4.1 (Temporalized formulas) The setLT(L) of formulas of the logic sys-
temL is the smallest set such that:

1. If A ∈ MLL, thenA ∈ LT(L);
2. If A, B ∈ LT(L) then¬A ∈ LT(L) and(A∧ B) ∈ LT(L);
3. If A, B ∈ LT(L) thenS(A, B) ∈ LT(L) andU(A, B) ∈ LT(L).

Note that, for instance, if� is an operator of the alphabet ofL and A andB are two
formulas inLL, the formula�U(A, B) is not in LT(L). The language ofT(L) is in-
dependent of the underlying flow of time, but its semantics and inference system are
not, so we must fix a classK of flows of time over which the temporalization is de-
fined; if M L is a model in the class of models ofL, K L, for every formulaA ∈ LL
we must have eitherM L |= A or M L |= ¬A. In the case thatL is a temporal logic we
must consider a “current time”o as part of its model to achieve that condition.

Definition 4.2 (Semantics of the temporalized logic) Let(T,<) ∈ K be a flow of
time and letg : T → K L be a function mapping every time point inT to a model in
the class of models ofL. A model ofT(L) is a tripleM T(L) = (T,<, g) and the fact
that A is true inM T(L) at timet is written asM T(L), t |= A and defined as:

M T(L), t |= A, A ∈ MLL iff g(t) = M L andM L |= A.
M T(L), t |= ¬A iff it is not the case thatM T(L), t |= A.
M T(L), t |= (A∧ B) iff M T(L), t |= A andM T(L), t |= B.
M T(L), t |= S(A, B) iff there existss ∈ T such thats < t and

M T(L), s |= A and for everyu ∈ T, if s <

u < t thenM T(L), u |= B.
M T(L), t |= U(A, B) iff there existss ∈ T such thatt < s and

M T(L), s |= A and for everyu ∈ T, if t <

u < s thenM T(L), u |= B.

Figure 2 illustrates a temporalized model. The inference system ofT(L)/K is given
by the following.

Definition 4.3 (Axiomatization forT(L)) An axiomatization for the temporalized
logic T(L) is composed of:

• The axioms ofT/K ;
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• The inference rules ofT/K ;
• For every formulaA in LL, if �L A then�T(L) A, i.e., all theorems ofL are

theorems ofT(L). This inference rule is calledPersist.

Example 4.4 (Temporalizing propositional logic) Consider classic propositional
logicPL = 〈LPL,�PL, |=PL〉. Its temporalization generates the logic systemT(PL) =
〈LT(PL),�T(PL), |=T(PL)〉.

It is not difficult to see thatLT(PL) = LUS and�T(PL)=�US, i.e., the temporalized
version ofPL over anyK is actually the temporal logicT = US/K . With respect to
M T(L), the functiong actually assigns, for every time point, aPL model.

Example 4.5 (TemporalizingUS-temporal logic) If we temporalize overK the
one-dimensional logic systemUS/K we obtain the two-dimensional logic system
T(US) = 〈LT(US),�T(US), |=T(US)〉 = T2(PL)/K . In this case we have to rename the
two-place operatorsSandU of the temporalized alphabet to, say,S andU.

In order to obtain a model forT(US), wemust fix a “current time,”o, in M US =
(T1,<1, g1), so that we can construct the modelM T(US) = (T2,<2, g2) as previously
described. Note that, in this case, the flows of time(T1,<1) and(T2,<2) need not to
be the same.(T2,<2) is the flow of time of the upper-level temporal system, whereas
(T1,<1) is the flow of time of the underlying logic which, in this case, happens to be
atemporal logic. The logic system we obtain by temporalizingUS-temporal logic is
the two-dimensional temporal logic described in [7].

Example 4.6 (n-dimensional temporal logic) If we repeat the process started in the
last two examples, we can construct ann-dimensional temporal logicTn(PL)/K
(its alphabet includingSn andUn) by temporalizing a(n− 1)-dimensional temporal
logic.

Every time we add a temporal dimension, we are able to describe changes in
the underlying system. Temporalizing the systemL once, we are creating a way of
describing the history ofL; temporalizing for the second time, we are describing how
the history ofL is viewed in different moments of time. We can go on indefinitely,
although it is not clear what the purpose of doing so would be.

To present the transfer results we restrict the logic systems toL = US/K andT =
ŪS̄/K , whereK ,K ⊆ K lin . We write ŪS̄(US) instead ofT(L) and the generated
class of models is referred to asK (K ). For this system, we enumerate a series of
results that are proved in [6]. Those results will be useful for the discussion of the
independent combination method.

Theorem 4.7 (Transfer via temporalization) Let ŪS̄/K and US/K be two logic
systems such thatK ,K ⊆ K lin .

(a) If ŪS̄ is sound with respect toK andUS is sound with respect toK , then
ŪS̄(US) is sound w.r.t.K (K ).

(b) If ŪS̄ is complete w.r.t.K and US is complete w.r.t.K thenŪS̄(US) is
complete w.r.t.K (K ).

(c) If ŪS̄ is complete w.r.t.K , thenŪS̄(US) is a conservative extension of both
ŪS̄ andUS.

(d) If ŪS̄ is complete and is decidable overK andUS is complete and decid-
able overK thenŪS̄(US) is decidable overK (K ).
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5 Independent combination We have seen in the previous section how to add a
temporal dimension to a logic system. In particular, if a temporal logic is itself tem-
poralized we obtain a two-dimensional temporal logic. Such a logic system is, how-
ever, very weakly expressive; ifUS is the internal (horizontal) temporal logic in the
temporalization process (F is derived inUS), andŪS̄ is the external (vertical) one
(F is defined inŪS̄), we cannot express that vertical and horizontal future operators
commute,

FF A ↔ F FA.

