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Abstract
In this paper we explore a generalization of traditional abduction which can simultaneously perform two differ-
ent tasks: (i) given an unprovable sequent ��G, find a sentence H such that �,H �G is provable (hypothesis
generation); (ii) given a provable sequent ��G, find a sentence H such that ��H and the proof of �,H �G is
simpler than the proof of ��G (lemma generation). We argue that the two tasks should not be distinguished, and
present a general procedure for finding suitable hypotheses or lemmas. When the original sequent is provable, the
abduced formula can be seen as a cut formula with respect to Gentzen's sequent calculus, so the abduction method
is cut-based. Our method is based on the tableau-like system KE and we argue for its advantages over existing
abduction methods based on traditional Smullyan-style Tableaux.

1 Introduction

The aim of this paper is to outline a method for solving the following problem: given a
sequent ��G whose validity is yet undecided, produce a sentence H , such that:
• �,H �G is provable;
• if �∪{G} is consistent then �∪{H } is consistent; and H ��G, that is, H alone does not
imply G.

The idea is that � is a contextual database, containing background knowledge, G is a
goal formula representing some fact or evidence that we want to explain or prove, and H is
a sentence which represents either an extra hypothesis necessary to explain the evidence G
or a “lemma”, namely a sentence that follows from the background knowledge �, but allows
for an easier proof of G. This is quite similar to what has been usually regarded as falling in
the scope of abductive reasoning, since its introduction by Peirce [18]. Usually, this activity
involves the generation of hypotheses and the choice of the best hypotheses1. In this context,
the first condition above requires that the produced hypothesis, together with the database
�, explains the evidence. The second condition does not imply a deterministic choice of what
constitutes a “best” hypothesis, but avoids trivial answers; that is, it avoids the generation
of an abduced hypothesis that either makes the antecedent inconsistent when the input was
consistent, or contains the evidence.
Our task, however, is not exactly the usual abductive reasoning found in the literature, for
the latter requires the goal formula G not to be derivable from the background knowledge,
ie � ��G [20, 19, 21, 13, 8, 1, 16]. It can rather be seen as a generalisation of the traditional
abduction task, simultaneously covering two cases:

(a) if � ��G, the problem reduces to traditional abduction, which we call hypothesis genera-
tion. In traditional abduction, an explanation has to be produced to turn an originally
falsifiable sequent into a valid one. Often some notion of minimality or preference is

∗Partly supported by CNPq grant PQ 301294/2004-6 and FAPESP project 04/14107-2.
1“Abduction consists in studying facts and devising a theory to explain them.” (C. P. Peirce, Collected Papers,

vol. V, par. 145.) “Abduction is the process of forming an explanatory hypothesis. It is the only logical operation
which introduces any new idea” (C. P. Peirce, Collected Papers, vol. V, par. 171).
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involved in choosing the best explanation [20, 19, 8]. Here we will search for a compro-
mise between minimality and computational efficiency.

(b) if ��G is provable, the task is not that of explaining a given set of data, but that of
facilitating its proof, which we call lemma generation. We further expect the produced
provable sequent �,H �G to have a simpler proof than ��G, where “simpler” may
mean “shorter” or just “easier to grasp”. There is also a compromise to be reached
between finding a simpler proof and finding a proof at a small computational cost.

In many cases, one adds a hypothesis H which is not provable from the data, but which
facilitates the proof of provable theorems from the data. This can be found in several tex-
books for mathematics (algebra, calculus, etc), in which extra hypotheses are added to prov-
able theorems just to make them more adequate to the background of students. Although
this is not quite the case of lemma generation, it illustrates that it is not so uncommon that
extra hypotheses are added to provable theorems just to obtain simpler proofs. A deeper
discussion on these matters can be found in [15].
So, we are expanding the traditional explanationist view of abduction, with a capacity of
providing a simpler or more compact account of facts, as present in the desiderata of [16].
We call this a simplificationist view of abduction.
In this latter case, the abduced hypothesis H can be seen as the computation of a cut

formula. In fact, once we have efficiently proved �,H �G, we can start looking for an efficient
proof of ��G, by searching for a deduction of H from � as an auxiliary lemma, that is trying
to show that ��H . If an efficient proof of this lemma is found, we can put the proofs together
via a cut inference:

��H �,H �G
(Cut)

�,��G
(Contraction)

��G

and thus obtain an efficient proof of ��G. For a potentially smaller proof, instead of proving
��H , one could prove ��H ,G such that, after cut, G would be contracted on the right of
� as well, leading to the desired ��G.
There may be advantages in proving ��H ,G instead of ��H . In fact, while the former

