
Journal of Logic, Language and Information (2006) 15: 195–218 C© Springer 2006
DOI: 10.1007/s10849-005-9001-y

Cut and Pay

MARCELO FINGER∗
University of Sao Paulo, Brazil
E-mail: mfinger@ime.usp.br

DOV GABBAY
King’s College, London
E-mail: dg@dcs.kcl.ac.uk

(Received 14 June 2005; in final form 27 September 2005)

Abstract. In this paper we study families of resource aware logics that explore resource restric-
tion on rules; in particular, we study the use of controlled cut-rule and introduce three families of
parameterised logics that arise from different ways of controlling the use of cut. We start with a
formulation of classical logic in which cut is non-eliminable and then impose restrictions on the use
of cut. Three Cut-and-Pay families of logics are presented, and it is shown that each family provides
an approximation process for full propositional classical logic when the control over the use of cut
is progressively weakened. A sound and complete semantics is given for each component of each
of the three families of approximated logics. One of these families is shown to possess the uniform
substitution property, a new result for approximated reasoning. A tableau based decision procedure
is presented for each element of the approximation families and the complexity of each decision
procedure is studied. We show that there are families in which every component logic can be decided
polynomially.

1. Introduction

Resource aware logics allow for a form of reasoning in which one can keep track of
and control the logical elements used in an inference. Many such logic systems have
been analysed in the literature from the philosophical, mathematical and computa-
tional points of view. For instance, Intuitionistic Logic (Van Dalen, 1984) forbids
the use of the reductio ad absurdum inference; Relevance Logic (Anderson and
Belnap, 1975) further imposes that all premises in an inference must be used; and
Linear Logic (Girard, 1987) constrains even more inferences, by imposing that ev-
ery premise must be used exactly once. These logics are all members of the class of
resource aware systems known as Substructural Logics (Restall, 2000). In another
direction, da Costa’s Paraconsistent Logics (da Costa, 1974) restrict the use of the
ex contradictio quodlibet inference; in this case, a family of logics Ci , 1 ≤ i ≤ ω,

∗Partly supported by CNPq grant PQ 300597/95-5 and FAPESP project 03/00312-0.

196 M. FINGER AND D. GABBAY

is generated by imposing a crescendo of restrictions on when the trivialisation of
an inference follows from the presence of a contradiction.

Resource logics have restricted the number of uses of items of data. However,
those logic systems do not impose resource restrictions on the number of uses of
inference rules. However, it may well be possible to explore resource restriction on
rules. So for example, the inference of

A, A → (A → B) � B

requires two uses of the item A, one use of the item A → (A → B) and two uses
of the rule of Modus Ponens.

Linear logic allows the use of premise A only once. Suppose we allocate a
fixed number of uses of Modus Ponens, involving certain formulas, but unlimit the
number of uses of items of data, then what do we get?

In this paper, we explore a new way of controlling inferences, and focus on by
restricting the use of the cut rule. The cut rule is a central most famous inference rule
in a logical system. It is useful but is computationally inefficient when cut-formulas
have to be non-deterministically guessed, and eliminating cut has become a central
point in the study of logic inference.

Of course, in classical logic as well as in all of the above mentioned systems,
the cut rule is eliminable. So, it does not make sense to control something that
can always be avoided. However, it may be a good idea, from a computational
and philosophical point of view, to have systems in which some form of cut is
allowed or mandatory. From the computational point of view, we know that there
are families of formulas whose proof size have an exponential lower bound for cut-
free sequent systems, but that have very simple, linear or at most quadratic, sequent
proofs with cuts (Boolos, 1984; Carbone and Semmes, 2000). Furthermore, the cut
rule represents the use of auxiliary lemmas in complex theorem proofs, and are an
inherent part of the mathematical activity.

Our starting point is thus a cut-based sequent system for classical logic, in which
the cut rule is non-eliminable. Such a system is developed around a formulation by
D’Agostino and Mondadori (1994). This system allows us to define proof methods
that control the use of cuts in proofs. In these cut-limited systems, one has to be
able to “pay” for each use of cut, thus generating cut-and-pay inferences. Different
restrictions (i.e. forms of “payment”) generates different families of inferences.

We thus propose three families of cut-and-pay inference systems by means of
distinct forms of restrictions on the cut rule. We show that each such family consti-
tutes an approximation process towards classical logic. In this sense, the inferences
defined here are in line with other families logics that perform approximation pro-
cesses (see Schaerf and Cadoli, 1995; Dalal, 1996a; Massacci, 1998; Finger and
Wassermann, 2004).

Sound and complete semantics are provided for each component of those three
families of logics for approximate reasoning. We then provide decision procedures

CUT AND PAY 197

for each family of logics. In particular, a tableau based decision procedure is given
for one family of logics, and the other inference systems use such tableaus as basic
building blocs in their decision procedures. Detailed analysis of the complexity of
each decision procedure is given. We show that one of the families has a linear time
decision procedure for each component. We show that another, more expressive
family has a polynomial time decision procedure for each component.

The rest of the paper develops as follows. Section 2 contains a Gentzen-system
presentation of propositional classical logic in which cut is not eliminable, and
which will serve as the basis for controlling the use of cut; it is shown that such
systems also accepts some forms of proof normalisation which are very convenient
for later complexity analysis of cut-controlled proofs. Section 3 presents three Cut-
and-Pay families of logics, showing that each family provides an approximation
process for full classical logic when the control over the use of cut is progressively
weakened. The semantics of those families is presented in Section 4, with proofs
of soundness and completeness correspondence for each component of each of the
three families of approximated logics; one of the families of approximated logics
is shown to possess uniform substitution property, an important meta-property of
logics which is new for approximated systems. Finally, Section 5 presents tableau
based decision procedures for each element of the approximation families and the
complexity of each decision procedure is studied. We show that there are families
in which each element can be decided polynomially, although the whole approxi-
mation process remains exponential.

2. A Cut-Based System for Classical Logic

Since our aim is to control – i.e. to pay for – the use of the cut rule, we cannot
admit the usual rules for the Gentzen sequent calculus, in which case the cut rule is
eliminable. With the usual connective and structural rules, any proof can be done
without any use of cut, but the “price” one pays for the eliminating is that of having
very large proofs when much smaller proofs with cut are possible.