In fact, the subformulaFF A is not even in the temporalized language ofŪS̄(US),
nor is the whole formula. In other words, the interplay between the two-dimensions
is not expressible in the language of the temporalizedŪS̄(US).

The idea is then to define a new method for combining logic systems that puts
together all the expressivity of the two component logic systems in an independent
way; for that we assume that the language of a system is given by a set of formation
rules.

Definition 5.1 Let Op(L) be the set of non-boolean operators of a generic logicL.
Let T andT be logic systems such thatOp(T) ∩ Op(T ) = ∅. The fully combined
languageof logic systemsT andT over the set of atomic propositionsP is obtained
by the union of the respective sets of connectives and the union of the formation rules
of the languages of both logic systems.

Let the operatorsU andSbe in the language ofUS andU and S be in that ofŪS̄.
Note that the renaming of the temporal operator is done prior to the combination, so
that the combined system contains the set of boolean operators{¬,∧} coming from
both components, plus the set of temporal operators{U, S, U, S}. Their fully com-
bined language over a set of atomic propositionsP is given by

• every atomic proposition is in it;
• if A, B are in it, so are¬A andA∧ B;
• if A, B are in it, so areU(A, B) andS(A, B).
• if A, B are in it, so areU(A, B) and S(A, B).

In general, we do not want any non-boolean operator to be shared between the
two languages, for this may cause problems when combining their axiomatizations.
For example (this example is due to Ian Hodkinson), if a generic operator� belongs
to both temporal logic systems such thatT contains axiomq ↔ �q and systemT
contains axiom¬q ↔ �q, the union of their axiomatizations will result in an incon-
sistent system even though each system might have been itself consistent. To avoid
such behavior the restrictionOp(T) ∩ Op(T ) = ∅ is imposed on the fully combined
language ofT andT.

This new combination method is calledindependentbecause it takes the inde-
pendent union of the axiomatization of its two component systems, and it is based on
their fully combined language.

Definition 5.2 Let US andŪS̄ be twoUS-temporal logic systems defined over the
same setP of propositional atoms such that their languages are independent. The
independent combinationUS ⊕ ŪS̄ is given by the following:
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• The fully combined language ofUS andŪS̄.

• If (�,I ) is an axiomatization forUS and(�,I ) is an axiomatization for̄US̄,
then(� ∪ �,I ∪ I ) is an axiomatization forUS ⊕ ŪS̄. Note that, apart from
the classical tautologies, the set of axioms� and� are supposed to be disjoint,
but not the inference rules.

• The class of independently combined flows of time isK ⊕ K composed of
biordered flows of the form(T̃,<, < ) where the connected components of
(T̃,<) are inK and the connected components of(T̃, < ) are inK , and T̃
is the (not necessarily disjoint) union of the sets of time pointsT andT that
constitute each connected component; such a biordered flow of time has been
discussed in [16] for the case of the independent combination of two mono-
modal systems.
A model structure forUS ⊕ ŪS̄ overK ⊕ K is a 4-tuple(T̃,<,<, g), where
(T̃,<, < ) ∈ K ⊕ K andg is an assignment functiong : T̃ → 2P . An inde-
pendently combined model is illustrated in Figure 5.
The semantics of a formulaA in a modelM = (T̃,<, < , g) is defined as the
union of the rules defining the semantics ofUS/K andŪS̄/K . The expression
M , t |= A reads that the formulaA is true in the (combined) modelM at the
point t ∈ T̃. The semantics of formulas is given by induction in the standard
way:

M , t |= p iff p ∈ g(t) and p ∈ P .

M , t |= ¬A iff it is not the case thatM , t |= A.
M , t |= A∧ B iff M , t |= A andM , t |= B.
M , t |= S(A, B) iff there exists ans∈ T̃ with s< t andM , s |= A and

for everyu ∈ T̃, if s < u < t thenM , u |= B.
M , t |= U(A, B) iff there exists ans∈ T̃ with t < sandM , s |= A and

for everyu ∈ T̃, if t < u < s thenM , u |= B.
M , t |= S(A, B) iff there exists ans ∈ T̃ with s< t andM , s |= A and

for everyu ∈ T̃, if s< u< t thenM , u |= B.
M , t |= U(A, B) iff there exists ans ∈ T̃ with t < s andM , s |= A and

for everyu ∈ T̃, if t < u< s thenM , u |= B.

Note that, despite the combination of two flows of time, formulas are evaluated ac-
cording to a single point. The independent combination generates a system that is
two-dimensional according to the first criterion but fails the second one, so it is not
broadly two-dimensional.

The following result is due to Thomason [21] and is more general than the inde-
pendent combination of twoUS-logics.

Proposition 5.3 With respect to the validity of formulas, the independent combina-
tion of two modal logics is a conservative extension of the original ones.

Note that we have previously defined conservative extension in proof-theoretic terms;
completeness for the independently combined case will lead to the conservativeness
with respect to derivable theorems.