sequent has one extra formula in the succedent, in any refutation method its proof is no
longer than that of the latter, nor is it longer than that of the original sequent ��G.
One of the possible ways to satisfy our goals in case (b) is to start with a proof search
for ��G, for example, a cut free or analytic proof, and generate a more efficient proof,
possibly with non-analytic cuts, for it is known that proofs with non-analytic cuts can be
exponentially smaller than cut-free and analytic proofs [2, 3, 4]. When lemma generation is
successfully used to find shorter proofs we say we have abduced proof efficiency. We stress that
the generalised abduction method developed here does not require any a priori knowledge
of whether ��G or not.
The wider view of abduction we propose here can therefore play a twofold role. We may
not know in advance which role it is playing, because we may not know in advance whether
the sequent is provable or not. This is what actually happens in scientific reasoning. We may
find an abduced hypothesis H , and then discover that H is a “lemma”, that is, a theorem
that we have already proven or may be easier to prove. So, we may not know, in advance,
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whether we are simply improving on the efficiency of the proof via a suitable lemma, or we
are actually adding a genuine new hypothesis which is required to prove the goal.
The use of analytic tableaux for abduction has been presented in the literature for several
logics [6, 7, 9]. However, as pointed out above, the cut rule plays a special role in this prob-
lem, so we do not use tableau methods based on cut-free sequent calculus, such as Smullyan's
Analytic Tableaux [22], but employ instead the KE tableau method which is able to effi-
ciently simulate sequent calculus with full use of cuts [12]. The abduction procedure we
propose here can be directly applied during a KE-tableau expansion, without prior knowl-
edge of whether the input sequent is indeed provable or not. Roughly speaking, it consists
of generating, for each open branch B of a KE-tableau for a sequent ��G, a sentence HB
whose addition to the background knowledge � is sufficient to close that particular branch;
we call this method branch-driven abduction.
When used as a lemma generation method, branch driven abduction cannot be applied
statically to a completed tableau, but must be applied dynamically to an uncompleted one
in order to generate hopefully smaller proofs on-the-fly. So, we present a dynamic abduction
algorithm and discuss the structure of the proofs thereby generated. We then prove the
correctness of the algorithm and discuss its termination.
Throughout the paper, the discussion of abduction methods and proof-size reduction is
performed in the context of classical propositional logic. We believe that those techniques
can be applied to other logics, such as first-order and modal logics, with additional effort
to deal with quantifiers and modalities; it may be also interesting to see the applications of
these ideas to abduction over non-classical logics, such as in [5]. But these extensions are
left out of the scope of this paper.
It is important to note that we do not claim that all propositional theorems can have a

small proof in this way, otherwise we would have proved that NP=coNP, which we have not.
However, with this work, abduction remains one possible technique for proof compression.
The rest of the paper is organised as follows. Section 2 presents some preliminary defini-
tions and results used in the rest of the paper. The KE-based method called branch-driven
abduction is presented in Section 3. In Section 4 we compare our KE-based method with
another one based on traditional (Smullyan-style) tableaux, showing that a very desirable
feature of the former, namely the logical independence of the hypotheses abduced from dis-
tinct branches, is not shared by the latter. Finally, the use of our KE-based method for
“lemma generation” via a dynamic abduction procedure is discussed in Section 5. In the
same section we discuss how one can make advantage of this approach in computing (pos-
sibly shorter) non-analytic proofs. Concluding remarks and pointers to further work are
presented in Section 6.

2 Preliminaries

We consider formulas built over a countable set of propositional atoms denoted by the lower
case letters p,q,r , etc., and connectives ¬, ∧, ∨ and →. We represent formulas by upper
case Latin letters: A, B, C , etc. We represent sets of formulas by upper case Greek letters,
such as �, �, � and �. We write �,A to represent �∪{A} and �,� to represent �∪�.
A sequent is an expression of the form ���, where � is the antecedent and � is the

succedent. A sequent inference rule allows one to infer a sequent S from zero or more sequents
S1,...,Sk . If the inference rule has 0 premisses, it is called a sequent axiom. A k-premissed
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TABLE 1. Smullyan's unifying notation

α α1 α2
TA∧B TA TB
FA∨B FA FB
FA→B TA FB
T¬A FA FA
F¬A TA TA

β β1 β2
TA∨B TA TB
FA∧B FA FB
TA→B FA TB

inference rule, with k>0, is called analytic if every formula in the k premisses occurs as a
subformula in the conclusion S. In most sequent calculi, all rules are analytic, except for the
cut rule, which we assume to have the following format

�1��1,A A,�2��2
(Cut)

�1,�2��1,�2

The formula A is called the cut formula of this inference and the cut is analytic if A occurs
in �1,�2��1,�2. A sequent proof is a tree whose nodes are sequents, having sequent axioms
at its leaves and such that every internal node is obtained by the application of some
k-premissed inference rule, k>0. A proof is analytic if it only uses analytic inferences. We
assume that the only potentially non-analytic rule is cut, so that a cut-free proof is always
analytic. We write ��?� when we do not know if ��� is provable.
In the sequel, we shall often find it convenient to use Smullyan's unifying notation for
non-atomic signed formulas described in Table 1.

2.1 KE Tableaux
KE-tableaux ([12], see also [10, 11]) were proposed by D'Agostino and Mondadori as a way of
incorporating in a non-redundant way the cut rule into tableau proofs. This rule, they argue,
corresponds to the principle of excluded middle or, at the semantic level, to the principle
of bivalence (PB) which is essential of efficient proof-theoretical treatment of classical logic.
Furthermore, it has been shown that, in comparison with Smullyan's analytic tableau [22],
based on the cut-free sequent calculus, KE-tableau have better computational properties and
that the use of the cut rule can be suitably restricted so as to preserve all desirable properties
of cut-free proofs. The original presentation of KE-tableaux was based on considerations of
non-redundancy over Kleene's G4 sequent system and Smullyan's analytic tableaux. It was
also shown that the same tableau system can be obtained using a variant sequent calculus
called the cut-based calculus [14].
KE-tableaux deal with signed formulas. If A is a formula, T A and F A are signed

formulas. T A is the conjugate formula of F A, and vice versa; if X ∈{T ,F} then X̄ is defined
as follows: T̄=F and F̄=T . Each connective is associated with a set of linear expansion
rules also called elimination rules. Linear expansion rules always have a main premiss, i.e.
the one containing the connective to be eliminated; two-premiss rules also have an auxiliary
premiss. Figure 1 shows the KE linear expansion rules for classical logic. The only branching
rule in KE is the Principle of Bivalence (PB), stating that a formula A must be either true
or false, as illustrated in Figure 2, which corresponds to the cut rule. A KE-tableau for the
sequent A1,...,An �B1,...,Bm starts, like a standard tableau, with a single branch containing
TA1,...,TAn,FB1,...,FBm . An expansion of a tableau branch is allowed when the premisses
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T A ∧ B
T A
T B