Instead we start from a version of the sequent calculus in which cut is not elim-
inable. In this approach, the classical structural rules are kept, as shown in Figure 1.
We assume a sequent to be represented by � � �, where �, � are sequences of
formulas, with the intended meaning that the conjunction of the formulas in �

prove the disjunction of the formulas in �. Note that, in Figure 1, the axiom rule
contains implicitly the weakening of the premisses and the consequences, but this
weakening is restricted to the leafs of the proof where axioms are found; in the
axiom rule, we call the distinguished formula A the main formula and any formula
in � and � a weak formula. As for the cut rule, the distinguished formula A is
called the cut formula.

The connective rules of the sequent calculus are altered, so as to block cut
elimination. Those connective rules are presented in Figure 2, which is greatly

198 M. FINGER AND D. GABBAY

Figure 1. Classical structural rules for the sequent calculus.

Figure 2. Connective rules for the cut-based sequent calculus.

inspired by the ideas of D’Agostino (1992) and D’Agostino and Mondadori (1994).
Instead of being a cut-free calculus, this is a cut-based calculus.

If we compare the connective rules in Figure 2 with a standard, cut-free presen-
tation, the cut-based one-premissed rules (� ∧1), (� ∧2), (∨ �1), (∨ �2), (→�1)
e (→�2) in Figure 2 are usually replaced by the two-premissed sequent rules in
Figure 3.

LEMMA 2.1. In the presence of all structural rules, the cut-based one-premissed
rules and their correspondent in Figure 3 rules are interdefinable such that, when

Figure 3. Two-premissed sequent rules in usual presentations.

CUT AND PAY 199

cut is applied, the cut formula is always a subformula of some formula occurring
in the cut premisses.

Proof. We show the interdefinition between (→�1) and (→�). Initially, assume
(→�1), then

�1 � �1, A
�2, B � �2

�2, A → B, A � �2
(→�1)

�2, A → B, �1 � �1, �2
(Cut).

Note that the cut formula A is a subformula A → B in the cut right premiss. Due
to the commutativity structural rules, the order of the formulas is the sequent is not
important. Now assume (→�), then

�, B � � A � A
�, A → B, A � �

(→�)

The other cases are analogous and thus omitted.

The fact that the cut can be made over some subformula, as shown in Lemma 2.1,
does not mean it must be made only on subformulas. This implies that the cut-
based system possesses the subformula property, that is, every provable sequent
has a proof in which, for every rule application, every formula in a premiss is a
subformula of some formula in the conclusion.

A cut is called analytic if the cut formula is a subformula of some formula in
the conclusion of the cut application. Clearly, analytic cuts preserve the subformula
property. Furthermore, we have the following property.

LEMMA 2.2. Every classically provable sequent has a cut-based proof using only
analytic cuts.

Proof. Consider a classically provable sequent and one cut-free proof of it. By
Lemma 2.1, there is a cut-based proof that simulates such proof.

We do not want to be restricted to cut-free or analytical inference systems
because proofs with cut can sometimes be significantly smaller than cut-free proofs
or proofs with restricted forms of cut. With respect to the size of proofs, the proof
of Lemma 2.1 implies the following result.

LEMMA 2.3. The cut-based inference system can linearly simulate cut-free proofs.
Proof. Just note that the simulation of rules (� ∧), (∨ �) and (→�) in the

cut-based system can be done with a linear (or sub-linear) addition of new lines to
the proof.

200 M. FINGER AND D. GABBAY

2.1. NORMALISING CUT-BASED PROOFS

We say that a formula A reappears in a proof if there is a branch in which A
occurs twice in the lhs (or in the rhs) of a sequent, but is absent in between these
two occurrences. The following is a trivial consequence of cut elimination in cut-
free systems, but it also applies to the cut-based system as a proof normalisation
procedure.

LEMMA 2.4. If there is a provable sequent � � � whose proof contains a branch
with a cut over a formula A that reappears further down in the proof. Then � � �

has a proof with that cut eliminated.
Proof. Suppose � � � has a proof with the following configuration

�1, A � �1 �2 � A, �2

�1, �2 � �1, �2
... �

�3, A � �3

where � is the proof segment between the two sequents in that branch. With-
out loss of generality, we assume that A reappears on the rhs of a sequent.
Then, by monotonicity, we can expand �1, A � �1 to �1, �2, A � �1, �2, thus
obtaining

�1, �2, A � �1, �2
... �

�3, A, A � �3

�3, A � �3

so that the upper cut is replaced by a lower application of contraction.

This result allows us to assume that every provable sequent in the cut-based
system has a proof where no branch contains two cuts over the same formula.

There are certain cases in cut-based proofs where some cuts can be eliminated,
such as the case where a branch has cuts over A and ¬A, or cuts over A, B and
A ◦ B for ◦ ∈ {∧, ∨, →}.

LEMMA 2.5. Any sequent � � � whose cut-based proof has a branch containing
cuts on a compound formula and its immediate subformulas also has a cut-based
proof with one of the cuts eliminated.

Proof. We have to analyse two cases for a cut over ¬A and six cases for each
of the binary connectives. We present the proof only for the cuts over ¬A. Suppose

CUT AND PAY 201

we have a proof

�1, ¬A � �1 �2 � ¬A, �2

�1, �2 � �1, �2
... �

�3, A � �3 �4 � A, �4

�3, �4 � �3, �4

Consider the sequent �1, ¬A � �1. One possibility is that ¬A was obtained by
rule (¬ �) from �1 � A, �1. Alternatively, ¬A was introduced by an axiom, either
as a main or a weak formula; in both cases, we can rearrange the proof so that
�1 � A, �1 holds. Similarly, we can rearrange the proof so that �2, A � �2 is
derivable so we have

�1 � A, �1 �2, A � �2

�1, �2 � �1, �2
... �

�3, A � �3 �4 � A, �4

�3, �4 � �3, �4

By Lemma 2.4 this proof can be rewritten with only one cut over A.
On the other hand, suppose we have a proof containing

�1, A � �1 �2 � A, �2

�1, �2 � �1, �2
... �

�3, ¬A � �3 �4 � ¬A, �4

�3, �4 � �3, �4

This proof can be converted to

�1, A � �1 �2 � A, �2

�1 � ¬A, �1 �2, ¬A � �2

�1, �2 � �1, �2
... �

�3, ¬A � �3 �4 � ¬A, �4

�3, �4 � �3, �4

Again, by Lemma 2.4, this proof can be rewritten with only one cut over ¬A. The
other cases are straightforward repetitions of the techniques displayed above and
are thus omitted.