As usual, we will assume thatK ,K ⊆ K lin , so< and< are transitive, irreflex-
ive and total orders; similarly, we assume that the axiomatizations are extensions of
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US/K lin .
The temporalization process will be used as an inductive step to prove the trans-

fer of soundness, completeness and decidability forUS ⊕ ŪS̄ overK ⊕ K . Let us
first consider thedegree of alternationof a (US ⊕ ŪS̄)-formula A for US, dg(A),
andŪS̄, dg(A).

dg(p) = 0 dg(p) = 0
dg(¬A) = dg(A) dg(¬A) = dg(A)

dg(A∧ B) = max{dg(A), dg(B)} dg(A∧ B) = max{dg(A), dg(B)}
dg(S(A, B)) = max{dg(A), dg(B)} dg(S(A, B)) = max{dg(A), dg(B)}
dg(U(A, B)) = max{dg(A), dg(B)} dg(U(A, B)) = max{dg(A), dg(B)}
dg(S(A, B)) = 1+ max{dg(A), dg(B)} dg(S(A, B)) = 1+ max{dg(A), dg(B)}
dg(U(A, B)) = 1+ max{dg(A), dg(B)} dg(U(A, B)) = 1+ max{dg(A), dg(B)}

Any formula A of US ⊕ ŪS̄ can be seen as a formula of some finite number of
alternating temporalizations of the formUS(ŪS̄(US( . . . ))); more precisely,A can
be seen as a formula ofUS(Ln), wheredg(A) = n, US(L0) = US, ŪS̄(L0) = ŪS̄, and
Ln−2i = ŪS̄(Ln−2i−1), Ln−2i−1 = US(Ln−2i−2), for i = 0,1, . . . , �n

2� − 1. This fact
is illustrated in Figure 4. The following Lemma actually allows us to see the indepen-
dent combination as the (infinite) union of a finite number of alternating temporaliza-
tions ofUS andŪS̄; it will also be used in the proof of the transfer of completeness
and decidability (given completeness) forUS ⊕ ŪS̄.

Lemma 5.4 Let US andŪS̄ be two complete logic systems. Then, A is a theorem
of US ⊕ ŪS̄ iff it is a theorem ofUS(Ln), where dg(A) = n.

Proof: If A is a theorem ofUS(Ln), all the inferences in its deduction can be re-
peated inUS ⊕ ŪS̄, so it is atheorem ofUS ⊕ ŪS̄.

SupposeA is a theorem ofUS ⊕ ŪS̄; let B1, . . . , Bm = A be a deduction ofA
in US ⊕ ŪS̄ and letn′ = max{dg(Bi )}, n′ ≥ n. We claim that eachBi is a theorem
of US(Ln′). In fact, by induction onm, if Bi is obtained in the deduction by substi-
tuting into an axiom, the same substitution can be done inUS(Ln′); if Bi is obtained
by Temporal Generalization fromBj , j < i, then by the induction hypothesis,Bj is a
theorem ofUS(Ln′) and so isBi ; if Bi is obtained by Modus Ponens fromBj andBk,
j, k < i, then by the induction hypothesis,Bj andBk are theorems ofUS(Ln′) and so
is Bi .

So A is a theorem ofUS(Ln′) and, sinceUS andŪS̄ are two complete logic sys-
tems, by Theorem 4.7 each of the alternating temporalizations inUS(Ln′) is a conser-
vative extension of the underlying logic; it follows thatA is a theorem ofUS(Ln), as
desired. �

The transfer of soundness, completeness, and decidability follows directly from this
result.

Theorem 5.5 (Independent Combination) LetUS andŪS̄ be two sound and com-
plete logic systems over the classesK andK , respectively. Then their independent
combinationUS ⊕ ŪS̄ is sound and complete over the classK ⊕ K . If US andŪS̄
are complete and decidable, so isUS ⊕ ŪS̄.
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Proof: Soundness follows immediately from the validity of axioms and inference
rules. For completeness, suppose thatA is a consistent formula inUS ⊕ ŪS̄; by
Lemma 5.4,A is consistent inUS(Ln), so we construct a temporalized model for it,
and we obtain a model(T̃1,<1, g1, o1) overK (K (K (. . .))), whereo1 is the “cur-
rent time” necessary for the successive temporalizations. We show now how it can
be transformed into a model overK ⊕ K .

Without loss of generality, suppose thatUS is the outermost logic system in the
multi-layered temporalized systemUS(ŪS̄(US( . . . ))), and letn be the number of
alternations. The construction is recursive, starting with the outermost logic. Leti ≤
n denote the step of the construction; ifi is odd, it is aUS-temporalization, otherwise
it is aŪS̄-temporalization. At every stepi we construct the sets̃Ti+1, <i+1 and< i+1

and the functiongi+1.
Westart the construction of the model at stepi = 0 with the temporalized model

(T̃1,<1, g1, o1) such that(T̃1,<1) ∈ K , and we take< 1 = ∅. At stepi < n, consider
the current set of time points̃Ti ; according to the construction, eacht ∈ T̃i is associated
to:

• a temporalized modelgi (t) = (T̃t
i+1,<

t
i+1, gt

i+1, ot
i+1) ∈ K and take<t

i+1 = ∅,
if i is even; or

• a temporalized modelgi (t) = (T̃t
i+1,<

t
i+1, gi+1, ot

i+1) ∈ K and take<t
i+1= ∅,

if i is odd.

The pointt is made identical toot
i+1 ∈ T̃t

i+1, so as to add the new model to the
current structure; note that this preserves the satisfiability of all formulas att. Let
T̃i+1 be the (possibly infinite) union of all̃Tt

i+1 for t ∈ T̃i ; similarly, <i+1 and < i+1

are generated. And finally, for everyt ∈ T̃i+1, the functiongi+1 is constructed as the
union of allgt

i+1 for t ∈ T̃i .