(T∧)
F A ∧ B

T A
F B

(F∧1)
F A ∧ B

T B
F A

(F∧2)

T A ∨ B
F A
T B

(T∨1)
T A ∨ B

F B
T A

(T∨2)
F A ∨ B

F A
F B

(F∨)

T A → B
T A

T B

(T →1)

T A → B
F B

F A

(T →2)
F A → B

T A
F B

(F →)

T ¬A
F A

(T¬)
F ¬A
T A

(F¬)

FIG. 1. KE Expansion Rules

T A F A

FIG. 2. Principle of Bivalence

of an expansion rule are present in the branch; the branch expansion consists of adding the
conclusions of the rule to the end of that branch (one can simultaneously expand all branches
passing through the premisses of that rule). The PB branching rule splits a branch into two.
The final goal of tableau expansion is to produce what is called a completed KE-tableau.
Before giving a proper definition of a completed KE-tableau, we first introduce some useful
terminology.
A signed formula is fulfilled in a branch if it is the main formula of an instance of an

expansion rule such that the conclusions of that instance already occur in the branch. Clearly,
if a formula is the main formula of an expansion it becomes fulfilled; however, it is possible for
a non-atomic signed formula to become fulfilled by the expansion of other signed formulas as
well. Note that any valuation that satisfies the conclusions of an instance of an expansion rule
also satisfies its main formula, so that fulfilled formulas are “subsumed” by other formulas
in the branch. Note that, using Smullyan's unifying notation (see Section 2 above), our
definition of a fulfilled signed formula can be restated as follows: an α is fulfilled in a branch
B if and only if both α1 and α2 occur in B; a β is fulfilled in B if and only if either β1 or β2
occur in B. By definition, a signed atomic formula is always unfulfilled.
A branch is closed if it contains F A and T A for some A. The tableau is closed if all its

branches are closed. A branch is saturated if it is open and all non-atomic signed formulas
in it are fulfilled and completed if it is either closed or saturated. Finally, the tableau is
completed if every branch in it is completed.
The deductibility relation �KE is defined as follows:

A1,...,An �KE B1,...,Bm iff there is a closed KE-tableau for
TA1,...,TAn,FB1,...,FBm . (1)

Any saturated branch provides a counter-valuation for the sequent.
Although the applications of PB may introduce arbitrary signed formulas, so violating
the subformula property, D'Agostino and Mondadori [12] showed that there is no loss of
completeness in restricting the applications of PB in such a way as to preserve the subformula
property.
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A typical analytical KE-procedure, described in terms of Smullyan's unifying notation,
is outlined in Algorithm 2.1. Note that, as branching is potentially explosive, one typically
applies the only branching rule of KE (PB) only after all linear expansions have been applied.

Algorithm 2.1 The typical (analytical) KE-procedure
KEProof(�,G)
Input: A sequent ��?G,
Output: A completed KE-tree.

1: Construct a one-branch tree containing all the signed formulas in
{TA :A∈�}∪{FG} (in any order).

2: while the tree is uncompleted do
3: choose an uncompleted branch B
4: while B is uncompleted do
5: if B contains the premisses of a linear expansion rule, but not its conclusion(s) then
6: apply the relevant linear expansion rule to B and append its conclusion(s) to the

end of B
7: /* Some β may remain unfulfilled even when all the

possible linear expansion rules have been applied */
8: else if B contains an unfulfilled β then
9: /* This is an application of PB */
10: append β1 and β̄1 as sibling nodes to the end of B
11: end if
12: end while
13: end while

Fact 2.1 The procedure KEProof is sound and complete w.r.t. classical logic.

As an example, Figure 3 presents a KE tableau for p∨q,p∨¬q,¬p∨q,¬p∨¬q�r .

1. Tp ∨ q hypothesis

2. Tp ∨ ¬q hypothesis

3. T¬p ∨ q hypothesis

4. T¬p ∨ ¬q hypothesis

5. Fr hypothesis

6. F¬p PB

7. Tq (T∨) 3, 6

8. T¬q (T∨) 4, 6

9. Fq (T¬)8

10. × 7, 9

11. T¬p PB

12. Fp (T¬)11

13. Tq (T∨)1, 12

14. T¬q (T∨)2, 12

15. Fq (T¬)14

16. × 13, 15

FIG. 3. A KE-Tableau Deduction
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3 Branch-driven Abduction

We start our presentation with an example. Suppose we have the following sequent, for
which we want to add an extra hypothesis H that makes it provable

p→r,p∨q�? r .

First we try and build a KE-proof for it. Typically we run the proof-procedure in Algo-
rithm 2.1 until it normally halts with a completed KE-tableau, and then we generate the
abduced hypothesis. Alternatively, we could decide to stop the procedure in the middle and
perform abduction on the resulting uncompleted KE-tableau. This decision may depend on
several reasons: we have run out of computational resources or — as we shall more explic-
itly suggest later on — such an “on-the-fly” abduction may be part of our theorem-proving
strategy.
In this simple example, however, the procedure halts normally, leading to the following
completed (one-branch) KE-tableau.