202 M. FINGER AND D. GABBAY

Finally, the last property we show cut-based proofs has to do with the cut-order.
The cut-order of a branch in a cut-based proof is the sequence of cut formulas in
that branch. We then proof the cut-order independence property:

LEMMA 2.6. If � � � has a cut-based proof with a branch with a certain cut-
order, then � � � has a cut-based proof with a branch containing any permutation
of that cut-order.

Proof. All we have to do is show that the order of two cuts in a branch can be
commuted. For that, suppose we have a proof chunk:

�1, A � �1 �2 � A, �2

�1, �2 � �1, �2
... �

�3, � B, �3 �4, B � �4

�3, �4 � �3, �4

Note that � is a proof segment that applies proof rules to the elements of �1, �2 �
�1, �2. Let us split � into �1 and �2, such that �i applies proof rules the the
formulas originally in �i , �i . Without loss of generality, suppose that the formula
B emerges from �1, such that we obtain the following proof chunk:

�1, A � �1 �2 � A, �2
... �1

... �2

�′
1, A � B, �′

1 �4, B � �4
...

�′
1, �4, A � �′

1, � �4 �′
2 � A, �′

2
�′

1, �
′
2, �4 � �′

1, �
′
2, �4

but �′
1, �

′
2 = �3 and �′

1, �
′
2 = �3, which shows that the order of the cut formulas

A and B can be exchanged, and the result is proved.

A cut is called analytic if the cut formula is a subformula of some formula in the
conclusion of the cut application. Analytic cuts preserve the subformula property.

3. Cut-and-Pay Inference Systems

There are many possible ways in which the use of the cut can be limited in a system
so as to implement a Cut-and-Pay proof system. We are going to limit ourselves here
to three forms of disciplining the use of cut over the cut-based deduction system.

Before we present the “cut-and-pay” limitations in the use of cut, we need to
add to the inference systems a few extra rules, which are easily inferable in the
cut-based inference system. However, since we are going to limit the use of cut, it

CUT AND PAY 203

Figure 4. Idempotency inference rules for ∧ and ∨.

is necessary to add those rules so as to provide a complete semantics for the limited
systems. So we add the two idempotency inference rules in Figure 4.

These rules are admissible in the classical cut-based calculus, in the sense that
they do no add any new derivable sequents to the logic, as can be easily seen. It
is also important to note that the addition of the idempotency rules (� ∧id) and
(∨ �id) does not make cut eliminable. In fact, the cut rule is the only rule with two
premisses and one conclusion in the cut-based calculus; the idempotency rules, as
well as all the other “linear” rules in Figure 2, have only one premiss. The presence
of two premised rules is essential to obtaining the full expressivity of classical logic,
which means that cut is not eliminable with the addition of the idempotency rules.

Also note that idempotency rules preserve the subformula property. As will be
clear in Section 4, the idempotency rules guarantee that the formulas A and A ∧ A
and A ∨ A are always assigned the same truth value.

We now proceed to present three families of cut-limited inference systems.

Formula Limitation
Cut can only be applied to formulas which belong to a set of formulas � ⊆ L:

�1 � �1, A A, �2 � �2

�1, �2 � �1, �2
provided A ∈ �

The application of cut in a proof is limited to cut formulas belonging to an
externally provided set �. In this sense, � is a parameter of the limited system. We
require the closure of � under negation prefixing, that is, if α ∈ � then ¬α ∈ �.1

We write � �
�

� to represent the cut-based inference system in which cut is
limited to the formulas in �.

Formula limitation is local in nature, for the decision on the application of the
cut does not depend on the rest of the proof.

Atom Number Limitation
Cut can only be applied to a cut formula whose number of atoms is at most a fixed
k:

�1 � �1, A A, �2 � �2

�1, �2 � �1, �2
provided |atoms(A)| ≤ k

where atoms(A) is the set of atoms occurring in the formula A.

1 This differs from the presentation in Finger (2004a), for there � was required to be closed under
formula formation, that is, if A, B ∈ � the ¬A, A ∧ B, A ∨ B, A → B ∈ �.

204 M. FINGER AND D. GABBAY

In this case, k is a parameter of the limited system. This condition is clearly
local.

We write � �a
k � to represent the cut-based inference system in which cut is

limited to the formulas whose number of atoms is at most k.
It is also possible to view �a

k as a restriction of �
�
. To see that, let �k =

{A| |atoms(A)| ≤ k}, then �a
k=��k . Note that this makes �a

k a direct generalisa-
tion of Dalal’s clausal approximations of classical logic, which now accepts any
propositional formula (Dalal, 1996a,b).

Limiting the Number of Distinct Cut Formulas
In this case, cut can only be applied to a certain number k of distinct formulas.

This does not imply that there are only k uses of cut in a proof, but among the
uses of cut, at most k cut formulas can be found in a proof. In this case, k is a
parameter of the limited system.

We write � �d
k � to represent the cut-based inference system in which proofs

are limited to at most k distinct cut formulas. If we measure the height of a proof by
the number of branching points, Lemma 2.4 implies that �d

k also limits the height
of a tree to at most k.

This limiting condition is global, for the decision on the application of the cut
depends on the whole proof. As a consequence, �d

k cannot be seen as a restriction
of the inference �

�
.

To express �d
k we have to make the following consideration. Because � is

closed under negation prefixing, a non-empty � is certainly infinite. However, we
can identify each sequence of formulas α, ¬α, ¬¬α, . . ., with its first element. In
this sense, we can say that � is finitely generated if, by identifying all elements
of a chain with its first element, we obtain a finite set. In such case, let |�| be the
cardinality (of the basis) of a finitely generated �.

From Lemma 2.5, we know that every provable sequent has a proof in which
all branches contains only one element of this chain, so in terms of total number of
cuts in a proof we do not loose anything by identifying those chains.

Then �d
k can be seen as a union of several �

�
, given by

�d
k =

⋃
|�|≤k

�
�
,

which means that any �d
k -inference can be seen as a �

�
-inference for some � whose

cardinality is at most k.

3.1. APPROXIMATION PROCESSES

An important property of the logics above is that they constitute families of logics
that perform an approximation process towards classical logic.

In the case of the family of formulas generated by formula limitation, the pa-
rameter that defines an element in the family is the set � of formulas over which

CUT AND PAY 205

branching is allowed. The approximation process is obtained when the parameter
set � varies over an ascending chain

∅ ⊆ �′ ⊆ �′′ . . . ⊆ �n ′ ⊆ L

so that we obtain a family of logics with increasing expressivity, whose inferences
are all subclassical:

�∅ ⊆ ��′ ⊆ ��′′ . . . ⊆ ��n ′ ⊆ �L =�CL,

where �CL is classical inference. This family of logics was first studied in Finger
(2004a,b).