Repeating this constructionn times, we obtain a combined model overK ⊕ K ,
M = (T̃n,<n,< n, gn), such that for allt ∈ T̃n, gn(t) ⊆ P . Since satisfiability of for-
mulas is preserved at each step, it follows thatM is a model forA, and completeness
is proved.

For decidability, suppose we want to decide whether a formulaA ∈ US ⊕ ŪS̄ is
atheorem. By Lemma 5.4, this is equivalent to deciding whetherA ∈ US(Ln) is a the-
orem, wheren = dg(A). SinceUS/K andŪS̄/K are both complete and decidable,
by successive applications of Theorem 4.7(b) and (d), it follows that the following
logics are decidable:US(ŪS̄), ŪS̄(US(ŪS̄)) = ŪS̄(L2), . . ., ŪS̄(Ln−1)= Ln; so alast
application of Theorem 4.7(b) and (d) yields thatUS(Ln) is decidable. �

6 Full join With respect to the generation of two-dimensional systems, the method
of independent combination has two main drawbacks. First, it generates logic sys-
tems whose formulas are evaluated at one single time point, not generating a broadly
two-dimensional logic. Second, since the method independently combines the two
component logic systems, no interaction between the dimensions is provided. As a
consequence, although a formula likeFF A ↔ F FA is expressible in its language,
it will not be valid, as can easily be verified, for it expresses an interplay between the
dimensions. We therefore introduce the notion of atwo-dimensional plane model.
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Definition 6.1 Let K andK be two classes of flow of time. Atwo-dimensional
plane modelover thefully combined classK × K is a 5-tupleM = (T,<, T,<, g),
where(T,<) ∈ K , (T,<) ∈ K andg : T × T → 2P is a two-dimensional assign-
ment. The semantics of the horizontal and vertical operators are independent of each
other.

M , t, x |= S(A, B) iff there existss< t such thatM , s, x |= A and for all
u, s < u < t, M , u, x |= B.

M , t, x |= S(A, B) iff there existsy<x such thatM , t, y |= A and for all
z, y<z<x, M , t, z |= B.

Similarly for U andU, the semantics of atoms and boolean connectives remaining
the standard one. A formulaA is (strongly) valid overK ×K if for all modelsM =
(T,<, T,<, g), for all t ∈ T andx ∈ T we haveM , t, x |= A.

With respect to the expressivity of fully combined two-dimensional languages, Ven-
ema [22] has shown that no finite set of two-dimensional temporal operators is ex-
pressively complete over the class of linear flows with respect to dyadic first-order
logic — despite the fact thatUS-temporal logic is expressively complete with respect
to monadic first-order logic overN and overR, and that, with additional operators
(the Stavi operators), we can get expressive completeness overQ andK lin (see Gab-
bay [10]). So expressive completeness is transferred by neither full join nor any other
combination method.

It is easy to verify that the following formulas expressing the commutativity
of future and past operators between the two dimensions are valid formulas in two-
dimensional plane models.

I1 FF A ↔ F FA

I2 F PA↔ PFA

I3 PF A ↔ F PA

I4 PPA↔ PPA

Therefore, if we want to satisfy both the syntactic and the semantic criteria for two-
dimensionality, we may define the method offull join containing the fully combined
language ofUS andŪS̄ and their fully combined class of models. The question is
whether there is a method for combining their axiomatizations so as to generate a
fully joined axiomatizationthat transfers the properties of soundness, completeness,
and decidability. The answer, however, is no, not in general. In some cases we can
obtain the transfer of completeness, in some other cases it fails. To illustrate that, we
consider completeness results over classes of the formK × K .

We start by defining some useful abbreviations. Letp be a propositional atom,
and define:

hor(p) = �(p∧ H¬p∧ G¬p)

ver(p) = �(p∧ H¬p∧ G¬p).

It is clear thathor(p) makesp true along the horizontal line and false elsewhere;
similarly for ver(p) with respect to the vertical.



222 MARCELO FINGER and DOV GABBAY

The axiomatization ofUS × ŪS̄ overK lin × K lin extends that ofUS ⊕ ŪS̄
over K lin ⊕ K lin by including the join axiomsI1–I4 and the following inference
rules:

IR1 if � hor(p) → A and p does not occur inA, then� A

IR2 if � ver(p) → A and p does not occur inA, then� A.

IR1 andIR2 are two-dimensional extensions of the irreflexivity inferrence rule (IRR)
defined in Gabbay [9] for the one-dimensional case: if� p∧ H¬p → A andp does
not occur inA, then� A.

Theorem 6.2 (2D-completeness) There is a sound and complete axiomatization
over the class of full two-dimensional temporal models overK lin × K lin .

The proof consists of a Henkin-style construction of a two-dimensional grid, where
each point is a maximally consistent set. The basic step of the construction is the elim-
ination of “defects” from the grid, i.e., adding new points to the grid for a semantic
condition that fails for the grid. The final model is obtained as the (infinite) union of
all steps, and the grid thus constructed is shown to be aK lin × K lin model for an
original consistent formula. The full details of the proof can be found in [8], but due
to space limitations (the full proof takes up to ten pages) we omit it here. IfK dis is
the class of all linear and discrete flows, [8] also shows completeness results for the
classesK dis × K dis, Q × Q, K lin × K dis, K lin × Q, andQ × K dis.

The negative result is the following.