1. Tp→r hypothesis

2. Tp∨q hypothesis

3. Fr hypothesis

4. Fp (T→2) 1,3
5. Tq (T∨1) 2,4

At this point, one collects all the unfulfilled signed formulas, which occur in the only branch
of this KE-tableau. Since there are no unfulfilled non-atomic signed formulas, our collection
contains only the set of signed atomic formulas � ={Fr,Fp,Tq}.
Each nonempty subset �⊆� generates a possible candidate for the sought-after extra

hypothesis. This is, essentially, a formula H such that its truth is easily seen to be inconsistent
with the information contained in �. Proceeding with our example, the following candidates
can be selected:

Candidate � H
1 {Fp} p
2 {Tq} ¬q
3 {Fr} r
4 {Fp,Tq} q→p
5 {Fp,Fr} p∨r
6 {Tq,Fr} q→r
7 {Tq,Fp,Fr} q→(p∨r)

The only candidate that is rejected is number 3, on the grounds that it violates the condition
H ��G, that is, the goal must not be provable from the abduced hypothesis on its own, which
fails for candidate 3 as r �r is provable.
If we use the set of all the unfulfilled hypotheses in the branch, that is the whole of �,
we obtain the least compromising hypothesis (or LCH for short), in the sense that all other
possible hypotheses imply it, but it does not imply any of the others.
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3.1 The Abductive Procedure

The generic computation of a hypothesis from a set of signed formulas is as follows. Given a
nonempty set of signed formulas�={TA1,...,TAn,FB1,...,FBm}, we compute the hypothesis
H (�) as follows:

H (�)=




¬A1 , if n=1,m=0
B1 , if n=0,m=1
¬(A1∧ ...∧An) , if n>1,m=0
B1∨ ...∨Bm , if n=0,m>1
(A1∧ ...∧An)→(B1∨ ...∨Bm), if n>0,m>0

Lemma 3.1 Given a KE-tableau branch containing formulas �, if we add H (�) as a top
hypothesis, then this branch can be expanded into a closed subtree.

Proof By simple application of KE rules. In the most general case, we have a PB application
over A1∧ ...∧An at the point the branch expansion stopped, as shown below.

So both branches of the KE-tableau close.

If the initial tableau has more than one open branch, then we have to apply this method
to each branch. For example, suppose we alter the initial sequent of the previous example to

p→r,p∨q,s∨t�? r

so that the initial tableau expansion is now
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By applying the ideas described so far, the left branch leads to a hypothesis Hl=(q∧s)→
(p∨r∨t), while the right branch leads to the hypothesis Hr=(q∧t)→(p∨r); note that
we have abduced the least compromising hypotheses, using the complete set of unfulfilled
signed formulas in hand. As a result, if we add the conjunction of these hypotheses Hl∧Hr
to the original sequent, the KE-tableau will certainly close. So, when there are more than
one branch, it suffices to take the conjunction of all abduced hypotheses.
Note that if the abduction procedure had been applied prior to the branching, also aiming
at the less compromising formula, the signed formula Ts∨t would have been unfulfilled and
the abduced hypothesis would have been H =(q∧(t∨s))→(p∨r). It turns out that H and
Hl∧Hr are logically equivalent; however, H is smaller and provides a shorter proof. From
that we learn that, if both sub-branches after a PB application remain open, it may be
better to apply the abduction procedure prior to the branching. We shall come back to this
point in Section 5 below.

Algorithm 3.1 Branch-driven Abduction
BranchAbduction(�,G,T )
Input: A sequent ��?G, and T a partially expanded tableau for it
Output: A hypothesis H such that �,H �G
1: Let B1,...,Bk be the open branches in T .
2: for i=1 to k do
3: Let �i={XA∈Bi |XA unfulfilled in Bi}
4: Choose �i⊆�i
5: Let Hi=H (�i)
6: end for
7: return H1∧ ...∧Hk

Algorithm 3.1 presents the branch-driven abduction algorithm. Note that it is a non-
deterministic algorithm in a twofold way. First, it lets one expand the tableau in whatever
fashion one wants, and the halting of this expansion is not specified; second, one can choose
the subset � of unfulfilled signed formulas to generate the abduced hypothesis.

Theorem 3.1 (Correctness of Algorithm 3.1) Algorithm 3.1 is correct, that is, on input ��?
G it outputs a formula H such that �,H �G.
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Proof Let H =H1∧ ...∧Hk be an answer computed by Algorithm 3.1. It suffices to note
that Lemma 3.1 guarantees that each Hi allows us to expand an open branch into a closed
subtree, so all branches end up closed.

4 KE-based vs tableau-based abduction

The abductive procedure described in the previous section is not specific to the KE method,
but could be equally applied to traditional Smullyan-style tableaux. In this section we shall
show, however, how the inefficient behaviour of Smullyan-style tableaux (highlighted in
[10, 11, 12,]) heavily affects the output of the abductive procedures, leading to redundant
abduced hypotheses. The problem lies in the fact that applying the procedure to a Smullyan-
style tableau the LCH's associated with distinct branches are not guaranteed to be logically
independent of each other. As a very simple example, consider the sequent

p∨q,p∨¬q�?⊥. (2)

It is easy to check that, if branch-driven abduction is performed on the completed Smullyan-
style tableau, the abduced hypotheses associated with the two branches of this tableau are
¬p and ¬(p∧q). Clearly, the latter hypothesis is redundant, being logically implied by the
former.
As the complexity of the tree grows, this kind of redundancy may become a major source
of inefficiency, especially when it is not easy to recognise whether the LCH associated with
one branch is logically implied by the conjunction of the others.
Another example may help to clarify this point. Consider the sequent

¬(p∨q)∨(p∧¬r)∨(¬q∧¬r)�?⊥. (3)

A completed Smullyan-style tableau for this sequent and the LCH's associated with each
branch are shown in Figure 4. Here the LCH's associated with the first two branches
logically imply the one associated with the third. It can be highly expensive on computational
resources to remove this kind of redundancy. In fact, this task involves, in general, solving
k distinct deduction problems for a tableau with k branches, each of which can be a non-
trivial one.
By way of contrast, we can show that such a redundancy can never arise when the abduc-
tion procedure is applied to a KE-tableau. In fact, the LCH associated with one branch
of a KE-tableau is never logically implied by the conjunction of the others (unless it is a
tautology). Figures 5 and 6 show this in connection with examples in (2)and (3). We now
prove that this is true in general. Let us denote by LCHB the least compromising hypothesis
associated with branch B. Let us also write H (XA) as an abbreviation for H ({XA}), so that
H (TA)=¬A and H (FA)=A. Then the above claim is expressed by the following:
Theorem 4.2 Let T be a KE-tableau with open branches B1,...,Bn. Then, for every i,j such
that i �= j, if LCHBj is not a tautology,2 then

∧
i �=jLCHBi ��LCHBj .