In the family of logics generated by atom number limitation, the parameter
defining the logic is simply the number k of atoms, and clearly we have

�a
0 ⊆ �a

1 ⊆ �a
2 . . . ⊆ �a

k ⊆ · · · ⊆ �CL .

The family of logics generated by limiting distinct cut formulas is parameterised
by the number k of distinct cut formulas, such that

�d
0 ⊆ �d

1 ⊆ �d
2 . . . ⊆ �d

k ⊆ · · · ⊆ �CL .

For every classically provable sequent � �CL �, it is easy to see that there
exists a (smallest) k such that � �a

k � and a (smallest) k ′ such that � �d
k ′ �. In fact,

suppose we have a cut-based proof for � �CL �, then k = max |atom(A)| where
A is a cut formula, and k ′ is the number of distinct cuts in the proof.

As a consequence, the process of approximating a classical sequent � �CL � is
always finite in all three approximation processes above.

4. Semantics for Cut-and-Pay

The semantics presented here is a variation of that presented in Finger (2004a),
although not exactly equivalent. We start by defining the semantics for the system
�

�
, as the semantics for �a

k and �d
k can be derived in terms of that. In the following

we define |=
�

as the semantics of limited bivalence, with limitation �.
The semantics of �-limited bivalence is based on a three-level lattice, L =

(L , , �, ∼, 0, 1), where L is a countable set of elements L = {0, 1, ε0, ε1, ε2, . . .}
such that 0 � εi � 1 for every i < ω and εi �� ε j for i �= j . The εi ’s are called
neutral truth values; as usual, � represents the least upper bound operation and
 is the greatest lower bound operation. This three-level lattice is illustrated in
Figure 5(a). The lattice contains a converse operation, ∼, defined as: ∼ 0 = 1,
∼ 1 = 0 and ∼ εi = εi for all i < ω. The converse operation is illustrated in
Figure 5(b).

206 M. FINGER AND D. GABBAY

Figure 5. The 3-level lattice (a) and its converse operation (b).

An unlimited (propositional) valuation is a function v�:P → L that maps atoms
to elements of the lattice. We extend v� to all propositional formulas, v�:L → L ,
in the following way:

v�(¬α) =∼v�(α)
v�(α ∧ β) = v�(α) v�(β)
v�(α ∨ β) = v�(α) � v�(β)

v�(α → β) =
{

1 if v(α) � v(β)
∼v�(α) � v�(β) otherwise

For example, consider � = ∅. Then

• if v�(p) = v�(q), then v�(p → q) = 1;
• if v�(p) = εp and v�(q) = εq , εp �= εq , then v�(p → q) = v�(p ∨ q) = 1 and

v�(p ∧ q) = 0.
• if v�(p) = v�(q) = εi then v�(p → q) = v�(p ∨q) = v�(p ∧q) = v�(¬p) =

εi .
• If v�(p) ∈ {0, 1} or v�(q) ∈ {0, 1}, the behaviour of v�(p → q), v�(p ∨ q) and

v�(p ∧ q) is classical, namely:

– if v�(p) = 1, then v�(p → q) = v�(p ∧ q) = v�(q), v�(p ∨ q) = 1;
– if v�(p) = 0, then v�(p → q) = 1, v�(p ∧ q) = 0, v�(p ∨ q) = v�(q);
– if v�(q) = 0, then v�(p → q) = ∼v�(p);
– if v�(q) = 1, then v�(p → q) = 1;

A �-limited valuation, or simply a valuation, is an unlimited valuation which,
with regards to whether a formula is or is not in the parameter set �, satisfies the
Limited Bivalence Restrictions:

(a) if α ∈ � then v�(α) must be a bivalent unlimited valuation, that is, v�(α) =
0 or v�(α) = 1;

(b) ifα �∈ � then eitherv�(α) obeys the rules of unlimited valuations or v�(α) = εi ,
for some εi .

CUT AND PAY 207

The first conditions forces the elements of � to be bivalent. The second condition
tells us that the truth value assigned to a formula α �∈ � is not always compositional,
for a neutral value may be assigned to α independently of the truth value of its
components. This is the case so that the bivalence of α ∈ � can always be satisfied
without forcing all of α’s subformulas to be bivalent.

If α ∈ � it is always possible to have v�(α) ∈ {0, 1} by making for every atom
p in α, v�(p) ∈ {0, 1}. However, this is not the only possibility. For example, if
β, γ �∈ � then we can make v�(β) = εi �= ε j = v�(γ), so that v�(β ∧ γ) = 0;
similarly, we obtain v�(β ∨ γ) = 1 and v�(β → γ) = 1.

A valuation v� satisfies α if v�(α) = 1, and α is called satisfiable; a set of
formulas � is satisfied by v� if all its formulas are satisfied by v� . A valuation v�

contradicts α if v�(α) = 0; if α is neither satisfied nor contradicted by v� , we say
that v� is neutral with respect to α. A valuation is classical if it assigns only 0 or
1 to all proposition symbols, and hence to all formulas.

4.1. APPROXIMATED ENTAILMENTS

We first define here three notions of entailment, namely |=
�
, |=a

k and |=d
k , corre-

sponding respectively to �
�
, �a

k and �d
k .

• � |=
�

� if it is not possible to satisfy � and contradict every α ∈ � at the same
time. More specifically, � |=

�
� if no valuation v� such that v�(�) = 1 also

makes v�(α) = 0 for every α ∈ �. Note that since this logic is not classical, if
� |=

�
� and v�(�) = 1 it is possible that there is an α ∈ � that is either neutral

or satisfied by v� .
• We define |=a

k in analogy to what was done in Section 3. Let �k =
{A| |atoms(A)| ≤ k} be the set of formulas that contain at most k atoms. Then
|=a

k = |=
�k

.
• Similarly, define |=d

k as the union of all |=
�

for which the cardinality of � is at
most k:

|=d
k =

⋃
|�|≤k

|=
�

.

We first note that |=∅ = |=a
0 = |=d

0 . Let us see a more complex example.
Consider �0 = {p ∨ q, q → p, p → (s ∨ t), (p ∧ t) → s} and make � = ∅. Then
we have that

(1) �0 |=
�

p and
(ii) �0, p |=

�
s but

(iii) �0 �|=
�

s.

208 M. FINGER AND D. GABBAY

To check for (i), suppose there is a v� such that v�(p) = 0. Then we have
v�(p ∨ q) = v�(q) and v�(q → p) = ∼v�(q). Since it is not possible to satisfy
both, we cannot have v�(�0) = 1, so �0 |=

�
p.