Proposition 6.3 (2D-unaxiomatizability) There are no finite axiomatizations for
the (strongly) valid two-dimensional formulas over the classesZ × Z, N × N, and
R × R.

This proposition follows directly from Venema’s proof that the valid formulas over
the upper half two-dimensional semi-plane are not enumerable forZ × Z, N × N,
or R × R, which in turn was based on Halpern and Shoham [14]. Since there are
sound, complete, and decidableUS-temporal logics overZ, N, and R (cf. [17],
Reynolds [18], B̈uchi [2], Burgess and Gurevich [3]), the general conclusion on full
join is the following.

Theorem 6.4 (Full Join) Completeness and decidability do not transfer in general
through full join.

It has to be noted that two-dimensional temporal logics seem to behave like modal
logics in the following sense. We can see the result of the independent combination
of US andŪS̄ as generating a “minimal” combination of the logics, i.e., one without
any interference between the dimensions. The addition of extra axioms, inference
rules, or an extra condition on its models has to be studied on its own, just as adding
anew axiom to a modal logic or imposing a new property on its accessibility relation
has to be analyzed on its own.

The full join method illustrates the conflict between the generality of a method
and its ability to achieve the transfer of logical properties. We next restrict the join
method so as to recover the transfer of logical properties.
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7 Restricted join The fact that the transfer of logical properties fails for the join of
twoUS-temporal logics does not mean that the join of any two temporal logic systems
fails to achieve this transfer. We restrict the vertical logic system to a temporal logic
N̄P̄ with operators �for Next time and �for Previous time; the formation rules for
the formulas ofN̄P̄ are the standard ones. This restriction of theŪS̄-language for �
and �can be defined in terms ofU and S, namely by

�A =def U(A,⊥)
�A =def S(A,⊥)

Not only is the expressivity of the language reduced this way, but also the underlying
flow of time is now restricted to a discrete one; in fact, we concentrate our attention
on integer-like flows of time.

Let h : Z → P be a temporal assignment over the integers so that the semantics
of N̄P̄ over the integers is the usual one for atoms and boolean operators and

(Z,<, h), t |= �A iff (Z,<, h), t + 1 |= A

(Z,<, h), t |= �A iff (Z,<, h), t − 1 |= A.

An axiomatization forNP/Z is given by the classical tautologies plus

NP1 � �p → p

NP2 �¬p ↔ ¬ �p

NP3 �(p∧ q) → �p∧ �q

NP4 The mirror image ofNP1–3 obtained by swapping�and �.

The rules of inference are the usual Substitution, Modus Ponens, and Temporal Gen-
eralization (fromA infer �A and �A).

The converse of each axiom can be straightforwardly derived, so the formulas
on both sides of the→-connective are actually equivalent. It follows that everyN̄P̄-
formula can be transformed into an equivalent one by “pushing in” the temporal op-
erators, e.g., by following the arrows of the axioms, and by “cancelling” the occur-
rences of �and �in a string of temporal operators, e.g.,� � � � �p is equivalent
to �p. The resultingN̄P̄-normal formformula is a boolean combination of formulas
of the form �k

p and �l
q, wherep andq are atoms,k, l ∈ N and �k

is a sequence
of �-symbols of sizek, similarly for �l

; it is useful sometimes to considerk nega-
tive or 0, so we define�−k

A = �k
A and �0

A = A. As an example, the formula
� �( � � �(p∧ q) ∨ p) has normal form( �p∧ �q) ∨ � �p. The existence of

such normal form gives us very simple proofs for completeness and decidability of
N̄P̄/Z that we outline next.

For completeness, let� be a possibly infinite consistent set ofN̄P̄-formulas and
assume all formulas in the set are in the normal form.� can be seen as a consistent set
of propositional formulas where each maximal subformula of the form�k

p is under-
stood as a new propositional atom, so leth0 be a propositional valuation assigning ev-
ery extended atom into{true, false}. Forn∈ Z, leth(n) = {p∈ P | h0( �n

p) = true}.
Clearly(Z,<, h) is a model for the original set.

For decidability, letA be a formula ofN̄P̄ and letA∗ be its normal form; clearly
there exists an algorithm to transformA into A∗. By considering subformulas of the
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form �k
p as new atoms,k possibly negative, we apply any decision procedure for

propositional logic toA∗. A is aN̄P̄-valid formula iff A∗ is a propositional tautology.

Definition 7.1 The restricted joinof temporal logic systemsUS/K andN̄P̄/Z is
the two-dimensional temporal logic systemUS × N̄P̄ given by:

• the fully combined language ofUS andN̄P̄;

• the two-dimensional plane model overK × Z, equipped with the broadly two-
dimensional semantics;

• the union of the axioms ofUS/K andN̄P̄/Z plus the join axioms

�U(p, q) → U( �p, �q)
�S(p, q) → S( �p, �q)

plus their duals obtained by swapping�with �; the inference rules are just
the union of the inference rules of both component systems.

What has therefore been restricted in the interlacing process is the expressivity of the
language over the vertical dimension, which also restricted the underlying flow of
time to a discrete one. The following gives us a normal form forUS × N̄P̄.

Lemma 7.2 Let A be a formula ofUS × N̄P̄. There exists a normal form formula
A∗ equivalent to A such that all the occurrences of�and � in it are in the form
�k

p and �l
q, where p and q are atoms.