2Observe that if LCHBj is a tautology, then Bj can be expanded into a closed subtree of T and so the LCH
associated with it is not really needed in order to prove the sequent for which the KE tableau had been built. Thus,
this case can never arise when the abduction procedure is applied to a completed KE-tableau. On the other hand,
it can arise when the procedure is applied to a partially expanded KE-tableau.
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FIG. 4. A completed Smullyan tableau for the sequent in (3). The box underneath each
branch shows the least compromising hypothesis associated with it by the abduction
procedure.

FIG. 5. Two completed KE-tableaux for the sequent in (2).

To show the theorem, we first prove the following:

Lemma 4.1 If XA∈B, then H (XA)�LCHB.

Proof To show the lemma, consider a branch B and a signed formula XA occurring in it.
The proof is by induction on the logical complexity of XA, i.e. the number of occurrences
of logical operators contained in it.
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FIG. 6. A completed KE-tableau for the sequent in (3).

Base: XA is an atomic signed formula, that is, A=p for some atomic p. Then XA is, by
definition, unfulfilled and belongs to the set � defined in Step 3 of Algorithm 3.1. Since
the LCH for B is obtained by choosing �=� in the next step, LCHB will have the form
p∧B→C if X=T and B→C ∨p if X=F . In the first case, H (XA)=¬p, while in the sec-
ond H (XA)=p. Hence, in either case H (XA)�LCHB.

Step: The logical complexity of XA is greater than 0. If XA is unfulfilled in B, then the thesis
follows by the same argument used for the base case. If XA if fulfilled in B we distinguish
two cases.
First, suppose XA is an α (see Table 1). From the assumption that XA is fulfilled, it follows

that both α1 and α2 are in B. Since the complexity of both α1 and α2 is strictly smaller
than the complexity of α, by inductive hypothesis we can conclude that H (α1)�LCHB and
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H (α2)�LCHB , and therefore H (α1)∨H (α2)�LCHB . Now, it is not difficult to verify that,
for every α, H (α)≡H (α1)∨H (α2) and so H (α)�LCHB.
Second, suppose XA is a β. From the assumption that XA is fulfilled, it follows that

either β1 or β2 is in B. By inductive hypothesis we can conclude that either H (β1)�LCHB
or H (β2)�LCHB and therefore H (β1)∧H (β2)�LCHB . Now, it is not difficult to verify that,
for every β, H (β)≡H (β1)∧H (β2) and so H (β)�LCHB.

Given Lemma 4.1, Theorem 4.1 is proved by the following argument.
Suppose for some j such that LCHBj is not a tautology,

∧
i �=j
LCHBi �LCHBj . (4)

Consider an arbitrary branch Bk with k �= j . By definition of KE-tableau, given two distinct
branches Bk and Bj there must be signed formulas XA and X̄A such that XA occurs in Bk
and X̄A occurs in Bj (that is an application of the PB rule which originates the branching).
So, by Lemma 4.1,

H (XA)�LCHBk (5)
H (X̄A)�LCHBj . (6)

Now, by the assumption that
∧
i �=jLCHBi �LCHBj and cut, we can conclude from (5), that∧

i �=j,kLCHBi ,H (XA)�LCHBj and so, given (6):

∧
i �=j,k
LCHBi ,H (XA)�LCHBj and H (X̄A)�LCHBj .

However, H (XA) and H (X̄A) are complementary formulas (i.e. one is the negation of the
other), and therefore

∧
i �=j,kLCHBj , by the propositional calculus. By repeating the same

argument for all the branches Bi with i �= j we can eliminate, one by one, all the associ-
ated LCH's from the antecedent of the sequent in (4) and conclude that LCHBj must be a
tautology, against one of the assumptions. This concludes the proof of Theorem 4.1.
The logical independence of the LCH's associated with one branch from the conjunction
of the others is a consequence of a crucial feature of KE-tableaux which, in turn, descends
from their use of the principle of bivalence as the only branching rule: given any two distinct
branches Bi and Bj there exist conjugate signed formulas XA and X̄A such that XA is in
Bi and X̄A is in Bj . Other refutation systems with a different “branching policy”, such as
Smullyan's tableaux, may well generate trees where the LCH's associated with two distinct
branches are not logically independent, so that their conjunction (the abduced hypothesis)
is redundant.

5 Dynamic Abduction

In the examples viewed so far, the input sequents are not provable, so that these examples
belong to the traditional “explanationist” view of abduction. On the other hand, the abduc-
tion Algorithm 3.1 does not state at which point in the deduction it should be applied.
This allows for the distinction between post-hoc (or static) abduction, which applies to
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a completed open KE-tableau, and on-the-fly (dynamic) abduction, which applies to an
uncompleted, that is, partially expanded KE-tableau.
In the latter case, it is not known in advance whether the abduced formula generated
by Algorithm 3.1 is a genuine extra hypothesis, in which case the sequent is not provable,
or it is a “lemma”, that is, it is itself a theorem which can be used as an intermediate
step, in which case the sequent is indeed provable. This way of interpreting abduction is
in fact closer to real scientific practice, in which “lemmas” play a prominent role in sim-
plifying proofs, either by capitalizing on previously established knowledge or by reducing
a complex problem to one which is easier to solve (lemmas are often stated first as extra
hypotheses and are “proven away” only at a later stage). Sticking to the domain of classical
propositional logic, to which the present paper is restricted, the abduced lemmas may be
tautologies that have already been proven or that can be easily proved from a given logical
repertoire. Moreover, and more importantly, it would be highly desirable to present an “on-
the-fly” abduction procedure that is able, whenever the sequent is provable but no short
analytic proofs exist, to generate non-analytic proofs which are shorter than the shortest
analytic ones.
For this form of dynamic abduction, one needs an abduction strategy of abduction heuris-

tics, that allows one to choose the abduction parameters. Such abduction heuristics has to
decide:

• When to apply abduction?
• Which formula do abduce?