To obtain (ii), suppose there is a v� such that v�(s) = 0 and v�(p) = 1. Then
v�(p → (s ∨ t)) = v�(t) and v�((p ∧ t) → s) = ∼v�(t). Again, it is not possible
to satisfy both, so �0, p |=

�
s.

For the verification of (iii), take a valuation v� such that v�(s) = 0, v�(p) =
εp, v�(q) = εq, v�(t) = εt . Then v�(�0) = 1.

However, if we enlarge � and make p ∈ �, then we have only two possibilities
for v�(p). If v�(p) = 1, we have already seen that no valuation that contradicts s
will satisfy �0. If v�(p) = 0, we have also seen that no valuation that contradicts
s will satisfy �0. So for p ∈ �, we obtain �0 |=

�
s. As a consequence, we also

obtain �0 |=a
1 s and �0 |=d

1 s.
It follows from the above that, with respect to the �a

k -inference:

• �0 �|=a
0 s, for no inference is possible without the use of a cut.

• �0 |=a
1 s, for a deduction is possible with a cut on a single atom, namely p.

Similarly, with respect to the �d
k -inference, we observe that:

• �0 �|=d
0 s, for no inference is possible without the use of a cut (this is the same

as |=a
0 and |=∅).

• �0 |=d
1 s, for a deduction is possible with a single cut formula, namely p.

Idempotency
From the semantics above, it is easy to see that p |=

�
p ∧ p even when p �∈ �.

Let us consider now whether p |=
�

(p ∨ q) ∧ (p ∨ q) when none of p, p ∨ q and
(p ∨ q) ∧ (p ∨ q) are in �. To satisfy the antecedent we make v�(p) = 1, so even
if we assign v�(p ∨ q) = ε1 we obtain v�((p ∨ q) ∧ (p ∨ q)) = ε1 �= 0, so it is not
possible to contradict the consequent, and thus p |=

�
(p ∨ q) ∧ (p ∨ q). This fact is

responsible for the addition of the idempotency rules in Figure 4 to the cut-and-pay
inference system, otherwise it would not be possible to infer p �

�
(p ∨q)∧ (p ∨q)

without cuts.
So the idempotency rules are used to cover a potential completeness gap.

4.2. SOUNDNESS AND COMPLETENESS

As usual, an inference system � is considered sound with respect to a semantics |=
iff whenever � � � then � |= �. Conversely, the inference system is considered
complete iff whenever � |= � then � � �.

THEOREM 4.1. Let � and � be sequences of formulas. Then

(i) The inference system �
�

is sound and complete with respect to |=
�
.

CUT AND PAY 209

(ii) The inference system �a
k is sound and complete with respect to |=a

k .
(iii) The inference system �d

k is sound and complete with respect to |=d
k a.

Proof. We need only to show (i), as (ii) and (iii) follow directly from it. Sound-
ness is a straightforward verification of the validity of the rules in Figures 1 and 2
and the limited cut rule; details omitted.

For completeness, let � = γ1, . . . , γn and � = δ1, . . . , δm , and assume � ��
�

�.
We want to show that � �|=

�
�.

Let Lit(�, �) = Subf(�) ∪ Subf(�) ∪ {¬α|α ∈ Subf(�) ∪ Subf(�)}, where
Subf(�) is the set of all subformulas of formulas in the sequence �. Take an
enumeration of the formulas in Lit(�, �) = λ1, . . . , λ� and construct a maximal
consistent set � restricted to Lit(�, �) as follows:

�0 = {γ1, . . . , γn, ¬δ1, . . . ¬δm}

�i+1 =
{

�i , �i �
�

¬λi+1

�i ∪ {λi+1}, otherwise

and let � = ��. We construct a valuation v� in the following way. Let p be an
atom. If p ∈ � then v�(p) = 1; if ¬p ∈ � then v�(p) = 0. If neither p ∈ �

nor ¬p ∈ �, then if p ∈ �, v�(p) = 0; otherwise, v�(p) = ε j , such that no two
atoms are assigned to the same neutral value.

We now show that v� can be extended such that v�(ϕ) = 1 for every ϕ ∈ �.
We proceed by structural induction on ϕ.

If ϕ = ¬¬α, it is easy to see that α ∈ �, so by induction hypothesis, v�(α) = 1,
and we take v�(¬¬α) = 1.

If ϕ = α∧β, then α, β ∈ �; by induction hypothesis, v�(α) = v�(β) = 1, so we
choose v�(α∧β) = 1, even if ϕ �∈ �. If ϕ = ¬(α∧β), if neither α ∈ � nor β ∈ �,
then if α �= β we can make v�(α) = εi �= ε j = v�(β) such that v�(¬(α ∧β)) = 1,
and if α = β, using the idempotency rule we obtain that ¬α ∈ �, so that the
induction hypothesis gives v�(α) = 0 and we can make v�(¬(α ∧ β)) = 1.
Otherwise, suppose without loss of generality that α ∈ �, then ¬α ∈ � or ¬β ∈ �

(using classical reasoning), so that the induction hypothesis gives us that either
v�(α) = 0 or v�(β) = 0; in both cases, we can make v�(¬(α ∧ β)) = 1.

The other four cases of α ∨ β, ¬(α ∨ β), α → β and ¬(α → β) are totally
analogous, and are thus omitted.

We have thus creates a valuation v� that satisfies all elements of � and falsifies
all elements of �, so � �|=

�
� and we are done.

4.3. UNIFORM SUBSTITUTION

It is interesting to compare the inference systems �
�
, �a

k and �d
k with respect to the

property of uniform substitution.

210 M. FINGER AND D. GABBAY

An inference system � has the property of uniform substitution if whenever
� � � and we uniformly substitute some atoms in � and � by any formulas, thus
generating �′ and �′, we have that �′ � �′. That is, inferences are preserved by
uniform substitution.

With respect to the inference �
�
, it only has a limited form of uniform sub-

stitution. If p is an atom to be substituted, it can be substituted by a for-
mula α ∈ � iff p ∈ �. For example, we have seen that, if � = {p}, then
p ∨ q, q → p, p → (s ∨ t), (p ∧ t) → s �

�
s, but for an α �∈ �, we have also

seen that α ∨ q, q → α, α → (s ∨ t), (α ∧ t) → s ��
�

s. Conversely, if we make
� = {α} the situation reverts, as the first sequent is inferable but not the second.