Proof: First we show that the converse of the join axioms are theorems too. For
that, note thatU andS respect thecongruence property, i.e., if A ↔ C andB ↔ D
thenU(A, B) ↔ U(C, D) andS(A, B) ↔ S(C, D). Also note that

(equiv) � (p ↔ � �p) and � (p ↔ � �p).

The transitivity of the→-operator connects the steps in the proof of the formula
U( �p, �q) → �U(p, q) below:

U( �p, �q) → � �U( �p, �q) by equiv
→ �U( � �p, � �q) by join axiom
→ �U(p, q) by equiv and congruence

It follows thatU( �p, �q) ↔ �U(p, q). It is completely analogous to show the
converse of other join axioms, so we omit the details.

Given A in the language ofUS × N̄P̄, the equivalence between both sides of
the join axioms allows for “pushing in” the vertical operators�and �, so asimple
induction on the number of nested temporal operators inA shows an algorithmic way
to generate an equivalent formulaA∗ in the desired normal form. �

Theorem 7.3 (Completeness via restricted join)Let US be a logic system com-
plete over the classK ⊆ K lin . Then the two-dimensional systemUS × N̄P̄ is com-
plete overK × Z.

Proof: Consider aUS × N̄P̄-consistent formulaA and assume it is in the normal
form. So we can seeAas aUS-formula over the extended set of atoms�k

, k possibly
negative or 0. From the completeness ofUS/K there exists a one-dimensional model
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(T,<, hUS) for A at a pointo ∈ T, where(T,<) ∈ K . Define the two-dimensional
assignment

h(k, t) = {p ∈ P | �k
p ∈ hUS(t)}.

Clearly,(T,<,Z,<Z, h) is a two-dimensional planeUS×N̄P̄-model forA at (o,0).
�

Corollary 7.4 If US/K is strongly complete, so isUS × N̄P̄/ K × Z.

Theorem 7.5 (Decidability via restricted join) If the logic systemUS is decidable
overK , so isUS × N̄P̄ overK × Z.

Proof: The argument of the proof is the same as that of the decidability ofNP. All
we have to do is note that there exists an algorithmic way to convert a combined two-
dimensional formula into its normal form, so it can be seen as aUS-formula, and we
can apply theUS-decision procedure to it. �
So by restricting the expressivity and the underlying class of flows of time, we can
obtain the transfer of the basic logical properties via restricted join. It should not be
difficult to extend these results toN instead ofZ, although we do not explore this
possibility here.

It is also worth noting that the restricted join method answers a conjecture posed
by Venema [22] on the existence of some expressively limited two-dimensional tem-
poral logic overZ × Z that was “well behaved” in the sense of having the complete-
ness and decidability properties.

8 The two-dimensional diagonal We now study some properties of the diago-
nal in two-dimensional plane models. The diagonal is a privileged line in the two-
dimensional model intended to represent the sequence of time points we call “now,”
i.e., the time points on which an historical observer is expected to traverse. The ob-
server is, therefore, on the diagonal when he or she poses a query (i.e., evaluates the
truth value of a formula) on a two-dimensional model. The diagonal is illustrated in
Figure 8.

So letδ be a special atom and consider the formulas:

D1 ♦δ ∧ ♦δ

D2 δ → (G¬δ ∧ H¬δ ∧ G¬δ ∧ H¬δ)

D3 δ → (HG¬δ ∧ GH¬δ)

Let Diag = ��(D1 ∧ D2 ∧ D3). The intuition behindDiag is the following.
D1 implies that the two-dimensional diagonal can always be reached in both verti-
cal and horizontal directions;D2 implies that there are no two diagonal points on the
same horizontal line and on the same vertical line, andD3 implies that the diagonal
goes in the direction SW–NE. We say thatDiag characterizes a two-dimensional di-
agonal in the following sense.

Proposition 8.1 Let M = (T,<, T, < , g) be a full two-dimensional model over
K × K , K ,K ⊆ K lin , and letδ be a propositional letter. Then the following are
equivalent.

(a) M , t, x |= Diag, for some t∈ T and x∈ T.
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Figure 8: The two-dimensional diagonal

(b) M , t, x |= Diag, for all t ∈ T andx ∈ T.
(c) There exists an isomorphism i: T → T such thatM , t, x |= δ iff x = i(t).

Proof: It is straightforward to show that (a)⇐⇒ (b) and (c)=⇒ (a); we show only
(b) =⇒ (c). So assume thatM , t, x |= Diag, for all t ∈ T andx ∈ T. Define

i = {(t, x) ∈ T × T | M , t, x |= δ}.
All we have to show is thati is an isomorphism.

• i, i−1 are functions such thatdom(i ) = T anddom(i−1) = T. Suppose that both
(t, x1) and(t, x2) are ini; thenM , t, x1 |= δ andM , t, x2 |= δ. By linearity of
T, x1 = x2, x1 < x2 or x2 < x1, butD2 eliminates the latter two;D1 gives us that
dom(i ) = T. Similarly, the linearity ofT andD2 gives us thati−1 is a function
andD1 gives us thatdom(i−1) = T.

• i(t) = x iff i−1(x) = t follows directly from the definition. Soi is a bijec-
tion.

• i preserves ordering. Supposet1 < t2; by the linearity ofT we have three pos-
sibilities:

– i(t1) = i(t2) contradictsi is a bijection.

– i(t2)< i(t1) contradictsD3.

– i(t1)< i(t2) is the only possible option.