Each such heuristics will be analysed as to whether it leads to a complete proof method
and if the decision procedure is terminating.

5.1 Naive Dynamic Abduction

Let us now consider an example that is provable, but belongs to a family of hard theorems
known as the Tseitin formulas [23].

Example 5.1 Consider the Tseitin sequent3,

(p∧¬q)∨(¬p∧q),
(q∧¬r)∨(¬q∧r),
(p∧¬s)∨(¬p∧s)

� (r∧¬s)∨(¬r∧s).

3A Tseitin sequent ��� is constructed as follows. Consider any undirected graph, in which every edge is
associated to a distinct atom, and every node is associated to a formula, namely the exclusive-or of all adjacent
edges. An odd number of nodes receive marks. Let � be the set of formulas associated to marked nodes, and let
� be the set of formulas associated to unmarked nodes. Such a sequent is always provable, a fact associated to
the property that the sum of degrees of all nodes in a graph is even. Each propositional valuation represents a
subgraph, to which the property also applies.
The example in question is obtained by a square graph with edges associated to p, q, r and s, whose only

unmarked node is adjacent to edges associated to r and s.
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for which one constructs a partially expanded KE-tableau in which only the leftmost branch
is closed, so that there are two open branches.

Algorithm 3.1 is then applied to it, selecting only signed atomic formulas at each open
branch for the construction of the abduced hypotheses.
The two open branches lead to abduction hypothesis H1=q→(p∨r∨s) and H2=p→q,
so that the global abduced hypothesis is H1∧H2. This hypothesis was obtained in exactly
the same manner as in the cases where the tableau did not close. But here we have that
both ��G and �,H1∧H2�G.
Note that the initial KE-proof procedure was halted at an arbitrary point. That is, the
expansion of the KE-tableau was done, using the procedure outlined in Algorithm 2.1, in
such a way that some branches were left open without any further attempts to apply the
PB rule. It remains to be shown how a full proof of the initial tableau can be achieved.
The formula abduced above, H1∧H2, is such that �,H1∧H2�G. To obtain a proof of

��G, a proof of ��G,H1∧H2 is constructed, and with an application of the cut rule over
the abduced formula, the desired result follows.
Is this more efficient than trying to prove ��G directly? Unfortunately not. The abduced
hypothesis is constructed in such a way that, if we construct an analytic KE-proof for
��G,H1∧H2, in exactly the same manner as we built a proof in the abduction of H1∧H2,
and such that initially we branch on H2, we end up with exactly the same open branches
containing the same unfulfilled formulas as we had when the proof was stopped during
the abduction process. This is shown below, where this partly expanded a KE proof of
��G,H1∧H2 is presented.
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Note that each branch has, at best, the same unfulfilled signed formulas as the respective
branches used to compute the abduced hypothesis. Also note that the abduced formula is
larger than the other formulas in the hypothesis, and it contains all atomic symbols in the
sequent, while the other formulas are concerned with a restricted number of symbols.

With regards to a dynamic abduction heuristics, the naive method can be described by:

• When to apply abduction?
After applying all linear expansion rules
• Which formula do abduce?
LCH.

As seen above, this form of heuristics is non-terminating, for the tableau has the same
unfulfilled formulas after applying abduction as it had before.
This means that abduction is not a panacea. It can give extra hypotheses that make the
original proof more efficient, but a naive approach will not guarantee a more efficient proof
for the input sequent, ��G.

5.2 Abducing Proof Efficiency via Dynamic Abduction

We now show that computing shorter non-analytic proofs is in fact possible for the Tseitin
sequent presented in Example 5.1 if a more sophisticated approach is adopted. This time,
instead of building a normal tableau, several subsets of the signed formulas will be chosen
after an initial linear saturation of the tableau. Each subset will not generate in general
a closed tableau; if one subset generates a closed tableau, the search space shrinks. So the
abduction procedure is applied to the completed tableau generated by a subset of the original
formulas.
The following will be used as guidelines of this process:

• The formulas in a selected subset must have some atoms in common.
• The abduction process will not apply the least compromising selection of formulas. The
reason is two-fold. First, Example 5.1 showed that not much is gained with such choice;
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second, the aim is to eliminate from the abduced formulas some or all of the common
atoms, so as to promote a reduction in the “dimension” of the problem. This can be
done safely whenever such atom occurs only in the selected subset of formulas, and
nowhere else in that branch.

Example 5.2 In the main branch of the tableau for the Tseitin sequent in Example 5.1,
we chose the formulas containing the atom q, namely the first two formulas, and develop
a complete analytic KE-tableau for it. The analycity is guaranteed by choosing an unful-
filled formula on a linearly saturated branch and applying PB over one of its immediate
subformulas (this is sometimes called the branching heuristics for analytic KE).

The two middle branches are open. On each open branch, the formulas selected for con-
structing the branch abduction are framed in boxes. Note that no formula containing q is
selected. Over such selection, the abduction algorithm yields

¬(p∧r)∧(p∨r)
The fact that this formula is of the same size as the input formulas is an indication that the
“dimension reduction” is applicable here, that is, that the method provided a reduction in
the number of variables without causing an exponential explosion on the size of formulas.