With respect to �a
k , it is easy to see that it does not possess the uniform substitu-

tion property. In fact, it is clear that p ∨ q, q → p, p → (s ∨ t), (p ∧ t) → s �a
1 s;

however, if we substitute p by α, such that atoms has more than one atom, it follows
that α ∨ q, q → α, α → (s ∨ t), (α ∧ t) → s ��a

1 s.
With respect to �d

k , we have the following.

LEMMA 4.1. The �d
k -inference possesses the uniform substitution property.

Proof. Consider an inferable sequent � �d
k � and let �′ and �′ be the result of

uniformly substituting p by α. Now consider a derivation of � �d
k � in which all

occurrences of p are replaced by α. Clearly, this is a classical inference of �′ � �′,
and since it uses exactly the same number or cut-formulas as in the original proof,
it is also an inference of �′ �d

k �′.

5. Decision Procedures for Cut-and-Pay

We analyse here decision procedures for the three inference systems, �
�
, �a

k and
�d

k .

5.1. TABLEAUX FOR �
�

A tableau system for �
�

was proposed in Finger (2004a). It is based on Mondadori’s
and D’Agostino’s KE-tableaux (D’Agostino and Mondadori, 1994; D’Agostino,
1999), for this particular form of analytic tableau permits direct control of the cut
rule, unlike Smullyan’s Semantic Tableaux (Smullyan, 1968), that is based on a cut-
free calculus. Furthermore, KE-tableaux have better computational properties than
semantic tableaux (D’Agostino, 1992). Since this version of KE-tableaux is based
on the Limited Bivalence semantics, it is called a KELB(�)-tableaux, parameterised
by a set � of formulas.

KE-tableaux deal with T - and F-signed formulas. So if α is a formula, T α and
F α are signed formulas. T α is the conjugate formula of F α, and vice versa. Each
connective is associated with a set of linear expansion rules. Linear expansion rules
always have a main premiss; two-premissed rules also have an auxiliary premiss.

CUT AND PAY 211

Figure 6. KE expansion rules.

Figure 7. Limited principle of bivalence LPB(�).

Figure 6 shows KE-tableau linear connective expansion rules for classical logic,
which are the same for KELB-tableaux.

The only branching rule in KE is the Principle of Bivalence, stating that a
formula α must be either true or false. In KELB(�)-tableaux, this rule is limited by
a proviso stating that it can only occur over a formula α ∈ �. This limited principle
of bivalence, LPB(�) is illustrated in Figure 7.

The idempotency mentioned above is also present in KELB-tableaux, imposing
some further linear rules which are redundant in classical KE:

F α ∧ α

F α
(F∧αα)

T α ∨ α

T α
(T ∨αα)

An expansion of a tableau branch is allowed when the premisses of an expansion
rule are present in the branch; the expansion consists of adding the conclusions of
the rule to the end of all branches passing through the set of all premisses of that
rule. The LPB(�) branching rule splits a branch into two.

A branch in a KELB-tableau is closed if it contains F α and T α. The tableau
is closed if all its branches are closed. We define the inference �KELB

� such that
α1, . . . , αn �KELB

� β iff there is a closed KELB(�)-tableau for T α1, . . . , T αn, F β.
It is worth noting that KELB-tableaux are incremental, in the following sense.

To prove (classically) that � � α, we start a KELB(�)-tableau with � = ∅. We
then proceed with the linear expansion rules until the tableau either closes or is
blocked due to the impossibility of applying the PB rule. If the former is the case,

212 M. FINGER AND D. GABBAY

the tableau is closed and we are done. Otherwise, we have to chose a formula β

over which to branch the tableau, and we make �′ = {β} and proceed with the
linear expansion of both branches; note that by expanding � we are in fact changing
the logic, and advancing in the approximation process. If we get another blocked
branch, the process of �-expansion is repeated, until eventually we get a saturated
open branch (in which case � �� α), or all branches are closed (in which case
� � α). That is, the KELB-tableau proof provides a heuristic for accomplishing an
approximation process.

THEOREM 5.1. � �
�

� iff � �KELB
� �.

Proof. There are two ways to show the result. The first is to show directly how
the sequent rules of �

�
simulate the rules in �KELB

� and vice versa.
However, a shorter way is possible, via semantics, for it has been shown in Finger

(2004a) that � �KELB
� � iff � |=

�
�.2 Then by Theorem 4.1(i) we obtain the

result.

It is worth noting that there is a close correlation between sequent and tableau
proofs. A branch in a sequent proof corresponds to a branch in a tableau proof.
An application of a connective sequent formula in Figure 2 corresponds to an
application of a tableau rule in Figure 6. An application of a structural rule in
Figure 1 does not correspond to any rule in the tableau since tableau branches are
treated as sets of formulas. A cut formula in a sequent proof corresponds in a tableau
proof to a formula over which the principle of bivalence is applied.

The Complexity of �
�

We now study the complexity of �
�

via KELB(�)-tableaux for a fixed set of formulas
�. By a symbol in a formula α we mean an atom or a connective, and we define
|α| as the number of symbol occurrences in α. We define |�| = ∑

αi ∈� |αi |.
Given a sequent � � �, let N be the size of the set of atoms occurring in � and

� and let L = |�| + |�|. Recall that |�| is the cardinality of the basis of a finitely
generated �.

THEOREM 5.2. There exists a decision procedure for � �
�

� that runs in time
O(L × 2|�|).

Proof. Consider a tableau for � �
�

� that respects the normalisation of
Lemmas 2.4 and 2.5. Then a branch does not contain a cut formula (or a PB
formula) and its negation, so a branch contains at most |�| cut formulas, which
implies that there are at most 2|�| possible branches. As the number of formulas in
a tableau branch is at most L , we have that the proof size is at most L × 2|�| as
desired.

2 It is worth noting that in the setting of Finger (2004a), the set � was closed under formula
formation; however, that restriction was used for other purposes an does not play a part in the sound-
ness/completeness of the system.

CUT AND PAY 213

Note that, in a given logic, the set � is fixed, so that the the term 2|�| can be
considered a constant, so that the decision of �

�
, for a fixed parameter set �, is

linear with the size of the sequent. This is similar to the complexity result for clausal
approximations obtained by Schaerf and Cadoli (1995).

Also note that since every branch can be explored independently of the others,
and a branch contains most L formulas, each of which with size at most L , then
the proof can be done in O(L2)-space.