Thereforei is an isomorphism, which proves the result. �
This result shows that by addingD1–D3 to the axiomatization over the two-dimen-
sional planeK lin ×K lin of Section 6 gives us completeness over the class of models
of the form(T,<, T,<, g), where(T,<) ∈ K lin . It follows from [14], however, that
such a logic system is undecidable.

The diagonal is interpreted as the sequence of time points we call “now.” The
diagonal divides the two-dimensional plane in two semi-planes. The semi-plane that
is to the (horizontal) left of the diagonal is “the past,” and the formulaFδ holds over
all points of this semi-plane. Similarly, the semi-plane that is to the (horizontal) right
of the diagonal is “the future,” and the formulaPδ holds over all points of this semi-
plane. Figure 8 puts this fact in evidence. If we assume thatDiag holds overM such
that i is the isomorphism defined in Lemma 8.1,t < s iff i(t)< i(s), then
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M , t, x |= Fδ iff exists s > t such thatM , s, x |= δ andi(s) = x
iff exists y = i(t)< x such thatM , t, y |= δ

iff M , t, x |= Pδ.

Similarly, it can be shown that:

M , t, x |= Pδ iff M , t, x |= F δ.

It follows that the following formula is valid forUS × ŪS̄ overK lin × K lin :

Diag → (
(Fδ ↔ Pδ) ∧ (Pδ ↔ F δ)

)
.

As a consequence,Pδ holds over all points of the “past” semi-plane andF δ holds
over all points of the “future” semi-plane, as is indicated in Figure 8.

The formulaDiag is in the language ofUS × ŪS̄but not in the language of
US × N̄P̄, for Diag contains the vertical temporal operatorsG, H, � and♦. Tochar-
acterize a two-dimensional diagonal inUS × N̄P̄ we do the following. We say that a
formula A holds overor is valid overa two-dimensional modelM if for every t ∈ T
and everyx ∈ T, it is the case thatM , t, x |= A. Consider the formulas

d1 ♦δ

d1 δ → (G¬δ ∧ H¬δ)

d1 δ ↔ � �δ
whereδ is a proposition. Those formulas are all in the language ofUS × N̄P̄ for Diag
(so also in the language ofUS × ŪS̄), and they can characterize the two-dimensional
diagonal due to the following property.

Proposition 8.2 Let M be a two-dimensional plane model overZ × Z. Then the
formulaD1 ∧ D2 ∧ D3 holds overM iff d1 ∧ d2 ∧ d3 holds overM .

Proof: From Proposition 8.1 we know thatD1 ∧ D2 ∧ D3 holds overM iff the
relationi defined as

i = {(t, x) ∈ Z × Z | M , t, x |= δ}
is an isomorphism inZ. So all we have to do is to prove thati as defined above is an
isomorphism iffd1 ∧ d2 ∧ d3 holds overM . Theonly if part is a straightforward
verification that for allx andt in Z, M , t, x |= d1∧d2∧d3.

For theif part, assumed1 ∧ d2 ∧ d3 holds overM . Then:

(a) d1 gives us that for everyx there exists at such thatM , t, x |= δ;
(b) d2 gives us that for everyx, t, t′, t �= t′, M , t, x |= δ impliesM , t′, x �|= δ;
(c) d3 give us that for everyx, t, M , t, x |= δ iff M , t + 1, x + 1 |= δ iff for
everyn ∈ Z, M , t + n, x+ n |= δ.

The first two items give us thati−1 : Z → Z is a function. To show thati is also
a function, suppose that(t, x1), (t, x2) ∈ i. By linearity of Z, it follows that either
x1 < x2 or x2 < x1 or x1 = x2. Let x1 − x2 = m; then, by the third item above,(t +
m, x2 + m= x1) ∈ i, sot = (t + m) andm= 0. It follows thatx1 = x2, soi : Z → Z

is a function. Directly by the definition ofi, it follows thati is a bijection.
By the third item above, ifi(t1) = x1 andi(t2) = x2, thent1 − t2 = x1 − x2. It

follows thati is order preserving and hence an isomorphism, which finishes the proof.
�
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It would be desirable to generalize the idea of a diagonal as the sequence of “now”
moments to any pair of flows of time that are not necessarily isomorphic. For that,
we would have to create an order between the points of the two flows, i.e., we would
have to merge the flows.

So let(T,<) and(T, < ) be two flows of time such thatT andT are disjoint.
Then there always exists a flow(T′,<′) and a mappingf : T ∪ T → T′ such thatf
is one-to-one and order preserving. Thef -merge of(T,<) and (T, < ) is the flow
of time consisting of the image off ordered by the restriction of<′ to the image of
f . An example of anf -merge is shown in Figure 9, wheref (y) is made equal, via
merge, tof (x̄) and on the merged flow the order is preserved, i.e., originallyx < y
andx̄< ȳ and on the f -merged flow f (x) <′ f (y) = f (x̄) <′ f ( ȳ).

�

...................�

...................	

.................	