The example proceeds with a second abduction on the formulas involving the atom s.

Example 5.3 The construction of a “small” proof for the Tseitin sequent proceeds by con-
sidering an analytic KE-tableau built over the formulas containing s, namely,

T (p∧¬s)∨(¬p∧s)
F(r∧¬s)∨(¬r∧s)

which corresponds to lines 3 and 4 in the tableau of Example 5.1. The completed expansion
of this tableau has two closed and two open branches (details omitted), one with atomic
formulas {Tp,Fr,Fs}, and the other containing {Fp,Tr,Ts}. The abduction procedure, by
eliminating s, produces

(p→r)∧(r→p)
which is also of the same size as the input formulas.
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We are now in a position to obtain a full proof the Tseitin sequent, which we claim to be
“small”.

Example 5.4 Consider the Tseitin sequent,

(p∧¬q)∨(¬p∧q),
(q∧¬r)∨(¬q∧r),
(p∧¬s)∨(¬p∧s)

� (r∧¬s)∨(¬r∧s).

for which one constructs a non-analytic KE-tableau based on the abduction procedure and
a final analytic expansion on the abduced formulas.

The closures below nodes 5 and 7 are due to the abduction procedure.

Example 5.4 provides a small proof for the Tseitin sequent because each auxiliary tableau
is polynomially bounded and the size of each abduced formula is also polynomially bounded.
With regards to a dynamic abduction heuristics, the subformula elimination heuristics
can be described by:

• When to apply abduction?
Choose a subformula A to be eliminated, construct a complete tableau for all formulas
containing A.

• Which formula do abduce?
For each open branch B, compute H (�), where � is the set of unfulfilled formulas in B
not containing A.

Clearly, when the eliminated subformula is an atom, the elimination heuristics is termi-
nating, for there are only finitely many atoms to eliminate.
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Note that a generic sequence of elimination steps, each of which elimination a set of
atoms or subformulas from the sequent, has the potential, at each step, of producing a
multiplicative increase in the size of the resulting abduced formula, which can lead to an
exponential explosion on the size of the proof.
The example above shows that such explosion does not always occur, but remains a
possibility for generic family of sequents. Tseitin sequents have a special structure that
makes the application of abduction a good idea. Notably, each atom occurs in exactly two
formulas, the number of atom occurrences per formula is uniformly balanced, and there are
no “irrelevant” atoms or formulas. So the elimination of atoms tend involve a small number
of formulas, and create relatively small tableaux and abduced formulas.
These properties may work as a set of heuristics for the selection of atoms or subformulas
for the application of abductive elimination.
The successive atom elimination heuristics is just one example of a method that uses
dynamic abduction. There are other possibilities, which may or may not lead to smaller
proofs in some cases.

Example 5.5 Another possibility for the application of abductive reasoning is to use the
Cut and Pay proof methods [14], which consist of several methods for approximating clas-
sical reasoning by limiting the use of the cut rule. In particular, it seems appropriated the
abductive use of the parameterised inference �CPk 4, such that ��CPk � if there exists a KE-
tableau using at most k analytic uses of branching rule PB; that is, at most k applications
of analytic cuts.
Clearly if ��CPk � then classically ���. Also, if a tableau for ��CPk � has a saturated

branch, them classically � ���. For a fixed k, this inference is decidable in polynomial time
in the size of �,�. Furthermore, �CPk has the uniform substitution property.
Using this form of approximated reasoning in the abductive steps, there is no limit on the
set of premisses used for abductive reasoning. If the auxiliary tableau closes, the sequent
has been proved. Otherwise, the dynamic abductive method may be applied.
This limitation on the size of the auxiliary tableaux may be used in conjunction with the
selection of abducibles to guarantee that abduced formulas are also of limited size.
However, there is no guarantee that only a polynomial number of applications of this
method will yield either a closed tableau or a saturated open branch. In fact, if the combi-
nation of Cut and Pay auxiliary deductions and the abduction procedure is not handled with
care, this method can lead to the same situation noted in Example 5.1, where the abduction
steps only simulate analytic proofs.

This example reinforces that, for a practical use of dynamic abduction, it must be accom-
panied with a good set of heuristics dependent on the method used for the construction of
auxiliary open proofs.
We now formalise the method of dynamic abduction independently of the selection method
for auxiliary proofs.

5.3 Dynamic Iterated Abduction Process
Before we describe the dynamic abduction procedure, consider the following result, which
is used extensively by it.

4This inference was called �dk in [14]
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FIG. 7. The Dynamic Abduction Process

Lemma 5.1 Suppose �,H �G. Then ��G iff ��H ,G.

Proof We could show this result using only structural rules from the sequent calculus, but
we prove using tableau reasoning instead. We write T� for {TA|A∈�}.
(⇐) Assume ��H ,G. Then we have a closed tableau for ��G branching over H

where T1 is a closed tableau for ��H ,G and T2 is a closed tableau for �,H �G.
(⇒) Assume ��G. Clearly, any closed tableau for {T �,F G} also closes for {T �,FH ,FG},
so ��H ,G

The dynamic process of repeated applications of the branch abduction algorithm is illus-
trated in Figure 7.
The idea of the construction on Figure 7 is the following. One starts with the construction

of a proof for the original sequent ��?G. Suppose there is some method for deciding how
to start building a finite tableau T1 for it; it can be either atom elimination, or approxi-
mated reasoning, or any decidable method. If T1, then the proof is finished. Otherwise, the
abduction Algorithm 3.1 is applied, yielding an abduced formula H1. The correctness of
the algorithm guarantees that an extension of tableau T1 for �,H1�G closes. Furthermore,
Lemma 5.1 guarantees that the original sequent is provable iff ��H1,G is, so the proof pro-
ceeds by constructing a tableau for ��?H1,G ; the KE-method, guarantees there is a proof
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or refutation for it no longer than a proof or refutation for the original sequent. A proof for
the original sequent can be composed with a single application of a potentially non-analytic
cut, ie a branching over the abduced formula H1.
This process can then be iterated, as illustrated in Figure 7. Tableaux T1,...,Tn all close due
to the correctness of Algorithm 3.1. After every abduction step i, only the rightmost branch,
namely the one containing FHi , is open. At the end of the proof, the rightmost tableau T ∗

closes iff the initial sequent is provable, due to iterated applications of Lemma 5.1. When
this process terminates we have computed potentially non-analytic cut formulas H1,...,Hn ,
generating a non-analytic proof or refutation for the input sequent.