We also note that the approximation process can be done incrementally, in a
process that has been described in detail in Finger and Wassermann (2004) and
Finger (2004a). Suppose we are build an open tableau for � �

�
�, and it remains

open due to the impossibility to apply the Principle of Bivalence (which corresponds
to a cut in a sequent proof) due to the fact that a given formula α �∈ �. Then we
can expand � into �′ = � ∪ {α}, which means that we are moving to another
logic in an approximation process. So the open branches provide a heuristics to
which formula to be added to �. Furthermore, the proof proceeds incrementally,
for the proof with parameter set �′ can continue from the point that the proof with
parameter set � stopped. Classical logic is reached when all formulas is � and �

have been inserted in �, and in classical logic we can always prove or refute a
sequent by branching only over the subformulas of the original sequent (i.e. all cuts
are analytic) so the whole approximation process can be done in time O(L × 2L).

5.2. A DECISION PROCEDURE FOR �a
k

We analyse the complexity of �a
k -deductions for a fixed value of k. Recall that �a

k
can be reduced to �

�
in the following way. Let �k = {A| |atoms(A)| ≤ k}, then

�a
k = ��k .

However, to decide whether � �a
k � we can avoid the direct proof of � ��k �.

First, we can limit the proof to contain analytic cuts only, which is equivalent
to limiting the application of tableau branches over subformulas of � and �; this
limitation implies that all atoms considered will be included in the original sequent,
so k ≤ N .

As an auxiliary step in the study of �a
k , define the set �k of �∅-provable formulas

in the context of the original sequent � � � using as auxiliary provable formulas
of at most k-atoms. This is done by a double induction, as follows:

�1 = {A ∈ �1 | � �∅ �, A}
�k+1 = ⋃

j �
j
k+1 where �

j
k+1 is inductively defined by:

�0
k+1 = �

j
k

�
j+1
k+1 = {

A ∈ �k+1

∣∣ �, �
j
k+1 �∅ �, A

}
Since �k is the set of all formulas with at most k atoms, � j

k+1 is the subset of �k
formulas that are provable from �k in the context of � � � with the use of j-cuts.

214 M. FINGER AND D. GABBAY

Furthermore, �k+1 is the fixed point of the equation X = {A ∈ �k |�, �k, X �∅
�, A}, which means that it can be reached in a finite number of steps; in fact, as
there are at most L elements in �k , this fixed point is reached in at most L steps.
Clearly, �k ⊆ �k+1.

The relationship between �a
k and �k+1 is given by the following.

LEMMA 5.1. Let A ∈ �k+1. If � �a
k �, A then A ∈ �k+1.

Proof. By induction on the number of cuts used in the proof of � �a
k �, A. If

no cuts are used, then � �∅ �, A and clearly A ∈ �k+1. Otherwise, suppose that
the last cut formula on the proof of � �a

k �, A is B ∈ �k , such that we have the
following:

�1 �a
k �1, B �2, B �a

k �2

�1, �2 �a
k �1, �2

...
}
�

� �a
k �, A

(Cut)

From �1 �a
k �1, B and the induction hypothesis, we obtain that B ∈ �′

k+1, where
�′

k+1 is �k+1 restricted to the subformulas of �1 and �1. Thus, B ∈ �k+1, that is,
there is a positive integer j ≤ L such that B ∈ �

j
k+1. It follow that A ∈ �

j+1
k+1 and

so A ∈ �k+1.

A second result of the construction, now on the semantic side is the following.

LEMMA 5.2. Suppose k ≥ 1, let A ∈ �k and let v� be a valuation such that
v�(�) = 1 and v�(�) = 0. Then v�(A) �= 0.

Proof. We prove by induction on k. For k = 1, we have that � �∅ �, A; by
completeness, if v�(�) = 1 and v�(�) = 0 then necessarily v�(A) �= 0.

For k > 1, we have that �, �
j
k �∅ �, A for some j . By completeness, if

v�(�) = 1, v�(� j
k) and v�(�) = 0 then necessarily v�(A) �= 0.

We can now prove the translation of �a
k in terms of �∅.

THEOREM 5.3. � �a
k � iff �, �k+1 �∅ �, for k ≥ 0.

Proof. (⇒) By induction on the number c of cuts in the proof of � �a
k �. If

c = 0, �a
k=�∅, so the result is trivial.

If c ≥ 1, let A be the last cut formula in the proof of � �a
k �:

�1 �a
k �1, A �2, A �a

k �2

�1, �2 �a
k �1, �2

...
}
�

� �a
k �

(Cut)

CUT AND PAY 215

From �1 �a
k �1, A and Lemma 5.1 we obtain that A ∈ �k+1. From �2, A �a

k �2

and the induction hypothesis it follows that �2, A, �k+1 �∅ �2 and since
A ∈ �k+1, the contraction rule gives us �2, �k+1 �∅ �2. By monotonicity,
�1, �2, �k+1 �∅ �1, �2 and by applying the proof steps in � we finally obtain
�, �k+1 �∅ �, as desired.

(⇐) Assume that � ��a
k �. Recall that �a

k=��k , so � ���k �. By soundness, the
latter implies that there exists a valuation v�k such that v�k (�) = 1 and v�k (�) = 0.
As �k ⊆ �k , Lemma 5.2 yields v�k (�k) = 1. This all implies that �, �k �|=∅ �,
which by completeness implies that �, �k ��∅ �, thus finishing the proof.

The result above suggests an algorithm for deciding �a
k , which is presented in

Algorithm 5.1.
Computing the sizes of the sets �k and �k is a hard task. If we consider, for

example, the sets �1 and �1, these sets can vary from containing just a few atoms
to containing all the formulas and subformulas of � and �, that is, it is possible
that a large sequent may contain in theory just a single atom. Owing to that, an
exact description of the time complexity �a

k will not be presented, as the only limit
imposed is O(L × 2L), independently of the value of k and N . We point, however,
to two very similar systems. Dalal’s �BCP

k -inference (Dalal, 1996a), which can be

Algorithm 5.1. Decision procedure for �a
k .

216 M. FINGER AND D. GABBAY

Algorithm 5.2. Decision procedure for �d
k .

seen as a restriction of �a
k to Horn clauses, has polynomial time complexity in L ,

for a fixed k. Similarly, the inference �KELB
k is a less expressive version of �a

k , where
each proof can have cuts over formulas that are all based on a single set of k-atoms,
whose complexity is also polynomial time in L for a fixed k.

5.3. A DECISION PROCEDURE FOR �d
k

We explore here an algorithm that decide �d
k -inferences and computes its complex-

ity. This procedure is defined in terms of the �
�
-inference.