................. �

��

(T′,<′)

(T̄, < )(T,<)
yx

ffff

ȳx̄

Figure 9: Thef -merge

We can then construct a two-dimensional model with two copies of thef -
merged flow, in which we can define a diagonal over(T′,<′) × (T′,<′) as shown in
Figure 10. Another particularly interesting situation arises when thef -merged flow
(T′,<′) is identical to one of the component flows, e.g.,(T, < ), so that f is anem-
beddingof (T,<) into (T, < ). In this case, the flow(T,<) could be viewed as a
more “abstract” representation of(T, < ) wherein several details, i.e., pieces of in-
formation, points in time, are ignored.
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Figure 10: The diagonal of two distinct flows

The f -merge construction serves as motivation for another method of combining
two one-dimensional temporal logics, this time generating another one-dimensional
logic. This could be achieved over the class of allf -merges of its two-component
flows of time or subclasses of it. We could then study the transfer of logical properties
in the same way as we have done in this and the previous section, but those matters
remain beyond the scope of this paper.
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9 Conclusion This paper dealt with the combination of two logic systems in order
to obtain a new logic system. The issues were:

• Several methods of combination of two logic systems were presented. Each
combination involved at least one temporal logic system. Each method had a
particular discipline for combining the language, the semantics, and the infer-
ence system of two logic systems. Each combination generated a single logic
system.

• The study of the transfer of logical properties from the component systems
into their combined form has been the major point in the analysis of combina-
tion methods. The basic logical properties whose transfer was analyzed were
soundness, completeness, and decidability; for some combination methods,
the transfer of other properties, such as conservativeness and the compactness
property (in the form of strong completeness), was also investigated.

• The investigation of four basic methods has been accomplished. The temporal-
ization method and the independent combination method were shown to trans-
fer all basic properties, although they do not generate a sufficiently expressive
system to be called fully two-dimensional. The full join method does generate
a fully two-dimensional temporal system, but in many cases it fails to trans-
fer even the completeness property. As a compromise, it was shown that a re-
stricted join method, although generating two-dimensional temporal logic sys-
tems that were not as expressive and generic as the fully interlaced one, accom-
plishes the transfer of all basic logical properties.

Another contribution of our analysis was to answer a question raised by Ven-
ema [22] on the existence of a fragment of the two-dimensional plane temporal logic
that, in his own words, was “better behaved” than the two-dimensional plane system
with respect to completeness and decidability properties. We have shown that the
two-dimensional temporal logic systems obtained by restricted join are an example
of such fragments.

Another question raised by Venema in that work remains open, namely, whether
there exists a complete axiomatization over the two-dimensional model using only
canonical inference rules, i.e., without using the special inference rulesIR1 andIR2.
This problem seems to be a very hard one. Nevertheless we succeeded in extending
Venema’s completeness result, which originally holds for only two-dimensional flows
built from two identical one-dimensional flows, to any two-dimensional flow built
from any flow in the classesK lin , K dis, K dense, andQ.

9.1 Comparisons, extensions, and further work With respect to combination of
logics, the works found in the literature that most closely approximate ours in spirit
and aims are Kracht and Wolter [16] and an unpublished paper of Fine and Schurz.
Both works concentrated on monomodal logics and investigated the transfer of logi-
cal properties for only the method we called here independent combination. However,
their work investigated several paths that suggest that further work may be done in
our studies. First, they analyzed the transfer of many other properties from two logic
systems to its combined form, e.g., finite model property and interpolation. Second,
both works did not concentrate only on linear systems, and they were able to extend
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their results to any class of underlying Kripke frames. Third, Fine and Schurz’s work
generalized the independent combination method to more than two monomodal log-
ics.

Those two papers cited above therefore suggest several extensions to our work.
Note, however, that the temporalization method was easily shown to be extensible to
many temporal logic systems in Example 2.4. The focus on linear flows of time was
due to database applications of two-dimensional temporal logics as in [6] and [8], but
we believe that this restriction may be lifted without damaging the transfer results of
the temporalization and independent combination methods. These have to be further
investigated, and the transfer of any other logical property has to be analyzed on its
own.

The generalization of combination methods other than the independent combi-
nation method to modal logics is another area for further work. As noted in [6], the
temporalization process is directly extendable to monomodal logics. It may even be
the case that, for monomodal logics, the full join method achieves transfer of com-
pleteness over several classes of fully two-dimensional Kripke frames using only
canonical inference rules, as suggested by the results in [19].

The complexity class of the decision problem for the combined logic is another
interesting subject for study. For the independent combination of monomodal logics,
such a study was done by Spaan [20], and the conclusion was that the satisfiability
problem of an independently combined logic is either reducible to that of one of the
component logics, or it isPSPACE-hard or it is in NP. We believe a similar result can be
obtained for the temporalization and the independent combination of temporal logics,
although the details have not yet been worked out. The complexity of the full and
restricted join methods still have to be studied.

All the systems dealt with in this paper were extensions of classical logic. It is
possible that the temporalization process preserves its transfer properties even when
the underlying system is not an extension of classical logic. What if the external tem-
poral logic is nonclassical itself? The same question applies to other combination
methods. Do they transfer logical properties when one or both of the combined tem-
poral of modal logics is not classical? Gabbay [11] has recently posed that question
in a very generic framework involving Labelled Deductive Systems (LDS) and found
that in order to obtain the transfer of completeness we do not need the full power of
classical logic but only some weaker form of monotonicity. He has also developed
general methods of combination calledfibring that depend on the choice of a fibring
function. A fibring function maps the truth value of atoms in one logic’s semantics
to the semantics of formulas in another logic’s semantics. Gabbay’sdovetailingpro-
cess, obtained with a certain class of fibring functions, is similar to the independent
combination method extended to logics respecting those weaker conditions of mono-
tonicity. More work on this area is needed to clarify exactly how fibring is related to
existing combination methods.

There are also other possible types of combinations of one-dimensional temporal
logics that may be explored. As pointed out in Section 8, two linear flows of time can
be merged into another one; the question is then how to combine two one-dimensional
temporal logics into another one-dimensional temporal logic over the merged flow.
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