5.4 The Dynamic Abduction Algorithm

The dynamic abduction algorithm is shown in Algorithm 5.1. The idea is to parameterise
it with an abduction heuristic H. Note that the final product is a non-analytic proof for the
original sequent.

Algorithm 5.1 Non-analytic Tableau Proof via Dynamic Abduction
DynamicAbduction(�,G,H)
Input: A sequent ��?G and abduction heuristics H.
Output: A tableau T for ��G or a counter-valuation
1: i :=1
2: openBranch :={TA|A∈�}∪{FG}
3: T :=openBranch
4: while true do
5: Ti := apply abduction heuristics H to openBranch
6: if Ti closes then
7: Attach Ti to the end of the open branch in T
8: return T
9: else if there is a saturated open branch in Ti then
10: return a counter valuation obtained from the open branch
11: else
12: Hi :=BranchAbduction(openBranch,Ti)
13: Ti := expand and close Ti∪{THi}
14: Expand T with an application of PB. On the left add THi and Ti . On the right add

FHi
15: openBranch :=openBranch∪{FHi}
16: end if
17: i := i+1
18: end while

At each iteration step i, a tableaux Ti is expanded as an application of the abduction
heuristics to ��?H1,...,Hi−1,G without using the abduced hypothesis Hi . In fact, Hi can only
be computed after Ti is expanded. When Ti is expanded, there are three possibilities:

• The analytic tableau for Ti closes (line 6). Then a proof has been constructed for the
original sequent ��G.
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• The analytic tableau for Ti has an open saturated branch (line 9). Then a counterex-
ample for � ��G has been obtained.
• Ti is open, with no saturated branch. In this case, we can apply Algorithm 12 and
compute Hi (line 12). By the correctness of the procedure, Ti can be closed adding Hi
(line 13), so Ti is expanded an analytic closed tableau for �,Hi�H1,...,Hi−1,G.
The two initial cases are the termination cases of the non-analytic proof. In the last case,
the construction of the proof can continue, such that Ti is a closed sub-tableau. In general,
the abduced formula Hi is not a subformula of the original sequent, so the process is very
likely to generate a non-analytic proof.

Theorem 5.1 (Partial correctness of Algorithm 5.1) If Algorithm 5.1 stops, then either it
produces a proof of ��G or it produces a counter-valuation for it.
Proof Suppose Algorithm 5.1 stops after i iterations, such that T was expanded i times. At
each such expansion we can apply Lemma 5.1, so that ��G iff there is a way to close the
right openBranch. The algorithm returns in one of two cases.
In line 8, openBranch has closed and T is a closed tableau for ��G. In line 5.1, there is
a saturated open branch for openBranch from which a counter-valuation for � ��G can be
obtained.

Termination depends on the abduction heuristics chosen. For example, atom elimination
is guaranteed to terminate when all atoms have been eliminated.
If the abduction heuristics has the potential of generating infinite proofs, this process can
always be interrupted. In this case, a fixed number of iterations k may be also given as part
of the heuristics, such that the abduction procedure can be replaced by a simple analytic
KE tableau expansion for ��?H1,...,Hk ,G. This last expansion generates the tableau T ∗ is
Figure 7 and it is guaranteed to always terminate.

6 Conclusion

In this paper, two new methods were presented for the computation of abduced formulas in
classical propositional logic. Both methods have in common the fact that it is not required to
be known, a priori, if the input sequent is invalid; in case it was valid, the abduced formula
provides extra hypothesis that creates a short proof for an expanded problem.
The branch abduction method shows that one does not require an analytic proof method,
as suggested by Cialdea-Mayer and Pirri [6, 8], to perform abduction. On the contrary, the
fact that no a priori knowledge is required in what concerns the status of the entailment of
the goal data from the background theory has shown that abduction can be used as a tool
to compute non-analytic proofs, that are potentially smaller than analytic ones.
The abduction-based computation of non-analytic proofs works as a general proof restart.
That is, at certain point in the proof development, that proof search is interrupted, closed,
and restarted. To avoid wasting all the effort done so far, the abduced formula can be seen as
encoding the “lessons learned” in the initial tableau expansion. By using KE tableaux, those
lessons are encoded in a compact form, namely that of a conjunction of logically independent
formulas. Hopefully, those lessons will be used to find a smaller proof.
There are several possible future works. First, it is now possible to investigate the exten-
sion of those results to first-order and other logics. It should be possible to expand the
branch-driven abduction method to the first order formulation found in Cialdea-Mayer and
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Pirri [6]. Another interesting result in that line, which certainly needs greater care, is to
apply the branch-driven abduction ideas to modern tableau-based theorem provers, such as
the disconnection calculus [17].
Second, deeper investigation is needed for the computation of compact, non-analytic
proofs. We only showed here that such computation is possible. One has still to develop
a method that is shown to be efficient and desirable in, at least, some specific cases. Possi-
bly such method will have to combine many other developments in theorem proving apart
from the abduction-based restart presented here. The existence of such a method has strict
relation with complexity theory, for if a compact proof was shown to always exist, this would
imply that NP=co-NP.
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