Recall that �d
k can be expressed in terms of �

�
as:

�d
k =

⋃
|�|≤k

�
�

.

This idea is translated into Algorithm 5.2 for deciding �d
k .

THEOREM 5.4. Algorithm 5.2 decides � �d
k � in time O(2k × L × (L

k)).
Proof. The correctness of Algorithm 5.2 comes directly form the definition of

�d
k in terms of a union of �

�
, as above.

We see that the loop between lines 2 and 6 can be executed once for every subset
of � of size k. As |�| = L , this execution is done in the worse case (L

k) times. For
each such iteration, the test in line 3 is executed, which according to Theorem 5.2,
has complexity O(L × 2|�|).

Therefore, Algorithm 5.2 has worst-case complexity of O(2k × L × (L
k)).

Note that O((L
k)) = O(Lk), so for a fixed k, Theorem 5.4 implies a polynomial

time complexity of O(2k × Lk+1) for each k. This does not mean, of course, that the
classical inference � � � can be decided in polynomial time. In fact, if we decide
� � � by performing an iterated depth search using Algorithm 5.2, in which k
varies from 0 to a maximum L . In this way, we end up with an algorithm of time

CUT AND PAY 217

complexity:

L ×
L∑

k=0

(
L
k

)
× 2k = L × (1 + 2)L = L × 3L .

So each approximation step is done in polynomial time with respect to L , but
the whole approximation process is exponential, as one would expect.

6. Conclusions

We have described in this paper families of resource aware systems that control
the use of the cut inference rule. We have proposed three families of parameterised
logics – �

�
, �a

k �d
k – and that limit the use of the cut rule, all of which perform an

approximation process when the parameter is increased. The original presentation
was proof theoretical in terms a Gentzen system presentation. A sound and complete
semantics was presented for each element of those families of logics. A KE-tableau
decision procedure was then presented for each family of logics.

The main results of these paper are that:

• The elements of the parameterised families �
�

and �d
k are decidable in polyno-

mial time, but the whole approximation process remains exponential.
• The family �d

k has the substitution property, and this is the first time there is
an approximation family for full propositional logic which enjoys this basic
matalevel property of logical systems.

Many other families of cut-controlling logics are possible. In particular, on can
try to “fix” the fact that the component logics of family �a

k cannot be decided
in polynomial time. The family �a

k is a direct generalisation of Dalal’s clausal
approximations of classical logic, which also controls the number of atoms over
cut formulas. However, Dalal (1996a,b) considers a clause to be a set of literals,
in which case there are no repetition of literals in a clause, and also ruling out
clauses containing p and ¬p. So the control of the number of atoms may not be
a direct generalisation of Dalal’s approach. A finer control may be achieved if the
number of atom occurrences in a cut formula, in which case a cut over p would be
distinguished from a cut over p ∧ p.

Another interesting problem would be to investigate if this approach of polyno-
mial approximations can be applied to logics whose decision procedure are above
NP-complete. For instance, most modal and temporal logics (such as K, T, S4, LTL,
CTL, etc) and Quantified Boolean Logics, are PSPACE-complete; somewhere in
between, within the polynomial hierarchy, there are the non-monotonic semantics
of classical logics, such as the Gelfond-Lifschitz stable models and well-founded
semantics.

218 M. FINGER AND D. GABBAY

Finally, the practical applications of approximated logics must be investigated.
Can practical problems be reasonably modelled using a single polynomial sub-
classical logic in the family proposed here? These are all interesting research paths
for the future.

References

Anderson, A.R. and Belnap, N.D. Jr., 1975, Entailment: The Logic of Relevance and Necessity, Vol. 1.
Princeton University Press.

Boolos, G., 1984, “Don’t eliminate cut,” Journal of Philosophical Logic 13, 373–378.
Carbone, A. and Semmes, S., 2000, A Graphic Apology for Symmetry and Implicitness, Oxford

Mathematical Monographs: Oxford University Press.
D’Agostino, M., 1992, “Are tableaux an improvement on truth-tables? – Cut-free proofs and biva-

lence,” Journal of Logic Language and Information 1, 235–252.
D’Agostino, M., 1999, “Tableau methods for classical propositional logic,” pp. 45–124 in Handbook

of Tableau Methods, Marcello D’Agostino, Dov Gabbay, Rainer Haehnle, and Joachim Posegga,
eds., Kluwer.

Dalal, M., 1996a, “Anytime families of tractable propositional reasoners,” pp. 42–45 in International
Symposium of Artificial Intelligence and Mathematics AI/MATH-96.

Dalal, M., 1996b, “Semantics of an anytime family of reasoners,” pp. 360–364 in 12th European
Conference on Artificial Intelligence.

da Costa, N.C.A., 1974, “On the theory of inconsistent formal systems,” Notre Dame Journal of
Formal Logic 15(4), 497–510.

D’Agostino, M. and Mondadori, M., 1994, “The taming of the cut. Classical refutations with analytic
cut,” Journal of Logic and Computation 4, 285–319.

Finger, M., 2004a, “Polynomial approximations of full propositional logic via limited bivalence,” pp.
526–538 in 9th European Conference on Logics in Artificial Intelligence (JELIA 2004), Vol. 3229
of Lecture Notes in Artificial Intellingence (LNAI), Lisbon, Portugal, Springer.

Finger, M., 2004b, “Towards polynomial approximations of full propositional logic,” pp. 11–20 in
XVII Brazilian Symposium on Artificial Intelligence (SBIA 2004), Ana L. C. Bazzan and Sofiane
Labidi, eds., Vol. 3171 of Lecture Notes in Artificial Intellingence (LNAI), Springer.

Finger, M. and Wassermann, R., 2004, “Approximate and limited reasoning: Semantics, proof theory,
expressivity and control,” Journal of Logic And Computation 14(2), 179–204.

Girard, J.-Y., 1987, “Linear logic,” Theoretical Computer Science 50, 1–102.
Massacci, F., 1998, “Anytime approximate modal reasoning,” pp. 274–279 in AAAI-98, Jack Mostow

and Charles Rich, eds., AAAIP.
Restall, G., 2000, An Introduction to Substructural Logics. Routledge.
Schaerf, M. and Cadoli, M., 1995, “Tractable reasoning via approximation,” Artificial Intelligence

74(2), 249–310.
Smullyan, R.M., 1968, First-Order Logic, Springer-Verlag.
Van Dalen, D., 1984, “Intuitionistic logic,” in Handbook of Philosophical Logic, D. Gabbay and F.

Guenthner, eds., Vol. III.

